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In this paper we prove a lower semicontinuity result of Reshetnyak type for a class of functionals which appear in models for small-strain elasto-plasticity coupled with damage. To do so we characterise the limit of measures α k Eu k with respect to the weak convergence α k α in W 1,n (Ω) and the weak * convergence u k * u in BD(Ω) , E denoting the symmetrised gradient. A concentration compactness argument shows that the limit has the form α Eu + η , with η supported on an at most countable set.

Introduction

In this paper we prove a lower semicontinuity result of Reshetnyak type for a class of functionals which appear in models for small-strain elasto-plasticity coupled with damage. The functionals H(α, p) that we consider depend on Sobolev functions α , the damage variables, and on bounded Radon measures p , the plastic strains.

In small-strain plasticity, the linearized strain Eu , defined as the symmetric part of the spatial gradient of the displacement u : Ω → R n , is decomposed as the sum of the elastic strain e ∈ L 2 (Ω; M n×n sym ) , and of the plastic strain p ∈ M b (Ω; M n×n sym ) , i.e., p is a bounded Radon measure with values in the space of symmetric matrices M n×n sym . In perfect plasticity (without damage), the energy dissipated in the evolution of the plastic strain is described in terms of the so-called plastic potential, defined in accordance to the theory of convex functions of measures by In the formula above, dp/ d|p| is the Radon-Nikodym derivative of p with respect to its total variation |p| and H is the support function of a set K + RI , I being the identity matrix and K the convex compact set of the space of n×n trace-free matrices where the deviatoric part of the stress is constrained to lie. In particular, H : M n×n sym → [0, ∞] is convex, lower semicontinuous, and positively 1 -homogeneous. We refer to [START_REF] Maso | Quasistatic evolution problems for linearly elastic -perfectly plastic materials[END_REF] for all the details about the mathematical formulation of small-strain perfect plasticity.

In presence of damage, the constraint set depends on the real-valued damage variable α . Here we assume a multiplicative dependence, that is K(α) = V (α)K , with V : R → [0, ∞) lower semicontinuous. In this setting the plastic potential becomes H(α, p) := Ω V (α(x))H dp d|p| (x) d|p|(x) .

(1.1)

The functional above is sequentially lower semicontinuous with respect to the uniform convergence in α and the weak* convergence in p , as a consequence of Reshetnyak's Lower Semicontinuity Theorem (see, e.g., [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.38]).

The lower semicontinuity of the plastic potential is, in general, a major difficulty in small-strain plasticity when the constraint set depends on an additional variable. For instance, in non-associative plasticity (cf. [START_REF] Maso | Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling[END_REF][START_REF] Babadjian | Quasistatic evolution in non-associative plasticity the cap model[END_REF][START_REF] Francfort | Quasi-static evolution for the Armstrong-Frederick hardeningplasticity model[END_REF] and the recent [START_REF] Francfort | Quasistatic evolution in non-associative plasticity revisited[END_REF]) such variable lacks continuity, and Reshetnyak's Theorem cannot be applied directly. The way out consists in replacing the original additional variable by a mollified one.

In gradient damage models, the total energy features a term in ∇α which provides uniform bounds for α in W 1,q (Ω) , for a suitable q > 1 . When one considers the coupling with plasticity in the case q > n , the functional in (1.1) is defined by choosing the continuous representative of α and is sequentially lower semicontinuous with respect to the weak convergence in W 1,q (Ω) , in view of the compact embedding of W 1,q (Ω) in C(Ω) . In particular, the minimum problems involved in the variational approach to the existence of quasistatic evolutions admit solutions, cf. [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF].

However, in many mechanical models [START_REF] Pham | Approche variationnelle de lendommagement: I. Les concepts fondamentaux[END_REF][START_REF] Pham | Approche variationnelle de lendommagement: II. Les modèles à gradient[END_REF][START_REF] Knees | A vanishing viscosity approach to a rate-independent damage model[END_REF][START_REF] Alessi | Gradient damage models coupled with plasticity: Variational formulation and main properties[END_REF][START_REF] Miehe | Phase Field Modeling of Fracture in Multi-Physics Problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermoelastic-plastic solids[END_REF][START_REF] Ambati | A phase-field model for ductile fracture at finite strains and its experimental verification[END_REF][START_REF] Miehe | Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory[END_REF] the natural space for the damage variable is W 1,q (Ω) for some exponent q ≤ n , usually the Hilbert space H 1 (Ω) . Here we focus our attention on the critical case q = n , which in particular covers two dimensional models with damage in H 1 (Ω) . Observe that a function α ∈ W 1,n (Ω) does not always admit a continuous representative. Nonetheless, the precise representative α of α is defined up to a set of n -capacity zero. In particular, this exceptional set has H n-1 -measure zero and thus it is |p| -negligible. The functional in (1.1) is therefore well-defined upon choosing this precise representative α .

The main result in this paper is the following.

Theorem 1.1. Assume that Ω is a bounded, open, Lipschitz set. Let V : R → [0, ∞] and H : Ω×M n×n sym → [0, ∞] be lower semicontinuous. Assume that H is positively 1 -homogeneous and convex in the second variable. Let α k , α ∈ W 1,n (Ω) , u k , u ∈ BD(Ω) , e k , e ∈ L q (Ω; M n×n sym ) for some q > 1 , and p k , p ∈ M b (Ω; M n×n sym ) . Assume that

Eu k = e k + p k in M b (Ω; M n×n sym ) , (1.2) 
u k * u weakly* in BD(Ω) , (1.3) 
p k * p weakly* in M b (Ω; M n×n sym ) , (1.4) 
e k e weakly in L q (Ω; M n×n sym ) ,

α k α weakly in W 1,n (Ω) . (1.5) 
Then Eu = e + p and

Ω V ( α(x)) H x, dp d|p| (x) d|p|(x) ≤ lim inf k→+∞ Ω V ( α k (x)) H x, dp k d|p k | (x) d|p k |(x) . (1.6)
To illustrate the proof of Theorem 1.1, we consider now the simplified case V (α) = α , 0 ≤ α ≤ 1 , and H(x, ξ) = |ξ| . The starting point is the following Leibniz formula (Proposition 3.5)

α k Eu k = E(α k u k ) -∇α k u k ,
where denotes the symmetric tensor product. If the sequence u k were bounded in L ∞ (Ω; R n ) , then ∇α k u k would converge weakly in L n (Ω; M n×n sym ) to ∇α u , and the formula above would easily imply that α k Eu k * α Eu . In different contexts where truncation arguments are allowed, this makes possible to prove the lower semicontinuity of the plastic potential, cf. [14, Proposition 2.3] for plasticity coupled with damage in the antiplane setting and [9, Theorem 3.1] for the coupling of damage and strain gradient plasticity.

Here we are able to give a precise description of the weak* limit of the sequence α k Eu k , which may differ from α Eu (cf. Example 3.1). Specifically, a concentration compactness argument in the spirit of [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, Part I[END_REF] allows us to prove in Theorem 3.2 that α k Eu k * α Eu + η , where η is a measure concentrated on an at most countable set. In particular, α k p k * α p + η . Passing to the total variations, this entails the desired lower semicontinuity since α p and η are mutually singular.

We stress that this type of proof only works in the critical case α ∈ W 1,q (Ω) with q = n . Indeed, Example 3.7 shows that if q < n , it may happen that α k Eu k * α Eu + η , where η is not singular with respect to α Eu . The case q < n will be the subject of a future investigation. We remark that when H(ξ) = |ξ| and e k → e strongly in L 2 (Ω; M n×n sym ) , the plastic potential is lower semicontinuous even in the case q < n , as proven in [START_REF] Crismale | Some results on quasistatic evolution problems for unidirectional processes[END_REF]Section 4.6]. Indeed, these conditions on H and e k allow for a slicing argument as in [START_REF] Maso | Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation[END_REF] which reduces the proof to the one-dimensional setting. This technique is however not suited to the case where e k is only a weakly convergent sequence.

The paper is structured as follows. In Section 2 we fix the notation and we collect some preliminary results. Section 3 is devoted to the study of the weak* limit of sequences α k Eu k : there we provide some explicit examples of concentration effects and we prove that the excess measure in the limit is concentrated on an at most countable set. Section 4 contains the proof of Theorem 1.1. Finally, in Section 5 we apply Theorem 1.1 to show the esistence of energetic solutions for a model which couples small-strain plasticity and damage in W 1,n (Ω) .

Notation and preliminary results

Notation. Throughout the paper we assume that n ≥ 2 . The Lebesgue measure in R n is denoted by L n , while H s is the s -dimensional Hausdorff measure.

The space of n×n symmetric matrices is denoted by M n×n sym ; it is endowed with the euclidean scalar product A : B := tr(AB T ) , and the corresponding euclidean norm |A| := (A : A) 1/2 . The symmetrised tensor product a b of two vectors a, b ∈ R n is the symmetric matrix with components (aibj + ajbi)/2 .

Measures.

Let Ω be an open set in R n . The space of bounded R m -valued Radon measures is denoted by M b (Ω; R m ) . This space can be regarded as the dual of the space C0(Ω; R m ) of R mvalued continuous functions on Ω vanishing on ∂Ω . The notion of weak* convergence in M b (Ω; R m ) refers to this duality. Moreover, we denote by M + b (Ω) the space of non-negative bounded Radon measures. If f ∈ L 1 (Ω; R m ) , we shall always identify the bounded Radon measure f L n with the function f .

Let us consider a lower semicontinuous function H : Ω×R m → [0, ∞] , positively 1 -homogeneous and convex in the second variable and let us consider the functional defined in accordance to the theory of convex functions of measures

H(µ) := Ω H x, dµ d|µ| (x) d|µ|(x) , for µ ∈ M b (Ω; R m ) ,
where dµ/ d|µ| is the Radon-Nikodym derivative of µ with respect to its total variation |µ| . We recall the classical Reshetnyak's Lower Semicontinuity Theorem [START_REF] Reshetnyak | Weak convergence of completely additive vector functions on a set[END_REF]. For a proof we refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.38].

Theorem 2.2 (Reshetnyak's Lower Semicontinuity Theorem

). Let Ω be an open set in R n . Let µ k , µ ∈ M b (Ω; R m ) . If µ k * µ weakly* in M b (Ω; R m ) , then Ω H x, dµ d|µ| (x) d|µ|(x) ≤ lim inf k→+∞ Ω H x, dµ k d|µ k | (x) d|µ k |(x) ,
for every lower semicontinuous function H : Ω×R m → [0, ∞] , positively 1 -homogeneous and convex in the second variable.

Functions of bounded deformation. Let Ω be an open set in R n . For every u ∈ L 1 (Ω; R n ) , we denote by Eu the M n×n sym -valued distribution on Ω , whose components are given by Eiju :=

1 2 (Dju i + Diu j ) . The space BD(Ω) of functions of bounded deformation is the space of all u ∈ L 1 (Ω; R n ) such that Eu ∈ M b (Ω; M n×n sym ) . A sequence (u k ) k converges to u weakly* in BD(Ω) if and only if u k → u strongly in L 1 (Ω; R n ) and Eu k * Eu weakly* in M b (Ω; M n×n sym ) .
We recall that for every u ∈ BD(Ω) the measure Eu vanishes on sets of H n-1 -measure zero.

The two following embedding theorems hold for the space of functions of bounded deformation. We denote by 1 * := n n-1 the Sobolev conjugate of 1 .

Theorem 2.3. The space BD(R n ) is continuously embedded in L 1 * (R n ; R n ) . More precisely, there exists a constant C1 = C1(n) > 0 such that for every u ∈ BD(R n ) we have u L 1 * (R n ;R n ) ≤ C1|Eu|(R n ) . If Ω is a bounded, open, Lipschitz set, the space BD(Ω) is continuously embedded in L q (Ω; R n ) for every 1 ≤ q ≤ 1 * . Theorem 2.4.
Let Ω be a bounded, open, Lipschitz set. Then the space BD(Ω) is compactly embedded in L q (Ω; R n ) for every 1 ≤ q < 1 * .

We refer to the book [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF] for more details on the general properties of functions of bounded deformation and to [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF] for their fine properties.

Capacity. For the notion of capacity we refer, e.g., to [START_REF] Evans | Measure theory and fine properties of functions[END_REF][START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]. We recall here the definition and some properties.

Let 1 ≤ q < +∞ and let Ω be a bounded, open subset of R n . For every subset B ⊂ Ω , the q -capacity of E in Ω is defined by

Cap q (E, Ω) := inf Ω |∇v| q dx : v ∈ W 1,q 0 (Ω), v ≥ 1 a.e. in a neighbourhood of E .
A set E ⊂ Ω has q -capacity zero if Cap q (E, Ω) = 0 (actually, the definition does not depend on the open set Ω containing E ). A property is said to hold Cap q -quasi everywhere (abbreviated as Cap q -q.e.) if it holds for a set of q -capacity zero. If 1 < q ≤ n and E has q -capacity zero, then H s (E) = 0 for every s > n -q . A function α : Ω → R is Cap q -quasicontinuous if for every ε > 0 there exists a set Eε ⊂ Ω with Cap q (Eε, Ω) < ε such that the restriction α| Ω\Eε is continuous. Note that if q > n , a function α is Cap q -quasicontinous if and only if it is continuous.

Every function α ∈ W 1,q (Ω) admits a Cap q -quasicontinuous representative α , i.e., a Cap qquasicontinuous function α such that α = α L n -a.e. in Ω . The Cap q -quasicontinuous representative is essentially unique, that is, if β is another Cap q -quasicontinuous representative of α , then β = α Cap q -q.e. in Ω . If α k → α strongly in W 1,q (Ω) , then there exists a subsequence kj such that α k j → α Cap q -q.e. in Ω .

Concentration phenomena

In the whole section we assume that Ω is a bounded, open, Lipschitz set. In order to prove the lower semicontinuity result, we shall provide a precise description of the weak* limit of the sequence of measures α k Eu k , for α k α weakly in W 1,n (Ω) and u k * u weakly* in BD(Ω) . We start by showing that, in general, the sequence α k Eu k does not converge to α Eu weakly* in M b (Ω; M n×n sym ) . Indeed concentration phenomena may occur, as the following example shows.

Example 3.1. Let n = 2 and let Ω = (-1, 1) 2 . We construct here an explicit example of a sequence

(α k ) k in W 1,2 (Ω) with 0 ≤ α k ≤ 1 and a sequence (u k ) k in BD(Ω) such that α k 0 weakly in W 1,2 (Ω) , (3.1) 
u k * 0 weakly* in BD(Ω) , (3.2) 
but nonetheless

α k Eu k does not converge to 0 weakly* in M b (Ω; M 2×2 sym ) . (3.3)
Let us define the polygon

P k = A k ∪ B k ∪ C k ∪ D k as in Figure 1. Let A k := -1 2k , 1 2k × -1 k , 0 and B k := -1 2k , 1 2k × 0, 1 k . Let C k be the union of the triangle C + k with vertices 1 2k , 0 , 3 2k , 0 , 1 2k , 1 k and of the triangle C - k with vertices -1 2k , 0 , -3 2k , 0 , -1 2k , 1 k . Let D k be the union of the triangle D + k with vertices 1 2k , 0 , 1 2k , -1 k , 3 2k , 0 and of the triangle D - k with vertices -1 2k , 0 , -1 2k , -1 k , -3 2k , 0 . For k large enough, P k is contained in Ω . 1 k 1 k 1 k Bk Ak C + k D + k Pk C - k D - k Figure 1. Decomposition of the set P k .
We define the piecewise affine functions

α k ∈ W 1,∞ (Ω) in such a way that α k (x) = 1 for every x ∈ ∂A k ∩ ∂B k = -1 2k , 1 2k × 0 , α k (x)
= 0 for every x / ∈ P k , and α k is affine on each of the sets which decompose P k . Notice that 0 ≤ α k ≤ 1 and that

∇α k (x) =                    ke2 if x ∈ A k , -ke2 if x ∈ B k , -ke1 -ke2 if x ∈ C + k , -ke1 + ke2 if x ∈ D + k , ke1 -ke2 if x ∈ C - k , ke1 + ke2 if x ∈ D - k ,
where {e1, e2} is the standard basis in R 2 . In particular sup

k ∇α k L 2 (Ω;R 2 ) < +∞ and ∇α k → 0 strongly in L 1 (Ω; R 2 ) . Finally, we define u k : R 2 → R 2 by u k := |∇α k |1A k e1 = k1A k e1 , where 1A k is the indicator function of the set A k . Since Ω |α k (x)| 2 dx ≤ L 2 (P k ) → 0 , sup k Ω |∇α k (x)| 2 dx < +∞ ,
we deduce (3.1). Moreover

Ω |u k (x)| dx = A k |∇α k (x)| dx → 0 , sup k |Eu k |(Ω) ≤ C sup k k H 1 (∂A k ) < +∞ imply (3.
2). In order to prove (3.3), let us fix ϕ ∈ C0(Ω; M 2×2 sym ) . Let us denote the sides of A k by L i k , i = 1, 2, 3, 4 , L 1 k being the top side and L 3 k being the bottom side. Notice that the measure

α k Eu k is concentrated on L 1 k ∪ L 2 k ∪ L 4 k and that L 2 k ∪L 4 k α k ϕ : dEu k = k 2 0 -1 k x2 ϕ -1 2k , x2 -ϕ 1 2k , x2 : e1 e1 dx2 → 0 ,
x2 denoting the second coordinate of x . Therefore, the only contribution to the limit is given by

L 1 k α k ϕ : dEu k = -k L 1 k ϕ : e1 e2 dH 1 → -ϕ(0) : (e1 e2 ,
i.e., α k Eu k * -δ0 e1 e2 . This proves the claim. The example can be also modified in order to have div u k = 0 . This can be done by suitably extending the vector field u k in D + k , D - k , and Ω \ P k .

In the previous example, the difference between α Eu = 0 and the weak* limit of α k Eu k is a measure concentrated on a point. Actually, we will show that for every sequence ( α k Eu k ) k the excess measure in the limit may concentrate on at most countably many points. Specifically, we shall prove the following result.

Theorem 3.2. Let α k , α ∈ W 1,n (Ω) and u k , u ∈ BD(Ω) . Assume that α k L ∞ (Ω) ≤ M , (3.4) 
α k α weakly in W 1,n (Ω) , (3.5) 
u k * u weakly* in BD(Ω) . (3.6) 
Then, up to a subsequence (which we do not relabel),

α k Eu k * α Eu + η weakly* in M b (Ω; M n×n sym )
, where η ∈ M b (Ω; M n×n sym ) is concentrated on an at most countable set.

The initial step for the proof of Theorem 3.2 is a careful analysis of the limit behaviour of a sequence (u k ) k converging weakly* in BD(Ω) . The Embedding Theorems for BD(Ω) (Theorem 2.3 and Theorem 2.4) do not guarantee that the sequence (u k ) k converges strongly in L 1 *

(Ω; R n ) . Nevertheless, the following concentration compactness argument in the spirit of [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, Part I[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case, Part II[END_REF] shows that the lack of compactness of (u k ) k in L 1 *

(Ω; R n ) is only due to concentration around countably many points. For a proof of the analogous result in the Sobolev case we refer e.g. to [START_REF] Evans | Weak Convergence Methods for Nonlinear Partial Differential Equations[END_REF].

Theorem 3.3. Let (u k ) k be a sequence in BD(Ω) . Assume that u k * 0 weakly* in BD(Ω) and that |u k | 1 * * ν weakly* in M b (Ω) (3.7)
for some non-negative measure ν ∈ M + b (Ω) . Then ν is concentrated on an at most countable set, i.e., there exists a countable set {xj}j of points of Ω such that ν = j cjδx j , with cj ∈ (0, +∞) .

Proof. Upon extracting a subsequence (which we do not relabel), we suppose that

|Eu k | * µ weakly* in M b (Ω) (3.8) 
for some measure non-negative measure µ ∈ M + b (Ω) . Let us define the set D := {x ∈ Ω : µ({x}) > 0} .

Note that the set D is at most countable, since µ is a finite measure. We claim that ν is concentrated on a subset of D .

We first prove that the measure ν is absolutely continuous with respect to µ . Let us fix a compact set K ⊂ Ω , and an open set V ⊂ Ω such that K ⊂ V . Let us consider a cut-off function φ ∈ C 1 c (Ω) with 0 ≤ φ ≤ 1 , φ = 1 on K , supp(φ) ⊂ V . The functions φ u k have compact support in Ω , they belong to BD(R n ) , and E(φ u k ) = φ Eu k + ∇φ u k . By Theorem 2.3, we infer that

R n |φ u k | 1 * dx 1/1 * ≤ C1|E(φ u k )|(R n ) ≤ C1 Ω |φ| d|Eu k | + Ω |∇φ u k | dx . Since u k → 0 strongly in L 1 (Ω; R n ) (Theorem 2.4), we have Ω |∇φ u k | dx → 0
as k → +∞ . Testing (3.7) and (3.8) with the functions |φ| 1 * and |φ| respectively, we pass to the limit as k → +∞ in the inequality above and we get

Ω |φ| 1 * dν 1/1 * ≤ C1 Ω |φ| dµ .
From the assumptions on φ we deduce that

ν(K) 1/1 * ≤ C1µ(V ) .
By the arbitrariness of K and V , we have

ν(B) 1/1 * ≤ C1µ(B) (3.9) 
for any Borel set B ⊂ Ω . Therefore we conclude that ν is absolutely continuous with respect to µ .

By the Radon-Nikodym Theorem

ν = dν dµ µ ,
where dν dµ is the Radon-Nikodym derivative of ν with respect to µ given by dν dµ (x) = lim r→0 + ν(Br(x)) µ(Br(x)) for µ-a.e. x ∈ Ω .

By (3.9) and the formula above we infer that dν dµ (x) ≤ lim sup

r→0 + C 1 * 1 µ(Br(x)) 1 * -1 = 0 for µ-a.e. x ∈ Ω \ D ,
i.e., that ν is concentrated on a subset of D .

The following lemma will be used in the proof of Theorem 3.2 to characterise the limit of the sequence (∇α k u k ) k . Lemma 3.4. Let (g k ) k be a bounded sequence in L n (Ω; R n ) and let (u k ) k be a sequence in BD(Ω) such that u k * 0 weakly* in BD(Ω) . Assume that

|g k u k | * ν weakly* in M b (Ω)
for some non-negative measure ν ∈ M + b (Ω) . Then ν is concentrated on an at most countable set.

Proof. By Theorem 2.3, the sequence

(|u k | 1 * ) k is bounded in L 1 (Ω)
. Upon extracting a subsequence (which we do not relabel), we suppose that

|g k | n * ν g , |u k | 1 * * ν u weakly* in M b (Ω) .
Let us fix a compact set K ⊂ Ω , and an open set V ⊂ Ω such that K ⊂ V . Let φ ∈ C 1 c (Ω) be such that 0 ≤ φ ≤ 1 , φ = 1 on K , and supp(φ) ⊂ V . By Hölder's Inequality we have

Ω φ 2 |g k u k | dx ≤ C Ω |φ g k ||φ u k | dx ≤ C Ω |φ| n |g k | n dx 1/n Ω |φ| 1 * |u k | 1 * dx 1/1 * .
Passing to the limit as k → +∞ we deduce that

Ω φ 2 dν ≤ C Ω |φ| n dν g 1/n Ω |φ| 1 * dν u 1/1 * and thus ν(K) ≤ C ν g (V ) 1/n ν u (V ) 1/1 *
.

By the arbitrariness of K and V we conclude that

ν(B) ≤ C ν g (B) 1/n ν u (B) 1/1 *
for every Borel set B , and therefore that ν is absolutely continuous with respect to ν u , which by Theorem 3.3 is concentrated on an at most countable set.

We shall need the following Leibniz rule formula for the product of Sobolev functions and functions of bounded deformation. We include the proof for the convenience of the reader.

Proposition 3.5. Let α ∈ W 1,n (Ω) ∩ L ∞ (Ω) , and u ∈ BD(Ω) . Then α u ∈ BD(Ω) and E(α u) = α Eu + ∇α u in M b (Ω; M n×n sym ) . (3.10)
Proof. The proof is based on an approximation argument. There exists a sequence of smooth functions

α k ∈ C ∞ (Ω) such that α k → α strongly in W 1,n (Ω) and α k L ∞ (Ω) ≤ α L ∞ (Ω)
. It is immediate to prove via integration by parts that

E(α k u) = α k Eu + ∇α k u in M b (Ω; M n×n sym ) .
In particular, the total variations |E(α k u)| are bounded, and thus E(α k u) * E(α u) . Moreover, ∇α k u → ∇α u strongly in L 1 (Ω; M n×n sym ) . To conclude the proof of (3.10), we simply remark that α k → α Cap n -q.e. (up to a subsequence) and Eu vanishes on sets of n -capacity zero, so that α k Eu * α Eu in M b (Ω; M n×n sym ) by the Dominated Convergence Theorem.

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. By Proposition 3.5 we have

α k Eu k = E(α k u k ) -∇α k u k . (3.11) Notice that E(α k u k ) * E(α u) weakly* in M b (Ω; M n×n sym ) . (3.12)
Indeed, by Hölder's Inequality

|E(α k u k )|(Ω) ≤ α k L ∞ (Ω) |Eu k |(Ω) + C ∇α k L n (Ω;R n ) u k L 1 * (Ω;R n ) .
By (3.4)- (3.6) and by Theorem 2.3 the right-hand side in the inequality above is uniformly bounded. Since α k u k → α u strongly in L 1 (Ω; R n ) , we conclude that (3.12) holds.

We now study the weak* limit of (∇α

k u k ) k in M b (Ω; M n×n sym ) . Since ∇α k ∇α weakly in L n (Ω; R n ) , we get that ∇α k u ∇α u weakly in L 1 (Ω; M n×n sym ) . (3.13)
Upon the extraction of a subsequence (that we do not relabel), we can assume that

∇α k (u -u k ) * η weakly* in M b (Ω; M n×n sym ) , (3.14 
)

|∇α k (u -u k )| * ν weakly* in M b (Ω) .
By Lemma 3.4 we have that ν , and a fortiori η , is concentrated on an at most countable set. By (3.13) and (3.14) we get that

∇α k u k * ∇α u -η (3.15)
weakly* in M b (Ω; M n×n sym ) . From (3.11), (3.12), (3.15), and Proposition 3.5 we conclude that

α k Eu k * E(α u) -∇α u + η = α Eu + η weakly* in M b (Ω; M n×n sym ) .
Remark 3.6. Theorem 3.2 does not hold if α k ∈ W 1,q (Ω) with q < n . In this case, the difference between α Eu and the weak* limit of α k Eu k may be not singular with respect to measures which vanish on sets with Hausdorff dimension strictly less than n-1 . We provide an example below.

Example 3.7. Let n = 2 , let Ω = (-2, 2) 2 , and let 1 < q < 2 . We provide here an example of a sequence (β k ) k in W 1,q (Ω) with 0 ≤ β k ≤ 1 and a sequence (u k ) k in BD(Ω) such that β k 0 weakly in W 1,q (Ω) , u k * 0 weakly* in BD(Ω) , and the weak* limit of β k Eu k is concentrated on a set of Hausdorff dimension 1 .

Pk A 1 k A 2 k A 3 k A 4 k 1 Nk Figure 2.
The function β k is supported on the union of the N k equispaced copies of P k , while the function u k is supported on the grey region given by

N k j=1 A j k .
Let α k ∈ W 1,∞ (Ω) be the piecewise affine functions supported on the polygons P k and let A k be the cubes exhibited in Example 3.1. Let N k be the integer part of k 2-q and let x

j k = j-1 N k , 0 . We define β k (x) := N k j=1 α k (x -x j k ) and u k := N k j=1 k q-1 e11 A j k
, where A j k = A k + x j k . (See Figure 2.) Notice that β k → 0 strongly in L q (Ω) , u k → 0 strongly in L 1 (Ω; R 2 ) , and

Ω |∇β k | q dx = N k j=1 P k |∇α k | q dx ∼ N k 1 k 2 k q ∼ 1 , |Eu k |(Ω) ≤ C N k j=1 k q-1 H 1 (∂A k ) ∼ N k k q-1 1 k ∼ 1 ,
as k → +∞ . Thus β k 0 weakly in W 1,q (Ω) and u k * 0 weakly* in BD(Ω) . With computations similar to those contained in Example 3.1, it is easy to show that only the restriction of β k Eu k to the top sides of the squares A j k gives a contribution to the limit. Hence for every ϕ ∈ C0(Ω; M 2×2 sym ) we have

Ω β k ϕ : dEu k = - N k j=1 k q-1 1 2k -1 2k ϕ x1 + j-1 N k , 0 : e1 e2 dx1 + o(1) → - [0,1]×{0} ϕ : e1 e2 dH 1 , i.e., β k Eu k * -e1 e2H 1 [0, 1]×{0} . 4. Proof of Theorem 1.1
Upon the extraction of a subsequence (that we do not relabel), we assume that the liminf in (1.6) is actually a limit.

We shall prove the theorem supposing that V is a Lipschitz function. Indeed, if this is not the case, we can always find an increasing family of Lipschitz functions V h : R → [0, +∞) such that V = sup h V h . Then, assuming that (1.6) holds for each V h , we have

Ω V h ( α(x)) H x, dp d|p| (x) d|p|(x) ≤ lim inf k→+∞ Ω V h ( α k (x)) H x, dp k d|p k | (x) d|p k |(x) ≤ lim inf k→+∞ Ω V ( α k (x)) H x, dp k d|p k | (x) d|p k |(x) ,
and by the Monotone Convergence Theorem we deduce (1.6).

Let us define the non-negative functions β k := V (α k ) and β := V (α) . Since V is Lipschitz and Ω is bounded, the chain rule for Sobolev functions implies that β k , β ∈ W 1,n (Ω) . Moreover, it is immediate to see that β k β weakly in W 1,n (Ω) , i.e., the sequence (β k ) k satisfies the same assumptions on the sequence (α k ) k . Moreover, β k ≥ 0 a.e. in Ω .

Let us prove the theorem under the additional assumption that β k L ∞ (Ω) ≤ M . Notice that β k → β strongly in L 2 (Ω) . Together with (1.5), this implies that β k e k β e weakly in L 1 (Ω; M n×n sym ) . Hence, by (1.2) and Theorem 3.2, we have (up to a subsequence) 

β k p k = β k Eu k -β k e k * β
β k H x, dp k d|p k | d|p k | .
To remove the assumption that the sequence (β k ) k is bounded in L ∞ (Ω) we use a truncation argument. For every M > 0 we define the functions

β M k := β k ∧ M and β M := β ∧ M . Since β M k β M weakly in W 1,n (Ω)
, by the previous step we have

Ω β M H x, dp d|p| d|p| ≤ lim inf k→+∞ Ω β k H x, dp k d|p k | d|p k | .
We conclude applying the Monotone Convergence Theorem as M → +∞ .

Application to a model for linearised elasto-plasticity coupled with damage

In this section we apply Theorem 1.1 to show the esistence of energetic solutions (cf. [START_REF] Mielke | Evolution of rate-independent systems[END_REF]) for a model which couples small-strain plasticity and damage in W 1,n (Ω) (recall Ω ⊂ R n ). The mechanical framework for this coupling has been proposed and analysed in [START_REF] Alessi | Gradient damage models coupled with plasticity and nucleation of cohesive cracks[END_REF][START_REF] Alessi | Gradient damage models coupled with plasticity: Variational formulation and main properties[END_REF] (for further contribution in this direction see, e.g., [START_REF] Roubíček | Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation[END_REF][START_REF] Roubíček | Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation[END_REF][START_REF] Rossi | Existence results for a coupled viscoplastic-damage model in thermoviscoelasticity[END_REF][START_REF] Alessi | Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples[END_REF]). The existence of quasistatic evolutions has been proven in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF][START_REF] Crismale | Viscous approximation of quasistatic evolutions for a coupled elastoplasticdamage model[END_REF] via the energetic approach and via vanishing viscosity, respectively (see e.g. [START_REF] Mielke | Rate Independent Systems: Theory and Application[END_REF] for details and comparison for the two approaches). The notion of quasistatic evolution we give below is similar to the one in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF]. In that paper, the damage variable belongs to W 1,q (Ω) , with q > n , and in particular it is continuous.

We assume that Ω is a bounded, open, Lipschitz set with boundary partitioned as ∂Ω = ∂DΩ ∪ ∂N Ω ∪ N , with ∂DΩ and ∂N Ω relatively open, ∂DΩ ∩ ∂N Ω = Ø , H n-1 (N ) = 0 , and ∂DΩ = Ø . Moreover, we assume that the common boundary between ∂DΩ and ∂N Ω is smooth enough, more precisely that [11, (2.2)] holds; this is only needed to ensure a suitable integration by parts formula in the stress-strain duality. Let [0, T ] be the time interval where we study the evolution, and uD ∈ AC([0, T ]; H 1 (R n ; R n )) be a prescribed Dirichlet datum for the displacement on ∂DΩ . For simplicity of notation, both the surface forces on ∂N Ω and the volume forces are null.

Let us now briefly recall the energetic and dissipative terms involved in the definition of energetic solutions for the present model, referring to [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF] for more details.

The elastic energy is defined on L 1 (Ω; [0, 1])×L 2 (Ω; M n×n sym ) by

Q(α, e) := 1 2 Ω C(α(x)) e(x) : e(x) dx .
The elasticity tensor C(α) is a symmetric fourth order tensor for any α , Lipschitz and nondecreasing in α , equicontinuous and equicoercive with respect to α , and it induces a linear map on M n×n sym that preserves the space of symmetric deviatoric matrices M n×n D , as well as its orthogonal space RI .

The plastic potential is defined on

W 1,n (Ω; [0, 1])×M b (Ω ∪ ∂DΩ; M n×n D ) by 
H(α, p) := Ω∪∂ D Ω V ( α(x)) H dp d|p| (x) d|p|(x) .
We assume that the function V : [0, 1] → [c1, ∞) is Lipschitz and non-decreasing, and that c1 > 0 ;

H : M n×n D → [0, ∞)
is positively 1 -homogeneous and convex, with r|ξ| ≤ H(ξ) ≤ R|ξ| , for some r > 0 . Notice that every α ∈ W 1,n (Ω) is well defined in Ω up to a set of n -capacity zero, by considering any W 1,n extension of α to a larger set Ω . We remark that the hypoteses on H in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF] are slightly more general (see [8, (2.11)]), here we are in the setting of [ Eu = e + p in Ω , p = (w -u) ν H n-1 on ∂DΩ} .

We are now ready to give the definition of energetic solutions (or globally stable quasistatic evolutions) driven by the boundary datum uD . Definition 5.1. An energetic solution is a function t → (α(t), u(t), e(t), p(t)) from [0, T ] into

W 1,n (Ω; [0, 1])×BD(Ω)×L 2 (Ω; M n×n sym )×M b (Ω ∪ ∂DΩ; M n×n D
) such that (u(t), e(t), p(t)) ∈ A(uD(t)) for every t ∈ [0, T ] and the following conditions are satisfied: (QS0) irreversibility : α(t) ≤ α(s) L n -a.e. in Ω for every 0 ≤ s ≤ t ≤ T ; (QS1) global stability: for any t ∈ [0, T ] and any α ≤ α(t) , (û, ê, p) ∈ A(uD(t))

Q(α(t), e(t)) + D(α(t)) + Ω |∇α(t; x)| n dx ≤ Q( α, ê) + D( α) + Ω |∇ α(x)| n dx + H( α, p -p(t)) ; (QS2) energy balance: for any t ∈ [0, T ] Q(α(t), e(t)) + D(α(t)) + Ω |∇α(t; x)| n dx + VH(α, p; 0, t) = Q(α(0), e(0)) + D(α(0)) + Ω |∇α(0; x)| n dx + t 0 Ω
C(α(s; x))e(s; x) : E uD(s; x) dx ds .

Thanks to Theorem 1.1, we can prove the following existence result. Theorem 5.2. Let α0 ∈ W 1,n (Ω; [0, 1]) and (u0, e0, p0) ∈ A(uD(0)) satisfying the global stability condition (QS1) at the initial time. Then there exists an energetic solution such that α(0) = α0 , u(0) = u0 , e(0) = e0 , p(0) = p0 . Remark 5.3. The definition of evolutions above differs from the one in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF] not only for the damage regularisation. Indeed, in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF] there is a parameter λ ∈ [0, 1] that accounts for the interplay between damage growth and cumulation of plastic strain, thus for a fatigue phenomenon. We stated, for simplicity of notation, Definition 5.1 only for the case λ = 0 ; one can follow the argument in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF] to prove existence of energetic solutions corresponding to any λ . Moreover, in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF] the Dirichlet boundary was the whole ∂Ω . As observed in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF], it is a minor point to consider also external volume and surface forces.

Proof of Theorem 5.2. We can closely follow the proof of [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF]Theorem 4.3], based on a time incremental approach, which is by now well consolidated. This consists in solving incremental minimisation problems, to obtain discrete-time evolutions that satisfy a discrete global stability and a discrete energy inequality, then passing these conditions to the limit as the time discretisation step tends to 0, to eventually get the energy balance by the global stability. We need lower semicontinuity of H in order to prove the existence of minimisers for the incremental minimisation problems, and to show the lower semicontinuity of the plastic dissipation, which is a supremum of suitable plastic potentials, as the time discretisation step tends to 0.

The lower semicontinuity of H is deduced by Theorem We also consider a continuous extension operator from W 1,n (Ω) to W 1,n (Ω * ) and we associate to any α ∈ W 1,n (Ω) its extension α * ∈ W 1,n (Ω * ) . Then With the lower semicontinuity property above at hand, one follows the proof of [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF]Theorem 4.3] and concludes Theorem 5.2. In particular, the lower semicontinuity of the plastic dissipation VH as the time discretisation step tends to 0 follows by the definition (5.1) as supremum of a family of plastic potentials. We remark that, as in [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF], no continuity in time of α is required: indeed, the monotonicity in time of α guarantees that the supremum in (5.1) is actually a limit as the maximum step of the partition tends to 0 (cf. [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF]Lemma A.1]). This is crucial to deduce the energy balance from the global stability.

  d|p|(x) , for p ∈ M b (Ω; M n×n sym ) .

Remark 2 . 1 .

 21 Let µ, ν ∈ M b (Ω; R m ) . If |µ| and |ν| are mutually singular, then H(µ + ν) = H(µ) + H(ν) (cf. [6, Proposition 2.37]).

  tj), p(tj) -p(tj-1)) : s = t0 < t1 < • • • < tN = t, N ∈ N . (5.1) Moreover, we consider a non-negative, continuous, and non-increasing function d and we introduce the functional D : L 1 (Ω; [0, 1]) → [0, ∞) defined by D(α) := Ω d(α(x)) dx . This term accounts for the energy dissipated during the damage process. For a given w ∈ H 1 (R n ; R n ) , the set of admissible plasticity triples for w is A(w) := {(u, e, p) ∈ BD(Ω)×L 2 (Ω; M n×n sym )×M b (Ω ∪ ∂DΩ; M n×n D ) :

1 . 1

 11 in the following way. Let U ⊂ R n be a bounded, open, Lipschitz set such that U ∩ ∂Ω = ∂DΩ . Let Ω * := Ω ∪ U and let us define for any w ∈ H 1 (R n ; R n ) and for any (u, e, p) ∈ A(w) u * := u in Ω , w in Ω * \ Ω , e * := e in Ω , Ew in Ω * \ Ω , p * := p in Ω , 0 in Ω * \ Ω . (5.2)

V

  ( α * (x)) H dp * d|p * | (x) d|p * |(x) . If α k α weakly in W 1,n (Ω) , w k w weakly in H 1 (R n ; R n ) , (u k , e k , p k ) ∈ A(w k ) , u k * u weakly * in BD(Ω) ,and e k e weakly in L 2 (Ω; M n×n sym ) , by Theorem 1.1 we get H(α, p) ≤ lim inf k→∞ H(α k , p k ) . Indeed, by (5.2), we have the convergence p * k * p * weakly * in M b (Ω * ; M n×n D ) for the extensions.

  , where the measure η ∈ M b (Ω; M n×n sym ) is concentrated on an at most countable set. Since |p| is concentrated on sets of dimension at most n-1 , the measures | β p| and |η| are mutually singular. By Remark 2.1, by the 1 -homogeneity of H , and by Reshetnyak's Lower Semicontinuity Theorem we infer that

	β H x,	dp d|p|	d|p| ≤		β H x,	dp d|p|	d|p| +	H x,	dη d|η|	d|η|
	Ω			Ω					Ω
			=	Ω	H x,	d( β p + η) d| β p + η|	d| β p + η| ≤ lim inf k→+∞	Ω

Eu -β e + η = β p + η weakly* in M b (Ω; M n×n sym )
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