Antonin Chambolle 
  
Vito Crismale 
  
A DENSITY RESULT IN GSBD p WITH APPLICATIONS TO THE APPROXIMATION OF BRITTLE FRACTURE ENERGIES

Keywords: generalised special functions of bounded deformation, strong approximation, brittle fracture, Γ-convergence, free discontinuity problems MSC 2010: 49Q20, 74R10, 26A45, 49J45, 74G65

We prove that any function in GSBD p (Ω), with Ω a n-dimensional open bounded set with finite perimeter, is approximated by functions

whose jump is a finite union of C 1 hypersurfaces. The approximation takes place in the sense of Griffith-type energies ´Ω W (e(u)) dx + H n-1 (Ju), e(u) and Ju being the approximate symmetric gradient and the jump set of u, and W a nonnegative function with p-growth, p > 1. The difference between u k and u is small in L p outside a sequence of sets E k ⊂ Ω whose measure tends to 0 and if |u| r ∈ L 1 (Ω) with r ∈ (0, p], then |u k -u| r → 0 in L 1 (Ω). Moreover, an approximation property for the (truncation of the) amplitude of the jump holds. We apply the density result to deduce Γ-convergence approximation à la Ambrosio-Tortorelli for Griffith-type energies with either Dirichlet boundary condition or a mild fidelity term, such that minimisers are a priori not even in L 1 (Ω; R n ).

Introduction

A fundamental idea in the variational approach to fracture mechanics is that the formation of fracture is the result of the competition between the surface energy spent to produce the crack and the energy stored in the uncracked region. This idea dates back to the pioneering work of Griffith [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] and is the core of the model for quasistatic crack evolution proposed by Francfort and Marigo [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], which, in turn, is the starting point for a large number of variational models (see e.g. [START_REF] Maso | A model for the quasi-static growth of brittle fractures: existence and approximation results[END_REF][START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF][START_REF] Chambolle | A density result in two-dimensional linearized elasticity, and applications[END_REF][START_REF] Babadjian | Existence of strong solutions for quasi-static evolution in brittle fracture[END_REF][START_REF] Friedrich | Quasistatic crack growth in 2d-linearized elasticity[END_REF] and [START_REF] Maso | Quasistatic crack growth in nonlinear[END_REF][START_REF] Maso | Quasistatic crack growth in finite elasticity with noninterpenetration[END_REF][START_REF] Lazzaroni | Quasistatic crack growth in finite elasticity with Lipschitz data[END_REF] for brittle fracture in the small and finite strain framework, respectively, and e.g. [START_REF] Cagnetti | Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach[END_REF][START_REF] Maso | Quasi-static crack growth for a cohesive zone model with prescribed crack path[END_REF][START_REF] Crismale | Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue[END_REF] for cohesive fracture). For brittle fracture models, in small strain assumptions, the sum of the bulk energy and of the surface energy (that in brittle fracture is nothing but the measure of the crack) has usually the form Ω W (e(u)) dx + H n-1 (Ju)

in a reference configuration Ω ⊂ R n . This depends on the displacement u : Ω → R n through e(u), the symmetric approximate gradient of u, and Ju, the jump set of u, that represents the crack set.

In order to give sense to [START_REF] Ambrosio | Existence theory for a new class of variational problems[END_REF], one assumes that u admits a measurable (with respect to the Lebesgue measure L n ) symmetric approximate gradient e(u)(x) ∈ M n×n sym for L n -a.e. x ∈ Ω, characterised by ap lim y→x u(y) -u(x) -e(u)(x)(y -x) • (y -x) |y -x| 2 = 0 , (see (1.1) for definition of approximate limit) and that Ju is countably (H n-1 , n -1) rectifiable, where Ju is defined as the set of discontinuity points x where u has one-sided approximate limits u + (x) = u -(x) with respect to a suitable direction νu(x) normal to Ju. The function W is required to be convex with p-growth, with p > 1 (cf. e.g. [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]Section 2] in the framework of elastic bulk energies, and [START_REF] Hutchinson | A course on nonlinear fracture mechanics[END_REF]Sections 10 and 11] and references therein for a connection with elasto-plastic materials).

The space BD(Ω) of functions of bounded deformation is an important example of function space in which (1) is well defined. Employed in the mathematical modelling of small strain elasto-plasticity (see e.g. [START_REF] Temam | Duality and relaxation in the variational problem of plasticity[END_REF][START_REF] Suquet | Sur les équations de la plasticité: existence et régularité des solutions[END_REF][START_REF] Kohn | Dual spaces of stresses and strains, with applications to Hencky plasticity[END_REF][START_REF] Temam | Translation of Problèmes mathématiques en plasticité[END_REF]) it consists of the functions u ∈ L 1 (Ω; R n ) whose symmetric distributional derivative (Eu)ij := 1 2 (Diuj + Djui) is a (matrix-valued) measure with finite total variation in Ω. In particular (see for instance [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF]), Ju is countably (H n-1 , n -1) rectifiable and Eu = E a u + E c u + E j u, where E a u = e(u)L n , the Cantor part E c is singular with respect to L n and vanishes on Borel sets of finite H n-1 measure, and E j u is concentrated on Ju.

In view of the assumptions on [START_REF] Ambrosio | Existence theory for a new class of variational problems[END_REF], and since in particular it gives no control on the Cantor part of Eu, in the present context it is useful to focus on the space SBD(Ω) of BD functions with null Cantor part, introduced in [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF], and on its subspace SBD p (Ω) := {u ∈ SBD(Ω) : e(u) ∈ L p (Ω; M n×n sym ), H n-1 (Ju) < ∞} . Indeed, the existence of minimisers for (1) is guaranteed in SBD p (Ω) by the compactness result [START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF]Theorem 1.1], provided one has an a priori bound for u in L ∞ (Ω; R n ). Unfortunately, it is hard to obtain such a bound, even if the total energy includes additional lower order terms.

To overcome this drawback, Dal Maso introduced in [START_REF]Generalised functions of bounded deformation[END_REF] the spaces GBD and GSBD of the generalised BD and SBD functions, respectively (see Definition 1.5 for its definition, based on properties of one-dimensional slices). Every GBD function admits a measurable symmetric approximate gradient and has a countably (H n-1 , n -1) rectifiable jump set, so that (1) makes sense. Moreover, the compactness result [START_REF]Generalised functions of bounded deformation[END_REF]Theorem 11.3] requires a very mild control for sequences in GSBD p (the space of GSBD functions with e(u) p-integrable and H n-1 (Ju) finite), namely that ψ0(|u k |) is bounded in L 1 for some ψ0 nonnegative, continuous, increasing and unbounded. This gives compactness with respect to the convergence in measure of minimising sequences for total energies with main term (1) plus a lower order fidelity term of type ´Ω ψ0(|u -g|) dx, for a suitable datum g, so that the displacements are not even forced to be in L 1 .

Notice that, differently from the case of image reconstruction, a fidelity term in the total energy is not in general meaningful in fracture mechanics. In particular, the original formulation in [37, Section 2] considers the energy (1) only supplemented with a Dirichlet boundary condition. We remark that a Mumford-Shah-type energy, obtained from the Mumford-Shah image segmentation functional [START_REF] Mumford | Boundary detection by minimizing functionals[END_REF][START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF] by replacing the L 2 fidelity term with a Dirichlet boundary condition, describes brittle fractures in the generalised antiplane setting of e.g. [START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF].

An interesting issue is to provide Γ-convergence approximations, in the spirit of Ambrosio and Tortorelli [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF][START_REF]On the approximation of free discontinuity problems[END_REF], for energies of the form (1) plus some compliance conditions on the displacement. In [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF][START_REF]On the approximation of free discontinuity problems[END_REF] the Mumford-Shah functional is approximated by means of elliptic functionals, depending on the displacement and on a so-called phase field variable, whose minimisers are easier to compute. This result has been largely employed to numerically handle problems both in image reconstruction and in fracture mechanics (see for instance [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF][START_REF] Bourdin | Numerical implementation of the variational formulation for quasi-static brittle fracture[END_REF][START_REF] Burke | An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional[END_REF]). In the vector-valued case, approximations à la Ambrosio-Tortorelli have been proven by Chambolle [START_REF]An approximation result for special functions with bounded deformation[END_REF]16] and Iurlano [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] for the restriction of (1) (assuming W quadratic) to SBD 2 (Ω) ∩ L 2 (Ω; R n ) and GSBD 2 (Ω) ∩ L 2 (Ω; R n ), respectively. A crucial point in the proof of the Γ-limsup inequality is to approximate, in the sense of (limit) energy, any displacement by a sequence of functions in SBV (Ω; R n ) ∩ L ∞ (Ω; R n ) whose jump is a finite union of C 1 hypersurfaces. Then it is not difficult to find a recovery sequence for regular displacement, and one concludes by a diagonal argument. Furthermore, by [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]Theorem 3.1] one may consider approximating functions whose jump is essentially closed and polyhedral, which are of class W m,∞ , for every m ∈ N, in the complement of the (closure of the) jump.

The recent works [START_REF] Friedrich | A piecewise korn inequality in sbd and applications to embedding and density results[END_REF] and [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF] prove two density results moving from the one in [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] into different directions. In [START_REF] Friedrich | A piecewise korn inequality in sbd and applications to embedding and density results[END_REF] any integrability assumption on the displacement is removed, provided Ω is 2-dimensional, precisely for any u ∈ GSBD 2 (Ω), with Ω ⊂ R 2 , there exists a sequence u k in SBV (Ω; R 2 )∩L ∞ (Ω; R 2 ) with regular jump, converging in measure to u and such that e(u k ) → e(u) in L 2 (Ω; M 2×2 sym ) and H n-1 (Ju k Ju) → 0, denoting the symmetric difference of sets (cf. [START_REF] Friedrich | A piecewise korn inequality in sbd and applications to embedding and density results[END_REF]Theorem 2.5]). This follows from a piecewise Korn inequality, obtained with a careful analysis of the jump set of GSBD functions in a 2-dimensional setting. In [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF] any u ∈ GSBD p (Ω)∩L p (Ω; R n ), for every n ∈ N, p > 1, is approximated in the sense of energy (1) and in L p (Ω; R n ), basing on the construction of suitable interpolations of u that are piecewise affine on a decomposition of Ω in small simplices. The setting is therein n-dimensional, but p-summability of the displacement is required.

The present paper provides a density result (Theorem 3.1) in GSBD p (Ω), for a bounded open set Ω ⊂ R n with finite perimeter. Here n ∈ N, p > 1, with no integrability assumptions on the displacement. The approximating functions u k converge to u in measure, e(u k ) converge to e(u) in L p (Ω; M n×n sym ) and H n-1 (Ju k Ju) → 0. Moreover, the difference between u k and u is small in L p outside a sequence of sets E k ⊂ Ω whose measure tends to 0 and, as soon as |u| r ∈ L 1 (Ω) with r ∈ (0, p], we have that |u k -u| r → 0 in L 1 (Ω).

As in [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF], we first prove an intermediate approximation (Theorem 2.1) which controls the measure of the jump set up to a multiplicative parameter. Then we cover a large part of the jump set Ju by suitable rectangles, that are split into two parts by Ju. This gives a partition of Ω in subsets where the jump set has small H n-1 measure, so that Theorem 2.1 provides here (in suitable neighbourhoods, indeed) approximating functions close in energy to the original one. A fundamental difference with respect to [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF]] is that we do not use partitions of unity neither to extend the original function in suitable neighbourhoods of the subsets of the partition nor to glue the approximating functions constructed in any subset. This is done by employing a reflection technique for vector-valued functions due to Nitsche [START_REF] Nitsche | On Korn's second inequality[END_REF] (cf. Lemma 1.8) and allows us to avoid any assumption on the integrability of u.

The proof of Theorem 2.1 is based on [17, Proposition 3] (cf. Proposition 1.9), and is close to what done in [START_REF]Approximation of a brittle fracture energy with non-interpenetrating constraint[END_REF] to approximate a brittle fracture energy with a non-interpenetration constraint. The idea is to partition the domain into cubes of side k -1 and to distinguish, at any scale, the cubes where the ratio between the perimeter and the jump of u is greater than a fixed small parameter θ. In such cubes, one may replace the original function u with a constant function, since on the one hand the new jump is less than the original jump times θ -1 , and on the other hand the total volume of these cubes is small as the length scale goes to 0. In the remaining cubes, where the relative jump is small, one applies Proposition 1.9: a Korn-Poincaré-type inequality holds up to a set of small volume, and in this small exceptional set the original function may be replaced by a suitable affine function without perturbing much its energy.

We prove also an approximation property for the amplitude of the jump [u](x) := u + (x) -u -(x) for x ∈ Ju, which might be useful in cohesive fracture models. Notice that [u] is not integrable in Ju with respect to H n-1 for a general u ∈ GSBD p (Ω). Thus, we show that every truncation of u ± k -u ± tends to 0 in L 1 (Ju k ∪ Ju), and the analogous property for the traces at the reduced boundary of Ω (see (3.1d)). We employ a fine estimate from [START_REF] Babadjian | Traces of functions of bounded deformation[END_REF] for the truncation of the trace components in any direction, whose symmetric gradient is a bounded measure. An approximation of this type is also proven in [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF], where u is integrable, and used in the Γ-convergence result [START_REF] Focardi | Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity[END_REF] for cohesive fracture energies. We may as well consider in Theorem 3.1 smooth approximating functions in the sense of the aforementioned [24, Theorem 3.1] (which applies directly if Ω is Lipschitz), with minor modifications in our proof.

In the last part of the work we present Γ-convergence results à la Ambrosio-Tortorelli for brittle fracture energies. First, we approximate (1) for every u which is GSBD p in an open bounded set with finite perimeter (Theorem 4.1). Then we focus on the sum of (1) with suitable compliance terms, which prevent that the set of minimisers coincides with the constant displacements. In particular, we consider the cases of a mild fidelity term |u -g| r , with r ∈ (0, p] (see Theorem 4.2), and of a Dirichlet boundary condition on a subset ∂DΩ of ∂Ω, under some geometric conditions (see Theorem 4.4). In Theorem 4.2 we also prove existence of minimisers for the limit energy with fidelity term, and the convergence of quasi-minimisers for the approximating energies (existence of minimisers for the approximating energies is guaranteed if the domain is Lipschitz, see Remark 4.3). This follows from Proposition 4.5, in turn based on the argument of the compactness result [START_REF]Generalised functions of bounded deformation[END_REF]Theorem 11.1] (see also [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]Proposition 1]). The existence of minimisers for the (limit) Dirichlet problem has been recently shown by Friedrich and Solombrino [START_REF] Friedrich | Quasistatic crack growth in 2d-linearized elasticity[END_REF]Theorem 6.2] in dimension 2, but is still unknown in dimension n > 2. By Theorem 4.4, it would be enough to prove a uniform bound for ψ(|u k |), for a suitable ψ as above, where u k are quasi-minimisers of the approximate Dirichlet problems.

We conclude this introduction by mentioning some other problems for which density results as Theorem 3.1 are useful. For instance, [START_REF] Friedrich | A piecewise korn inequality in sbd and applications to embedding and density results[END_REF]Theorem 2.5] is applied in [START_REF]A derivation of linearized Griffith energies from nonlinear models[END_REF] for the derivation of linearised Griffith energies from nonlinear models, while [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF] is employed in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] and [START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF] to prove existence of minimisers for the set function that is the strong counterpart of (1). More precisely, in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] the setting is 2-dimensional and W may have p-growth for any p > 1, while [START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF] considers the case Ω ⊂ R n with W quadratic (a fidelity term in the energy is required in these works). Moreover, [START_REF]An approximation result for special functions with bounded deformation[END_REF]16] are useful in other Γ-convergence approximations of brittle fracture energies, such as [START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF][START_REF]A non-local approximation of free discontinuity problems in SBV and SBD[END_REF].

The paper is organised as follows. In Section 1 we introduce notation, functional spaces, and some technical tools useful in the following, as the reflection property Lemma 1.8. In Section 2 and Section 3 we prove the rough and the main density results, respectively. Section 4 is devoted to the applications.

Notation and preliminaries

For every x ∈ R n and > 0 let B (x) be the open ball with center x and radius . For x, y ∈ R n , we use the notation x • y for the scalar product and |x| for the norm. We denote by L n and H k the n-dimensional Lebesgue measure and the k-dimensional Hausdorff measure. For any locally compact subset B of R n , the space of bounded R m -valued Radon measures on B is denoted by M b (B; R m ). For m = 1 we write M b (B) for M b (B; R) and M + b (B) for the subspace of positive measures of M b (B). For every µ ∈ M b (B; R m ), its total variation is denoted by |µ|(B). We denote by χE the indicator function of any E ⊂ R n , which is 1 on E and 0 otherwise.

Definition 1.1. Let A ⊂ R n , v : A → R m an L n -measurable function, x ∈ R n such that lim sup →0 + L n (A ∩ B (x)) n > 0 .
A vector a ∈ R n is the approximate limit of v as y tends to x if for every ε > 0 lim The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of sign of ν, and is denoted by

→0 + L n (A ∩ B (x) ∩ {|v -a| > ε}) n = 0 ,
(v + (x), v -(x), νv(x)). The jump of v is the function defined by [v](x) := v + (x)-v -(x)
for every x ∈ Jv. Moreover, we define BV and BD functions.

J 1 v := {x ∈ Jv : |[v](x)| ≥ 1} . ( 1 
If U ⊂ R n open, a function v ∈ L 1 (U ) is a function of bounded variation on U , and we write v ∈ BV (U ), if Div ∈ M b (U ) for i = 1, . . . , n, where Dv = (D1(v), . . . , Dnv) is its distributional gradient. A vector-valued function v : U → R m is BV (U ; R m ) if vj ∈ BV (U ) for every j = 1, . . . , m. The space BV loc (U ) is the space of v ∈ L 1 loc (U ) such that Div ∈ M b (U ) for i = 1, . . . , n.
A L n -measurable bounded set E ⊂ R n is a set of finite perimeter if χE is a function of bounded variation. The reduced boundary of E, denoted by ∂ * E, is the set of points x ∈ supp |DχE| such that the limit νE(x) := lim →0 + Dχ E (B (x))

|Dχ E |(B (x)) exists and satisfies |νE(x)| = 1. The reduced boundary is countably (H n-1 , n -1) rectifiable, and the function νE is called generalised inner normal to E.

A function v ∈ L 1 (U ; R n ) belongs to the space of functions of bounded deformation if its distributional symmetric gradient Eu belongs to M b (U ; R n ). It is well known (see [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Temam | Translation of Problèmes mathématiques en plasticité[END_REF]) that for v ∈ BD(U ), Jv is countably (H n-1 , n -1) rectifiable, and that

Ev = E a v + E c v + E j v , (1.3) 
where E a v is absolutely continuous with respect to L n , E c v is singular with respect to L n and such that 

|E c v|(B) = 0 if H n-1 (B) < ∞, while E j v
v(y) -v(x) -e(v)(x)(y -x) • (y -x) |y -x| 2 = 0 . (1.4)
The space SBD(U ) is the subspace of all functions v ∈ BD(U ) such that E c v = 0, while for p ∈ (1, ∞) SBD p (U ) := {v ∈ SBD(U ) : e(v) ∈ L p (Ω; M n×n sym ), H n-1 (Jv) < ∞} . Analogous properties hold for BV , as the countable rectifiability of the jump set and the decomposition of Dv, and the spaces SBV (U ; R m ) and SBV p (U ; R m ) are defined similarly, with ∇u, the density of D a v, in place of e(u). For a complete treatment of BV , SBV functions and BD, SBD functions, we refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] and to [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF][START_REF] Babadjian | Traces of functions of bounded deformation[END_REF][START_REF] Temam | Translation of Problèmes mathématiques en plasticité[END_REF], respectively. GBD functions. We now recall the definition and the main properties of the space GBD of generalised functions of bounded deformation, introduced in [START_REF]Generalised functions of bounded deformation[END_REF], referring to that paper for a general treatment and more details. Since the definition of GBD is given by slicing (differently from the definition of GBV , cf. [START_REF] Giorgi | New functionals in the calculus of variations[END_REF][START_REF] Ambrosio | Existence theory for a new class of variational problems[END_REF]), we introduce before some notation for slicing.

Fixed ξ ∈ S n-1 := {ξ ∈ R n : |ξ| = 1}, for any y ∈ R n and B ⊂ R n let

Π ξ := {y ∈ R n : y • ξ = 0}, B ξ y := {t ∈ R : y + tξ ∈ B} , and for every function v : B → R n and t ∈ B ξ y let v ξ y (t) := v(y + tξ), v ξ y (t) := v ξ y (t) • ξ . Definition 1.5. Let Ω ⊂ R n be
bounded and open, and u : Ω → R n be L n -measurable. Then u ∈ GBD(Ω) if there exists λu ∈ M + b (Ω) such that the following equivalent conditions hold for every ξ ∈ S n-1 :

(a) for every

τ ∈ C 1 (R) with -1 2 ≤ τ ≤ 1 2 and 0 ≤ τ ≤ 1, the partial derivative D ξ τ (u • ξ) = D τ (u • ξ) • ξ belongs to M b (Ω), and for every Borel set B ⊂ Ω D ξ τ (u • ξ) (B) ≤ λu(B); (b) u ξ y ∈ BV loc (Ω ξ y ) for H n-1 -a.e. y ∈ Π ξ , and for every Borel set B ⊂ Ω Πξ D u ξ y B ξ y \ J 1 u ξ y + H 0 B ξ y ∩ J 1 u ξ y
dH n-1 (y) ≤ λu(B) .

(1.5)

The function u belongs to GSBD(Ω) if moreover u ξ y ∈ SBV loc (Ω ξ y ) for every ξ ∈ S n-1 and for H n-1 -a.e. y ∈ Π ξ . GBD(Ω) and GSBD(Ω) are vector spaces, as stated in [START_REF]Generalised functions of bounded deformation[END_REF]Remark 4.6], and one has the inclusions BD(Ω) ⊂ GBD(Ω), SBD(Ω) ⊂ GSBD(Ω), which are in general strict (see [27, Remark 4.5 and Example 12.3]). For every u ∈ GBD(Ω) the approximate jump set Ju is still countably (H n-1 , n-1)-rectifiable (cf. [START_REF]Generalised functions of bounded deformation[END_REF]Theorem 6.2]) and can be reconstructed from the jump of the slices u ξ y ([27, Theorem 8.1]). Indeed, for every C 1 manifold M ⊂ Ω with unit normal ν, it holds that for H n-1 -a.e. x ∈ M there esist the traces u

+ M (x), u - M (x) ∈ R n such that ap lim ±(y-x)•ν(x)>0, y→x u(y) = u ± M (x) (1.6)
and they can be reconstructed from the traces of the one-dimensional slices (see [START_REF]Generalised functions of bounded deformation[END_REF]Theorem 5.2]).

Remark 1.6. The trace of GSBD functions on a given

C 1 manifold M ⊂ Ω is linear. Indeed, let us fix ε > 0, η > 0, x ∈ M .
Then there exists such that for 0 < <

L n Ω ∩ B + (x) ∩ {|u -u + M (x)| > ε/2} , L n Ω ∩ B + (x) ∩ {|v -v + M (x)| > ε/2} < η/2
, where B + (x) is the half ball with radius positively oriented with respect to ν(x) . Therefore, for 0 < < it holds that

L n Ω ∩ B + (x) ∩ {|(u + v) -(u + M + v + M )(x)| > ε} < η , so that (u + v) + M (x) = u + M + v + M (x)
. Every u ∈ GBD(Ω) has an approximate symmetric gradient e(u) ∈ L 1 (Ω; M n×n sym ), characterised by (1.4) and such that for every ξ ∈ S n-1 and

H n-1 -a.e. y ∈ Π ξ e(u) ξ y ξ • ξ = ∇ u ξ y L 1 -a.e. on Ω ξ y . (1.7) 
Using this property, we observe the following.

Lemma 1.7. For any u ∈ GSBD(Ω) and A ∈ M n×n , with det A = 0, the function

uA(x) := A T u(Ax) (1.8) belongs to GSBD A -1 (Ω) , with λu A (B) = λu(A(B)) , (1.9) 
for any B ⊂ A -1 (Ω) Borel, with λ and λA the measures in (1.5) corresponding to u and uA, and

H n-1 (Ju A ) = H n-1 (A -1 (Ju)) , e(uA(x)) = A T e(u)(Ax) A .
(1.10)

Proof. Let us fix ξ ∈ S n-1 . A straightforward computation shows that for H n-1 -a.e. y ∈ Π ξ and L 1 -a.e. t ∈ (A -1 (Ω)) ξ y we have (uA) ξ y (t) • ξ = u Aξ Ay (t) • Aξ . (1.11)
Moreover, for any B ⊂ A -1 (Ω), we have that

B ξ y = (A(B)) Aξ
Ay . This implies that, for any Borel set

B ⊂ A -1 (Ω) ξ y D( uA) ξ y B ξ y \ J 1 ( u A ) ξ y + H 0 B ξ y ∩ J 1 ( u A ) ξ y = ( µu) Aξ Ay (A(B)) , (1.12) 
where ( µu) ξ y is the measure in [27, Definition 4.8] for u. By Definition 1.5, [27, Definition 4.10, Remark 4.12], and (1.12), it follows that uA ∈ GSBD A -1 (Ω) and that (1.9) holds.

By definition of uA and of jump set, one has that x ∈ Ju A if and only if Ax ∈ Ju, thus

H n-1 (Ju A ) = H n-1 (Ju) .
In order to show the second condition in (1.10), we can use (1.7) which allows us to reconstruct the approximate symmetric gradient from the derivatives of the slices. Thus, by taking the derivative of (1.11) with respect to t, we deduce that for any

ξ ∈ S n-1 e(uA)(x) ξ • ξ = e(u)(Ax) Aξ • Aξ .
Being e(u) and e(uA) symmetric matrices, by the Polarisation Identity we obtain that for any ξ, η in S n-1 e(uA)(x) ξ • η = e(u)(Ax) Aξ • Aη .

This gives (1.10) and completes the proof.

We now show an extension result for GSBD p functions on rectangles, basing on [49, Lemma 1]. A similar result is stated in [START_REF] Friedrich | Quasistatic crack growth in 2d-linearized elasticity[END_REF]Lemma 5.2], in dimension 2 and for p = 2, and employed in [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF]Lemma 3.4], in dimension 2 and for SBD p . Notice that the proof of [START_REF] Friedrich | Quasistatic crack growth in 2d-linearized elasticity[END_REF]Lemma 5.2] employs the density result, in dimension 2 and for p = 2, that we prove in the current paper in the general framework. We follow Nitsche's argument directly for GSBD functions, without using density results.

Lemma 1.8. Let R ⊂ R n be an open rectangle, R be the reflection of R with respect to one face F of R, and R be the union of R, R , and

F . Let v ∈ GSBD p (R). Then v may be extended by a function v ∈ GSBD p ( R) such that H n-1 (J v ∩ F ) = 0 , (1.13a) H n-1 (J v ) ≤ c H n-1 (Jv) , (1.13b) ˆ R |e( v)| p dx ≤ c R |e(v)| p dx , (1.13c) 
for a suitable c > 0 independent of R and v.

Proof. It is not restrictive to assume that F ⊂ {(x , xn) ∈ R n-1 × R : xn = 0}. Fix any µ, ν such that 0 < µ < ν < 1, and let q := 1+ν ν-µ . We define v on R by v := q vA µ + (1 -q)vA ν ,
where vA is defined in (1.8) and Aµ = diag (1, . . . , 1, -µ), Aν = diag (1, . . . , 1, -ν), so that

v i (x) := q vi(Aµ x) + (1 -q)vi(Aν x) , for i = 1, . . . , n -1 , v n (x) := -µ q vn(Aµ x) -ν(1 -q)vn(Aν x) . Notice that -µ q -ν(1 -q) = 1 ,
and that v is well defined since F is a horizontal hyperplane and 0 < µ < ν < 1, so that

Aµ(R ), Aν (R ) ⊂ R. Thus the extension v is v := v in R , v in R .
By Lemma 1.7 we have that v ∈ GSBD( R), and (1.13a) follows from Remark 1.6, since every component of v is a convex combination of the same component of v(Aµ x) and v(Aν x) and

Aµ(F ) = Aν (F ) = F .
The first condition in (1.10) gives that

H n-1 (J v ) ≤ H n-1 (A -1 µ (Jv)) + H n-1 (A -1 ν (Jv))
, and (1.13b) follows. By the second condition in (1.10) we deduce (1.13c). Notice that the constant c depends on p, µ, and ν, but is independent on R and v.

Let us recall the following important result, proven in [17, Proposition 3]. Notice that the result is stated in SBD, but the proof, which is based on the Fondamental Theorem of Calculus along lines, still holds for GSBD, with small adaptations.

Proposition 1.9. Let Q = (-r, r) n , Q = (-r/2, r/2) n , u ∈ GSBD(Q), p ∈ [1, ∞). Then there exist a Borel set ω ⊂ Q and an affine function a : R n → R n with e(a) = 0 such that L n (ω) ≤ crH n-1 (Ju) such that Q \ω (|u -a| p ) 1 * dx ≤ cr (p-1)1 * Q |e(u)| p dx 1 * . ( 1.14) 
If additionally p > 1, then there is q > 0 (depending on p and n) such that, for a given mollifier

ϕr ∈ C ∞ c (B r/4 ) , ϕr(x) = r -n ϕ1(x/r), the function v = uχ Q \ω + aχω obeys Q |e(v * ϕr) -e(u) * ϕr| p dx ≤ c H n-1 (Ju) r n-1 q Q |e(u)| p dx , (1.15) 
where Q = (-r/4, r/4) n . The constant in (i) depends only on p and n, the one in (ii) also on ϕ1.

Remark 1.10. Condition (i) is a Korn-Poincaré-type inequality, which guarantees the existence of an affine function a such that, up to a small exceptional set, u -a is controlled in a space better than L p . The control in the optimal space L p * is obtained only if p = 1. Even on the exceptional set, the affine function a is in some sense "close in energy" to u, as follows from (ii).

Remark 1.11. By Hölder inequality and (1.14) it follows that

Q \ω |u -a| p dx ≤ L n (Q \ ω) 1/n Q \ω (|u -a| p ) 1 * dx 1/1 * ≤ cr p Q |e(u)| p dx (1.16)
The following lemma will be employed in zones where the jump of u is small, compared to the side of the square. It will be useful to estimate, for two cubes with nonempty intersection, the difference of the corresponding affine functions. Lemma 1.12. For every αi ∈ {-1, 0, 1} n , with α0 = 0, let zi = r 2 αi ∈ R n and Qi, Q i , Q i be the n-dimensional cubes of center zi and sidelength 2r, r, r/2, respectively (assume r < 1). Let u ∈ GSBD(B(0, 6r)) and, for i = 0, . . . , 3 n , let ai and ωi be the affine function and the exceptional set given by Proposition 1.9, corresponding to Qi. Assume that for every i = 0, . . . ,

3 n H n-1 (Ju ∩ Qi) ≤ θr n-1 ,
(1.17)

with θ sufficiently small (for instance θ ≤ 1/(16c), for c as in (i) of Proposition 1.9). Then there exists a constant C, depending only on p and n, such that for each i = 0

a0 -ai p L ∞ (Q 0 ∩Q i ; R n ) ≤ Cr -(n-p) Q0 ∪Q i |e(u)| p dx , (1.18) 
Proof. By (1.17) we have that

L n (ω0 ∪ ωi) ≤ cr H n-1 (Ju ∩ Q0) + H n-1 (Ju ∩ Qi) ≤ 2c θ r n ≤ L n (Q 0 ∩ Q i ) 4 .
Therefore, following the argument of [START_REF] Conti | Which special functions of bounded deformation have bounded variation?[END_REF]Lemma 4.3] for the rectangles Q 0 ∩ Q i in place of B (notice that for a given i the shape of these rectangles is the same independently of r, that is the ratios between the sidelengths are independent of r) one has that for any affine function a :

R n → R n L n (Q 0 ∩ Q i ) a L ∞ (Q 0 ∩Q i ; R n ) ≤ c (Q 0 \ω 0 )∩(Q i \ω i ) |a| dx ,
for c > 0 depending only on n (and on i). By Hölder's inequality we deduce that for any q ∈ [1, ∞)

L n (Q 0 ∩ Q i ) a q L ∞ (Q 0 ∩Q i ; R n ) ≤ c q (Q 0 \ω 0 )∩(Q i \ω i ) |a| q dx .
For q = p 1 * and a = a0 -ai we get

L n (Q 0 ∩ Q i ) a0 -ai p 1 * L ∞ (Q 0 ∩Q i ; R n ) ≤ c p 1 * (Q 0 \ω 0 )∩(Q i \ω i ) |a0 -ai| p 1 * dx . (1.19)
By triangle inequality and by (1.14) it follows that

(Q 0 \ω 0 )∩(Q i \ω i ) |a0 -ai| p 1 * dx ≤ (Q 0 \ω 0 )∩(Q i \ω i ) (|u -a0| + |u -ai|) p 1 * dx ≤ cr (p-1) 1 * Q0 ∪Q i |e(u)| p dx 1 * . (1.20)
Moreover, since a0 -ai is an affine function, we have that

a0 -ai L ∞ (Q 0 ∩Q i ; R n ) ≤ C a0 -ai L ∞ (Q 0 ∩Q i ; R n ) (1.21)
for a constant C depending only on the ratio between L n (Q0 ∩ Qi) and

L n (Q 0 ∩ Q i ), which is independent of r.
We deduce (1.18) by collecting (1.19), (1.20), and (1.21).

A first approximation result with a bad constant

As in [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF], a first step toward the main density result consists in a rough approximation in the sense of energy. In particular, in this section we construct an approximating sequence of functions whose jumps are controlled in terms of the original jump by a multiplicative parameter. We employ this result in the next section for subdomains where the jump of the original function is very small, so that the total increase of energy will be small too.

Theorem 2.1. Let Ω, Ω be bounded open subsets of R n , with Ω ⊂ Ω, p ∈ [1, ∞), θ ∈ (0, 1), and let u ∈ GSBD p ( Ω). Then there exist u k ∈ SBV p (Ω; R n ) ∩ L ∞ (Ω; R n ) and E k ⊂ Ω Borel sets such that Ju k is included in a finite union of (n -1)-dimensional closed cubes, u k ∈ W 1,∞ (Ω \ Ju k ; R n ),
and the following hold:

lim k→∞ L n (E k ) = lim k→∞ Ω\E k |u k -u| p dx = 0 , (2.1a) lim sup k→∞ Ω |e(u k )| p dx ≤ Ω |e(u)| p dx , (2.1b) 
H n-1 (Ju k ∩ Ω) ≤ C θ -1 H n-1 (Ju ∩ Ω) , (2.1c) 
for suitable q > 0, C > 0 independent of θ. In particular, u k converge to u in measure in Ω.

Moreover, if Ώ ψ(|u|) dx is finite for ψ : [0, ∞) → [0, ∞) increasing, continuous, with (for C ψ > 0) ψ(0) = 0 , ψ(s + t) ≤ C ψ ψ(s) + ψ(t) , ψ(s) ≤ C ψ (1 + |s| p ) , lim s→∞ ψ(s) = ∞ , (HPψ) then lim k→∞ Ω ψ(|u k -u|) dx = 0 . (2.1d)
The proof of the result above employs a technique introduced in [START_REF]Approximation of a brittle fracture energy with non-interpenetrating constraint[END_REF], which is based on Proposition 1.9. The idea is to partition the domain into cubes of side 1 k and to distinguish, at any scale, the cubes where the ratio between the perimeter and the jump of u is greater than the parameter θ.

In such cubes, one may replace the original function u with a constant function, since on the one hand the new jump is controlled by the original jump, and on the other hand the total volume of these cubes is small as the length scale goes to 0.

In the remaining cubes, where the relative jump is small, one applies Proposition 1.9: a Korn-Poincaré-type inequality holds up to a set of small volume, and in this small exceptional set the original function may be replaced by a suitable affine function without perturbing much its energy. We need u be defined in a larger set Ω since we will take convolutions of the original function.

Proof of Theorem 2.1. Let Ω ⊂ Ω, p ∈ [1, ∞), θ ∈ (0, 1), and u ∈ GSBD p ( Ω) ∩ L p ( Ω; R n ). Let us fix an integer k with k > 8 √ n dist(∂Ω,∂ Ω)
, let ϕ be a smooth radial function with compact support in the unit ball B(0, 1), and let ϕ k (x) = k n ϕ(kx).

Good and bad nodes. For any z ∈ (2k -1 )Z n ∩ Ω consider the cubes of center z

q k z := z + (-k -1 , k -1 ) n , qk z := z + (-2k -1 , 2k -1 ) n , Q k z := z + (-4k -1 , 4k -1 ) n , Q k z := z + (-8k -1 , 8k -1 ) n .
Let us define the sets of the "good" and of the "bad" nodes

G k := {z ∈ (2k -1 )Z n ∩ Ω : H n-1 (Ju ∩ Q k z ) ≤ θk -(n-1) } , B k := (2k -1 )Z n ∩ Ω \ G k , (2.2) 
such that the amount of jump of u is small in a big neighbourhood of any z ∈ G k , and the corresponding subsets of Ω Ω k g :=

z∈G k q k z , Ω k b := z∈B k Q k z . Notice that Ω k b is the union of cubes of sidelength 8k -1 , while Ω k g is the union of cubes of sidelength 2k -1 , so that Ω \ Ω k g ⊂ Ω k b . More precisely, Ω \ Ω k g + B(0, k -1 ) ⊂ Ω k b (2.3)
Indeed, by construction, a row of "boundary" cubes of Ω k g belongs to Ω k b . Moreover, by (2.2) the set B k has at most H n-1 (Ju) k n-1 θ -1 elements, so that

L n Ω k b ≤ 16 n H n-1 (Ju) k θ . (2.4)
Let us apply Proposition 1.9 for any z ∈ G k . Then there exist a set ωz ⊂ qk z , with

L n (ωz) ≤ ck -1 H n-1 (Ju ∩ Q k z ) ≤ cθk -n , (2.5) 
and an affine function az : R n → R n , with e(az) = 0, such that qk

z \ωz (|u -az| p ) 1 * dx ≤ ck -(p-1)1 * Qk z |e(u)| p dx 1 * (2.6)
and, letting vz

:= uχ qk z \ωz + azχω z , qk z |e(vz * ϕ k ) -e(u) * ϕ k | p dx ≤ c H n-1 (Ju ∩ Q k z ) k n-1 q Qk z |e(u)| p dx ≤ c θ q Qk z |e(u)| p dx , (2.7) 
for a suitable q > 0 depending on p and n.

Let

ω k := z∈G k ωz , E k := Ω k b ∪ ω k . Then lim k→∞ L n (E k ) = 0 , (2.8) 
by (2.4) and (2.5), which gives

L n (ω k ) ≤ ck -1 z∈G k H n-1 (Ju ∩ Q k z ) ≤ cH n-1 (Ju) k -1 .
We split the set of good nodes in the two subsets

G k 1 := {z ∈ G k : H n-1 (Ju ∩ Q k z ) ≤ k -(n-1 2 ) } , G k 2 := G k \ G k 1 . Notice that G k
1 are the good nodes for which the condition on Ju is satisfied for k -1 2 in place of θ. For each z ∈ G k 1 , we have that (2.5) and (2.7) hold with k -1 2 in place of θ, namely

L n (ωz) ≤ c k -(n+ 1 2 ) , (2.9a) qk z |e(vz * ϕ k ) -e(u) * ϕ k | p dx ≤ c k -q 2 Qk z |e(u)| p dx .
(2.9b)

Let us introduce also

G k 1 := {z ∈ G k : z ∈ G k 1 for each z ∈ (2k -1 )Z n with z -z ∞ = 2k -1 } , G k 2 := {z ∈ G k : there exists z ∈ G k 2 with z -z ∞ = 2k -1 } , (2.10) 
where z -z ∞ := sup 1≤i≤n |zi -zi| is the L ∞ norm of the vector z -z.

Arguing as already done for Ω k b , we get that

G 2 k has at most H n-1 (Ju) k n-1 2 elements, so G k 2 has at most (3 n -1)H n-1 (Ju) k n-1 2
elements, and

L n ( Ω k g,2 ) ≤ C k -1 2 , for Ω k g,2 := z j ∈ G k 2 Qz j .
(2.11)

The approximating functions. Let G k = (zj)j∈J , so that we order (arbitrarily) the elements of G k , and let us define

u k := u in Ω \ ω k , az j in ωz j \ i<j ωz i , (2.12) 
and

u k := ( u k * ϕ k ) χ Ω\ Ω k b . (2.13) 
These are the approximating functions for the original u, for which we are going to prove the properties of the theorem. By construction,

u k ∈ SBV p (Ω; R n ) ∩ L ∞ (Ω; R n ), Ju k ⊂ z∈B k ∂Q k z
, which is a finite union of (n -1)-dimensional closed cubes, and

u k ∈ W 1,∞ (Ω \ Ju k ; R n ).
Proof of (2.1c). For any z ∈ B k we have that

H n-1 (∂Q k z ) = C(n) k -(n-1) ≤ C(n) θ -1 H n-1 (Ju ∩ Q k z )
, so that (2.1c) follows by summing over z ∈ B k . Notice that we use here the fact that the cubes Q k z are finitely overlapping; this will be done different times also in the following (also for the cubes qk z , Q k z ).

To ease the reading, in the following we denote ωz j by ωj, and the same for az j , vz j . We denote also q k z j by qj, and the same for qk

z j , Q k z j , Q k z j . Moreover, for any g : Ω → R n , B ⊂ Ω, and q ∈ [1, ∞] we write g L q (B) instead of g L q (B;R n ) .
Proof of (2.1a). In order to prove (2.1a) let us fix j ∈ J such that qj

⊂ Ω \ Ω k b . By triangle inequality u k -u L p (q j \ω k ) ≤ u k -aj L p (q j \ω k ) + u -aj L p (q j \ω k ) (2.14) Notice that u k -aj = ϕ k * ( u k -aj) in Ω \ Ω k b
, by definition of u k and since ϕ k * aj = aj, being ϕ a radial function.

By (1.16) we get

u -aj L p (q j \ω k ) ≤ u -aj L p (q j \ω j ) ≤ c k -1 Qj |e(u)| p dx 1/p . ( 2 

.15)

We now estimate the first term on the right hand side of (2.14) as follows:

u k -aj L p (q j \ω k ) ≤ u k -aj L p (q j ) = ϕ k * ( u k -aj)χq j L p (q j ) ≤ ϕ k * (u -aj)χ qj \ω k L p (q j ) + ϕ k * ( u k -aj)χ qj ∩ω k L p (q j ) ≤ u -aj L p (q j \ω k ) + u k -aj L p (q j ∩ω k ) .
(2.16)

Notice that we have used the fact that qj + supp ϕ k ⊂ qj + B(0, k -1 ) ⊂ qj. The first term on the right hand side of (2.16) is estimated by (2.15). As for the second one we have, by definition of u k , that qj

∩ω k | u k -aj| p dx = i<j ωj ∩ ω i |ai -aj| p dx + i>j qj ∩ ω i |ai -aj| p dx , (2.17) 
where ωi := ωi \ ( h<i ω h ). Now, the sum above involve at most 3 n -1 terms corresponding to the centers zi with zj -zi = 2k -1 αi and αi ∈ {-1, 0, 1} n , because for any other z h we have qj ∩ ω h ⊂ qj ∩ qh = ∅, and every term in (2.17) is less than qj

∩ ω i |ai -aj| p dx ≤ L n (ωi) ai -aj p L ∞ (Q i ∩Q j ) ≤ C θ k -p Qi ∪Q j |e(u)| p dx ≤ C θ k -p ˆ Q j |e(u)| p dx , (2.18) 
by using (1.18) and (2.5). Therefore

u k -aj L p (q j ∩ω k ) ≤ C θ 1/p k -1 ˆ Q j |e(u)| p dx 1/p . ( 2 

.19)

In preparation to the proof of (2.1b) and (2.1d), we remark that if zj ∈ G k 1 then 

u k -aj L p (q j ∩ω k ) ≤ C k -(1+ 1 2p ) ˆ Q j |e(u)| p dx 1/p , (2.20 
u k -u L p (Ω\E k ) ≤ C k -1 Ω |e(u)| p dx 1/p
, which gives (2.1a) together with (2.8).

Proof of (2.1d). As above, let us fix j ∈ J such that qj ⊂ Ω \ Ω k b , and let ψ as in the statement of the theorem. Then qj

∩ω k ψ(|u k -u|) dx ≤ C ψ qj ∩ω k ψ(|u k -aj|) dx + C ψ qj ∩ω k ψ(|u -aj|) dx , (2.21) 
For the first term in the right hand side above we have qj 

∩ω k ψ(|u k -aj|) dx ≤ C ψ , L n (qj ∩ ω k ) + C ψ qj ∩ω k |u k -aj| p dx ≤ C ψ L n (qj ∩ ω k ) + C k -p ˆ Q j |e(u)| p dx , (2.22 
qj ∩ω k ψ(|u -aj|) dx ≤ C ψ qj ∩ω k ψ(|u|) dx + C ψ qj ∩ω k ψ(|aj|) dx ,
and qj

∩ω k ψ(|aj|) dx ≤ C L n (qj ∩ ω k ) L n (qj) qj ψ(|aj|) dx ≤ C θ qj ψ(|aj|) dx ≤ C C ψ θ qj ψ(|u|) + ψ(|u -aj|) dx ≤ C C ψ θ qj ψ(|u|) dx + qj ∩ω k ψ(|u -aj|) dx + C ψ L n (qj \ ω k ) + C ψ k -p Qj |e(u)| p dx ,
by (2.15). Being θ small, by the two previous inequalities we get that qj

∩ω k ψ(|u -aj|) dx ≤ C qj ∩ω k ψ(|u|) dx + θ qj ψ(|u|) dx + θ L n (qj \ ω k ) + k -p Qj |e(u)| p dx , (2.23)
where powers of C ψ have been absorbed in C. We now collect (2.21), (2.22), (2.23), to get qj

∩ω k ψ(|u k -u|) dx ≤ C L n (qj ∩ ω k ) + k -p ˆ Q j |e(u)| p dx + qj ∩ω k ψ(|u|) dx + θ qj ψ(|u|) dx + θ L n (qj \ ω k ) .
Again, notice that if zj ∈ G k 1 , then the inequality above holds for k -1 2 in place of θ (indeed

L n (q j ∩ω k ) L n (q j ) ≤ C k -1 2 in the estimate before (2.23)).
Let us sum over j ∈ J, distinguishing the centers in G k 1 and the remaining ones, that we may assume in G k 2 , recalling (2.3) and the definition of u k (2.13). We deduce that Êk Eventually, by (2.1a) and (HPψ)

ψ(|u k -u|) dx ≤ C L n (E k ) + k -p ˆ Ω |e(u)| p dx + Êk ψ(|u|) dx + θ ˆ Ω k g,2 ψ(|u|) dx + k -1 2 Ω ψ(|u|) dx + k -1 2 L n (Ω) + θL n z j ∈ G k 2 qz j , By (2 
lim k→∞ Ω\E k ψ(|u k -u|) dx = 0 . (2.25) 
Indeed, ψ = ψ1 + ψ2 for suitable 0 ≤ ψ1 ≤ M ψ , and 0 < ψ2(s) ≤ M ψ |s| p , with M ψ > 0. Since ψ1 , ψ2 ≥ 0, (2.1a), (HPψ) imply that

v i k := χ Ω\E k ψi(|u k -u|) converges to 0 pointwise for L n -a.e. x ∈ Ω, for i = 1, 2. Being ´Ω\E k ψ(|u k -u|) dx = ´Ω v 1 k dx + ´Ω v 2
k dx, we deduce (2.25) since the two integrals go to 0, the first by Dominated Convergence Theorem and the second by (2.1a).

Proof of (2.1b). First we show that, for vj as in (2.7),

qj | u k -vj| p dx ≤ C θ 1/n k -p ˆ Q j |e(u)| p dx , for j ∈ J , (2.26) 
and qj | u k -vj| p dx ≤ C k -(p+ 1 2n ) ˆ Q j |e(u)| p dx , for j ∈ J such that zj ∈ G k 1 , (2.27) 
Let us first consider a general j ∈ J. Since

u k = u = vj in qj \ ω k and vj = aj in ωj, it holds that qj | u k -vj| p dx = qj ∩ω k | u k -vj| p dx ≤ qj ∩ω k | u k -aj| p dx + qj ∩ω k |vj -aj| p dx ≤ C θ k -p ˆ Q j |e(u)| p dx + qj ∩ω k \ω j |u -aj| p dx ,
where in the last inequality we have used (2.19). Moreover, qj

∩ω k \ω j |u -aj| p dx = i =j qj ∩ ω i |u -aj| p dx (2.28)
Arguing as done for (2.17), we deduce that the sum above involve at most 3 n -1 terms, each of which is bounded by qj 

∩ ω i |u -aj| p dx ≤ c L n (ωi) 1/n k -(p-
1 + p θ -1 2n qj |e( u k -vj) * ϕ k | p dx ≤ Cθ -1 2n k p qj | u k -vj| p dx ≤ Cθ 1 2n ˆ Q j |e(u)| p dx , (2.31) 
while by (2.7) and (2.29) (for = θ

q 2 ) qj |e(vj * ϕ k )| p dx ≤ 1 + p θ q 2 qj |e(u) * ϕ k | p dx + C θ q 2 Qj |e(u)| p dx .
Inserting into (2.30), this gives that

qj |e( u k * ϕ k )| p dx ≤ qj |e(u) * ϕ k | p dx + C θ q qj |e(u) * ϕ k | p dx + ˆ Q j |e(u)| p dx ≤ qj |e(u) * ϕ k | p dx + C θ q ˆ Q j |e(u)| p dx , (2.32) 
with q := min{q/2, 1/2n}.

If j ∈ J is such that zj ∈ G k 1 , then (2.32) holds true for k -1 2 in place of θ, namely qj |e( u k * ϕ k )| p dx ≤ qj |e(u) * ϕ k | p dx + C k -q 2 ˆ Q j |e(u)| p dx , (2.33) 
because we can argue as before, with equal to k -1 4n and k -q 4 in (2.29), and (2.27), (2.9b) instead of (2.26), (2.7), respectively. Summing for j ∈ J and recalling the definition of u k we obtain (2.1b). Notice that one has to distinguish the contributions for the nodes in G k 1 and in G k 2 , and to use that

lim k→∞ ˆ Ω k g,2
|e(u)| p dx = 0 , by (2.11) and since e(u) is in L p . This concludes the proof.

The main result

In this section we prove the main approximation result for any u ∈ GSBD p (Ω), through more regular functions u k converging in measure to u. The symmetric difference between the jump sets, Ju k Ju, tends to 0 in H n-1 -measure, the deformation e(u) is approximated in the strong L p topology, and there is also convergence for truncation of the traces on Ju ∪ Ju k and on the reduced boundary of the domain Ω, which is assumed to be only a set with finite perimeter.

We apply the rough version of the result, that we have shown in Section 2, to any (neighbourhood of) set of a suitable partition on Ω, such that the measure of the jump set of u is small in any subset.

A fundamental difference with respect to [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF], that employ also an intermediate rough estimate, is that here we do not use partitions of unity neither to extend the original function in suitable neighbourhoods of the subsets of the partition nor to glue the approximating functions constructed in any subset. This allows us to avoid any assumption on the integrability of u.

Theorem 3.1. Let Ω ⊂ R n be a bounded open set with finite perimeter, p ∈ [1, ∞), θ ∈ (0, 1), u ∈ GSBD p (Ω). Then there exist u k ∈ SBV p (Ω; R n ) ∩ L ∞ (Ω; R n ) and E k ⊂ Ω such that each Ju k is closed in Ω and included in a finite union of closed connected pieces of C 1 curves, u k ∈ W 1,∞ (Ω \ Ju k ; R n ), and: lim k→∞ L n (E k ) = lim k→∞ Ω\E k |u k -u| p dx = 0 , (3.1a) e(u k ) → e(u) in L p (Ω; M n×n sym ) , (3.1b) 
H n-1 (Ju k Ju) → 0 , (3.1c) Ĵu k ∪Ju τ (|u ± k -u ± |) dH n-1 + ∂ * Ω τ (|tr (u k -u)|) dH n-1 → 0 , (3.1d 
) Proof. We split the proof into three parts. First we approximate in a suitable way Ju (and ∂ * Ω), in the same spirit of the beginning of the proof of [15, Theorem 2], with balls replaced by hypercubes (see also [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]Lemma 4.2]). Then we get a finite family of cubes Qj, whose union contains almost all Ju, each of which splitted in two parts Q 1 j , Q 2 j by the jump set. This gives us a partition of Ω up to a L n -negligible set (see (3.3) and (3.5)).

for τ ∈ C 1 (R) with -1 2 ≤ τ ≤ 1 2 , 0 ≤ τ ≤ 1. In particular, u k converge to u in measure in Ω. Moreover, if Ώ ψ(|u|) dx is finite for ψ : [0, ∞) → [0, ∞) increasing,
At this stage, the strategy followed in [START_REF]An approximation result for special functions with bounded deformation[END_REF] and [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] is to fatten a little bit every set of the covering, defining properly a function in the fattened domain in such a way that the energy does not increase much, and to apply Theorem 2.1 for each subset. By the way, we have to be very careful both in defining the extension functions and in linking the extended domains. Indeed, for instance we cannot simply glue any approximating functions defined on each enlarged set by a suitable partition of unity subordinated to the covering, as in [15, Theorem 2] by the analogous of [15, Lemma 3.1]. The reason is that, differently from [START_REF]An approximation result for special functions with bounded deformation[END_REF], we do not know a priori the strong convergence in L p in every subdomain, since now we do not assume u ∈ L p . For the same reason, even to extend the function in an enlarged domain, we cannot partition the boundary, make small outer translations and glue by a partition of unity, as in [START_REF]An approximation result for special functions with bounded deformation[END_REF]. Consequently, we follow a different argument. First, we use the fact that ∂Q 1 j ∩ ∂Q 2 j is almost flat (this is the intersection of the main part of Ju with Qj), to apply Lemma 1.8, an extension result inspired by Nitsche [START_REF] Nitsche | On Korn's second inequality[END_REF] (see also [START_REF] Friedrich | Quasistatic crack growth in 2d-linearized elasticity[END_REF]), on both sides of any cube. In such a way, we extend the original function in the direction of the outer normal to each side of Ju. Then, we take the function u itself as an extension outside ∂Qj and apply Theorem 2.1 for each subdomain; the extensions corresponding to Qj and to the complement of Qj have the same value on ∂Qj, because they are obtained from u in the same way, in particular by taking convolutions with the same kernel.

In the final part the approximating functions on Ω are introduced, and we verify the approximation properties. The remarkable fact is that we are allowed to just sum the "local" approximating functions, restricted to the original subdomains. Indeed, no additional jump is created on the relative boundaries between any square Qj and B0, while the relative boundary between Q 1 j and Q 2 j correspond to a jump of the original displacement u, so that here we are allowed to still have jump.

A minor point is to set the approximating function as 0 in a small neighbourhood of the intersection between ∂Qj and the small strip that contains the main jump in Qj, in which the function is reflected.

Approximation of Ju and

∂ * Ω. Since Ju is H n-1 , n -1 -rectifiable, there exists a sequence Γi of C 1 curves such that H n-1 (Ju \ ∞ i=1 Γi) = 0. For each i ≥ 1, let Si := x ∈ Ju ∩ Γi \ j<i Sj : lim →0 H n-1 (Ju ∩ Q(x, )) (2 ) n-1 = lim →0 H n-1 (Ju ∩ Γi ∩ Q(x, )) (2 ) n-1 = 1 ,
where Q(x, ) is the closed cube with center x, sidelength 2 , and one face normal to ν(x), the normal to Γi at x. Thus H n-1 (Ju \ ∞ i=1 Si) = 0 and for every x ∈ Si lim

→0 + H n-1 (Ju ∩ Q(x, ) \ Γi) (2 ) n-1 = 0 .
Let us fix ε > 0. Then for every x ∈ Si there esists (x) such that for 0 < < (x)

H n-1 (Ju Γi) ∩ Q(x, ) < ε(2 ) n-1 < ε 1 -ε H n-1 (Ju ∩ Q(x, )) , Q(x, ) ∩ Γi lies (in the open region) between the hyperplanes Tx ± (ε )ν(x) , (3.2) 
where Tx is the hyperplane normal to ν(x) and passing through x,

H n-1 (Ju ∩ ∂Q(x, )) = 0 ,
and Γi is a graph with respect to the direction ν(x) of Lipschitz constant less than ε.

The family V := {Q(x, ) : x ∈ Ju, 0 < < (x)} is a Vitali class of closed sets for Ju. Then, by [START_REF] Falconer | The geometry of fractal sets[END_REF]Theorem 1.10] 

for s = n -1, there exists a disjoint sequence Qj = Q(xj, j ) ⊂ V such that H n-1 Ju \ ∞ j=1 Qj = 0.
In particular, one face of Qj is normal to νu(xj), the normal to Ju at xj, for each j there exists ij for which Γi j separates Qj in exactly two components Q 1 j and Q 2 j (each of the two is an open Lipschitz domain), and, for a suitable  ∈ N, we have

H n-1 Ju \  j=1 Qj < ε , (3.3a) H n-1 (Ju Γi j ) ∩ Qj < ε(2 j ) n-1 < ε 1 -ε H n-1 (Ju ∩ Qj) , (3.3b 
)

Qj ∩ Γi j ⊂ Rj := xj + n-1 i=1 yi bj,i + yn νu(xj) : yi ∈ (-j , j ), yn ∈ (-ε j , +ε j ) , (3.3c) 
where

(bj,i) n-1 i=1
is an orthonormal basis of νu(xj) ⊥ .

Moreover, we may assume that Qj ⊂ Ω for j = 1, . . . , .

We can argue similarly for ∂ * Ω in place of Ju, to find a finite set of cubes (Q 0 h ) h h=1 of centers x 0 h and sidelength 0 h , whose closures are pairwise disjoint, such that

H n-1 ∂ * Ω \ h h=1 Q 0 h < ε , (3.4a) H n-1 (∂ * Ω ∩ Q 0 h ) > (1 -ε)(2 0 h ) n-1 , (3.4b) ∂ * Ω ∩ Q 0 h ⊂ x 0 h + n-1 i=1 yi b 0 h,i + yn ν 0 h : yi ∈ (-0 h , 0 h ), yn ∈ (-ε 0 h , +ε 0 h ) , (3.4c) 
where ν 0 h = -νΩ(x 0 h ) is the generalised outer normal to Ω at x 0 h and

(b 0 h,i ) n-1 i=1
is an orthonormal basis of (ν 0 h ) ⊥ . Let

B0 := Ω \  j=1 Qj , (3.5) so that Ω = B0 ∪  j=1 (Q 1 j ∪ Q 2 j ), up to a L n -negligible set.
Definition and properties of the approximating functions in subdomains. Let us fix j ∈ {1, . . . , }. Consider, for a given t > 0, the open rectangles

R 1 j := xj + n-1 i=1 yi bj,i + yn νu(xj) : yi ∈ (-j , + j ), yn ∈ (-3ε j -t, -ε j ) , R 2 j := xj + n-1 i=1 yi bj,i + yn νu(xj) : yi ∈ (-j , + j ), yn ∈ (ε j , 3ε j + t) ,
and their reflections with respect to one of their faces

(R 1 j ) := xj + n-1 i=1 yi bj,i + yn νu(xj) : yi ∈ (-j , + j ), yn ∈ (-ε j , ε j + t) , (R 2 j ) := xj + n-1 i=1 yi bj,i + yn νu(xj) : yi ∈ (-j , + j ), yn ∈ (-ε j -t, ε j ) .
Let also R l j be the union of R l j , (R l j ) , and their common face, for l = 1, 2. We have that

L n (R l j ) = L n (R l j ) = 2ε n j + t n-1 j ,
and (R 1 j ) ∩ (R 2 j ) = Rj. By Lemma 1.8, we may extend the restrictions of u to R 1 j and R 2 j by two functions

uj 1 ∈ GSBD p ( R 1 j ) and uj 2 ∈ GSBD p ( R 2 j ) such that for l = 1, 2 ˆ R l j |e( uj l )| p dx ≤ c Rl j |e(u)| p dx , (3.6a) 
H n-1 (J u j l ∩ R l j ) ≤ c H n-1 (Ju ∩ R l j ) , (3.6b) 
where c > 0 depends only on n and p. Recalling the definition of reflection in Lemma 1.8, it is immediate to see that if ψ(|u|) ∈ L 1 (Ω), for ψ as in the statement of the theorem, then ˆ Let us define for t > 0 small enough

Q 1 j := xj + n-1 i=1 yi bj,i + yn νu(xj) : yi ∈ (-j -t, + j + t), yn ∈ (-j -t, ε j + t) , Q 2 j := xj + n-1 i=1 yi bj,i + yn νu(xj) : yi ∈ (-j -t, + j + t), yn ∈ (-ε j -t, j + t) , (t in particular such that Q 1 j ∪ Q 2 j does not intersect Qi, for i = j) and the extension of u χ Q l j u j l := uχ Q l j \(R l j ) + uj l χ (R l j ) . (3.7)
By (3.6), it holds for t small enough that

L n ({u j l = u} ∩ Q l j ) ≤ L n (R l j ) ≤ C ε n j , (3.8a) Ql j |e(u j l )| p dx ≤ Ql j |e(u)| p dx + (c -1) Rl j |e(u)| p dx , (3.8b) H n-1 (J u j l ∩ Q l j ) ≤ H n-1 (Ju ∩ Q l j ) + (c -1)H n-1 (Ju ∩ R l j ) + ε . (3.8c)
As for B0, for h = 1, . . . , h we consider

R 0 h := x 0 h + n-1 i=1 yi b 0 h,i + yn ν 0 h : yi ∈ (-0 h , 0 h ), yn ∈ (-3ε 0 h -t, -ε 0 h ) , (3.9a) (R 0 h ) := x 0 h + n-1 i=1 yi b 0 h,i + yn ν 0 h : yi ∈ (-0 h , 0 h ), yn ∈ (-ε 0 h , ε 0 h + t) , (3.9b) 
R 0 h the union of R 0 h , (R 0 h ) , and their common face, the functions u 0 h ∈ GSBD p ( R 0 h ), provided by Lemma 1.8, for which ˆ

R 0 h |e( u 0 h )| p dx ≤ c R0 h |e(u)| p dx , (3.10a) 
H n-1 (J u 0 h ∩ R 0 h ) ≤ c H n-1 (Ju ∩ R 0 h ) , (3.10b) 
the sets

B0 := B0 + B(0, t ) , R 0 := h h=1 (R 0 h ) ,
for t < t small enough, and

u 0 :=      u in Ω ∩ B0 \ R 0 , u 0 h in (R 0 h ) , 0 in B0 \ (Ω ∪ R 0 ) .
Moreover we have, for t small enough, that

L n ({u 0 = u} ∩ Ω ∩ B0) ≤ L n (Ω ∩ B0 ∩ R 0 ) ≤ L n (R 0 ) ≤ C ε h h=1 ( 0 h ) n ≤ C ε , (3.11a) 
B0 |e(u 0 )| p dx ≤ B0 |e(u)| p dx + (c -1) h h=1 R0 h |e(u)| p dx , (3.11b) 
H n-1 (J u 0 ∩ B0) ≤ H n-1 (Ju∩B0) + (c -1) h h=1 H n-1 (Ju ∩ R 0 h ) + H n-1 (∂ * Ω \ R 0 ) + ε , (3.11c) 
where in (3.11a) we have used the fact that the cubes Q 0 h are pairwise disjoint. Notice that

H n-1 (∂ * Ω \ R 0 ) = H n-1 ∂ * Ω \ h h=1 Q 0 h < ε , (3.12) 
by (3.4a). We now apply Theorem 2.1 to find, taking B0 , Q 1 j , Q 2 j as Ω and u 0 , u j 1 , u j 2 as u therein, functions u 0 k , u j 1 k , u j 2 k and sets

E 0 k , E j 1 k , E j 2 k such that lim k→∞ L n (E j l k ) = lim k→∞ Ql j \E j l k |u j l k -u j l | p dx = 0 , (3.13a) 
lim sup k→∞ Ql j |e(u j l k )| p dx ≤ Ql j |e(u j l )| p dx , (3.13b) 
H n-1 J u j l k ∩ Q l j ≤ C θ -1 H n-1 J u j l ∩ Q l j ) , (3.13c) 
lim k→∞ Ql j ψ(|u j l k -u j l |) dx = 0 , if ψ(|u|) ∈ L 1 (Ω) , (3.13d) 
and the same for u 0 k , E 0 k , and B0 in place of u

j l k , E j l
k , and Q l j . In particular, the (internal parts of the) supports of the u 0 k , u j 1 k , u j 2 k are pairwise disjoint. Moreover, Theorem 2.1 provides us also functions v

j l k , defined in a given set (Q l j ) with Q l j ⊂ (Q l j ) ⊂ Q l j , such that u j l k = v j l k in Q l j and (3.13) hold for (Q l j ) in place of Q l j , and analogously v 0 k defined in (B0) with B0 ⊂ (B0) ⊂ B0. In particular H n-1 J v j l k ∩ (Q l j ) ≤ C θ -1 H n-1 J u j l ∩ Q l j ) , (3.14) 
The approximating functions. We set

u k := u 0 k +  j=0 (u j 1 k + u j 2 k ) .
We are going to prove the desired approximation properties for the sequence u k . It is immediate that

u k ∈ SBV p (Ω; R n ) ∩ L ∞ (Ω; R n ).
Proof of (3.1a), (3.1b), (3.1c). In order to describe Ju k , notice that

J v j i k ∩ ∂Qj \ Fj = Ju k ∩ ∂Qj \ Fj , (3.15) 
where (recall (3.3c))

Fj := {Q k z : Q k z ∩ ∂Qj ∩ ∂Rj = ∅} . Indeed, for any x ∈ ∂Q i j \ Fj such that x ∈ Q k z , we have u j i = u 0 = u in Q k z ,
and, by construction of the approximating functions (see (2.12) and (2.13))

v 0 k = v j i k in Q k z . Since H n-1 ∂Qj ∩ ∂Rj = 2 n+1 ε n-1 j
, for k large we have that

H n-1 ∂Qj ∩ Fj = C ε n-1 j . (3.16) 
By (3.15), and since H n-1 (Ju ∩ ∂Qj) = 0, we deduce that (recall the definition of v j l k after (3.13))

Ju k ⊂ (J u 0 k ∩ B0) ∪  j=1 J v j 1 k ∩ (Q 1 j ) ∪ J v j 2 k ∩ (Q 2 j ) ∪ (Qj ∩ Γi j ) ∪ (∂Qj ∩ Fj) ,
so that Ju k is closed and contained in a finite union of closed connected pieces of C 1 curves, and

u k ∈ W 1,∞ (Ω \ Ju k ; R n ).
Notice that we may assume that j (Qj ∩ Γi j ) ⊂ Ju k . Indeed, we can find a > 0 arbitrarily small such that H n-1 ( j (Qj ∩ Γi j ∩ {x : [u](x) = a})) = 0 (with [u](x) the size of the jump with respect to Γi j at x ∈ Γi j ), and then we can add to u k a perturbation with jump a on j (Qj ∩ Γi j ), smooth in Q 1 j and Q 2 j for every j, and with arbitrarily small W 1,∞ norm (since a is small). In particular,

Ju k Ju ⊂ (J u 0 k ∩B0)∪(Ju ∩B0)∪  j=1 J v j 1 k ∩(Q 1 j ) ∪ J v j 2 k ∩(Q 2 j ) ∪ (Ju Γi j )∩Qj ∪(∂Qj ∩Fj) . (3.17) Let E 
k := E 0 k ∪  j=1 E j 1 k ∪ E j 2 k , R k := R 0 ∪  j=1 (R 1 j ) ∪ (R 2 j ) , E k := E k ∪ R k ,
for which, by (3.8a) (recall that Qj are pairwise disjoint), (3.11a), and (3.13a) we have that

lim k→∞ L n ( E k ) = 0 , lim sup k→∞ L n (R k ) ≤ C ε . (3.18) 
It follows in particular that

lim ε→0 R k |e(u)| p dx = 0 . (3.19) 
Let us now put together (3.8) with (3.13) and (3.14), (3.11) with the analogous of (3.13) for j = 0, and sum over i = 1, 2 and j = 0, . . . , . We deduce, employing also (3.12), that

lim k→∞ Ω\ E k |u k -u| p dx = 0 , (3.20a 
)

lim sup k→∞ Ω |e(u k )| p dx ≤ Ω |e(u)| p dx + (c -1) R k |e(u)| p dx , (3.20b) 
H n-1 J u 0 k ∪  j=1 (J v j 1 k ∪ J v j 2 k ) ≤ C θ -1 H n-1 (Ju ∩ B0) + ε +  j=1 H n-1 (Ju \ Γi j ) ∩ Qj . (3.20c)
To shorten the notation, above we have written

J u 0 k ∪  j=1 (J v j 1 k ∪ J v j 2 k ) in place of (J u 0 k ∩ B0) ∪ J v j 1 k ∩ (Q 1 j ) ∪ J v j 2 k ∩ (Q 2 j )
. By (3.3a) and (3.5) it follows H n-1 (Ju ∩ B0) < ε, while by (3.3b) that

 j=1 H n-1 (Ju Γi j ) ∩ Qj < C ε H n-1 (Ju) . (3.21) 
Therefore, collecting (3.16), (3.17), and (3.20c), we get 

H n-1 (Ju k Ju) < C θ -1 ε + C ε H n-1 (Ju) , (3.22) 
Ω ψ(|u k |) dx ≤ 1 .
Therefore we can apply the Compactness Theorem for GSBD [27, Theorem 11.3], which implies that, up to a further subsequence,

e(u k ) e(u) in L p (Ω; R n ) .
Therefore, by (3.23), the sequence u k satisfies also (3.1b).

Proof of (3.1d). Fix j ∈ {1, . . . , } and consider Γi

j ∩Q j τ (|tr (u j 1 k -u)|) dH n-1 ≡ Γi j ∩Q j τ (|u + k -u + |) dH n-1 ,
where the trace is considered from the interior side of Γi j with respect to Q 1 j , and we assume by convention that this is the "positive" side of Γi j . We define the rectangle

Q 1 j := xj + n-1 i=1 yi bj,i + yn νu(xj) : yi ∈ (-(1 - √ ε) j , (1 - √ ε) j ), yn ∈ (-j , ε j )
and call ξn the normal νu(xj). Then Γi j ∩ Q 1 j is a graph in the direction ξn of Lipschitz constant less than ε. By [6, Lemma 3.1], there exists a universal constant η0 > 0 (indeed it depends decreasingly on the Lipschitz constant of the graph of Γi j ∩ Q 1 j in the direction ξn, which is less than 1/2) such that for any ξ ∈ S n-1 with |ξ -ξn| < η0, one has that Γi j ∩ Q 1 j is a Lipschitz graph in the direction ξ. In particular, let (ξ1, . . . , ξn-1, ξn) be a basis of R n with |ξ h -ξn| < η0. Arguing as in [43, equations (17)

-(19)],

Γi

j ∩ Q 1 j τ (|tr (u j 1 k -u)|) dH n-1 ≤ C n h=1 Γi j ∩ Q 1 j |tr (τ ((u j 1 k -u) • ξ h ))| dH n-1
for a universal constant C > 0. Since τ ((u

j 1 k -u) • ξ h ) ∈ L 1 (Q 1 j ) and D ξ h τ ((u j 1 k -u) • ξ h ) ∈ M + b (Q 1 j )
for any h, arguing as in [6, Theorem 3.2, Steps 1 and 4] we deduce that Γi

j ∩ Q 1 j |tr (τ ((u j 1 k -u) • ξ h ))| dH n-1 ≤ C √ ε j τ ((u j 1 k -u) • ξ h ) L 1 (A ξ h ε ) + C Âξ h ε |e(u j 1 k -u)| dx + C H n-1 (J u j 1 k -u ∩ A ξ h ε ) ,
for C > 0 depending only on n, and A

ξ h ε := {y -sξ h : y ∈ Γi j ∩ Q 1 j , 0 < s < √ ε j } ⊂ Q 1 j .
Being τ bounded, by (3.8a) and (3.13a) we get that

lim sup k→∞ C √ ε j τ ((u j 1 k -u) • ξ h ) L 1 (A ξ h ε ) < C √ ε n-1 j < C √ εH n-1 (Ju ∩ Qj) ,
where the last inequality follows by (3.3b). By construction of u j 1 k in Theorem 2.1 (in particular by (2.32)) we deduce that

C Âξ h ε |e(u j 1 k -u)| dx < C Âξ h ε +B(0,8k -1 ) |e(u)| p dx , (3.24) 
by (3.13c) that

H n-1 (J u j 1 k -u ∩ A ξ h ε ) < Cθ -1 H n-1 (Ju ∩ Q 1 j ) < Cθ -1 H n-1 (Ju \ Γi j ) ∩ Qj ,
and by definition of

Q 1 j that H n-1 (Γi j ∩ Qj \ Q 1 j ) < C( √ ε j ) n-1 < C √ ε n-1 H n-1 (Ju ∩ Qj) .
Collecting the informations above, we get (recall that τ is bounded) that Γi

j ∩Q j τ (|u + k -u + |) dH n-1 <C √ εH n-1 (Ju ∩ Qj) + sup h Âξ h ε +B(0,8k -1 ) |e(u)| p dx + θ -1 H n-1 (Ju \ Γi j ) ∩ Qj .
We can now argue similarly in Q 2 j and sum over j. Recalling (3.21) and (3.22), and since τ is bounded, it follows that Ĵu

k ∪Ju τ (|u ± k -u ± |) dH n-1 < C θ -1 ε + c √ ε H n-1 (Ju) + Âε |e(u)| p dx , (3.25) 
where L n (Aε) → 0 as ε → 0 (for k much smaller than ε). By the arbitrariness of ε ψ(|u

lim k→∞ Ĵu k ∪Ju τ (|u ± k -u ± |) dH n-1 = 0 . ( 3 
j l k -u j l |) dx = 0 ,
for every j and l = 1, 2 (and also for u Arguing in this way, we expect that one could find alternative proofs to our density result, still without assuming that u is p-summable, using different approximation techniques, such as the one in [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF].

0 k ). For R k := R0 ∪  j=1 (R 1 j ) ∪ (R 2 j ) , by (3.18) L n (R k ) = L n (R k ) ≤ C ε,

Some applications to the approximation of brittle fracture energies

Here we show how the density result of Theorem 3.1 may be employed to approximate, in the sense of Γ-convergence, the Griffith energy for brittle fracture, under no assumption on the integrability of the displacement. This is a novelty in the vectorial case, except for n = 2, where this convergence (for quadratic bulk energy) may be proven starting from the density result [START_REF] Friedrich | A piecewise korn inequality in sbd and applications to embedding and density results[END_REF]Theorem 2.5]. In particular, for phase field approximation à la Ambrosio-Tortorelli [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF][START_REF]On the approximation of free discontinuity problems[END_REF], one needs for a density theorem of the type of Theorem 3.1 in the Γ-lim sup inequality; the Γ-limit is then determined in the subspace of GSBD in which every displacement is approximated by the density result.

On the other hand, since one is interested in the approximation of minimisers for Griffith energy, it is natural to impose some conditions to prevent that the set of minimisers coincides with the constant displacements. Two important examples are Dirichlet boundary condition and a compliance condition for the displacement with respect to a given datum g on the whole Ω. We show how to approximate the resulting brittle fracture energy, under some geometric assumptions on the Dirichlet part of the domain in the first case, and for a very large class of compliance functions (possibly such that the displacement is not a priori forced to be even integrable) in the second case. Requiring some integrability on displacement in the density theorem forces to include lower order terms in the energy functional, in order to guarantee a priori such integrability.

We remark that we are able to prove the existence of minimisers for the limit problem in the case of the compliance condition on Ω, but not for the energy with Dirichlet boundary datum. The existence of minimisers for Dirichlet problem has been proven in dimension 2 in [START_REF] Friedrich | Quasistatic crack growth in 2d-linearized elasticity[END_REF]Theorem 6.2].

In the first part of the section we state the approximation results, which are proven in the second part.

Let us introduce some notation for this section. Let p, q > 1, a > 0,

ε k , η k > 0 with ε k → 0, η k → 0, η k ε k → 0, for k ∈ N. Let W : R × M n×n sym → [0, ∞)
be convex in the second argument and lower semicontinuous, with

c1 s |•| p ≤ W (s, •) ≤ c2 (1 + s |•| p ) for every s ∈ R (4.1)
for some 0 < c1 < c2, and d : [0, 1] → [0, ∞) continuous, decreasing, with d(1) = 0. For every bounded open set A ⊂ R n and measurable functions u : A → R n and v : A → [0, 1], we define

G A k (u, v) :=      Â W (v, e(u)) + d(v) ε k + a ε q-1 k |∇v| q dx in W 1,p (A; R n ) × V A k , +∞ otherwise, where V A k := {v ∈ W 1,q (A) : η k ≤ v ≤ 1} . and the generalised Griffith energy G A (u, v) :=      Â W (1, e(u)) dx + αH n-1 (Ju) in GSBD p (A) × {v = 1 L n -a.e. in A} , +∞ otherwise, with α := 2(q ) 1 q (aq) 1 q ˆ1 0 d(s) 1 q ds, 1 q + 1 q = 1 .
Theorem 4.1. Let A ⊂ R n be a bounded set with finite perimeter. Then G A k Γ-converge to G A with respect to the topology of the convergence in measure for u and v.

Let A ⊂ R n be a bounded set and g : A → R n be a measurable function such that ψ(|g|) ∈ L 1 (A), for ψ : [0, ∞) → [0, ∞) increasing, continuous, and satisfying (HPψ) (see Theorem 2.1). For every measurable functions u : A → R n and v : A → [0, 1] we define

F A k (u, v) := G A k + Â ψ(|u -g|) dx ,
and the generalised Griffith energy with fidelity term

F A (u, v) := G A (u, v) + Â ψ(|u -g|) dx , where F A (u, v) = +∞ if ψ(|u -g|) is not in L 1 (A).
Then we have the following convergence.

Theorem 4.2. Let A ⊂ R n be a bounded set with finite perimeter. Then F A k Γ-converge to F A with respect to the topology of the convergence in measure for u and v. Moreover, if

F A k (u k , v k ) ≤ inf F A k + γ k for any k, namely if (u k , v k ) is a γ k -minimiser for F A k
, with γ k → 0, then, up to a subsequence, (u k , v k ) converge in measure to some (u, 1), which is a minimiser of F A , and 

F A k (u k , v k ) → F A (u, 1
+ ˆA ψ(|u|) ∧ |u| dx + v W 1,q (A) ≤ C , (4.2) 
with C > 0 independent of u, v such that F A k (u, v) < M , for a given M > 0. Indeed, (HPψ) and Korn's Inequality, that holds since A is Lipschitz, imply (4.2) with ∇(u -a) in place of ∇u, for a suitable a : A → R n affine, such that ´A |u -a| p dx ≤ C F A k (u, v), for C > 1 depending on p, A, and on c2 in (4.1). In view of (HPψ),

 ψ(|a|) dx ≤ C ψ  ψ(|u|) dx + C ψ  ψ(|u -a|) dx ≤ (C ψ ) 2 F A k (u, v) + C ψ  ψ(|g|) + (C ψ ) 2 |A| +  |u -a| p dx ≤ (C ψ ) 2 C F A k (u, v) + c(|A|, C ψ , g) ,
and by [START_REF] Friedrich | Quasistatic crack growth in 2d-linearized elasticity[END_REF]Lemma 2.3] We now consider the Dirichlet problem for the brittle fracture energy. We give some conditions on the Dirichlet part of the boundary.

Let Ω ⊂ R n be an open, bounded, connected, Lipschitz domain for which

∂Ω = ∂DΩ ∪ ∂N Ω ∪ N , with ∂DΩ and ∂N Ω relatively open, ∂DΩ∩∂N Ω = ∅, H n-1 (N ) = 0, ∂DΩ = ∅, and ∂(∂DΩ) = ∂(∂N Ω)
with finite H n-2 measure. Assume that ∂DΩ satisfies the following condition: there exist a small δ and x0 ∈ R n such that for every δ ∈ (0, δ)

O δ,x 0 (∂DΩ) ⊂ Ω , (4.3) 
where O δ,x 0 (x) := x0 + (1 -δ)(x -x0). Let us define, for u0 ∈ W 1,p (R n ; R n ), the sets

W 1,p u 0 (Ω; R n ) := {u ∈ W 1,p (Ω; R n ) : trΩ u = trΩ u0 on ∂DΩ} , V 1 k := {v ∈ V Ω k : trΩ v = 1 on ∂DΩ} .
For a given u0 ∈ W 1,p (R n ; R n ), the generalised Griffith energy with Dirichlet boundary condition u0 is defined for measurable functions u : Ω → R n and v : Ω → [0, 1] by

D(u, v) := G Ω (u, v) + αH n-1 (∂DΩ ∩ {trΩ u = trΩ u0}) ,
and its approximating energies by

D k (u, v) :=      Ω W (v, e(u)) + d(v) ε k + a ε q-1 k |∇v| q dx in W 1,p u 0 (Ω; R n ) × V 1 k , +∞ otherwise, namely D k is the sum of G Ω k and the characteristic function of W 1,p u 0 (Ω; R n ) × V 1 k . Theorem 4.4.
Under the assumptions above, D k Γ-converge to D with respect to the topology of the convergence in measure for u and v.

We now start the second part of this section, which is devoted to prove the results stated in the first part.

Proof of Theorem 4.1. Being the convergence in measure metrisable, by [26, Proposition 8.1] the Γ limit of G A k is characterised in terms of convergent sequences. Let us first prove the Γ-lim inf inequality, following the lines of the proof of [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]Theorem 8]. We show that if (u k , v k ) converge in measure to (u, v) and

F A k (u k , v k ) is bounded, then u ∈ GSBD p (A), v = 1 L n a.e. in A, and  W (1, e(u)) dx ≤ lim inf k→∞  W (v, e(u)) dx , (4.4a) αH n-1 (Ju) ≤ lim inf k→∞  d(v) ε k + a ε q-1 k |∇v| q dx . ( 4 

.4b)

As for the Γ-lim sup inequality, let us fix u ∈ GSBD p (A) such that ψ(|u -g|) ∈ L 1 (A). Since ψ(|g|) ∈ L 1 (A), then ψ(|u|) ∈ L 1 (A), and by (3.1) there exist u

k ∈ SBV (A; R n ) ∩ L ∞ (A; R n ) such that F A (u k , 1) → F A (u, 1)
.

Notice that we have used also (3.1e), which was not necessary for the case without fidelity term.

The proof now follows as in Theorem 4.1.

It lasts to prove the sequential compactness of γ k -minimisers for F A k . This is a consequence of [START_REF] Maso | An introduction to Γ-convergence[END_REF]Corollary 7.20] and of Proposition 4.5 below.

The following proposition employs the argument of [START_REF]Generalised functions of bounded deformation[END_REF]Theorem 11.1]. A similar result is proven in [43, Proposition 1], assuming ψ(s) = s 2 and g ∈ L 2 (A; R n ), and so a uniform bound for displacements in L

2 (A; R n ). Proposition 4.5. Let (u k , v k ) be a sequence such that F A k (u k , v k ) is bounded. Then v k → 1 in L 1 (A) and, up to a subsequence, u k converge in measure to a suitable u ∈ GSBD p (A), with ψ(|u|) ∈ L 1 (A).
Proof. The first part of the proof is similar to the beginning of [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]Proposition 1].

It is immediate that v k → 1 in L 1 (A). Let us fix k ∈ N and ξ ∈ S n-1 . For simplicity of notation, we omit to write the dependence on k and ξ of the objects introduced in the following. We still write u k and v k to avoid confusion with the limit functions. Let Therefore, following exactly [27, inequality (11.8)] we get that for every δ > 0 there exist µ δ > 0, in Ω \ Ω , ṽ := v in Ω , 1

λ δ > 0 such that  g(|u k • ξ -w λ δ µ δ |) dx < δ ,
in Ω \ Ω .

If u k converge in measure to some u ∈ GSBD p (Ω), then ũk converge to ũ ∈ GSBD p ( Ω). Moreover, since u0 ∈ W 1,p (Ω; R n ), We now prove the Γ-lim sup inequality. Let us fix u ∈ GSBD p (Ω). The goal is to prove that for every small η > 0 (in no context with η k ) there exists u η ∈ SBV p (Ω; R n ) ∩ L ∞ (Ω; R n ) such that u η = u0 in the intersection of Ω with a n-dimensional neighbourhood of ∂DΩ and D(u η , 1) < D(u, 1) + η .

(4.11)

Indeed, with such u η at hand, one may apply the standard construction for recovery sequences of Ambrosio-Tortorelli type (cf. for instance [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]Theorem 9]), which leaves each approximating function equal to u0 in a neighbourhood of ∂DΩ (in the topology of Ω), in particular with the right boundary datum. Then the Γ-lim sup inequality follows by a diagonal argument. Thus, let us fix η > 0 and construct u η . Since Σ := ∂(∂DΩ) = ∂(∂N Ω) has finite H n-2 measure, for any ε > 0 (in no context with ε k ) there exists a n-dimensional neighbourhood Σ of Σ with L n ( Σ) < ε and H n-1 (∂Ω ∩ Σ) < ε .

(4.12)

We now argue as done to get (3.3) and (3.4) with the role of Ju and ∂ * Ω therein played by ∂N Ω \ Σ.

For any ε we obtain a finite set of cubes (Q N h ) h N h=1 of centers x N h and sidelength N h , whose closures are pairwise disjoint, such that the analogous of (3.4) hold, with the apices 0 replaced by N and h by h N . We introduce the rectangles R N h , (R N h ) and R N h as in (3.9), with the apices 0 replaced by N , namely for instance

R N h := x N h + n-1 i=1 yi b N h,i + yn ν N h : yi ∈ (-N h , N h ), yn ∈ (-3ε N h -t, -ε N h ) ,
with t > 0 small, ν N h = -νΩ(x N h ) the generalised outer normal to Ω at x N h , and (b N h,i ) n-1 i=1 an orthonormal basis of (ν N h ) ⊥ . Moreover, let u N h ∈ GSBD p ( R N h ) be the functions provided by Lemma 1.8 for which the analogous of (3.10) hold. Let Ωt := Ω + B(0, t) and u ∈ GSBD p (Ωt) be defined by

u :=      u in Ω ; u N h in R N h ; u0
elsewhere in Ωt .

Notice that Ωt ∩ Q N h ⊂ R N h for every h. We claim that G Ω t ( u, 1) < F (u, 1) + η , (4.13) for ε and t small enough. Indeed, it is enough to observe that, for ε and t small enough,

Ωt \Ω |e(u0)| p dx < η , h ˆ R N h |e( u N h )| p dx ≤ C RN h |e(u)| p dx < η ,
by the absolute continuity of the integral, and We obtain u η by applying the construction of Theorem 3.1 starting from a fixed u δ satisfying (4.14): since u0 does not jump, we have that the k-th approximating function for u δ is u0 * k in a neighbourhood of ∂DΩ. Then it is enough to correct it by adding u0 -u0 * k , which is small in W 1,p norm for k large. Therefore, the approximation properties of Theorem 3.1 and (4.14) give (4.11). This concludes the proof.

H n-1 (J u ) < H n-1 (Ju) + c H n-1 Ju ∩ N h=1 R N h + H n-1 ∂N Ω \ h Q N h < H n-1 (Ju) + η ,
Remark 4.6. The main difficulty without the geometrical assumptions on ∂DΩ of Theorem 4.4 is to correct the boundary datum after the composition with (O δ,x 0 ) -1 or after any convolution. Indeed, there could be some parts of ∂DΩ which are brought outside Ω and replaced by u, so that the new trace on ∂DΩ may differ too much from the trace of u0 (the trace of u on strips close to ∂DΩ is not even in W 1-1/p,p (∂DΩ) in general), and there is an analogous problem with the convolution. In subsets of ∂DΩ where the traces of u and u0 are different one could bring the jump a little bit inside Ω, arguing as in [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]Theorem 3.1] keeping almost the same length, so almost the same energy. But as soon as there are zones where the traces of u and u0 coincide, one may increase very much the energy to fit the boundary condition.

Remark 1 . 2 .+ 1 nDefinition 1 . 3 .

 12113 Let A, v, x, and a be as in Definition 1.1 and let ψ be a homeomorphism between R m and a bounded open subset of R m . Then (1.1) holds if and only if lim →0 Â∩B (x) |ψ(v(y)) -ψ(a)| dy = 0 . Let U ⊂ R n open, and v : U → R m be L n -measurable. The approximate jump set Jv is the set of points x ∈ U for which there exist a, b ∈ R m , with a = b, and ν ∈ S n-1 such that ap lim (y-x)•ν>0, y→x v(y) = a and ap lim (y-x)•ν<0, y→x v(y) = b .

  .8), (2.11), and since ψ(|u|) ∈ L 1 (Ω), it follows that lim k→∞ Êk ψ(|u k -u|) dx = 0 . (2.24)

  continuous, and satisfying (HPψ) (see Theorem 2.1), then lim k→∞ Ω ψ(|u k -u|) dx = 0 . (3.1e)

  uj l |) dx ≤ c Rl j ψ(|u|) dx .(3.6c)

  k |) dx ≤ c lim sup k→∞ Rk ψ(|u|) dx . k -u|) dx ≤ C ψ lim sup k→∞ R k ψ(|u k |) + ψ(|u|) dx ≤ c C ψ lim sup k→∞ Rk ∪R k ψ(|u|) dx ,which vanishes as ε tends to 0. Together with(3.27), this proves (3.1e) and completes the proof of the theorem.Remark 3.2. The construction in Theorem 3.1 may be slightly modified in the following way: apply Theorem 2.1 to suitable compact subsets of Ω \  j=1 Qj ∪ h h=1 Q 0 h , and reflect the smooth function obtained (so without using Lemma 1.8) on both sides of Qj with respect to Ju (resp. on the internal part of Q 0 h with respect to ∂ * Ω), the further arguments being similar to what done above. Working in a compact subset of Ω \  j=1 Qj ∪ h h=1 Q 0 h should permit to have for free an extension of the original function to a larger domain, without employing partitions of unity.

  Âλ := y ∈ Π ξ : Âξ y (v k ) ξ y |∇((û k ) ξ y )| p + d((v k ) ξ y ) ε k + aε q-1 k |∇((v k ) ξ y )| q dt ≤ λ , A λ := {x ∈ A : Π ξ (x) ∈ Âλ }, B λ := A \ A λ ,where Π ξ (x) is the projection of x on the plane Π ξ . Being F k (u k , v k ) bounded, by Fubini's Theorem and Chebychev inequality we haveL n (B λ ) ≤ c diam(A) λ . Let τµ(s) := -µ ∨ s ∧ µ, w λ µ := τµ(u k • ξ) in A λ , 0 in B λ ,and let g : [0, ∞) → [0, ∞) be nondecreasing, continuous, subadditive, such thatg(0) = 0 , lim inf s→0 + g(s) s > 0 , g(s) ≤ s for s ∈ [0, ∞) , lim s→∞ ψ(s) g(s) = +∞ .

  and then g(|φ(v k )(u k • ξ -w δ )|) dx < δ ,(4.9)for w δ := w λ δ µ δ and φ(s) := ´s 0 d(s) 1/q (t) dt, since φ(v k ) ≤ c v k ≤ c.(It is enough to redefine δ as c δ, for a suitable c.) Notice that here we use the fact that ψ(|u k |) are equibounded in L 1 (A), which follows sinceF k (u k , v k ) are equibounded.Repeating the same computations done in [43,Proposition 1] to get (84) therein, we obtain that for everyδ > 0 R |(φ(v k )w δ ) ξ y (t + h) -(φ(v k )w δ ) ξ y (t)| dt ≤ c(δ) h . (4.10) By (4.9) and (4.10) we are in the hypotheses of [27, Lemma 10.7], which gives that φ(v k ) u k converge (up to a subsequence, not relabelled) to some ũ pointwise L n -a.e. in A, or also in measure. Since v k → 1 in L 1 (A), we obtain that u k converge to u := ũ φ(1) in measure. As in the proof of Theorem 4.1 u ∈ GSBD p (A), and by Fatou inequality ψ(|u|) ∈ L 1 (A). Proof of Theorem 4.4. The Γ-lim inf inequality follows by that one for G A k . Indeed, let Ω ⊂ R n be open such that Ω ⊂ Ω and Ω ∩ ∂Ω = ∂DΩ, and define for each u and v their extensions ũ := u in Ω , u0

D

  k (u, v) = F Ω k (ũ, ṽ) -ˆ Ω\Ω W (1, e(u0)) dx , D(u, v) = F Ω (ũ, ṽ) -ˆ Ω\Ω W (1, e(u0)) dx .Therefore Theorem 4.1 implies the Γ-lim inf inequality for D.

by Lemma 1 . 8 ,

 18 (4.12) and the analogous of (3.4a), arguing as in Theorem 3.1 to get (3.1c).Let us consider the functions uδ := u • (O δ,x 0 ) -1 + u0 -u0 • (O δ,x 0 ) -1 . By (4.3) and the definition of u, u δ = u0 in a neighbourhood of ∂DΩ. Moreover, by (4.13) and since for δ small Ŕn |e(u0) -e(u0 • (O δ,x 0 ) -1 )| p dx < η, we have for δ small enough that D( u δ , 1) < D(u, 1) + η . (4.14)

  is concentrated on Jv. The density of E a v with respect to L n is denoted by e(u), and we have that (see[START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF] Theorem 4.3] and recall (1.1)) for L n -a.e.

	x ∈ U
	ap lim
	y→x

  -aj| p dx, see the first inequality in (2.16), and then qj ∩ω k |u k -aj| p dx). As for the second term in the right hand side of (2.21), it holds that

			)
	by (2.15), (2.16), and (2.19) (that control	qj	|u k

  By(3.18),(3.19),(3.20a),(3.20b),(3.22), and by the arbitrariness of ε, we get (3.1a),(3.1c), and lim sup k→∞ e(u k ) L p (Ω;M n×n sym ) ≤ e(u) L p (Ω;M n×n sym ) . (3.23) Moreover, (3.1a) gives that u k → u in measure, and then, by [40, Remark 2.2], there exists a subsequence of u k , not relabelled, and a nonnegative, increasing, concave function ψ such that

	lim s→+∞	ψ(s) = +∞
	and	
	sup	
	k∈N	

  Remark 4.3. If A is a Lipschitz domain then every F A k admits a minimiser. First we have that ∇u p L p (A;M n×n )

) .

  this gives a bound for ∇a in A, so that we conclude (4.2). Now, the sum ∇u L p (A;M n×n ) + ´A ψ(|u|) ∧ |u| dx is a norm on W 1,p (Ω; R n ) equivalent to the standard norm, as one can verify by using Poincaré-Wirtinger inequality (we use A Lipschitz also here). The existence of minimisers follows now from the Direct Method of Calculus of Variations (recall the properties of W and Ioffe-Olech semicontinuity theorem, see[START_REF] Buttazzo | Semicontinuity, relaxation and integral representation in the calculus of variations[END_REF] Theorem 2.3.1]).
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It is immediate that v k → 1 in L 1 (A). To see (4.4a), we show that

by proving that, for every ξ ∈ S n-1 and w ∈ L p (A) Â (e(u)ξ • ξ -w) p dx ≤ lim inf k→∞ Â ((v k )

1 p e(u k )ξ • ξ -w) p dx . (4.6) This gives (v k )

for every ξ ∈ S n-1 , and then (4.5) by the Polarisation Identity. At this stage, (4.4a) follows by the facts that v k ≤ 1, v k → 1 uniformly up to a set with small measure by Egorov's Theorem, and by the Ioffe-Olech semicontinuity theorem (cf. [START_REF] Buttazzo | Semicontinuity, relaxation and integral representation in the calculus of variations[END_REF]Theorem 2.3.1]).

Thus, let us fix ξ ∈ S n-1 . For simplicity, we prove (4.6) in the case when w = 0, the general case being obtained by approximating every w ∈ L p (A) by piecewise constant functions on a Lipschitz partition of A, for which the lower semicontinuity is then immediate. Notice that it is not restrictive to assume that the lim inf in (4.6) is a limit. Moreover, up to a subsequence, not relabelled, we have that for

Indeed, a sequence g k converges to a function g in measure if and only if arctan(g k ) converges to arctan(g) in L 1 . Therefore, by Fubini's Theorem and the fact that

for τ = arctan. This gives (4.7) for u k , while the convergence for v k follows easily from Fubini's Theorem for v k • ξ.

It is now standard to see, as in [43, (65

)

Moreover, we get u ∈ GSBD(A) and (4.6) for w = 0 arguing again as in the proof of [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]Theorem 8], with the exponents 2 and p therein for u and v replaced by p and q. In particular, integrating (4.8a) over Π ξ gives (4.6) for w = 0, by (1.7). In the same way, one integrates (4.8b) over Π ξ and applies a localisation argument to deduce (4.4b). Notice that the analogous of the Structure Theorem [2, Theorem 4.5] holds also for GSBD, see for instance [START_REF]A derivation of linearized Griffith energies from nonlinear models[END_REF]Theorem 3.1]. By the discussion at the beginning of the proof, we conclude (4.4a) and the Γ-lim inf inequality. The Γ-lim sup inequality follows from our density result. Indeed, for every u ∈ GSBD(A) there exist

.

By a diagonalisation argument, it is then enough to construct a recovery sequence for (u, 1), with u ∈ SBV (A; R n )∩L ∞ (A; R n ). This is done by the same construction as in [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF], that was applied therein to a quadratic bulk energy in e(u) but works also for a bulk energy with p-growth.

We now prove Theorem 4.2. The Γ-lim inf inequality is a trivial consequence of Theorem 4.1, while the Γ-lim sup inequality is easy since we have already proven (3.1e). The compactness of the minimising sequences for