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Multiagent patrolling is the problem faced by a set of agents that have to visit a set
of sites to prevent or detect some threats or illegal actions. Although it is commonly

assumed that patrollers share a common objective, the issue of cooperation between the

patrollers has received little attention. Over the last years, the focus has been put on
patrolling strategies to prevent a one-shot attack from an adversary. This adversary is

usually assumed to be fully rational and to have full observability of the system. Most

approaches are then based on game theory and consists in computing a best response
strategy. Nonetheless, when patrolling frontiers, detecting illegal fishing or poaching;

patrollers face multiple adversaries with limited observability and rationality. Moreover,
adversaries can perform multiple illegal actions over time and space and may change their

strategies as time passes. In this paper, we propose a multiagent planning approach that

enables effective cooperation between a team of patrollers in uncertain environments.
Patrolling agents are assumed to have partial observability of the system. Our approach

allows the patrollers to learn a generic and stochastic model of the adversaries based on

the history of observations. A wide variety of adversaries can thus be considered with
strategies ranging from random behaviors to fully rational and informed behaviors. We

show that the multiagent planning problem can be formalized by a non-stationary DEC-

POMDP. In order to deal with the non-stationary, we introduce the notion of context.
We then describe an evolutionary algorithm to compute patrolling strategies on-line, and

we propose methods to improve the patrollers’ performance.

Keywords: Multiagent patrolling; Markov Decision Processes; Distributed decision mak-
ing; Planning under uncertainty.

1. Introduction

Multiagent patrolling is the problem faced by a set of agents that have to period-

ically visit a set of sites. In adversarial domains, the agents have to prevent some

threats or illegal actions performed by a set of adversaries. A large amount of re-

cent works have been dedicated to Security Games where a single adversary tries

to perform a one-shot attack on one of the sites to patrol 1. Wider settings have

also been investigated 2,3,4,5. They consider several defenders that have to face mul-

tiple adversaries performing frequently and repeatedly illegal actions. These works

have been applied to domains such as preventing crime in urban areas 3, avoiding

intrusions on frontiers 2, or detecting illegal fishing or poaching 4.
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When considering several patrolling agents repeatedly facing multiple adver-

saries, it is natural to expect that the agents will be able to coordinate their indi-

vidual strategies to maximize adversary detection. Shieh et al. 6 have shown that, in

the context of a one-shot attack, defender effective teamwork significantly improves

security. Although there has been an increasing focus on handling multiple adver-

saries and frequent illegal actions 5,4,7, the issue of effective cooperation between

the patrollers have received little attention.

In this papera, we propose a new framework allowing several patrolling agents

to effectively cooperate in order to face several defenders performing multiple illegal

actions over time and space. Patrollers will have to secure a set of sites dispatched

over the environment. At each decision step, each patroller will thus have to decide

which site to visit next. Obviously, in order to compute valuable strategies for real

settings, agents should be able to handle uncertainty on action outcomes and partial

observability of the system. For instance, when fighting illegal fishing, cost guards’

moves between two different spots rely on weather conditions and are thus uncertain.

Furthermore, cost guards have limited observability and cannot observe all fishing

spots at any time of their patrol. In this paper, we describe a multiagent planning

approach computing cooperative patrolling strategies under uncertainty. Given her

strategy, an agent will thus be able to make individual but cooperative decisions in

partially observable and uncertain environments.

In the context of multiagent patrolling with multiple adversaries, the patrollers’

objective consists in detecting as much illegal actions as possible. A model of the

adversaries should be used to anticipate possible threats at each time-step. It is com-

monly assumed in the literature that adversaries are fully rational and fully observe

the patrolling strategy. Tools from Game Theory can then be used to compute the

best response strategy of the adversaries and to deduce the optimal strategy of the

defenders. In fact, assuming full observability and rationality may not reflect reality

and the optimal patrolling strategy (in theory) may not be so efficient in practice.

Indeed, adversaries are often unable to fully observe the patrolling strategy because

of their limited observation capacities. Moreover, observing the patrolling strategy

may be risky (the adversary may be detected) and costly (it takes time and con-

sumes resources the adversary may not have) 9,4. In addition, adversaries may not

be fully rational since they have limited reasoning capacities or they may not com-

ply to the fully rational strategy (for instance, humans may deviate from the fully

rational strategy).

Since adversaries have limited observability and bounded rationality, their strat-

egy may evolve over time as they obtain more knowledge about the patrolling

strategies or about the environment. As the adversarial behavior will thus be non-

stationary, the patrollers will have to detect these changes and adapt their strate-

gies. For instance, illegal fishermen can change their fishing spots based on their

accumulated knowledge about cost guards’ patrols.

aThis paper is an extended version of 8 presented in IEEE ICTAI 2016.
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Our framework proposes to consider a generic setting where several patrolling

agents face multiple adversaries with non-stationary strategies. No specific assump-

tion is made about the rationality nor the profile of the adversary. Instead, patrollers

will learn a model of the adversary as they obtain more and more information and

adapt their behaviors to the non-stationarity of the adversaries.

Our work contributes to the domain in several directions:

• A new formalization of the defenders’ decision problem is proposed to al-

low for effective cooperation while facing multiple adversaries performing

repeated illegal actions over time and space.

• Patrolling strategies handles uncertainty on action outcomes and partial

observability of the environment.

• A generic model of the adversaries is learnt and updated as the agents make

new observations about the adversaries. The multiagent planning approach

copes with non-stationary behaviors of the adversaries.

• A distributed planning algorithm is proposed to compute online patrolling

strategies and update them to the non-stationarity of the adversaries. A

mathematical method is described to better identify changes in the adver-

saries strategy.

Section 2 presents an overview of related works. Section 3 formalizes the mul-

tiagent patrolling problem with multiple adversaries. Section 4 introduces the nec-

essary background on Markovian decision models and shows how the problem can

be formalized as a Decentralized Partially Observable Markov Decision Process

(DEC-POMDP). Section 5 presents an evolutionary algorithm to compute patrolling

strategies. Methods are proposed to update the model of the adversaries and adapt

patrolling strategies to possible changes in adversary strategies. Finally, Section 6

describes experimental results about the efficiency of our approach.

2. State of the art

Earliest multiagent patrolling approaches have focused on computing strategies that

minimize the time lag (called “idleness”) between two visits of a same target 10.

These works compute deterministic strategies that consist in a sequence of tar-

gets. Chevaleyre 10 has shown that this problem is closely related to the Traveling

Salesman Problem (TSP) and cyclic strategies computed using TSP solvers give

good results in non-adversarial domains. However, such strategies fail to anticipate

possible adversary strategies and consider action outcomes to be deterministic.

More recently, some research works have been interested with patrolling in ad-

versarial settings. Such settings consider patrolling agents that have to prevent

attacks from an intruder (i.e. the adversary). Different settings have been inves-

tigated, leading to different kinds of solutions. Most approaches assume a strong

adversary performing extensive surveillance of the patrollers and then conducting

a one-shot attack 11,12,13,14,9. The adversary is thus able to obtain full knowledge
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of the patrolling strategy. Developed approaches then formalize the problem as a

leader-follower decision problem as described in Game Theory. Such settings, usu-

ally refered to as “security games”, are well suited to develop frameworks to prevent

punctual threats such as terrorism attacks. However, in many domains, adversaries

only have limited observability 15 and considering a strong adversary is not realistic

nor optimal. Agmon et al. 2,16 have studied the impact of adversarial knowledge on

the patrolling strategies in the specific setting of perimeter patrols. They demon-

strated that if the adversary is not a strong one and has no knowledge about the

patrol scheme, an optimal deterministic strategy exists. Computing mixed strategies

is thus not required.

When patrolling frontiers or fighting against illegal fishing or poaching, defend-

ers certainly have to face multiple adversaries 4. The defenders then try to maximize

the number of detected illegal actions instead of preventing a one-shot attack. Fur-

thermore, while considering such real systems, the full observability assumption

does not hold. Instead, adversaries have partially and noisy observations about the

patrollers strategies. From the defenders point of view, computing a best response

strategy to strong adversaries may not be an optimal approach. Qian et al. 17 re-

laxed the assumption of a one-shot attack following a prior extensive surveillance.

A single protector has to prevent several illegal actions performed by a single ad-

versary. Both agents (the patroller and the adversary) are assumed to fully observe

the actions of the other one.

Despite the wide interest put in multiagent patrolling over the last years, little

attention has been paid to the issue of cooperation between multiple patrollers. In

fact, most existing works consider only one patrolling agent or assume that the same

strategy is executed by all patrollers 16. Munoz de Cote et al. 18 introduced alarms to

provide some information about intruders’ presence and improve the efficiency of the

patroller. Recently, Shieh et al. 6 combined security games and Decentralized MDPs

to enable effective cooperation between several patrollers under uncertainty. A single

fully rational adversary is considered. This adversary is assumed to perform a prior

extensive surveillance phase and to attack the target with the lowest coverage.

Nguyen et al. 19 tackled the issue of multiple adversaries performing frequent and

repeated illegal actions. The problem is formalized as a repeated game where defense

resources have to be deployed on targets at each turn. While this work accounts for

learning adversarial strategies, it does not consider effective cooperation between

defenders nor uncertainty on action outcomes.

3. Multiagent patrolling setting

We consider a set of m heterogeneous defenders (agents i with i ∈ [1,m]) patrolling

a set of n (with m � n) target sites tj (with j ∈ [1, n]) to detect illegal actions.

Note that if m ≥ n, one patroller can be allocated to each target. However, we

consider the more difficult case where m� n and more elaborated strategies must

be computed to schedule patrolling resources among the targets to protect. The
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environment topology is represented as a graph G = (N , E) where N = {t1, · · · , tn}
is the set of targets and E denotes the set of possible routes between the targets.

Figure 1 illustrates a multi-agent patrolling problem where 3 patrollers (boats

with a red flag) have to patrol 6 target sites. Two adversaries (blue fishing boats)

are fishing illegally on two different target sites. The adversary at the bottom right

of the figure is detected since a patroller is simultaneously on the same target.

Fig. 1. Illustrative example

Because of the dynamicity of the environment and of the partial observability

of the agents, it should be considered that action outcomes are stochastic. In fact,

uncertainty may arise from the agent itself or from external events. For example,

human patrollers may deviate from their recommended patrolling strategy, or the

actuators of a robot may be imperfect leading to deviations from the expected be-

havior. External events can also lead to uncertain action durations or outcomes. In

order to guarantee robust solutions, it is essential to take into account the uncer-

tainty on action execution while computing patrolling strategies 20.

Each edge e = (tk, tj) ∈ E of the graph is thus assigned a probability distribution

Ck,j on possible travel durations. Moving from one target tk to another target tj
can therefore takes different amounts of time.

Like previous works dealing with patrolling in adversarial domains, performing

an illegal action is assumed to take time2. Here, each illegal action lasts ∆int time

step.

As explained above, we consider partial observability of the patrollers and of

the intruders. Each patroller is assumed to observe her own location and illegal

actions on the target she is currently patrolling. Adversaries performing illegal ac-

tions on another target are not observed. We do not make any assumption on the

observability model of the adversaries.

Note that illegal actions can be performed several times on a same target and

several illegal actions can be performed on different targets at the same time. Our

approach is thus generic and does not make any assumption on the number ad-
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versaries. Furthermore, the number of adversaries is unknown and may evolve over

time. We do not make any assumption on the full rationality of the adversaries nor

on their possible cooperation. Instead, defenders will try to anticipate the adver-

saries strategy from their observations.

4. The cooperative multiagent patrolling decision problem

Our approach addresses the problem of computing patrolling strategies for the

defenders in order to maximize their performance. Cooperative strategies will be

computed allowing for effective coordination of the patrollers while executing their

action in uncertain and partially observable environments.

Patrolling systems are inherently distributed: at each decision step, each pa-

trolling agent must decide in an autonomous but cooperative way, which target to

visit next in order to maximize the global performance of the defenders. Each agent

makes her decisions given her local knowledge about the adversaries and about the

environment (graph topology and uncertainty model).

In this paper, we show that this distributed and cooperative decision problem

can be formalized as a Decentralized Partially Observable Markov Decision Process

(DEC-POMDP)21. In fact, DEC-POMDPs describe a mathematical framework for

modeling and solving sequential multiagent decision problems under uncertainty

where a set of cooperative agents have to decide, in a distributed way, how to act

given partial observations about the system.

Because of limited observability and bounded rationality, we argue that it is not

realistic to assume that the patrollers are able to build a full model of the adver-

saries (and thus to include it in their model of the environment). In fact, patrolling

agents cannot observe all the actions of the adversaries over the whole environment.

Patrollers then make decisions based on limited knowledge about the adversaries

behavior. Moreover, adversaries may have bounded rationality and not always com-

mit to an optimal policy. They can also keep on adapting their strategy from their

past observations about the patrollers. In such settings, assuming a strong rational

adversary and anticipating the best response of the adversaries is no more optimal

for the patrollers. In this paper, we introduce the notion of context formalizing the

knowledge of the patrollers about the adversary policy. Patrolling strategies will

then be computed based on the current context. In order to cope with the non-

stationarity of the adversary strategies, our framework allows patrolling agents to

be able to detect policy changes. The current context is then updated and new

patrolling strategies are computed on-line (ie. during the patrol).

4.1. Background on DEC-POMDPs

As demonstrated by the wide range of recent works dealing with Decentralized Par-

tially Observable Markov Decision Problems (DEC-POMDPs), this mathematical

model is especially suited for formalizing cooperative distributed decision-making

problems under uncertainty.
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A DEC-POMDP 21 is defined as a tuple 〈Ag, S,A, T,O,Ω, R〉 where:

• Ag = {1, ...,m} is a set of m agents,

• S is the set of world states s,

• A = {A1 × · · · × Am} is the set of possible joint actions a = {a1, ..., am}
such as ai is the action of agent i,

• T is the transition function giving the probability T (s′|s, a) that the system

moves to state s′ while executing the joint action a from state s,

• O = {O1× · · · ×Om} is the set of joint observations o = {o1, ..., om} where

oi is the individual observation of agent i,

• Ω is the observation function giving the probability Ω(o|s, a) of observing

o when executing the joint action a from state s,

• R(s′|s, a) is the reward obtained when executing the joint action a from

state s and moving to state s′.

Optimally solving a DEC-POMDP consists in finding a joint policy π =

{π1, ..., πm} that maximizes the common performance measure of the agents where

πi is the individual cooperative policy of agent i. An individual policy for an agent

i maps each possible history of observations of i to an individual action ai. It has

been proved that optimally solving a DEC-POMDP is NEXP-Complete 21.

Because of the high complexity of DEC-POMDPs, many works have focused

on developing efficient solving methods. Mechanisms for improving the efficiency

of the optimal solving have been investigated such as: dynamic programming 22,

multiagent A* 23 or formalization of the problem as a deterministic MDP with con-

tinuous states 24. Despite major advances for improving of the optimal algorithms,

the scalability of optimal approaches remains quite limited 24. In fact, approximate

approaches often better scale to large number of agents and long planning horizon
25,26,27.

4.2. Formalization of the decision problem as a DEC-POMDP

The following observations support the fact that DEC-POMDPs can formalize coop-

erative patrolling problems : 1) agents have to make distributed sequential decisions

in uncertain and partial observable environments, 2) agents are cooperative since

they want to maximize a common measure of performance (ie. the number of de-

tected illegal actions). Nonetheless, patrollers face adversaries with non-stationary

strategies. The transition and reward functions of the patrollers thus change over

time. Moreover, patrollers may have little information on the adversaries. In our

settings, the only observed information about the adversary strategies consists in

detected illegal actions.

Non-stationary model of the adversaries

We propose a generic approach to model the knowledge of the patrollers about the

adversaries. This approach only exploits the history of observations made by the
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patrollers and is independent of the number of adversaries, the rationality of the

adversaries or their observability.

The knowledge about the adversaries is thus formalized, for each target ti by

a probability PIi.PIi(t) stands for the probability that the adversaries initiate an

intrusion on target ti at step t. The probability that none adversary initiates an

intrusion on target ti at t is then given by 1 − PIi(t). These probabilities PIi
can be refined over time as patrollers get more and more observations about the

adversaries. Moreover, variations of PI over time reflect changes in adversaries

strategies (non-stationarity). As explained below, PI values can be used to define

the current transition and reward functions of the patrolling decision-problem.

DEC-POMDP model for a current context

Following previous works dealing with non-stationary mono-agent POMDPs 28,

we decompose the non-stationary decision problem as a series of stationary decision

problems. Each stationary phase is then referred to as a mode or a context. In

the patrolling problem, a mode (or a context) refers to a profile of the adversaries

strategy. In this paper, we exploit the periods of stability and the variations of PI

probabilities to define stationary contexts and transitions between these contexts.

For each stationary context, the multiagent patrolling problem is formalized as a

DEC-POMDP. As probabilities PI evolve, the current context changes over time.

For each new context, a new DEC-POMDP formalization of the decision problem

is defined and patrolling strategies are updated consequently.

We now describe how to formalize the patrolling decision problem as a DEC-

POMDP for a stationary context. We detail the definition of each component of the

tuple 〈Ag, S,A, T,O,Ω, R〉.

Agents (Ag): the set of agents involved in the multiagent decision problem

consists of all the patrolling agents.

Actions (A): Each agent has to make decisions about the next target to patrol.

An individual action ai for an agent i thus consists in moving to target tj (tj ∈ N )

connected to the current location of agent i (tj must be directly connected to the

current target in the graph). We consider the more realistic setting where moving

from a target to another may take different durations. At each time step, some

agents will have to make new decisions while others will keep on executing their

current moves. Agents may not all make decisions at each time step. Since DEC-

POMDPs consider one time unit action duration, individual moves are decomposed

into a set of consecutive unitary actions. In fact, if moving from a target tk to a

target tj takes ckj ∈ Ck,j time units, the move is decomposed into ckj successive

unitary moves. Note that even if agents have probabilistic knowledge on the possible

duration of an action, the effective duration of a move is actually known only once

it has been fully completed. It is assumed that an agent does not change her mind

during the execution of a move and always stays focused on the target to reach.
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States (S): Let st denote the state of the system at time t. It is defined as: the

position of each agent, the list of targets where an illegal action has been currently

observed, the idleness of each target, the elapsed time of each current move. A

state st is thus defined as a tuple 〈p = 〈p1, ..., pm〉, int, idle = 〈idle1, ..., idlen〉, δ =

〈δ1, · · · , δm〉〉 where:

• The position pi of each agent i is defined as a target or an edge of the graph,

i.e. pi ∈ {N ∪ E}. The tuple of positions of the agents is denoted by p with p =

〈p1, ..., pm〉.
• For each target currently patrolled (ti such as ti ∈ p), the state indicates

whether an illegal action is currently observed on this target. The state thus contains

the list int of targets where illegal actions have been observed at t.

• Idleness refers to the time elapsed since the last visit of a target 10. Each

target is assigned an idleness value thus leading to the tuple idle with idle =

〈idle1, ..., idlen〉.
• δi denotes the time elapsed since each patrolling agent has left her last visited

target, leading to the tuple δ = 〈δ1, ..., δm〉. The highest possible travel time between

two targets gives an upper bound on possible values for δi.

To avoid overloading equations, we will denote this state by st = 〈p, int, idle, δ〉.

Observations (O): The individual observation of an agent i first consists in

observing her current location (an edge or a target). If the agent has reached a

target, she observes whether an illegal action is currently performed on that target.

When an agent is moving from a target to another, she is assumed not to observe

adversaries (we limit illegal actions to be performed on the nodes of the graph).

Transition function (T ): The probability to move from one state to another

while executing a joint action relies on : 1) probabilities on move durations and 2)

probabilities on detection of illegal actions. As explained before, we define a DEC-

POMDP for a given stationary context. We thus consider probabilities PI related

to the current context and derive transition probabilities.

At each decision step, some agents are reaching new targets to visit whereas

other agents are still moving between two targets. Move durations are independent

of the other agents. However, idleness values rely on all the agents’ actions and

positions. From a state st, if an agent i reaches a new target tj , the system moves

to a state s′t′ where the idleness of tj is 0, δi = 0 and pi = tj . Otherwise (i does

not reach her next target), δi is incremented by 1, pi corresponds to the current

edge of the agent and the agent does not reset any idleness value (although other

agents could change these values). The probability that an agent reaches her target

is defined from probability distributions Ck,j .

The current context PI is used to compute probabilities on the detection of

illegal actions. When the agent i reaches a target tj , she may observe an illegal

action on this target. The probability wj of observing an illegal action on tj at t

is in fact the probability that an adversary initiated such an action within the last

∆int time steps and it has not been detected yet. wj is then defined as:
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wj(t) = P(

min(∆int,idlej)⋃
w=0

Ij(t− x))

where Ij(t− x) denotes the event “an illegal action is initiated at t− x on tj”.

Using the inclusion - exclusion principle applied to probabilities, wj(t) can be re-

written as a sum of probabilities on conjunctions of events Ij . The probability of

such an event is then given by PIj .

wj(t) =

n∑
k=1

((−1)k−1
∑

i≤i1<i2<...<ik≤n

P(Ij(t− 1) ∩ Ij(t− 2) ∩ ... ∩ Ij(t− k)))

Observation function (Ω): In this paper, we assume deterministic observa-

tions. In fact, when an agent observes her current target, illegal actions that may be

performed are always detected. There is no noise nor uncertainty on observations.

Reward function (R): The reward function formalizes the objectives of the

patrolling agents. In a DEC-POMDP, the agents try to maximize their expected

discounted sum of rewards. In order to maximize the number of detected illegal

actions, a reward must be given for each detected adversary. We assume that only

one agent is required to detect an adversary. A reward is perceived only once when

several agents detect the same adversary at the same time. The reward obtained

when executing action a from a state st = 〈p, int, idle, δ〉 and moving to s′t =

〈p′, int′, idle′, δ′〉 is defined as:

R(s′t|a, st) =
∑

ti∈int′
RD(ti) +

∑
ti∈p′ and /∈int′

·RP (ti, idlei) (1)

where RD(ti) ∈ R∗+ denotes the reward for detecting an illegal action on the

target ti and RP (ti, idlei) ∈ R∗+ is the reward for patrolling target ti without de-

tecting any illegal action. In order to guarantee patrolling all targets, RP (ti, idlei)

is proportional to the idleness of the target before being patrolled. This part of

the reward encourages agents to patrol targets with a high idleness. It prevents

patrolling behaviors where the agents focus on a restricted set of targets.

Targets can be rewarded with different values formalizing the relative significance

of the targets. One can imagine to identify sensitive locations (areas populated with

endangered species for instance) and attached highest rewards to these target sites.

Related models could be considered to formalize our decision problem but they

do not fulfill all the requirements of our settings. Interactive POMDPs (I-POMDPs)
29 include a model of the other agents in the belief state of each agent. However,

I-POMDPs assume a fixed set of adversarial models known beforehand. Stackelberg
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Security Games 30 consider a known model of the adversary and do not account for

effective cooperation during action execution.

4.3. From observations to the current context definition

The DEC-POMDP formalization described above is given for a fixed current context

represented by probabilities PI. These probabilities formalize the current knowledge

of the patrollers about the adversaries strategy. As patrolling agents execute their

actions, they make more and more observations and obtain more and more infor-

mation about the profile of the adversaries.

Since patrolling agents only observe detected illegal actions, they cannot have

prefect knowledge about the profile of the adversaries. However, PI probabilities

can be estimated from the number of detected illegal actions over the last H time

steps. Let NIi(t−H, t) be the number of detected adversaries on target ti (defined

for all ti in N ) between t − H and t. We estimate the probability PI on target ti
at time t as:

PIi(t) =
NIi(t−H, t)∑

tk∈N NIk(t−H, t)
(2)

This definition may appear as a rough estimate but it guarantees the relation:

NIi(t−H, t) > NIk(t−H, t)⇒ PIi(t) > PIk(t). In addition, this estimate is con-

sistent with our limited observability assumption and fits nicely with the objective

of patrolling agents to detect as many illegal actions as possible. As described in

the experiments (see Section 6), this estimation allows for high detection ration.

However, our DEC-POMDP definition is not restricted to this formalization of the

current context. One can imagine a more sophisticated model of the adversaries

provided that the agents have a higher degree of observability or obtain external

knowledge about the adversaries.

Updating the DEC-POMDP model and the patrolling strategies at each time

step from the new current context has an important computational cost and may

lead to poor performance. We thus introduce the notion of context horizon (denoted

by T ) that sets the period of validity of the current context. Once a context is

defined at t by probabilities PI(t), it is assumed to be valid for the next T time

steps. A DEC-POMDP model is then also defined at t and strategies are computed

for the next T time steps. Note that T is the period of validity of a context and the

planning horizon of the DEC-POMDP whereas H sets the length of the observation

history used to define PI probabilities related to the current context.

5. Computation of non-stationary patrolling strategies

Optimally solving a DEC-POMDP consists in computing a joint policy that maxi-

mizes the global expected reward derived from Equation 1. Since the reward function

of a DEC-POMDP is defined over joint actions, individual optimal policies maxi-

mize the global reward of the agents and are thus cooperative policies. Note that
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agents usually end with different individual policies. In the context of multiagent

patrolling, the nodes of the graph will be dispatched among the agents taking into

account uncertainty on moves between the target, target rewards and threat levels.

Agents will tend to spread in the graph in order to provide a high coverage of the

targets.

Various approaches have been proposed to solve DEC-POMDPs 24,31,32. They

can be applied to our DEC-POMDP model to compute a joint cooperative patrolling

strategy. In the DEC-POMDP literature, it is commonly assumed that planning can

be performed off-line (before the execution) in a centralized way: a joint policy is

first computed by a central entity that then sends to each agent her individual

policy. Individual policies are finally executed in a distributed way: each agent is

able to make her own coordinated decisions from her local observations.

In the context of multiagent patrolling with non-stationary adversaries, the use

of existing algorithms present some difficulties. In fact, each time a new context is

considered, a new joint policy must be computed. If a centralized algorithm is used,

a central entity would have to collect all the observations made by the patrolling

agents to deduce the new context, update the DEC-POMDP model and compute

a new strategy. This strategy will then be communicated to the patrolling agents.

Such an approach obviously creates a bottleneck in the system and would result in

high communication cost. Furthermore, DEC-POMDP algorithms use to compute

the joint policy from scratch. They have not been designed to update joint strategies

during the execution. They cannot re-use previously computed strategies to speed

up the computation of a new joint strategy. In non-stationary environments, it

would be useful to update on-line the strategies to the changes of dynamics.

In this paper, we propose to use a distributed evolutionary algorithm to compute

patrolling strategies. Evolutionary algorithms have been used previously to compute

approximate solutions for DEC-POMDPs 33,34 and showed significance improve-

ment in the size of the horizon that can be handled. Evolutionary algorithms thus

open promising directions to solve large problems. Moreover, our evolutionary al-

gorithm allows for exploiting strategies of previous contexts when computing a new

strategy for a new context. In order to improve the agents’ efficiency we also inves-

tigate the relevance of communicating. Finally, since the policies of the adversaries

may evolve over time, we propose a new procedure to detect policy variations.

5.1. Evolutionary Algorithm for policy computation

Based on the (1+1) evolutionary algorithm 35, we propose a method for planning the

patrolling strategy over an horizon T . In this evolutionary context, an individual

is defined as a joint policy over the horizon T . The algorithm (see Algorithm 1)

starts from an initial solution (called champion) and then iterates to improve the

champion until a computation deadline is reached. At each iteration, a mutation
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is performed on the current champion to obtain a new solution referred to as the

challenger. The challenger is evaluated and compared with the current champion.

The highest rewarding solution is kept and becomes the new current champion.

Algorithm 1 (1+1) evolutionary algorithm

champion = RamdomIndividual()

championValue = Evaluate(champion)

while deadline non reached do

challenger = Mutation(champion)

challengerValue = Evaluate(challenger)

if challengerValue > championValue then

champion = challenger

championValue = challengerValue

end if

end while

The set of all possible individuals consists in the set of joint policies that comply

with temporal and spatial constraints of the problem. Spatial constraints formalize

existing paths between two targets in the graph G. A policy of an agent i fulfills

spatial constraints if the agent always decides to move to a target directly connected

to her current target. Temporal constraints arise from uncertainty on action dura-

tions: an agent cannot decide for a new target to visit until she has reached her

current target (ie. an agent cannot change her direction while moving on an edge

of the graph).

The initial solution is defined considering the likelihood of an illegal action on

each site. These probabilities can be estimated using probabilities PI defining the

current context. In fact, the higher the probability of an illegal action on a target

tk, the higher the probability of selecting tk.

In our setting, we define the mutation operator such as it increases the visit

frequency of the weakest targets and decreases the visit frequency of the most

visited targets: move to targets with low probabilities of threats are replaced by

moves to targets with higher probabilities of threats.

Our evolutionary algorithm has the advantage of being anytime. Moreover,

thanks to its low complexity, it scales well to large numbers of agents and long

planning horizon T . However, no guarantee on the quality of the solution can be

given. In fact, the algorithm does not provide any bound regarding the distance to

the optimal solution and can be trapped in local optima. This issue will be discussed

in the experimental section.

5.2. Communication models

In order to guarantee coherent individual patrolling strategies, the evolutionary

algorithm must be executed in a centralized way or in a distributed way with each
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agent having the same PI distribution as her teammates. Centralized execution is

possible using a central entity to whom each agent notifies detected intrusions. This

central entity thus maintains a coherent estimation of PI probabilities and executes

the evolutionary algorithm. Strategies can then be broadcasted to the patrolling

agents.

However, using such a central entity introduces a weak point in the multiagent

system that could be exploited by the adversaries. One solution consists in broad-

casting only useful information to all the agents. Each time an agent detects an

intrusion, she notifies all her teammates. Such communication can be encrypted to

ensure more security. Each agent can then execute the evolutionary algorithm and

computes coherent cooperative joint policies. However, such an approach may lead

to a large number of messages.

We propose to limit communication between the agents by measuring the rele-

vance of the communicated information. If an information is considered as relevant,

it is communicated. Otherwise, it is not sent for the moment. We propose to mea-

sure the relevance of an information as the distance between the current probability

distribution PI and the new probability distribution PI ′ obtained by exploiting the

information to communicate. This distance is computed by the Kullback-Leibler di-

vergence 36 which evaluates the difference between two probability distributions P

and Q.

The divergence from P to Q is thus defined as:∑
i

P (i)log
P (i)

Q(i)

In order to preserve the symmetry property, we use the pseudo-distance:

D(P,Q) =
∑
i

P (i)log
P (i)

Q(i)
+
∑
i

Q(i)log
Q(i)

P (i)

We then use a small β parameter value as a threshold value. If the Kullback-

Leibler distance is greater than β , the information is considered as being relevant

and it is communicated to all teammates. Otherwise, the information is not com-

municated but may be sent later if, combined with new observations, it becomes

significant. We have also investigated communication models based on the Bhat-

tacharyya distance 37 or the Hellinger distance 38. We did not notice any significant

differences in the values obtained to measure the relevance of an information.

5.3. On-line detection of context changes

As described in Section 4.3, the current context is updated every every T time steps

considering the observations about detected illegal actions over the last H time

steps. However, adversaries may change their strategy during the T time steps of a

context. Patrollers should be able to detect such changes and adapt their strategies

consequently instead of waiting for the end of lifetime of the current context.
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We describe an approach allowing the agents to detect adversary policy changes

during the lifetime of a context (the T time steps of the context). We define a math-

ematical method monitoring the variations of the number of detected adversaries

det over the H last time steps considered in Equation 2. In fact, empirical studies on

the variations of det showed that this quantity significantly decreases when adver-

saries change their strategy. Our purpose is thus to efficiently detect such decreases

to update the context as soon as possible after the adversaries changed their policy.

Our method consists of four successive processing operations:

(1) Compute a moving average dett(H) of the number of detected illegal actions

over the last H time steps for each time step t.

dett(H) =
1

|H|
∑
ti∈N

NIi(t−H, t)

This average allows for smoothing variations due to the stochasticity of the

system.

(2) Decompose dett values using a finite adaptation of Stieltjes decomposition (see

Appendix for more details). dett(H) is decomposed into two functions det−t (H)

and det+t (H) such as det−t (H) corresponds to the negative variation of dett(H)

whereas det+t (H) corresponds to the positive variation of dett(H). The decreas-

ing components det− of det can thus be identified.

(3) Apply a backward finite difference operator to det−t (H):

∇det− [t] = det−t (H)− det−t−1(H)

to quantify decreasing variations.

(4) Threshold the values obtained in the previous step to detect adversarial policy

changes. If a variation exceeds the threshold, it is assumed that the adversaries

have changed their strategy.

As soon as an adversarial policy change is detected, the current context PI is up-

dated even if the deadline T has not been reached. New policies are then computed

based on the new context. Note that this method can be applied irrespectively of

the solving algorithm.

The threshold of the procedure is a parameter of the method and has to be tuned

considering the DEC-POMDP formalization of the problem. Low threshold values

provide sensitive detection but could lead to “false” detection of strategy changes.

On the other hand, high thresholds might miss some strategy changes.

If no change has occurred over the horizon T , the context is updated at the end

of the horizon and new policies are computed for the new context over the next T
time steps.

It should be noted that our approach allows patrolling agents to adapt their

strategies online. Patrolling strategies are thus non-stationary. From the point of

view of a strong adversary (ie. adversary with full observability of the patrollers
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and performing an extensive surveillance phase), the patrolling strategy will thus

not seem deterministic all along the execution.

6. Experimental results

Our approach has been experimented on different sizes of randomly generated prob-

lems. Graphs were randomly build considering various numbers of nodes. Edges were

defined by randomly picking two different nodes in N . Each node is connected in

average to 2/3 of the other nodes. Action durations were randomly drawn in the

interval [1, 5]. Illegal actions were assumed to last over 10 time steps.

Initial strategies of the adversaries were also randomly defined assuming that

intrusion probabilities belong to the interval [0.1, 0.5] for a subset of the targets and

are 0 elsewhere. Note that these strategies are initially unknown to the patrollers.

For each simulation, the system was executed over at least 400 time steps and the

adversaries changed their policies at least once during the execution. Experiments

were performed on a computer equipped with an Intel(R) Core(TM)2 Duo processor,

2000 MHz, 8Gb.

6.1. Performances and scalability

First experiments dealt with the performance of the patrollers. As the agents aim

at maximizing the number of detected illegal actions, we studied the detection ratio

(number of detected illegal actions / number of illegal actions) along the patrolling

mission. Results obtained by our evolutionary algorithm have been compared with

the optimal solution computed using the MADP toolbox 39. Figure 2 gives the

detection ration for small scenarios (2 agents and 5, 6 or 7 targets) executed over

530 time steps. It can be observed that our DEC-POMDP based approach leads to

high detection ratio: over 70% for both algorithms and over 76% for the optimal

algorithm. Although the evolutionary algorithm is not guarantee to find an optimal

solution, performances are closed to the optimal. In fact, the detection ratio is

decreased by only 3% over the optimal solution for 5 targets and by 6% for 7

targets. It has to be noticed that even the optimal approach cannot lead to full

detection of illegal actions since agents cannot cover all targets within 10 time steps

(duration of an illegal action).

Figure 3 gives the reward obtained by the agents with the optimal and the

evolutionary algorithm. It can be observed that the evolutionary algorithm is also

closed to the optimal solution.

Number of targets: The scalability of the approach has then been studied. We

increased the number of targets and tested the performances of the solutions. Prob-

lems over 2 agents and 7 targets could not be solved optimally. Nonetheless, our

evolutionary algorithm successfully solved problems up to 50 targets and 7 agents

(with a deadline of 10 seconds). Note that larger problems could be solved by en-

larging the deadline of the evolutionary algorithm.
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Fig. 2. Detection ratios of the executed strategies

Fig. 3. Reward obatined by the patrollers

Moreover, for a fixed size of problems higher performances could be obtained by

enlarging the deadline. In fact, our evolutionary algorithm is anytime and perfor-

mances increase as more time is given to the algorithm.

Fig. 4. Influence of the number of targets

Figure 4 gives the variations of the detection ratio over 530 time steps for differ-
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ent sizes of graphs. The number of agents was fixed to 4 agents for all sizes of graphs.

It can be observed that large numbers of targets lead to lower detection ratios. In

fact, as the number of targets increases, it becomes more and more difficult for the

4 agents to cover all the targets and to obtain high detection ratios. For a fixed

number of agents, these experiments show that the performances are closely related

to the extent of the area to patrol. The extent of the area relates to the number of

targets to patrol and to move durations between two targets. Figure 4 shows that

good performances are obtained for graphs smaller or equal to 16 targets. Indeed,

detection ratios of 80% and more were obtained for 4 agents by the evolutionary

algorithm.

Number of agents: We then tested the influence of the number of agents m on

the performances of the approach. Although all targets cannot be covered at each

time step and moving from one target to another takes time (without the ability to

make detection), good detection ratios are obtained even if m � n. Figure 5 gives

the detection ratio obtained on a 16-target graph when the number of agents varies.

When m = n, the detection ratio obviously equals to 1: each agent is assigned a

single node of the graph and stays on this node. Nonetheless, it can be observed

that full detection of illegal actions is almost obtained for 12 agents and more. Even

considering 6 agents leads to high detection ratios (more than 0.9).

Fig. 5. Influence of the number of agents

Deadline and planning horizon of the evolutionary algorithm: The dead-

line of the evolutionary algorithm and the planning horizon both influence solution

quality. We considered different values of these parameters and recorded the influ-

ence on the average detection ratio. Figure 6 gives the detection ratio for problems

involving 5 agents and 16 targets. It can be seen that deadlines of the evolutionary

algorithm over 1 second do not significantly improve solutions. In fact, good quality

solutions are already obtained with shorter deadlines. Furthermore, increasing the
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Fig. 6. Influence of the deadline and of the planning horizon

planning horizon T over 10 time steps does not improve the detection ratio. Setting

the planning horizon results from a trade-off between the number of steps looked

ahead in strategy computation and the frequency of updates. Longer planning hori-

zon decreases the frequency of strategy updates (policy computation is done every

T steps). On the other hand, shorter planning horizons increases the frequency of

context updates and policy updates. More variations of the detection ratio are then

observed since agents become more and more myopic and are unable to anticipate

future action outcomes and opportunities.

Figure 7 illustrates how the value of the champion evolves as time passes (until

the deadline of 10 seconds is reached). The value of the champion is monotonically

increasing since our algorithm is anytime. Nevertheless, later time steps lead to less

improvement since it becomes more difficult to find a variation that improves the

value of the champion (more iterations do not change the current champion).

6.2. Performances with limited communication

We have then tested the relevance of limiting the number of messages using

Kullback-Leibler divergence. Table 8 gives the detection ratio when limiting commu-

nication. Figure 9 describes the number of messages exchanged between the agents.

Note that a logarithmic scale is used in Figure 9. We considered different number of

agents and a graph of 16 targets. We varied the β threshold used to decide whether a

message must be sent or not (β ∈ {5, 10, 15}). KL05 stands for the approach based

on the Kullback-Leibler divergence with a threshold set to 5. The “Com” approach

consists in always broadcasting observations about detected illegal actions.

As shown in Figure 9, our approach based on Kullback-Leibler divergence allows

the agents to reduce significantly the number of messages sent. In the 5-agents case,

the number of messages has been reduced from 574 to 16. The β value can be

used as a parameter to tune the frequency of communication. Our approach could
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Fig. 7. Best champion among the execution of the EA

also handle dynamic values β where the value of β could vary along the execution.

Settings without any communication have also been experimented. Detection ratios

between 0.2 and 0.5 were obtained.

Table 8 shows that limiting the number of messages does not significantly de-

crease the performances of the agents since important information is still exchanged.

In fact, new observations are only taken into account once they substantially change

the current context.

3 agents 4 agents 5 agents

Com 0.7375 0.8084 0.8645

KL05 0.7241 0.7966 0.8585

KL10 0.6850 0.7476 0.8036

KL15 0.6661 0.7383 0.7660

Fig. 8. Average detection ratio

6.3. Adversary policy changes

Finally, we performed experiments to give more insights about the different steps

of our method for detecting changes of the adversaries’ policy. Figure 10 describes

the variations of det for each step of our detection method along the execution. The

adversaries changed their policies around the 400th time step. The mobile average

was computed over 50 times steps and the threshold was fixed to 0.05. This threshold

remains constant during the whole execution. The curve entitled threshold on Figure
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Fig. 9. Number of messages

10 allows for visualizing whether the decreasing component of Stieljes is under the

threshold. It can be observed that the mobile average smooths the small variations

of det. Stieljes decomposition allows for determining the decreasing component of

the mobile average. One can checked that the value of the Stieljes decomposition

falls under the threshold when the adversaries change their strategy.

Fig. 10. Measures of the method for detecting policy changes

We also studied how the detection ratio evolves over time during the execution

(Figure 11 assumes full communication between the agents). The detection ratio

remains stable over the execution except when the adversaries change their strategy.

In Figure 11, the sharp decrease in detection ratio around 270 is due to changes in

the adversaries policy. This drop is successfully detected using the method described

in Section 5.3 and the agents quickly adapt their strategy. The detection ratio thus

returns to its previous level.
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Fig. 11. Detection ratio over time (full communication)

Moreover, limiting the number of messages does not decrease the performances

of the agents since significant information is still exchanged. Indeed, Figure 12 gives

the evolution of the detection ratio over time if the agents limit the number of sent

messages. However, it may be noticed that full communication leads to smoother

curves since gathered information is continuously incorporated in the estimation of

the adversarial strategies. On the other hand, under restricted communication new

observations are only taken into account if they substantially change the current

context.

Fig. 12. Restricted communication

We also experimented the influence of the number of policy changes on the de-

tection ratio (see Figure 13 for 4 agents and 16 targets). Drops in the detection

ratio correspond to changes of the adversary strategies. Patrolling agents success-

fully detect context changes and adapt their strategy consequently. Thanks to our

approach, patrolling performances quickly return to their previous level. Obviously,
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the less the adversaries change their strategies, the higher the detection ratio. In

fact, when the adversaries often change their strategy it becomes more and more

difficult to deduce the current context. In highly dynamic problems, the detection

ratio falls behind 0.6. Under such conditions, it would be recommended to increase

the number of patrolling agents in the system.

Fig. 13. Influence of the number of strategy changes

7. Conclusion

We introduced a new framework for effective cooperation between several patrolling

agents acting in uncertain and partially observable environments. Our approach

considers a generic model of the adversaries and does not make any restriction

on the observability nor rationality of the opponents. Our approach thus provides

new contributions to the domain along several dimensions by handling: multiple

cooperative patrollers with limited observability, multiple adversaries performing

multiple illegal actions over time and space, a generic probabilistic model of the

adversaries, a more realistic model of actions formalizing uncertainty on action

outcomes. To our knowledge, this framework is the first attempt to address all

these issues together.

We proposed to formalize the multiagent patrolling problem as a DEC-POMDP.

In order to cope with the non-stationarity of the adversaries behavior, we introduced

the notion of context in multiagent Markovian models and we described a statistical

approach to represent the profile of the adversaries and the current context. We hope

that this approach could open the door to further works handling non-stationary in

DEC-POMDPs.

We also presented a distributed solving approach based on evolutionary algo-

rithms. Our algorithm computes patrolling strategies online and is able to exploit

strategies of previous contexts to compute a new patrolling strategy for the current
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context. Finally, we proposed approaches to improve the efficiency of the agents by

allowing for a better detection of context changes and improving the quality of the

information sent to the other agents.

Future work will explore more sophisticated models of the adversaries. We would

like to include the temporal dimension in the context changes as it could have been

done in HS3MDPs 28. Models inspired from behavioral economics could also be

useful to develop more accurate profile of the adversaries.

Appendix

In this section, we detail our decomposition of a series of variations y into two

components y+ and y− such as ∀t : y[t] = y+[t] + y−[t]. As stated by Stieltjes in

the continuous case, we demonstrate that y+ is an increasing function and y− is a

decreasing function (i.e. −y− is an increasing function).

Proposition 1: For all series of variations y, the series y+ defined as

y+[0] = 1
2y[0]

y+[t] =


y+[t− 1] si y[t] ≤ y[t− 1]

y+[t− 1] + y[t]− y[t− 1] si y[t] > y[t− 1]

is increasing.

Proof: Let consider both cases separately:

• if y[t] ≤ y[t− 1] then y+[t] = y+[t− 1] and y+[t] ≥ y+[t− 1]

• if y[t] > y[t − 1] then y+[t] = y+[t − 1] + y[t] − y[t − 1] and y+[t] ≥ y+[t − 1]

since y[t]− y[t− 1] > 0

In both cases, we thus have y+[t] ≥ y+[t− 1] 2.

Proposition 2: For all series of variations y, the series y− defined as

y−[0] = 1
2y[0]

y−[t] =


y−[t− 1] si y[t] ≥ y[t− 1]

y−[t− 1] + y[t]− y[t− 1] si y[t] < y[t− 1]

is increasing.

Proof: Let consider both cases separately:

• if y[t] ≥ y[t− 1] then y−[t] = y−[t− 1] and y−[t] ≤ y−[t− 1]

• if y[t] < y[t − 1] then y−[t] = y−[t − 1] + y[t] − y[t − 1] and y−[t] ≤ y−[t − 1]

since y[t]− y[t− 1] < 0
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In both cases, we thus have y−[t] ≤ y−[t− 1] 2.

Proposition 3: For all series of variations y, y is the sum of y+ and y− with y+

and y− defined as described in Proposition 2 and Proposition 3.

Proof: We proceed by induction on the values t for which the series y is defined.

We want to demonstrate that y[t] = y+[t] + y−[t] for all t.

Base Case (t=0)

By definition, y+[0] = 1
2y[0] and y−[0] = 1

2y[0].

So, y+[0] + y−[0] = 1
2y[0] + 1

2y[0] = y[0].

The equality holds for t = 0.

Induction Step We now assume that the equality holds for t−1 and show that

it then holds for t:

• if y[t] < y[t− 1] then

y+[t] + y−[t] = y+[t− 1] + y−[t− 1] + y[t]− y[t− 1]

Since (by assumption) y[t− 1] = y+[t− 1] + y−[t− 1] holds, we deduce

y+[t] + y−[t] = y[t− 1] + y[t]− y[t− 1] = y[n]

• if y[t] ≥ y[t− 1] then

y+[t] + y−[t] = y+[t− 1] + y[t]− y[t− 1] + y−[t− 1]

Since (by assumption) y[t− 1] = y+[t− 1] + y−[t− 1] holds, we deduce

y+[t] + y−[t] = y[t− 1] + y[t]− y[t− 1] = y[t]

The equality then also holds for t. 2.

Example

Let consider the following series y of variations:

t 0 1 2 3 4 5

y[t] 0 3 5 2 6 4

This function can be decomposed into y− and y+ as follows:

y−[0] = 0

y−[1] = 0

y−[2] = 0

y−[3] = 0 + 2− 5 = −3

y−[4] = −3

y−[5] = −3 + 4− 6

y+[0] = 0

y+[1] = 0 + 3 = 3

y+[2] = 3 + 5− 3 = 5

y+[3] = 5

y+[4] = 5 + 6− 2 = 9

y+[5] = 9
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It can be checked that for all t, y[t] = y+[t] + y−[t].

In this paper, this decomposition is applied to the variations det on the number

of detected illegal actions.
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