
HAL Id: hal-01573863
https://hal.science/hal-01573863

Submitted on 10 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Meta-level architectures : a conceptual tool or a banana
skin ?

Vincent Ribaud, Alain Plantec, Philippe Saliou

To cite this version:
Vincent Ribaud, Alain Plantec, Philippe Saliou. Meta-level architectures : a conceptual tool or a ba-
nana skin ?. [Research Report] LIBr-1998-1, Université de Bretagne Occidentale; Faculté des Sciences
et Techniques. 1998, pp.1-10. �hal-01573863�

https://hal.science/hal-01573863
https://hal.archives-ouvertes.fr

$o**ì* ì ß" I
þÅ* Ð

Meta-level architectures : a conceptual tool or a
banana skin ?

V. Ribaudl, A. Plantecz, and P. Saliou2

LIBI Faculté des Sciences, BP 809, 29285 Brest Cedex, France
ribaudOuniv-brest . fr

2 Syseca, 34 quai de la Doua.ne, 29200 Brest, France

{p1ant ec, sal iou}@SYSECA. thonson, f r

At¡stract. The present paper presents the different modelisation levels.

The approach is discussed following the IRDS framework. The corner-
stone of the IRDS fraàework is the concept of four data levels and the
associated three "level pairs". Omitting this useful concept leads to mis-
understanding and misemployment of the meta paradigm. Moreover, the
unique concept provided by the "instance of' relationship should be nu-
anced. Three applications using a meta-level architecture are described
and the pros and cons of the architecture are discussed.

1 Introduction

Data management uses a lot of formal models (relational, object-oriented, etc) .

The programming environments often offer the possibility to describe all the used

models. This description is structured in a dictionary or meta-model, which, fol-
lowing Codd's idea [Dat90] is usually implemented with the same programming
environment constructions as the models themselves. Applying this process to
the meta-model itself leads to a meta-level architecture.

Users understand (somewhat intuitively) these different meta-levels and are

able to use this meta-information directly or with the appropriate tools. Three
operational applications using meta-level techniques are presented, and pros and

cons are discussed.

In early 1990, IRDS (Information Resource Dict'ionarE System) proposed a

framework of four levels and three associated "level pairs". At the moment, the
presentation of meta-theory focuses on levels rather on level pairs. Moreover,

no differences are made between the "level pairs"; the UML adopts a unique

"instance of' relationship for describing ihe link between data belonging to two
adjacent levels. This statement tends to uniformize problems of a different nature
and entails proposing inappropriate solutions in some cases.

The uniform point of view of ihe UML should be nuanced. It leads to misun-
derstanding and misemployment of the meta paradigm, this shall be illustrated
with some problems encountered in the three applications presented.

2

This article is organized as follows. In section 2, we present the four-level de-

composition of information. In section 3 we depict three operational applications,
using these meta-levels techniques. Section 4 discusses about the pros and cons

induced by the use of meta-levels. We will finish with a conclusion.

2 A four-level architecture

2.L Definitions

Meta The prefrx meta in front of a word X express the fact that the meta-X
applies to Xs [Pit90].

Model [OMG97] : A semantically closed abstraction of a system.

Metamodel [OMG97] : A model that defines the language used to express a
model.

Meta-metamodel [OMG97] : A model that defines the language used to express

a metamodel. The relationship between a meta-metamodel and a metamodel is

analogous to the relationship between a metamodel and a model.

2.2 Examples of architecture

CDIF (CASE Data Interchange Formor) [EIA9] is a proposal intended to fa-
cilitate the cooperation of Computer-Aided Software Engineering (CASE) tools
and the exchange of models between the vendor's tools.

IRDS (/nþrmation Resource Dictionary System) [ISO90] is an lSO-standard
intended to provide a common basis for the development of Information Resource

Dictionaries.
Both are used to manage metadata and data. Both define a four-level archi-

tecture : data, model, metamodel, meta-metamodel; and use an ent'ity-attribute-
relationship (EAR or simply ER) model (IRDS) or an object-relationship (OP.)
model (CDIF) to describe each level.

Meta-metamodel The first level is the "meta-metamodel' level (called IRD Defi-
nition Schema Level in IRDS). The purpose of this level is to prescribe the types
of objeci about which data may be recorded on the second level.

This level is usually fixed and frozen : no entities (classes) or relationships
can be added at this level.

Metamodel The second level of the architecture is the "metamodel' level (called
IRD Definition Level in IRDS). The purpose of this level is to contain method-
ological definitions about the methods and processes used.

Model The third level is the "model'level (called IRD Level in IRDS). The
purpose of this level is to contain model definitions or type definitions (in the
sense of a programmatic language).

u

Data The fourth level (called Application Level in IRDS) is the level on which
instances of data are recorded, retrieved and updated.

3 Three data management applications

Three operational applications that we built at Syseca Inc. are briefly presented.

The attention is focused on meta-level use rather than on overall functionalities.
The pros and cons of meta-level techniques are discussed later in section 4.3.

In this section, we concentrate on the user's requirements and the resulting
functionalities.

S.L Technical information management

IFREMER (Institut Francais pour Ia Recherche et l'Enploitation de la MER) is
a governemental research center, covering most of the domains of the sea. Each

research team constitutes relational databases of relevant data. The flat model

of sQL does not fit the complex modelization needs of researchers. Thus, we

designed and built a tool for technical information management. It was composed

of:

- An object-oriented modelization language and its associated compiler. The

language allows the definition of information models which are implemented
in a relational database management system.

- A human-interface makes it possible for the user to query the data of the ob-
ject models; this is accomplished by automaticatly generating and executing

SQL statements.

From a usual standpoint, the object-oriented model represents knowledge in the

domain and is used to formulate hypothesis (queries) , which is a typical meta-

level activity. Then data are retrieved according to the queries and are used to
validate the hypothesis. In other words, the design of the tool uses two levels :

- a model-level handling classes of the model,

- a value-level allowing the selection and the filtering of instances belonging

to the classes handled at the top-level.

But from user's point of view, the data itself are mole important to formulate
the queries than the models. 'Ihe user needs to see vaiues anci iinks between daia
dynamically in order to refine his/her comprehension.

Thus, the keypoint is that the support of reasoning for the user is not only

the model but the data too. So the tool human interface unifies the levels: there

is no difference between adding/removing a class and filiering instances.

The reasoning navigates between levels : once classes are selected, the user

wishes to visualize all the data concerned, to filter data according to certain

criteria, to examine the results that could eventually conduct the tool to discard

a class from the model if there are no more result data belonging to the class.

4

3.2 Hydrographic Data Base

The Hydrographic and Oceanic Departement of French Navy (Seruice Hydro-
graphique et Oceanographique de la Marine), called SHOM, is in charge of the
production of nautical charts.

The Hydrographic Services used a data representation and exchange standard
called DX90. Data are transferred intertwined wiih the model describing them. It
means ihat if thousand instances of the same entity are transferred, the name of
the entity and the name of attributes will appear thousand times in the exchange
file. So, cartographs were not able to distinguish data levels.

But, cartographs uses another standard called S57. The standard is a model
of the cartographic process and normalizes the name and the structure of en-
tities used in the domain, e.g. the entity LITHOU (standing for "lighthouse"
is described with the attribute GEO (geographic position). The composition of
entities is also an important feature. Cartographic entities (..g. u lighthouse) are
complex entities, formed by the composition of other entities (e.g. an infrastruc-
ture, a light, a fog-horn, etc). The S57 model is described using a meta-model;
so cartographs are ttmetamodeltt end-users.

During the conception and the implementation of a database intended to sup-
port the chart production process, the designers partly reproduced the structure
of a DX90 file, and partly used meta-level techniques.

This leads to a non-conventional design :

o// keys of all instances of a// entities were recorded in a single table called
OBJETS
a// attribute values of o// instances of o// entities were recorded in a single,
enormous table called ATTRIBUT-OBJETS, each row of this table being
linked to the appropriate row of the OBJETS table
and a huge OBJ-OBJ table allowing each object of any type to be linked to
any other object).

Hence, the structure of the entities (belonging to the metamodel-level) was
Iost. This structure was re-created with the help of a metabase :

CLASSE-OBJETS describing each entity,
ATTRIBUTS describing the name and the type of each attribute,

All these features contribute to the overall use of meta-model in the application.
'v'v'e impÌemenieci a daia management iooÌ for ihis ciaiabase. Thanks io the

database (and metabase) structure, the tool is generic and dynamic in its very
nature, consulting the meta-model in order to query data.

This tool encompasses all data management functions and can be applied to
many domains :

- A data editor offers all elementary actions for inserting, updating, deleting,
decomposing, renaming and duplicating the data.

- An information center allows the user to graphically elaborate queries; this
is accomplished through a graphical representation of the structure of data
models in the left window and the disposition of values in the right window
according to the left-hand structure (see figure 3.2), the sQL is automatically
generated and an interpretation in pseudo-french is given.

- A report generator supports data formatting in order to be visualized or
printed.

A lighthouse is composed with permanent lights (LIGHTS), a fog signal (î)GSIG), an

infrastructure (TOWERS), etc. The top window is the interyretation in pseudo-french

of the query.

3.3 The STEP approach

STEP (ISO 10303) is an international standard for the computer interpretable
representation and exchange ofproduct data [ISO94b]. This standard provides a

modelling language, EXPRES S (ISO 10303-1 1) [ISOg c], a neutral data encoding

(ISO 10303-21) [ISO94d] and an application program interface to data called

standard Data Access Interface (SDAI,ISO 10303-22) [ISOgaa]. The data are

kept in a storage facility (files, data bases, etc) called a repository,

The functionalities of a data management application can be drawn from the
goals of the SDAI:

zone qaoqra¡hloue dont lgs cafåctsrlstlquEs sBnt
>- 1's1.o2g'

-tt et longltudð (. 4'04.120'ï
et un(e)
sJ tuE{r}s

I

. 'teu FsrtEnBnt'

6

- to access and manipulate data which are described using a conceptual lan-
guage so that access to a database happens through a conceptual schema,
not a physical schema,

- to allow access to multiple data repositories by a single application at the
same time,

* to allow commit and rollback on a set of data operations,
* to allow access to the dictionary definitions of all data elements that can be

manipulated by an application process, and

- to allow the validation of the constraints expressed on the data.

We devised and built several software applications using STEP in order to
manage and exchange data. Classically, data models are first designed using EX-
PRESS, then a SDAI (usually formed by classes in an object oriented language
binding) is used for the management of data.

A SDAI can be implemented as an interpretor of EXPRESS schemata or
as a specialized data interface. The interpretor implementation is referred to in
the standard [ISOgaa] as the SDAI late binding. A SDAI late binding is generic
in nature. The specialized implementation is referred to in the standard as the
SDAI early binding. A particular early binding can be automatically generated
from the source EXPRESS schemata describing application data handled by the
target.

We built several SDAI generators (generating SDAIs in C, C**, Java, Smalltalk)
using an generator builder environment called EUGENE. This environment was
developped for A. Plantec's PhD and is now an operational tool used at Syseca
Inc. This environment is presented in [PR96], [PR98], [Pla99]. An SDAI gener-
ator built with EUGENE uses meta-data in order to generate the target SDAI.
Meta-data come from a source specification analysis (the models) and are stored
in different kinds of meta-model.

Thanks to the SDAI generating process, the SDAI offers some introspective
capabilities, for example the knowledge of the type of an attribute. Moreover
meta-levels are not clearly separated, e.g. some of the generated classes allows
the user to browse through all the instances of an entity, or an instance can be
directly linked to some meta-information, such as the name of its class.

4 All is not meta on the v/estern front

4.L Level versus level pair

Within IRDS, a processor is defined as an abstract conceptualization of an ex-
ecutable piece of code and a seru'ice is defined as a capability provided by a
processor to other processors.

IRDS generalizes the concept of "types" and "instances" in the following
way. The definition of a "type", such as an EMPLOYEE, creates an open-ended
data container. When data about a specific EMPTOYEE needs to be recorded
or accessed, it is necessary to refer to the type of this data. The IRDS concept

7

of data levels is an extension of this basic type and instance concept which one

can regard as having two levels and one level pair (which are in fact the bottom
two of the four previously described) [ISO90].

IRDS services may be thought of as operating on a level pair consisting of
two adjacent data levels. The subset ofthe data at the upper level which defines

types for the level below, is termed the schema for the lower level.

The first level pair [ISO90] defines IRD Definition Services (seru'ices prouided

at the IRD Ðefinition leuel) as operating on the IRD Definition, and these ser-

vices operate by reference to the IRD Definition Schema (on the IRD Definition
Schema Leuel).

This means that in a four-level architecture, the highest services furnished
operate on the second level (define and refine the metamodel level) by reference

to the first level (the meta-metamodel level) . As an example of the use of this first
pair (called IRD Definition Level Pair in IRDS), a dictionary administrator will
define the types of data that subsequently may be used within the second pair
by an application designer (the administrator defrnes the modelling paradigm) .

The second level pair The second pair (called IRD Level Pair in IRDS) , on
parallel lines with the first pair, operates on the third level (define and refine

models) by reference to the second level (the metamodel or dictionary level).
When the designer of an application is evolving and documenting the design of
a database, he/she will use the services provided on this second pair.

Semantic We agree with the definition of a Meta-metamodel in [OMG97] : The
relationship between a meta-metamodel and a metamodel is anaÌogous to the
relationship between a metamodel and a model.

IRDS follows the same meaning because the same data modelling facility is

used for the first and second pair.

The third level pair Like the two other pairs, the third pair (called Appli-
cation Level Pair in IRDS, which denotes the fact that we are working at the

usual application level) operates on the fourth level (insert and delete data) by
reference to the third level (the model).

Semantic The semanlic o[the third level pair is not eractLy the same as other
pairs (this point shall be discussed in the next section) . We disagree with the
fact that the relationship between a metamodel and a model is analogous to the
relationship between a model and an instance.

Note that no functionality is prescribed for the third level pair in IRDS,
because data are out of the scope of IRDS (intended to document an enterprise's
information resources). Hence, IRDS is not explicit on this problem, but it is only
indicated that one or more data modelling facilities can be used for the third
pair, potentially differently from the two other pairs.

8

4.2 Instanciation versus meta-information

The metalanguage, the language used at the upper level to describe the lower
level, is generally the same as the language used at the lower level. The benefits
are uniformity and re-usability of tools used to manipulate a level.

We disagree with some point of view which will uniformize the different
level pairing in a unique association type-occurrence or class-instance. Hence,
we disagree with UML point of view which provides a unique "instance of'
relationship, as between meta-metamodel and metamodel, metamodel and model
and between classes and objects. We think that at least two different kind of level
pairs exist, and each of them bears a different semantic.

Uniformizing the meta-relationship with the instanciation relationship is cer-

tainly convenient from an implementation point of view. Successful environments
Iike Smalltalk benefit from this point of view (an object is an instance of its class
just as a class is an instance of its metaclass) . This may be the goal aimed at
OMG by providing a unique "instance of' relationship.

In class-based object oriented language, the class is a factory for objects and
instanciating a class yields new objects. A meta-object (in the UML sense :

generic terms for alÌ meta-entities in a metamodelling language) is not a factory
for objects, but could be seen from two perspectives :

- A meta-object holds the definition concerning objects, and in asense contains
all the possible objects. This perspective is close to (but not equivalent to)
the "factory" concept and maybe explains the possible confusion between
meta and instanciation.

- Each object relates to its own meta-object, hence there is no possible factori-
sation. Obviously, a meta-object has a type and shares characteristics with
other meta-objects (related to objects which themselves share characteristics
like belonging to the same class and so on).

4.3 Pros and cons in meta-level applications

Technical Information Management The tool described in 3.1 enables end-
users to define models, working at the second level pair. Queries can be specified
at the same level, as usual. We are in the normal situation of a CASE tool, which
generates a SQt code from meta-data, at the second level pair; this code being
executed at the third level pair.

TÌre rnain requirelrelt lcrr llre lool was a user'iiìierface, allowiirg t]re user io
see the resulting data and the corcesponding rnodel The user did noi disiinguish
between a search criteria, such as some ualue > 10 and a join operation, such as

the entit'ies h,nlced to another entity, even this appears as totally different in the
software implementation.

This requirement was difficult to comprehend from our computer designer
standpoint. It might be one of the motivations of Query-By-Example designers.

QBE uses a single paradigm -in other wotds, values- to define different opera-
tions, such as search criteria and join.

9

So, we designed and built the tool as required. Due to the meta-level structure
of Oracle and to the nature of SQL, we were unable to process dynamically all
the possible queries. So we used an arlifice :

at the moment the user-defined model was compiled to verify the syntax and
to feed the meta-data, we generated views depicting all possible paths between

entities belonging to the model.
This leads to a strong limitation to the models; no circular paths were per-

mitted between entities. The limitation guaranteed the existence of a unique
path between two different entities of the model, making it possible for us to
generate all existing paths. The end-user does not complain about this fact, but
we suspect that little use is made of the tool, or that it is only used with small
models which are unaffected by this limit.

Hydrographic Data Base The database presented in 3.2 was a non-sense

from a database designer's point of view. As subcontractots' we had no choice

in the type of design, hence the necessity for us to build a tool able to manage

this kind of structure. The tools generates queries mixing meta-model and model
levels.

"Why did the initial designers choose this solution ?"

They (rightly) felt that they needed some meta-features, so they studied
Oracle metabase (operating at the second level). The services of this level were

similar to the services they needed, so they reproduced the 'implementation of
the second level for the third level.

A more suitable solution is to implement differently the third level from
the other two, by generating complex SQL queries from the meta-data rather
than using directly SQL mixing data and meta-data. Nevertheless the choosen

solution corresponded to its role, except for performance considerations.

STEP An application using STEP is equipped with a SDAI in order to manip-
ulate its own data (described by its own model) . During the generation process

of the SDAI, the model is parsed and is stored in EXPRESS meta-schemata
and then manipulated through a SDAL Thus, it makes it possible for us to in-
corporate the meta-schemata into the final application, enabling a meta-level
architecture.

The SDAI works at two level pairs. For performance considerations, a spe-

cialized SDAI is more suitable to deal with data, while a generic SDAI is more
flexible to manage metadata.

5 Conclusion

After several years buitding meta-level applications, we recognize that we do not
have a firm position faced with the problems encountered. lVe often slipped on

the meta-paradigm : confusing levels or applying inappropriate techniques to

10

one level while suitable to another level. The "level pair" concept helped us to
avoid these banana skins.

Even if a meta-level architecture is used, the end-user does not really need
to apprehend this level-notion, if the application is able to hide this architecture
in a practical interface.

The uniform "instance of" concept should be nuanced. Managing a large
amount of data on the third pair is an implementation problem and requires
dedicated techniques.

References

[Dai90] C. J. Date. An Introd,uction to Database Systems, uol. l. Addison Wesley,
Reading MA, 1990.

[EIA94] EIA. CDIF - Framework for Model'ing and Ertensibility, Interim Standard,,
t994.

[ISO90] ISO/IEC 70027. Information technology - Information resource Dict'ionary
System (IRDS) frameworlc, 1990.

[ISOgaa] ISO TC1S4/SC4 CD 10303-22. Part 22: Stanilaril Data Access Interface,
r994.

[ISO94b] ISO TC184/SC4 IS 10303-7. STEP Part 1: Oueruiew and fundamentalprin-
c'iples, I994.

[ISOg c] ISO TC184/SC4 IS 10303-17. Part 11: EXPRESS Language Reference Man-
ual,1994.

[ISO94d] ISO TC1B4/SC4, IS 10303-21. Part 21: Clear Text Encoding of the Exchange
Structure, 1994.

[OMG97] Object Management Group OMG. UML Glossary, 1997.

[Pit90] Jacques Pitrat. Métaconnaissance. Editions Hermès, 1990.

[Pla99] Alain Plantec. Exploitat'ion de Ia norme STEP pour la spécif,cation et la
mi,se en æuure d,e générateurs de cod,e. PhD thesis, Université de Rennes I,
35065 Rennes cedex, France, 1999.

[PR96] A. Plantec and V. Ribaud. Data management : From EXPRESS schema.ta
to user interface. In ICCI'96 Proceed,'ings. Journa^l of Computing and Infor-
mation, 1996.

[PR98] Alain Plantec and Vincent Ribaud. EUGENE : a STEP-based Framework
to build Application Generators Australian Worlcshop on Constructing
S oftware Eng'ineering Tools, A S W EC'98,, 1998.

