
HAL Id: hal-01573848
https://hal.science/hal-01573848v1

Preprint submitted on 10 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cleaning the correlation matrix with a denoising
autoencoder
Soufiane Hayou

To cite this version:

Soufiane Hayou. Cleaning the correlation matrix with a denoising autoencoder. 2017. �hal-01573848�

https://hal.science/hal-01573848v1
https://hal.archives-ouvertes.fr

Cleaning the correlation matrix with a denoising autoencoder

Soufiane Hayou∗
Quantitative Research, Bloomberg LP.

soufiane.hayou@polytechnique.edu
(Dated: August 10, 2017)

In this paper, we use an adjusted autoencoder to estimate the true eigenvalues of the population
correlation matrix from a noisy sample correlation matrix when the number of samples is small.
We show that the model outperforms the Rotational Invariant Estimator (Bouchaud and Bun [1])
which is the optimal estimator in the sample eigenvectors basis when the dimension goes to infinity.

I. INTRODUCTION

Correlation matrices have been used in different fields
to describe the joint dynamics of multiple variables.
Although the correlation is just a measure of the ’linear-
ity’ between two variables (and not really a measure of
the independence), it is still very informative in many
real-life problems : signal processing, statistical physics,
portfolio optimization ..., especially when the underlying
variables are normally distributed, since in this case,
if two variables have zero correlation then they are
independent.

It is well known that when we have a large number of
samples (compared to the dimension), we can accurately
estimate the correlation matrix using the sample covari-
ance matrix :
Let N be the dimension, T the number of data available
and (Xi)1≤i≤T the observations. The sample covariance
matrix is defined by :

S =
1

T

T

∑
i=1

(Xi − X̄)(Xi − X̄)
t

where Xt is the transpose of X. The empirical cor-
relation matrix is then computed by dividing each

component by
√
var(Xi)var(Xj).

However, the sample covariance matrix is not a good
estimator when T is small (not very large compared
to N). Actually, this case is of a major interest in
practice. One example is to estimate the correlation
matrix for the S%P500 Index in the last 10 years with
weekly data, we have to estimate to correlation matrix
of dimension 500x500 using only 520 samples (10 × 52).
We empirically observe that for a large class of matrices
(see [13]), the sample covariance matrix overestimates
(underestimates) the largest (smallest) eigenvalue. From
now on, we only study the correlation matrix since the
estimation of the variance is relatively robust using only
the usual estimators.

∗ Also at CMAP, Ecole Polytechnique (Paris).

There is an extensive amount of research papers on this
topic. We find (in general) three different approaches :
Shrinkage to a target (e.g. Ledoit and Wolf [2]), Random
Matrix Theory (N. El Karoui [3], Bouchaud and Bun
[1]) and Optimization under constraints (e.g. under a
constraint on the condition number like in [4]). In this
paper, we use a different approach based on machine
learning and inspired from the results of Bouchaud and
Bun on the estimation of the eigenvalues using a RIE
(Rotational Invariant Estimator) and Random Matrix
Theory.

Contribution of this paper : we show that an
adjusted autoencoder (autoencoder with a noise level
input, see section II) can outperform the RIE estima-
tor(in L2 sense) in the case where T is not vary large
compared to N . The most crucial part is to have an
exhaustive training dataset (exhaustive in terms of
correlation matrices distribution). We use different
simulation methods for this purpose.

In what follows, S is the sample correlation matrix, C
the population matrix, λ1 ≥ λ2 ≥ ... ≥ λN the eigenvalues
of S and u1, u2, ..., uN the corresponding eigenvectors,
c1 ≥ c2 ≥ ... ≥ cN the eigenvalues of C and v1, v2, ..., vN
the corresponding eigenvectors, and q = N

T
< 1 is the

ratio of the dimension over the sample size.

In [1], the optimal (oracle) estimator of the true
eigenvalues (in the sample eigenvectors basis) is given
by an explicit formula in the large dimensional limit
(see Appendix I). This formula is expressed using only
the sample eigenvalues and the ratio q = N

T
. However,

this formula is supposed to work only when N → ∞

(with q fixed), and is the best estimator only in the
sample eigenvectors space. However, we start from the
observation that the only parameters needed in this
estimator are the sample eigenvalues and the ’noise level’
parameter q = N

T
. The idea is to train an autoencoder to

learn the mapping between the sample eigenvalues and
the true eigenvalues where we feed also the parameter q
to the model.

In section II, we show the basic denoising autoencoder
and the model we call the ’adjusted’ autoencoder where
we add a noise parameter to the input. We show also the

2

numerical results (we use L2 norm to estimate the accu-
racy). In section III, we show how to generate training
data.

II. DENOISING AUTOENCODER

Let us begin by recalling the definition of the basic
autoencoder (the one used in [10]). Let X and Y be
two random variables with joint probability distribution
p(X,Y).

An autoencoder is a neural network that has the out-
put dimension equal to the intput dimension. It is usually
used to learn a representation of the original input for the
purpose of dimensionality reduction. In our case, we use
it for a different purpose (see below).

A. Traditional Autoencoder

The traditional autoencoder takes a vector x of dimen-
sion d as input and maps it to a hidden representation
y (of different dimension) which is also mapped to an
ouput z of dimension d :

y = a(Wx + b)
z = a(W ′y + b′)

where θ = [W,b] and θ′ = [W ′, b′] are the model
weights.

In this setting, z can be viewed as a parameter of a dis-
tribution p(X ∣Z = z) that generates X with hight proba-
bility. The error is defined then by :

L(x, z)∝ −log(p(x∣z))

For real-valued variables, one example is : X ∣z ∼

N(z, σ2I) . This yields to :

L(x, z) = C ∣∣x − z∣∣2 (1)

To train the autoencoder, we minimise the Loss func-
tion with respect to the weights :

arg min
θ,θ′

EX[L(X,Z(X))] (2)

One natural hypothesis (constraint) on the traditional
autoencoder is to assume that W ′ =W t where W t is the
transpose of W .

When the dimension of the hidden layer is smaller
than the input dimension, the autoencoder can be used
as a data compressor (dimensionality reduction), and
the hidden variable y is the new representation of the
input x. This is by far the most used application of

autoencoders. A natural question is : why not using
PCA instead ? the answer is that autoencoders are much
more flexible, we can use different activation functions
which adds non-linearities to the compression, whereas
PCA can only use linear combinations of the variables.

B. Denoising Autoencoder

We have seen that the (trained) traditional au-
toencoder is a mapping of the identity with hidden
representations of the input. Now what happens in the
case where the input is corrupted (noisy observations)
? we would like to have a better representation of the
input (cleaning) and that is exactly what a denoising
autoencoder is trained to do. Of course the ’cleaning’
accuracy will depend on the distribution of the noise
around the ’true’ input, and different noise distributions
will lead to different ’cleaned’ inputs.

To train the denoising auto-encoder, one usually uses
a mapping distribution x′ ∼ q(x′∣x) and uses it as the
input to the model and the true input x as the output :

- Map x to x′ ∼ q(x′∣x)

- Train the auto-encoder with inputs x′ and outputs
x.

There is many types of distribution that can be used
to corrupt the input. We cite the ones used in [11] :

- Additive isotropic Gaussian noise : x′∣x ∼ N(x,σ2I)

- Masking noise : some elements of x are forced to be 0.

- Salt-and-paper noise : some elements of x are set to
their maximum/minimum value possible.

The Additive gaussian noise is a common noise model
for real-valued variables, whereas the Salt-and-paper
noise model is a natural choice for binary (or almost bi-
nary) variables.

In [11], authors use a denoising autoencoders to clean
the input of the layers (adding a denoising autoencoder
before the layer). The model is called Stacked Denoising
Autoencoders.

III. THE MODEL

We recall that q = N
T

is the ratio of the dimension over
the number of samples. We empirically observe that this
parameter encodes the noise level around the true eigen-
values (the more data we have the better the estimation).

3

(a) Example of exponentially decaying spectrum (b) Flat spectrum

FIG. 1: Sample spectrum for different values of q = N
T

FIG. 2: Denoising autoencoder

A. Noise level

The sample correlation matrix is a noisy version of the
true correlation matrix. Figure 1 shows an example of the
noise level for a correlation matrix with dimension N =

180. The blue line is the true spectrum, while the other
lines are the estimates of the spectrum from different
numbers of samples (T = 1800, T = 360 and T = 180).

This shows that a ’good’ estimator of the true eigen-
values should have q as a parameter(which we find in
the RIE formula, see Appendix 1).

Now let us go back to the original problem. We want

to clean the spectrum of the sample correlation matrix in
order to approximate the true spectrum. This means the
problem reduces to a Denoising problem, and the idea of
using a Denoising Autoencoder becomes natural. How-
ever, the difference here is that we don’t know the distri-
bution of the noise around the true spectrum and thus we
cannot directly generate x′ (the corrupted version of x,
note that x here is the vector of eigenvalues, which means
the autoencoders has an input/output dimension of N).
We solve this problem indirectly by simulating data from
the correlation matrix and compute the corrupted spec-
trum from the sample correlation matrix calculated with
the data.

4

FIG. 3: Example of estimating the true eigenvalues
using an autoencoder with T = 190 (near q used for the

training)

B. Cleaning with a denoising autoencoder

The purpose of this section is to show that the usual
denoising autoencoder will perform better than RIE for
a unique value of q (the dimension of number of samples
are fixed), and will perform poorly for values of q. The
generation of training data will be discussed in the next
section.
Figure 2 shows the autoencoder we use for this purpose.
We use a autoencoder with two hidden layers (we use
two hidden layers instead of one because depth gives
more approximation power, see [12]). Note that when
the autoencoder is used for a compression purpose, the
hidden layers have usually less neurons than the input
dimension, which is not the case here, since we are
trying to learn the true curvature of the spectrum (and
not a compression of the data). In our example, we have
N = 180, n1 = 300 (number of neurons in the first hidden
layer) and n2 = 200 (number of neurons in the second
layer), and to avoid over-fitting, we add a ’Dropout’ on
the second layer.
To show the impact of q, we train the model with
a dataset generated with a fixed q (same number of
samples used to calculate the sample correlation matrix).

Here the number of samples generated from the true
correlation matrix is fixed to T = 200 (q = 180/200 = 0.9).
In the example below, we compare the autoencoder out-
put with Bouchaud’s estimation and the sample estima-
tion (the comparison is done with the L2 norm).

In Figure 3, the autoencoder outperforms the other
methods in terms of the L2 norm. Now we test the model
with T = 400.

Figure 4 shows that the autoencoder performs poorly
when we use a value of q (we change T) different from

FIG. 4: Example of estimating the true eigenvalues
using an autoencoder for T = 400 (different q from the

one used for the training)

the one used in the training step. Bouchaud’s estimator
is the best estimator in this case.

FIG. 5: MSE for T between 180 and 400 (q between 1
and 0.45)

In Figure 5, we compute the mean squared error for
a range of different values of q (different values of T)
for different estimators(we refer to the RIE estimator by
’Bouchaud’). It shows that the autoencoder performs
poorly when q is far from the value of q used for the
training.

5

FIG. 6: The adjusted autoencoder

FIG. 7: MSE for T between 180 and 400 (q between 1 and 0.45)

C. The adjusted Autoencoder

The idea is to add the noise parameter q as an input to
the autoencoder. That means instead of having an input
of dimension N we will have an input of dimension N +1
and an output of dimension N . We call the new model
the ’adjusted’ autoencoder. We use a fully connected
autoencoder to which we add another input (q = N/T).

The sample eigenvalues and the true eigenvalues are
sorted increasingly before they are fed to the model
(the intuition behind this is to distinguish the spectrum
from the parameter q). This makes the model learn the
function that maps the curvature of the sample spectrum
to the curvature of the true spectrum. We add also a

Dropout on the second layer (with dropout probability
25%). We choose N = 180, n1 = 300 (number of neurons
in the first hidden layer) and n2 = 200 (number of
neurons in the second layer), Figure 6 shows the final
model.

To see the impact of adding the parameter q to the
training, we show in Figure 7 the mean squared error
for different values of q (different values of T). We use
out-of-sample data to do the calculations. It shows that
the adjusted autoencoder performs better than the RIE
for a wide range of values of T (the model was trained
for different values of T, see next section). In the next
page, we show different examples of the estimation of the
eigenvalues using the adjusted autoencoder.

6

(a) Exponentially decaying spectrum (b) Spiked spectrum

(c) Slow decaying spectrum (d) Concave spectrum

(e) Extreme scenario 1 (f) Extreme scenario 1

FIG. 8: Output of the adjusted autoencoder for different examples of spectrum

7

IV. GENERATING TRAINING DATA

In this section, we present some methods for the gen-
eration of training data.
From a given correlation matrix (and since the correla-
tion matrix does not depend on the variance of the vari-
ables), we generate variables with unit variances and take
the sample covariance matrix (which is also the sample
correlation matrix in this case). Note that we only need
the spectrum (and not the correlation matrix itself) to
generate the samples (see Appendix II). But since we are
working on correlation matrices, we present some meth-
ods of generation of a random correlation matrix.

A. Generating a random correlation matrix with
specified eigenvalues

This generation method was first introduced by
Davies and Higham [6]. In the following we give a brief
description of the algorithm.

The algorithm is divided into 3 steps : generating
a random orthogonal matrix → generating a random
matrix with specified eigenvalues → applying Given’s
rotations to transform the previous matrix into a
correlation matrix.

The generation of a random orthogonal matrix was the
subject of an extensive amount of research papers, many
of them propose a simulation method. In this paper we
use Stewart’s algorithm [7] to generate a random orthog-
onal matrix.

Generating a random matrix with specified eigenvalues

The next step is to use the orthogonal matrix (previ-
ously generated) to construct a matrix that has some
specified eigenvalues. This is straightforward using the
following formula :

Let a1, a2, ..., an the eigenvalues and Q an orthogonal
matrix. Then :

M = QtDiag(a1, a2, ..., an)Q (3)

where Qt is the transpose of Q, is a matrix with eigen-
values a1, a2, ..., an.

Given’s rotations

Now that we have a matrix M with eigenvalues
a1, a2, ..., an (note that we should have ∑

n
i=1 ai = n so

that we can construct a correlation matrix with these
eigenvalues), we can use Given’s rotations to have

1’s on the diagonal. Given’s rotations are orthogonal
transformations, ans thus the resulting matrix will have
the same eigenvalues. In Appendix II, we present a short
algorithm to do the Given’s rotation on M in the (i, j)
position.

final algorithm

Now that we have the Given’s rotation tool, we can
apply it on the matrix M (on the diagonal until we
have only 1’s), the resulting matrix will be a correlation
matrix. In Annex ””, the function generate corr wse
(’generate correlation matrix with specified eigenvalues’)
returns a correlation matrix.

Note that the randomness in this algorithm comes
from the randomness of the orthogonal matrix. So,
different simulation methods of the orthogonal matrix
may result in different density distributions of the
resulting correlation matrix.

Let’s prove that the output is a correlation matrix.
For this purpose, we prove a more general lemma :

If A is a positive symmetric matrix with 1’s on the
diagonal, then all the coefficients are between -1 and 1

Proof :
Let (ei)1≤i≤n be the usual basis of Rn, and A = (aij) a
positive symmetric matrix with 1’s on the diagonal.
We have aij = e

T
i Aej for all i, j, and by the positiveness

of A we have (ei − ej)
TA(ei − ej) ≥ 0. We expand the

left-hand formula :

(ei − ej)
TA(ei − ej) = e

T
i Aei + e

T
j Aej − 2eTi Aej

and using the fact that eTi Aei = e
T
j Aej = 1, we deduce

that :

eTi Aej ≤ 1.

We use the same idea with (ei + ej)
TA(ei + ej) and we

find that eTi Aej ≥ −1.

Conclusion : ∣aij ∣ = ∣eTi Aej ∣ ≤ 1 for all i, j.

B. Other simulation methods

In order to have an exhaustive training dataset, we
added other simulation methods. Most of these methods
were exposed in G. Marsaglia and I. Olkin [8] and J.
Hardin, S.R. Garcia, D. Golan [9]. Here we present some
of them.

8

Random correlation matrix of the form AAt

Lemma : AAt is a random correlation matrix if and
only if the rows of A are random vectors on the unit
sphere.

So, an easy way to generate a random correlation ma-
trix is to generate a random matrix A (component-wise)
and normalize the rows to be in the unit sphere. AAt is
a random correlation matrix. Note that the distribution
of the resulting correlation matrix depends on the initial
distribution of the components of A.

Generating random correlation matrices from constant
correlation blocks

In order to generate a random correlation matrix with
dimension n, we use the following recipe.

Let K be the number of blocks (groups of constant
correlation). For k = 1,2, ...,K, let gk be the size of

the kth block (we should have ∑
K
k=1 gk = n), ρk such

that 0 ≤ ρk < 1 the correlation of the group. We define
ρmin = minρ1, ρ2, ..., ρK and ρmax = maxρ1, ρ2, ..., ρK .
Let δ be a number such that 0 ≤ δ < ρmin (correlation
between group).

We define the matrices Σk (constant correlation
blocks) by :

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ρk ... ρk
ρk 1 ... ρk
. . ⋱ .
ρk ρk ... 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let σ be the matrix with blocks ΣK on the diagonal
and zeros elsewhere (dimension of σ is n), ε be a real
number such that 0 ≤ ε < 1 − ρmax, and x1, x2, ..., xn n
randomly generated unit vectors with dimension n. The
matrix Corr defined by :

Corri,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if i=j

ρk + εx
T
i xj if i,j are in the kth group and i≠j

δ + εxTi xj if i,j are in different groups

is a correlation matrix with the following upper bound
on its condition number :

κ(Corr) ≤
n(1 + ε) + 1

1 − ρmax − ε
(4)

Generating random correlation matrices from Toeplitz blocks

We use the same notations of the previous method
(K,k, gk, n, ρk, Σ). The blocks have now the Toeplitz

structure :

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ρk ρ2k ... ρgk−1k

ρk 1 ρk ... ρgk−2k

ρk ρ2k 1 ... ρgk−3k
. . . ⋱ .

ρgk−1k ρgk−2k ... ρk 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let ε be a real number such that 0 < ε < 1−ρmax

1+ρmax
and

x1, x2, ..., xn n randomly generated unit vectors with di-
mension n. The matrix Corr defined by :

Corr = Σ + ε(XtX − I) (5)

where X is the matrix with columns xi and I is the iden-
tity matrix, is a correlation matrix, with the following
upper-bound on the condition number :

κ(Corr) ≤

1+ρmax

1−ρmax
+ (n − 1)ε

1−ρmax

1+ρmax
− ε

(6)

C. Generating training data

Now that we have the tools to generate random
correlation matrices, we can use a combination of them
to generate training data for the model. Note that
we can directly generate training data using only the
eigenvalues without using the correlation matrix (see
Appendix II), and we don’t use Given’s rotation in this
case. But since we generate the data just once, we use
the previous algorithms.

It is clear that the first algorithm is exhaustive in
the way that we can generate a correlation matrix with
any given eigenvalues (that sum to N). To generate
spectrums, we start by splitting the spectrum into 2
groups : Principal eigenvalues (biggest eigenvalues), and
Other eigenvalues. We first generate a random number
p in [0,1], p will be the percentage of variance explained
by the Principal eigenvalues. Here is a sketch of the
algorithm :
1. Generate uniformly in [0,1] a real number p
2. Generate uniformly in {1,2, ...,N} an integer l
3. Generate uniformly in [0,1] l numbers (Principal
eigenvalues)
4. Scale the Principal eigenvalues so that the sum equals
to p
5. Generate uniformly in [0,1] N-l numbers (Other
eigenvalues)
6. Scale the Other eigenvalues so that the sum equals to
1-p
7. Concatenate the two groups and scale the output so
that the sum equals to N

9

Remark : since we don’t know exactly the distribu-
tion of eigenvalues of a random correlation matrix, we

add a combination of the other methods to the previous
algorithm.

[1] Jol Bun, Jean-Philippe Bouchaud, Marc Potters: Clean-
ing large correlation matrices: tools from random matrix
theory. (2016)

[2] O. Ledoit, M. Wolf: Honey, I Shrunk the Sample Covari-
ance Matrix. (2003)

[3] N. El Karoui : Spectrum estimation for large dimensional
covariance matrices using random matrix theory. (2006)

[4] J.H. Won, J. Lim, S.J. Kim, B. Rajaratnam: Condition
Number Regularized Covariance Estimation (2013)

[5] A. Takemura : An orthogonally invariant minimax esti-
mator of the covariance matrix of a multivariate normal
population. (1983)

[6] P.I. Davies and N.J. Higham : Numerically Stable Gen-
eration of Correlation Matrices and Their Factors. (2000)

[7] G.W. Stewart : The Efficient Generation of Random Or-
thogonal Matrices with an Application to Condition Es-
timators. (1980)

[8] G. Marsaglia, I. Olkin : Generating correlation matrices.
(1983)

[9] J. Hardin, S.R. Garcia, D. Golan : A method for gener-
ating realistic correlation matrices. (2013)

[10] Y. Bengio : Learning deep architectures for AI (2007)
[11] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.A. Man-

zagol : Stacked Denoising Autoencoders: Learning Use-
ful Representations in a Deep Network with a Local De-
noising Criterion (2010)

[12] R. Eldan, O. Shamir : The Power of Depth for Feedfor-
ward Neural Networks (2016)

[13] S. Hayou : On the overestimation of the largest eigen-
value of a covariance matrix (2017)

10

APPENDIX I : OPTIMAL ROTATIONAL
INVARIANT ESTIMATOR

In [1], the optimal RIE estimator (when N → ∞) is
given by :

ξora(λ) =
1

∣1 − q + qλ limν→0+gS(λ−iν) ∣2

where,

gS(z) =
1

N
Tr(zIN − S)

is the Stieltjes transform of S.

APPENDIX II : DISTRIBUTION OF THE
SAMPLE EIGENVALUES

Definition : A p × p matrix M is said to have a
Wishart distribution with covariance matrix Σ and
degrees of freedom n if M =XtX where X ∼ Nn×p(µ,Σ).
We denote this by M ∼Wp(n,Σ).

When n ≥ p, the Wishart distribution has a density
function given by :

f(M) =
2−np/2

Γp(n/2)(det(Σ))n/2
etr(−

1

2
Σ−1M)(detM)

(n−p−1)/2

(7)
where etr is the exponential of the trace, Γp is the
generalized gamma function.

When X ∼ Nn×p(µ,Σ), the sample covariance matrix
S = 1

n
XXt has the Wishart distribution Wp(n − 1, 1

n
Σ).

Joint distribution of the eigenvalues
Let M ∼Wp(n,Σ) (n > p), then the joint distribution of
the eigenvalues l1 ≥ l2 ≥ ... ≥ lp is :

πp
2/2 × 2−np/2(detΣ)−n/2

Γp(n/2)Γp(p/2)

p

∏
i=1
l
(n−p−1)/2
i

p

∏
j>i

(li−lj)∫
Op

etr(−
1

2
Σ−1HLHt

)(dH)

(8)
where the integral is over the orthogonal group Op with

respect to the Haar measure (see [?]).
In general, the integral is hard to calculate, but in the
case where Σ = λI, we have :

∫
Op

etr(−
1

2
Σ−1HLHt

)(dH) = ∫
Op

etr(−
1

2λ
HLHt

)(dH)

= etr(−
1

2λ
L)∫

Op

(dH)

= exp(−
1

2λ

p

∑
i=1
li)

The Haar measure is invariant by rotation, that means
for any orthogonal matrix Q, one has :

d(QH) = dH

Using this and the fact that it exist an orthog-
onal matrix Q such that Σ−1 = QD−1Qt where
D = diag(λ1, λ2, ..., λp), one can see that the previous
distribution depends only on the eigenvalues of Σ.

11

APPENDIX III : PYTHOON CODE FOR THE
GENERATION OF A RANDOM CORRELATION

MATRIX

Given’s rotation

def givens(M, i, j):

G = M

Mii, Mij, Mjj = M[i,i], M[i,j], M[j,j]

t = (Mij + np.sqrt(Mij**2 - (Mii-1)*(Mjj-1))) /

(Mjj - 1)

c = 1. / np.sqrt(1+t**2)

s = c*t

Mi, Mj = M[i], M[j]

G[i], G[j] = c*Mi - s*Mj, s*Mi + c*Mj

Mi, Mj = G[:,i], G[:,j]

G[:,i], G[:,j] = c*Mi - s*Mj, s*Mi + c*Mj

return G

Generating random correlation matrices

def generate_corr_wse(eigs):

n = len(eigs)

eigen = n * eigs / np.sum(eigs)

corr = generate_wge(eigen)

precision = 0.1

converg = 0

i = 0

while(not converg):

vec = np.diagonal(corr)

if np.sum(abs(vec-1)>precision)==0:

converg = 1

else:

bigger = np.arange(len(vec))[(vec>1)]

smaller = np.arange(len(vec))[(vec<1)]

i,j = smaller[0], bigger[-1]

if i>j:

i,j = bigger[0], smaller[-1]

corr = givens(corr, i, j)

corr[i,i]=1

return corr

