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Abstract

Pattern mining is an important task in AI for
eliciting hypotheses from the data. When it
comes to spatial data, the geo-coordinates are
often considered independently as two different
attributes. Consequently, rectangular shapes
are searched for. Such an arbitrary form is not
able to capture interesting regions in general.
We thus introduce convex polygons, a good
trade-off between expressivity and algorithmic
complexity. Our contribution is threefold: (i)
We formally introduce such patterns in Formal
Concept Analysis (FCA), (ii) we give all the ba-
sic bricks for mining convex polygons with ex-
haustive search and pattern sampling, and (iii)
we design several algorithms, which we com-
pare experimentally.

1 Introduction
Highly focused on over the past 20 years, pattern min-
ing, the task of discovering interesting generalizations of
object descriptions (subsets, subsequences, subgraphs,
etc) has become a mature subfield in AI for knowledge
discovery purposes [Giacometti et al., 2013]. When ob-
jects are given with a class label, discriminant patterns
enable to elicit hypotheses from the data and to build
intelligible classifiers [Zimmermann and Nijssen, 2014].

Dealing with numerical data, and especially spatio-
temporal data is still challenging. Algorithms support-
ing the correct, complete and non-redundant enumera-
tion of particular shapes, say geometrical, have surpris-
ingly not attracted much research interest [Aggarwal and
Han, 2014]. Generally, numerical attributes (even spa-
tial) are discretized, either in a pre-processing or on-the-
fly during the execution (run) of a pattern enumeration
algorithm (e.g. [Grosskreutz and Rüping, 2009]), which
has the consequence of considering geo-coordinates at-
tributes independently and thus rectangular shape pat-
terns occur. Still, such patterns were successfully used
for mining numerical data (e.g. with most of the sub-
group discovery approaches [Duivesteijn et al., 2016]),
and spatial data (such as urban and mobility data see e.g.
[Bendimerad et al., 2016] and [Kaytoue et al., 2017]).

The problem with rectangular shapes
can be observed on the right hand side
figure. Each object gives a POI (Point
Of Interest) of a given type (Hotel,
Restaurant, University, ...) and posi-
tion. An interesting pattern is under-
stood as a geographical area for which
there is a sufficient number of points, high density, and
a high proportion of objects of the same type. The can-
didate areas could have any shape. Rectangles, as being
the products of intervals, have edges parallel to the plane
axes: they may enclose both dense and sparse regions.
Arbitrary polygons stick too much to the data and are
hard to interpret. We consider convex polygons, a good
trade-off for capturing high density areas.

Our contribution introduces a new type of pat-
terns, convex polygons, with FCA tools [Ganter and
Wille, 1999], going beyond the formalization of hyper-
rectangles given by [Kuznetsov, 2005] in the early 1990s
and introduced in pattern mining by [Kaytoue et al.,
2011]. We thus make precise the well-known notion of
Galois connection as well as several polygon enumera-
tion techniques and associated algorithms, using several
concepts from computational geometry. We introduce
several polygon constraints and experiment with our al-
gorithms. We show that polygons give a better trade-off
between area, density and homogeneity for mining spa-
tial data. These findings give the basic bricks for any
pattern mining algorithm dealing with, among others, a
spatial attribute. The major problem with polygons is
their worst-case exponential number (in number of in-
put points). This is probably why they were not used
in pattern mining until now: Exhaustive enumerations
fail at considering large datasets even with 100 objects.
We finally show that embedding our enumeration tech-
niques in a recent pattern sampling technique (Monte
Carlo Tree Search) enables us to discover high quality
patterns very quickly in large datasets.

In what follows, Section 2 recalls how to properly de-
fine and enumerate hyper-rectangles with FCA. Section
3 defines polygon patterns, while Section 4 details our
algorithms. Before to conclude, in Section 5 we present
a wide range of experiments to support our claims.



2 Interval Patterns

We recall first the formalization of interval patterns, or
hyper-rectangles, in terms of FCA, for understanding
next our formalization of convex polygon patterns.

Numerical dataset. A numerical dataset is given by
a set of objects G, a set of numerical attributes M =
{mi}1≤i≤∣M ∣, where the range of mi ∈ M is a finite set
denoted by Wmi , mi(g) = w means that w is the value
of attribute mi for object g ∈ G. Figure 1 plots 5 objects
with 2 attributes on the Euclidean plane.

Interval pattern. An interval pattern is a box (hyper-
rectangle) with sides parallel to coordinate axes for-
mally defined as the Cartesian product of intervals d =
⟨[ai, bi]⟩1≤i≤∣M ∣. An object g is in the image of an inter-
val pattern d when mi(g) ∈ [ai, bi] ∀i ∈ J1, ∣M ∣K. The
support of d, denoted by sup(d), is the set of objects in
the image of d.

Interval pattern search space. The search space of
interval patterns is the finite set D of all interval vectors
⟨[ai, bi]⟩1≤i≤∣M ∣ with ai, bi ∈Wmi . The size of the search
space is given by: ∣D∣ = ∏i∈J1,∣M ∣K(∣Wmi ∣ ×(∣Wmi ∣ +1)/2).

Many patterns in D have exactly the same support:
different hyper-rectangles contain the same objects. To
avoid this redundancy, a closure operator can be defined,
and only closed patterns which are unique for a given
support are retained. This is achieved thanks to the
formalism of pattern structures introduced by [Ganter
and Kuznetsov, 2001]. An interval pattern structure is
given by (G, (D,⊓), δ) where G is the set of objects,
(D,⊓) the semi-lattice of object descriptions (boxes) and
δ ∶ G → D a mapping that associates to each object
g ∈ G, a vector of numerical intervals in the form of one-
point interval δ(g) = ⟨[mi(g),mi(g)]⟩i∈J1,∣M ∣K. Elements
of D are called patterns and are ordered as follows: c ⊓
d = c ⇔ c ⊑ d. The infimum ⊓ is defined as follows.
Let c = ⟨[ai, bi]⟩i∈J1,∣M ∣K and d = ⟨[ei, fi]⟩i∈J1,∣M ∣K we have
c ⊓ d = ⟨[min(ai, ei),max(bi, fi)]⟩i∈J1,∣M ∣K which is the
minimal bounding box of the two boxes c and d. The
two following operators (.)◻, with A ⊆ G and d ∈ (D,⊓)

d◻ = {g ∈ G ∣ d ⊑ δ(g)} A◻ = ⊓g∈A δ(g)

form a Galois connection between (2G,⊆) and (D,⊑).
(.)◻◻ is a closure operator, i.e., monotone, extensive,
idempotent. Closed patterns, i.e., such that d = d◻◻

are smallest patterns/rectangles for a given support. We
note that, for any description (box) d ∈D, d◻◻ represents
the minimal bounding box of the support of d (d◻, objects
enclosed by d). Figure 1 (left; middle) shows an example
where G = {g1, ..., g5}, we have d = ⟨[1,2], [1,4]⟩ which
support is d◻ = {g1, g2, g3}. However d is not closed. In-
deed, d◻◻ = {g1, g2, g3}◻ = ⟨[1,2], [1,3]⟩ which represents
its closure (the minimal bounding box of {g1, g2, g3}).

Interval patterns enumeration. Consider first data
with a single attribute. To enumerate all interval pat-
terns in (D,⊓), [Kaytoue et al., 2011] started from the
top pattern, which is the minimal bounding box of all
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Figure 1: Non-closed (left) and closed (middle) interval pat-
tern; convex polygon pattern (right).

objects in G (G◻). Then, as shown in Figure 2, at ev-
ery step of the algorithm two minimal changes are ap-
plied (minimal left change (minLeftChange) and mini-
mal right change (minRightChange)). To ensure a non-
redundant generation, minLeftChange are not allowed
after minRightChange. For ∣M ∣ numerical attributes,
the algorithm is the same with two differences: (1) It
considers a total order on the set of attributes M ; (2)
When a minimal change is applied to the attribute mi,
only attributes mj >=mi can be refined in further steps
from the generated pattern.
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Figure 2: Depth-first traversal of (Dm1 ,⊓).

Closed interval patterns enumeration. To enumer-
ate only closed patterns in (D,⊓) (minimal bounding
boxes), [Kaytoue et al., 2011] adapted CloseByOne of
[Kuznetsov, 1993]. Consider a pattern d generated by
a change at attribute mj ∈ M . Its closure is given by
d◻◻. If d◻◻ differs from d for some attributes mi ∈ M
such as mi < mj , then d◻◻ has already been generated:
the algorithm backtracks. Otherwise, it continues the
enumeration from the closed pattern d◻◻.

3 Convex Polygon Patterns
The choice of convex polygons instead of arbitrary ones
is motivated by the fact that (i) it generalizes intervals
(convex) and (ii) it is a natural way to avoid non-convex
polygons which would over-fit the data.

3.1 Preleminaries

Convex polygon. A convex polygon P , represented
as a sequence of points [p1, ..., ph] in R2, is a simple
polygon (not self-intersecting) where all interior angles
are strictly less than π. The ordered point sequence
[p1, ..., ph] is denoted by P and is given in counterclock-
wise order (ccw). Points pi are called extreme points
and oriented line segments pipi+1 following this order
are called edges of the polygon P (where i+1 = 1 if i = h
and i − 1 = h if i = 1).



Note that an oriented line segment AB subdivides R2

in 4 regions: (i) AB+ (resp. (ii) AB−) the open upper
(resp. lower) half-plane of AB (i.e. Q ∈ AB+ implies
that ABQ is a triangle in ccw (resp. cw) order), (iii)
AB0 the set of points on the segment AB and (iv) the
points that are collinear with A and B but outside AB.

Let q ∈ R2. An edge pipi+1 is said to be visible from
q (or q sees pipi+1) iff q ∈ pip−i+1. A point q is in the
enclosed area of the polygon P iff q does not see any
edge of P (q ∈ pip+i+1∀i ∈ {1, ..., h}). Conventionally, ∅,
points and segments are considered as convex polygons.

Convex hull. Given a finite set E ⊆ R2, the convex
hull of E denoted by ch(E) is the smallest convex set
that contains E, which is a convex polygon. Note that

ch(E) ⊆ E. In other words, extreme points of the convex
hull of E are in E. Application ch ∶ R2 → R2 is mono-
tone, extensive, and idempotent, i.e., a closure operator.

Example. Figure 3 shows a polygon P where P =
[p1, p2, p3, p4, p5, p6]. The point I is in the area enclosed
by the polygon P . The point C1 sees only the edge
p3p4. Conversely, the green triangle represents all pos-
sible points that are only visible by the edge p3p4. The
point O sees the two edges p3p4 and p4p5.
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Figure 3: Convex polygon and edges visibilities.

3.2 Convex Polygon Pattern Structure
Spatial attribute. A spatial attribute m takes values
in R2. Given a set of objects G, m(g) = p means that
p ∈ R2 is the value of attribute m for object g ∈ G. Ana-
logically, for a subset A ⊆ G, m(A) = {m(g) ∣ g ∈ A} ⊂
R2. For the sake of simplicity, we will consider now a
dataset G having only one spatial attribute m. For ease
of notations, g and m(g) (G and m(G)) will be used
interchangeably in what follows.

Convex polygon pattern. A convex polygon pattern
d is a convex polygon [pi]1≤i≤h given in ccw order. An
object g is in the image of a convex polygon pattern d
when m(g) is in the enclosed area formed by the polygon
d. The support of d, denoted by sup(d), is the set of
objects g ∈ G in the image of d. In Figure 1 (right),
d = [g1, g5, g3] is a convex polygon pattern which support
is sup(d) = {g1, g2, g3, g5}.

Convex polygon pattern structure. It is defined
as follows: (G, (D,⊓), δ) where G is the set of objects

described by one spatial attribute m, (D,⊓) is the semi-
lattice of object descriptions (convex polygons) where

D = {ch(m(A))∣A ⊆ G}. The mapping δ ∶ G → D takes
each object g ∈ G to δ(g) = [m(g)] (a degenerate polygon
with a singleton point). The infimum ⊓ is defined as
follows. Let c and d be two descriptions in D, we have c⊓
d = ch(c ∪ d). Elements of (D,⊓) are ordered as follows:
c ⊑ d⇔ c⊓d = c⇔ d ⊆ ch(c). Thus, the Galois operators
(.)◻ are defined as follows, with A ⊆ G and d ∈ (D,⊓):
d◻ = {g ∈ G ∣m(g) ∈ ch(d)} and A◻ = ch(m(A)). A pair
(A,d) s.t. A◻ = d and d◻ = A is a concept. Both A and
d are closed under (.)◻◻. The set A contains all objects,
while d contains only extreme points in ccw order.

Mining convex polygons with constraints. There
are 2n convex polygons in the worst case (n points on
a circle). Not all of them are interesting, we thus de-
fine several constraints a pattern shall respect. The
problem is then, given a set of points in R2, to find
all polygon pattern concepts (A,d) respecting one or
more of the following constraints, such as shape com-
plexity (∣d∣ ≤ δcompl), minimal support (∣A∣ ≥ δsupp), min-
imal/maximal perimeter (perim(d) ≥ or ≤ δperim), and
minimal/maximal area (area(d) ≥ or ≤ δarea). We also
wish patterns that maximize a class homogeneity (e.g.
low Gini) and density (∣A∣/area(d)).

By using minimal support we avoid considering poly-
gons with too few points. The density has to be under-
stood as a relative support (support normalized by area).
The number of extreme points characterizes the com-
plexity of the polygon in terms of interpretation (point,
segment, triangle, quadrilateral, ...). The simpler the
form the better by principle of parsimony: Minimizing
the shape complexity may also avoid over-fitting the data
when searching for discriminant patterns. Controlling
perimeter and area is also important: It allows one to ex-
press different types of patterns (e.g. avoiding or forcing
thin polygons, with a large perimeter and small surface).

4 Algorithms
Let G be a finite subset of R2. We propose three algo-
rithms for mining convex polygon patterns. The first one
enumerates object subsets in a bottom-up way (from ∅
to G) with closures. The next one considers a top-down
enumeration and does not compute costly closures. The
last one considers a bottom-up enumeration of polygons
by shape complexity (points, then segments, then trian-
gles...) and performs the best.

4.1 Enumerating Point Sets
As the operators ((.)◻, (.)◻) form a Galois connec-
tion, the set of all pattern concepts is given by C =
{(A◻◻,A◻),∀A ⊆ G}. The A◻ are precisely the poly-
gon patterns and can thus be obtained by enumerating
closed object subsets with the generic algorithm Close-
ByOne (CbO) of [Kuznetsov, 1993] and its modern effi-
cient software realization [Andrews, 2015]. The principle
is the following. The lattice (2G,⊆) is explored with a
DFS starting from ∅. A total order on G is provided,



e.g. g1 < g2 < ... < gn. A new object set A is generated
from a previous one by adding next object g w.r.t. < and
(A◻◻,A◻) is the resulting pattern concept. The concept
is discarded (DFS backtrack) if an object smaller than g
w.r.t. < is added. It is proven that this algorithm out-
puts the correct, complete and non-redundant collection
of closed patterns. Namely, ExtCbO (Algorithm 1) is
the version of CbO where concepts are computed w.r.t.
increasing generality order, i.e., by adding one object at
a time. Algorithm ExtCbO will serve as a baseline.

Algorithm 1 ExtCbO

1: Let (G, ≤) be a totally-ordered finite subset of R2

2: procedure ExtCbO( )
3: traverse(∅,∅,1)
4: end procedure
5: procedure traverse(c,d,pos) ▷ c is the extent, d the intent
6: Print(c,d) ▷ visit pattern concept (c, d)
7: for i ∈ pos, ..., ∣G∣ and gi /∈ c do
8: cnew ← c ∪ {gi}
9: dnew ← c◻new ▷ Compute convex hull

10: cnew ← d◻new
11: if ∀j ∈ J1, iK ∶ gj /∈ c→ gj /∈ cnew then
12: traverse(cnew,dnew,i+1)
13: end if
14: end for
15: end procedure

4.2 Updating a Delaunay Triangulation

The enumeration starts from the most general pattern
G◻. Minimal changes are applied to obtain the next
pattern to ensure the correctness and completeness of
the enumeration: all convex polygons and only them
are visited. Let us consider the convex polygon pattern
d = [p1, ..., pi, ..., p∣d∣]. A minimal change to d consists in
removing an extreme point (as done with interval pat-
terns). There are ∣d∣ of such minimal changes for a poly-
gon d for obtaining next smaller polygons e = d/{d[i]}
s.t. d ⊏ e, i ∈ J1, ∣d∣K. When a new pattern e is generated,
we need to compute its convex hull to discover its ex-
treme points dnew = e◻◻ and continue the enumeration.

This algorithm is again an instance of CloseByOne,
but follows a top-down enumeration. Sadly, it still forces
to compute the convex hull e◻ at each step. Fortunately,
it can be avoided with a Delaunay triangulation.

Delaunay triangulation. The Delaunay triangulation
of a set of points P denoted by DT (P ) is a partition of
the convex hull ch(P ) into O(n) triangles such that: (i)
Triangles vertices are in P , (ii) No point in P is inside
the circumcircle of any triangle in DT (P ) besides the
vertices of the triangle. The complexity of computing
DT (P ) is O(∣P ∣ ⋅ log(∣P ∣)) [Zalik, 2005].

Algorithm DelaunayEnum. The key idea is the fol-
lowing. Efficiently computing e◻ = (d/{d[i]})◻, that
is the next closed pattern obtained from removing
the extreme point i of d, is equivalent to computing
DT (d / {d[i]}) from DT (d). During this computation,
one can easily update the sequence of extreme points.
[Devillers, 1999] answered this problem with an efficient
algorithm (O(k⋅log(k)) complexity), where k is the num-
ber of points sharing an edge with p (neighbor points).
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Figure 4: DelaunayEnum extreme point deletion.

Our algorithm DelaunayEnum (Algorithm 2) enu-
merates Delaunay triangulations dt and maintains at
each step the sequence of extreme points d. It starts from

pattern G◻ = ch(G) (line 4). Consider a step in the enu-
meration where d is the current pattern, dt the current
triangulation and c the current image of d. We remove
successively extreme points p ∈ d and we update the De-
launay triangulation dtnew based on dt (line 11), the new
description dnew (sequence of extreme points) (line 12)
and the new support cnew by removing objects with value
p from c (line 13). To avoid redundancy (avoid visiting
the same pattern twice), removal of extreme points be-
fore the last removed extreme point p are not allowed
(argument pos in Algorithm 2) in further steps. In order
to do that simply, when the extreme point sequence d
is updated upon extreme point i removal, we only insert
the new extreme points (extreme points not in d) at the
position i while keeping the same order (counterclock-
wise). Figure 4 (from left to right) shows an example of
how the algorithm updates the description d = [A,B,C]
upon removal of the extreme point C (position 3) and
produces the description dnew = [A,B,D,E] where D
and E denote the new extreme points that replaced C.
The enumeration continues by removing D.

Algorithm 2 DelaunayEnum

1: Let G be a finite subset of R2

2: procedure DelaunayEnum( )
3: dt ← Delaunay(G)

4: d ← dt ▷ dt = G◻
= ch(G)

5: traverse(G,d,dt,1)
6: end procedure
7: procedure traverse(c,d,dt,pos)
8: Print(c,d) ▷ visit pattern concept (c, d)
9: for i ∈ pos, ..., ∣d∣ do
10: p ← d[i]
11: dtnew ← Delaunay remove(dt,p)

12: dnew ← dtnew ▷ dnew[1] = d[1] or dnew[∣dnew ∣] = d[∣d∣]
13: cnew ← c/[p]◻ ▷ [p]◻ = {g ∈ G ∣ m(g) = p}
14: traverse(cnew,dnew, dtnew,i)
15: end for
16: end procedure

4.3 Enumerating Simpler Shapes First

Until now, elements of (D,⊑) were enumerated w.r.t.
polygon inclusion order. Now we consider the poset
(D, ⊑̄), where polygons are ordered w.r.t. extreme points
inclusion: c ⊑̄ d ⇔ c ⊇ d. Intuitively, the ith level of
(D, ⊑̄) contains all polygons with i extreme points (i = 3
are the triangles, i = 4 the convex quadrilaterals, ...).



Enumerating simpler shapes first is interesting as they
are easier to interpret and less stick to the data points
(prevent overfitting). Note that the new order ⊑̄ will
change only the enumeration order.

In order to enumerate all the polygons w.r.t. the new
order ⊑̄ in a bottom-up fashion as simpler shapes are
preferred, one can simply adapt ExtCbO. Indeed, poly-
gons are represented as extreme points sets which can
be enumerated starting from ∅. However, it requires
to compute at each step the convex hull of the set of
points (closure) which is extremely slow. To avoid this,
we propose an enumeration technique relying on basic
geometry: points used to extend a pattern produce a
new closed pattern for sure. That is to say: (i) there is
no need to compute the convex hull and (ii) there is no
need to discard a pattern as done in ExtCbO since ev-
ery generated pattern is new. This can be done thanks
to pattern candidate maintenance as explained below.

In what follows, without loss of generality and for the
sake of simplicity, elements of G are pairwise distinct.
Moreover, for any oriented line segment AB: AB+, AB−

and AB0 will denote finite sets where only points of G
are considered (rather than R2).

Pattern candidate points array. Consider a convex
pattern d = [p1, ..., ph] where ∀i ∈ J1, hK ∶ pi ∈ G. We
define a same-size array nd called candidate points array
where nd[i] gives the set of points that are visible from
and only from the edge pipi+1. Formally, if h ≥ 2:

nd[i] = pip−i+1 ∩ (⋂
j≠i

pjp
+
j+1)

In case of h = 1, we have nd[1] = G/{p1}. The proposi-
tion below gives a simpler formula for n[i] when h ≥ 2:

Proposition 1. If h ≥ 2, ∀i ∈ J1, hK we have:

nd[i] = pip−i+1 ∩ pi−1p
+
i ∩ pi+1p

+
i+2

Extending a pattern and candidate maintenance.
We have the following proposition:

Proposition 2. ∀i ∈ J1, hK, ∀q ∈ nd[i], we have:

d ⊓ [q] = [p1, pi, q, pi+1..., ph]
In other words, extending a pattern d by adding a candi-
date point q creates a new pattern e = d ⊓ [q] s.t. e ⊑ d.

Proposition 3 gives a method to compute the support
and the candidate points of the new pattern e:

Proposition 3. If h ≥ 2, ∀i ∈ J1, hK, ∀q ∈ nd[i], if e =
d ⊓ [q] and ne its candidate points array, we have:

e◻ = d◻ ∪ [pi, q, pi+1]◻

ne[i] = nd[i] ∩ piq− ∩ qp+i+1

ne[i + 1] = nd[i] ∩ qp−i+1 ∩ piq+

ne[i − 1] = nd[i − 1] ∩ piq+

ne[i + 2] = nd[i + 1] ∩ qp+i+1

ne[i + k] = nd[i + k − 1] if 3 ≤ k ≤ h − i + 1

ne[i − k] = nd[i − k] if 2 ≤ k < i
Note that [pi, q, pi+1]◻ is the subset of objects enclosed
in the area formed by the triangle [pi, q, pi+1]. Formally:
[pi, q, pi+1]◻ = piq0∪qp0

i+1∪pip0
i+1∪(pip−i+1∩piq+∩qp+i+1).

Propositions 1 and 2 are direct results from planar ge-
ometry [Overmars and van Leeuwen, 1981], while Propo-
sition 3 is a direct reformulation of Proposition 1.

Figure 3 shows a description d = [p1, p2, p3, p4, p5, p6]
with candidate points nd = [∅,∅,{C1},{C2},∅,∅].
More generally, every point that falls in the green (resp.
yellow) zone is a candidate point for the edge p3p4 (resp.
p4p5). However, the point O is not a candidate point for
any edge. Indeed, O sees two edges p3p4 and p4p5.

Algorithm ExtremePointsEnum. The algorithm
ExtremePointsEnum (Algorithm 3) follows almost
the same enumeration principle as that of ExtCbO. The
difference lies in maintaining the list of object candidates
that can be added to a pattern d to generate patten e ⊏ d.
The other difference is that the two first levels are enu-
merated in BFS manner. This allows one to build the
segment index S that for each distinct object pair gigj
of G stores the support gig

0
j (objects in segment gigj)

and its candidates gig
−
j and gig

+
j . Note that the segment

index S can be seen as a strictly upper triangular matrix.
The algorithm continues in a DFS-fashion to enumerate
higher levels (k ≥ 2). To prevent redundancy, an arbi-
trary total order on G is provided, e.g. g1 < g2 < ... < gn.
When extending a pattern d = [p1, ..., ph], which can-
didate points array is nd, with a point q ∈ nd[i], only
points q s.t. pj < q ∀j ∈ J1, hK are considered.

Algorithm 3 ExtremePointsEnum

1: Let (G, ≤) be a totally-ordered set of pairwise distinct points
2: Let S be the segment index
3: procedure traverse(c, d, n, pos)
4: Print(c,d) ▷ visit pattern concept (c, d)
5: for i ∈ 1, ..., ∣d∣ do
6: for j ∈ n[i] and j >= pos do ▷ j ≥ pos for non redundancy
7: s1 ← S[d[i]][j] ▷ first new segment d[i] → j
8: s2 ← S[j][d[i + 1]] ▷ second new segment j → d[i + 1]
9: dnew ← [d[1], ..., d[i], j, d[i + 1], ..., d[∣d∣]]

10: cnew ← c ∪ s10
∪ s20

∪ (n[i] ∩ s1+ ∩ s2+)
11: nnew ← [n[1], ..., n[i], n[i], n[i + 1], ..., n[∣d∣]]
12: nnew[i] ← n[i] ∩ s1− ∩ s2+

13: nnew[i + 1] ← n[i] ∩ s2− ∩ s1+

14: nnew[i − 1] ← n[i − 1] ∩ s1+

15: nnew[i + 2] ← n[i + 1] ∩ s2+

16: traverse(cnew,dnew, nnew,j + 1)
17: end for
18: end for
19: end procedure
20: procedure ExtremePointsEnum( )
21: Print(∅,∅) ▷ visit the empty pattern concept (∅,∅)

22: Enumerate in BFS-fashion all distinct points G
23: Compute segment index S
24: for i ∈ 1, ..., ∣P ∣ − 1 do
25: for j ∈ i + 1, .., ∣P ∣ do
26: s ← S[i, j]
27: traverse(s◻,[i, j], [s−, s+],j+1)
28: end for
29: end for
30: end procedure

Detailed example. Figure 5 gives a detailed step-by-
step partial enumeration of convex patterns related to
G w.r.t. ⊑ partial order. In each subfigure, red points
are extreme points, yellow points are part of the sup-
port of the pattern but not extreme points, green points
are candidate points and black points are not candidates
(points located in the red zones).
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Figure 5: ExtremePointsEnum algorithm step-by-step
enumeration.

5 Experiments
We report an experimental study of the different algo-
rithms, carried out on a machine equipped with Intel
Core i7-2600 CPUs 3.4 Ghz machine with 16 GB RAM.
Algorithms are implemented in Java. All materials are
available on https://github.com/BelfodilAimene/
MiningConvexPolygonPatterns.

Figure 6: Polygon pattern enumeration performance com-
parison. IRIS sepal-length × sepal-width (left). IRIS petal-
length × petal-width (right).

Mining polygon patterns. We compare our three
algorithms without any constraint: ExtCbO, Delau-
nayEnum and ExtremePointsEnum. Figure 6 plots
for each one their run times and the number of pattern
candidates they generated. Datasets consist of n objects
drawn from the IRIS dataset uniformly from the three
different classes for the attributes sepal-length and sepal-
width (or petal-lentgh and petal-width). First, notice
that ExtCbO generates a lot of candidates discarded
by the canonicity test (redundant), while the two oth-
ers generate each pattern only once. This implies that
ExtCbO is from one to two orders of magnitude slower
(it is the only one computing closures). Interestingly,
ExtremePointsEnum is faster than DelaunayEnum
as it does not require to compute and update a Delau-
nay triangulation (even when the state-of-the-art [The
CGAL Project, 2016] is used).

(a) Max Shape variation (b) Min Support variation

(c) Max Perimeter variation (d) Min Perimeter variation

(e) Max Area variation (f) Min Area variation

Figure 7: Run time and generated patterns count for our
three algorithms when introducing constraints.

Impact of the constraints. ExtCbO enumerates
convex polygons in a bottom-up fashion w.r.t. inclu-
sion. It can thus only handle maximum perimeter and
area constraints that are monotone (the proof is given,
e.g. by [Bogomolny, 2017]): when a pattern is gener-
ated and does not satisfy the constraint, the algorithm
backtracks (a well-known property in pattern mining).
DelaunayEnum enumerates convex polygons in a top-
down fashion w.r.t. inclusion. It can thus naturally
prune w.r.t. minimal support, area and perimeter. Ex-
tremePointsEnum enumerates patterns by inclusion
but also from simpler to more complex shapes (extreme
points inclusion). It can thus handle maximum shape
complexity, perimeter and area constraints.

Figure 7 reports the run time of our three algorithms
on the IRIS Sepal length vs. Sepal Width dataset when
introducing each constraint separately and varying the
associated threshold (min. and max. perimeter are com-
puted as they have the same behavior as min. and max.
area, respectively). It also reports the number of gener-
ated patterns: The lower, the better. Some algorithms
output more patterns as they cannot efficiently handle
the constraints (such invalid patterns need to be removed
during post-processing). As such, depending on the con-
straints the user is interested in, one algorithm may be
preferred to another.

https://github.com/BelfodilAimene/MiningConvexPolygonPatterns
https://github.com/BelfodilAimene/MiningConvexPolygonPatterns


Figure 8: Comparing interval and convex polygon top-3 patterns (Left). Comparing interval and convex polygon patterns gini,
area and density (Center). Top-3 homogeneous convex polygon patterns on Foursquare places from Saint-Louis (Missouri,
USA) (Right).

Intervals vs. polygons. Our main motivation for in-
troducing convex polygon patterns is to discover shapes
with high density and area, and possibly with high class
homogeneity (e.g., low Gini). Figure 8 (left) considers
the IRIS dataset (Sepal length vs. Sepal Width). It
presents the three most frequent polygons that have null
Gini, and either 3 or 4 extreme points for a fair compar-
ison: convex polygons better stick to the data without
extremely over-fitting.

We also compare interval and polygon patterns in sev-
eral datasets and plot their area, density and Gini. Fig-
ure 8 (center) plots all discovered patterns area (Y), Gini
(X), and density (point diameter). It appears that con-
vex polygons enable to find shapes with higher density,
yet smaller area, over the same Gini range. Rectangles
with high area are exactly those that we want to avoid
for spatial data: they have high chances to enclose both
zones of high and low density, and high impurity.

Sampling polygon patterns with MCTS. Our algo-
rithms are clearly not scalable as their complexity de-
pends on the number of polygons which can be very
large. We propose to sample the pattern search space
with a recent technique introduced by [Bosc et al., 2016]
relying on Monte Carlo Tree Search [Browne et al.,
2012]. Without entering into the details, MCTS re-
quires a proper enumeration technique: we choose Ex-
tremePointsEnum as it is generally the most effi-
cient. MCTS iteratively draws a random pattern, fol-
lowing a path of ExtremePointsEnum: the best pat-
tern quality measure is returned as a reward. This re-
ward is used to update a memory (the Monte Carlo tree)
and drives the search for the next iterations (thanks to
the upper confidence bound, a formula that expresses
a trade-off between exploration and exploitation of the
search space). If given enough budget (maximum num-
ber of iterations allowed), MCTS will perform an ex-
haustive search. The quality of a pattern p is given by
Q(p) = 2 ⋅ max{sup(p, i)} − ∣sup(p)∣ where sup(p, i) is
made of the points of sup(p) belonging to the ith class.
This choice favors polygons with high support and class
homogeneity, but one could choose any other measure.

[Falher et al., 2015] propose several spatial datasets
(cities) containing Foursquare users check-in places of

different kinds (“College & university”, “Art & Enter-
tainement”, ...). We randomly choose the city of Saint-
Louis (Missouri, USA) containing 3 464 points. Running
our exhaustive algorithms on this dataset is impossible.
The MCTS sampling however quickly returns patterns
of high quality: Figure 8 (right) displays the average
pattern quality measure of the best patterns (after a re-
dundancy post-processing as done by [Bosc et al., 2016]):
a plateau is reached with a maximum budget of 20K it-
erations (about 2 minutes). Note that each point corre-
sponds to a different execution with a different budget.
Figure 8 (right) presents the top-3 patterns, which are
homogeneous zones with a large support. Designing a
quality measure can be achieved in many ways (e.g., in-
volving density).

6 Conclusion

In pattern mining, hyper-rectangles cannot always prop-
erly capture interesting areas although they are widely
used. We formally defined convex polygon patterns by
means of FCA and proposed three enumeration tech-
niques. Although these algorithms do not scale, they
serve as a basis for efficient pattern sampling approaches,
which are shown to be scalable to very large pattern
spaces and data. Tuning MCTS sampling techniques re-
mains to be a subject of our further study. We also plan
to extend our approach to other convex forms, like circles
and ellipses, as well as to apply this approach in machine
learning settings (generating pattern-based classifiers).
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