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Abstract The paper is concerned with the existence of pulses for monotone
reaction-diffusion systems of two equations. For a general class of systems we
prove that pulses exist if and only if the wave solutions propagate at positive
speed. This result is applied to investigate the existence of pulses for the system
of competition of species.
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1 Introduction

We consider the system of two equations

w′′1 + F1(w1, w2) = 0, w′′2 + F2(w1, w2) = 0, (1)

where the function F = (F1, F2) is assumed to be sufficiently smooth and to
satisfy the monotonicity condition:

∂Fi
∂wj

(w) > 0 for i 6= j and w = (w1, w2) ∈ R2
+, (2)

together with F1(0, 0) = F2(0, 0) = 0.
We aim to study the existence of pulses, that is of positive solutions of

system (1) with the limits at infinity w(±∞) = (0, 0). The existence of pulses
has been proved for some reaction-diffusion systems: the Gray-Scott model [1],
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[4], [13], the Gierer-Meinhardt model [6], [14] and a three component system
[2]. Singular perturbation methods to study existence and stability of pulses
for a system of two equations are used in [3]. In a previous work [5] we studied
the particular case where the nonlinear terms in (1) take the form:

F1(w1, w2) = f1(w2)− w1, F2(w1, w2) = f2(w1)− w2.

Note that in that case the graph w1 = f1(w2) (respectively w2 = f2(w1))
corresponds to the zeros of F1 (respectively F2).

Here we aim to consider more general monotone systems. Let us state our
assumptions on F . For simplicity, we consider infinitely differentiable func-
tions. Setting w+ = (0, 0) and w− = (1, 1) we suppose that

F (w±) = (0, 0),
the eigenvalues of the matrices F ′(w±) are negative.

(3)

Under these conditions F necessarily possesses at least one additional zero
in the unit open square and we assume the uniqueness of such a zero, more
precisely

F has three zeros w+, w−, w̄ = (w̄1, w̄2) in R2
+; furthermore 0 < w̄i < 1

and the matrix F ′(w̄) has a positive eigenvalue.
(4)

Next we assume that the zeros of F1 lie in the graph of some function paramet-
rized by w2, more precisely:

F1(w1, w2) = 0, w1, w2 ≥ 0, ⇔ w1 = f1(w2), (5)

where

f1(0) = 0, f1(1) = 1, f ′1(w2) > 0 for w2 ≥ 0. (6)

Similarly, we assume that the zeros of F2 are determined by some function
depending on w1:

F2(w1, w2) = 0, w1, w2 ≥ 0, ⇔ w2 = f2(w1), (7)

with

f2(0) = 0, f2(1) = 1, f ′2(w1) > 0 for w1 ≥ 0. (8)

Under the above conditions we aim to investigate the existence of pulses
such that:

w(x) = w(−x), w′(x) < 0 for x > 0

(here and everywhere below inequalities for vectors mean that each component
of the vectors satisfies this inequality). Then the problem on the whole axis
reduces to looking for solutions of system (1) defined on the half-axis R+ such
that

w′(0) = 0, w′(x) < 0 for x > 0, w(∞) = 0. (9)
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As already mentioned this problem was studied in [5] for specific nonlinear
terms. We showed that the existence of pulses is related to the sign of the wave
speed for the traveling-wave solution of the reaction-diffusion system

∂v

∂t
=
∂2v

∂x2
+ F (v). (10)

This solution reads v(x, t) = u(x−ct) where u satisfies the system of equations

u′′ + cu′ + F (u) = 0 (11)

and has the limits at infinity

u(±∞) = w±. (12)

Under the assumptions (2)-(4), it is classical that there exists a uniquely de-
fined traveling-wave (up to some translation in space for u). Moreover, it is a
monotonically decreasing vector-function (component-wise) (see [7], [8]).

The main result of this work is given by the following theorem.

Theorem 1.1. Under the assumptions (2)-(8), Problem (1) has a solution
satisfying (9) if and only if the wave speed c in (11)-(12) is positive.

This result will be applied to investigate the existence of pulses for the
system of competition of species. In order to apply the general existence result
we will need to introduce some suitable perturbed system. We also discuss
conditions which guarantee the positiveness of the speed.

The paper is organized as follows. In Section 2 we first recall some results
concerning the functional setting for Problem (1) and some estimates of the
solutions borrowed from [5]. Then the existence part in Theorem 1.1 is derived
in Section 3. The proof relies on the Leray-Schauder method. We will reduce
the nonlinearity to a model problem such that F1 = F2 and will look for
a solution with w1 = w2. In order to obtain a priori estimates of solutions,
we will have to verify that the wave speed remains positive in the process
of homotopy. This condition will require some additional constructions. It is
worth noting that the homotopy arguments are completely different from the
ones in [5]. Finally Section 4 is devoted to the system of competition of pulses.

2 Functional spaces and estimates of solutions

Let us consider the system depending on some parameter τ ∈ [0, 1]{
w′′1 + F τ1 (w1, w2) = 0,
w′′2 + F τ2 (w1, w2) = 0,

(13)
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on the half axis x > 0 with the boundary conditions and the conditions at
infinity:

w′i(0) = 0, wi(∞) = 0, i = 1, 2. (14)

For simplicity we will suppose that the function F τ = (F τ1 , F
τ
2 ) is infinitely

differentiable with respect to both variables w ∈ R2 and τ ∈ [0, 1]. It satisfies
the following conditions that are extensions of (2)-(8):

∂F τi
∂wj

(w) > 0, i, j = 1, 2, i 6= j, w ∈ R2
+, τ ∈ [0, 1], (15)

F τ (w±) = (0, 0), the eigenvalues of the matrices (F τ )
′
(w±) are negative,

(16)
F τ has three zeros w+, w−, w̄τ = (w̄τ1 , w̄

τ
2 ) in R2

+; furthermore 0 < w̄τi < 1

and the matrix (F τ )
′
(w̄τ ) has a positive eigenvalue,

(17)
F τ1 (w1, w2) = 0⇔ w1 = fτ1 (w2), fτ1

′(w2) > 0 for w2 ≥ 0, (18)

F τ2 (w1, w2) = 0⇔ w2 = fτ2 (w1), fτ2
′(w1) > 0 for w1 ≥ 0. (19)

2.1 Operators and spaces

For the functional setting let us introduce the Hölder space Ck+α(R+) con-
sisting of vector-functions of class Ck, which are continuous and bounded on
the half-axis R+ together with their derivatives of order k, and such that the
derivatives of order k satisfy the Hölder condition with the exponent α ∈ (0, 1).
The norm in this space is the usual Hölder norm. Set

E1 = {w ∈ C2+α(R+), w′i(0) = 0, i = 1, 2}, E2 = Cα(R+).

Next we introduce the weighted spaces E1
µ and E2

µ with µ(x) =
√

1 + x2. These
spaces are equipped with the norms:

‖w‖Eiµ = ‖wµ‖Ei , i = 1, 2.

In view of (13), let us consider the operator

Aτ (w) = w′′ + F τ (w), (20)

acting from E1
µ into E2

µ. Then the linearized operator about any function in
E1
µ satisfies the Fredholm property and has the zero index. The nonlinear

operator is proper on closed bounded sets. This means that the inverse image
of a compact set is compact in any closed bounded set in E1

µ. Finally, the
topological degree can be defined for this operator. All these properties can
be found in [10], [11].

Hereafter we consider solutions of (13)-(14) belonging to the space E1
µ.
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2.2 A priori estimates

We aim to derive various estimates of the solutions of (13)-(14). Note that this
problem possesses the trivial solution w ≡ w+.

We will be particularly interested in monotonically decreasing solutions.
We start with some preliminary properties of such solutions

Lemma 2.1. Under assumptions (15)-(19), assume that w is a monotonically
decreasing non trivial solution of (13)-(14). Then for x > 0 we have w′(x) < 0
and w(x) < w− .

This result is a variant of similar ones in [5] (see Lemma 2.3 and the arguments
in the proof of Theorem 2.1). The details are left to the reader.

Next we aim to derive estimates in E1
µ of the monotonically decreasing

solutions of (13)-(14). They will follow from the positiveness of the wave speed
for the traveling wave problem

u′′ + cu′ + F τ (u) = 0. (21)

In view of the assumptions (15)-(17), there exists a unique value of c denoted
by cτ such that the system (21) has a monotonically decreasing solution with
the limits at infinity:

u(±∞) = w±. (22)

The following result is proved in [5].

Theorem 2.2. Under assumptions (15)-(19), moreover suppose that cτ > 0
for all τ ∈ [0, 1]. Then there exists some constant R > 0 such that for all
τ ∈ [0, 1] and for any arbitrary monotonically decreasing solution w ∈ E1

µ of
(13)-(14) the following estimate holds :

‖w‖E1
µ
≤ R.

Next we state a result of separation between the monotonically decreas-
ing solutions of (13) that will be denoted by wM (x) and the non-monotone
solutions of (13) that will be denoted by wN (x).

Theorem 2.3. Suppose that the assumptions (15)-(19) hold true. Then there
exists a constant r > 0 such that for any monotonically decreasing solution
wM and any non-monotone solution wN (and for all τ ∈ [0, 1]) the following
estimates hold :

‖wM − wN‖E1
µ
≥ r, wM1 (0) > r, wM2 (0) > r.

We refer to [5] for the proof of this result.



6 Martine Marion, Vitaly Volpert

3 Proof of Theorem 1.1

The non-existence part in Theorem 1.1 for c ≤ 0 can be proved as in [5] to
which the reader is referred.

Hereafter we assume c > 0 and we aim to derive the existence of a mono-
tonically decreasing pulse. The proof relies on the Leray-Schauder method.
The key step consists in the construction of a continuous deformation (homo-
topy) of our problem to a model problem for which we will be able to prove
that the value of the topological degree is different from zero.

The continuous deformation will take the form (13) and we will require
that the conditions (15)-(19) are satisfied. Besides as τ varies we will need the
speed cτ in (21)-(22) to remain positive. Thanks to Theorem 2.2 this will yield
a priori estimates in E1

µ of the monotonically decreasing solutions.

In Section 3.1 we first describe two tools that will allow us to keep the
speed cτ positive and will be used repeatedly. Next the homotopy argument is
described in Section 3.2 and we conclude the proof of the existence of a pulse
in Section 3.3.

3.1 Positiveness of the wave speed

Consider the problem

u′′ + cu′ +G(u) = 0, u(±∞) = w±. (23)

HereG is some arbitrary function satisfying the conditions (2)-(8) (with F = G
and fi = gi for the zero lines). Then there is a monotone solution of problem
(23) for a unique value of the speed c. Even though we keep the same notation
for the speed it is of course different than the one in (11)-(12). In particular
the speed for (23) is not assumed to be positive.

We aim to modify the function G so that the conditions (2)-(8) remain
satisfied, the zeros of the nonlinearities remain unchanged and the speed of
the traveling wave for the new nonlinearity becomes positive.

For that purpose let us introduce infinitely differentiable and non-negative
functions φi(w), i = 1, 2, whose supports are defined as follows (Figure 1).

We choose a point w0 = (w0
1, w

0
2) such that Gi(w

0) > 0 for i = 1, 2.
Due to the assumptions (2)-(8) such a point necessarily belongs to the zone
between the two lines of zeros in the upper part of the square. Also note that
G1(w0

1, w2) > 0 for w2 ≥ w0
2 and G2(w1, w

0
2) > 0 for w1 ≥ w0

1.

Let us set

D1 = {w = (w1, w2), w0
1 − ε1 ≤ w1 ≤ w0

1 + ε1, w0
2 − ε2 ≤ w2 ≤ 1},
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Fig. 1 Zero lines of the functions Gi and the supports of the functions φi (left). More
detailed structure of the support of the functions φi (right). Inner rectangles show where
these functions equal 1.

where ε1 and ε2 are positive numbers and sufficiently small so that G1(w) > 0
for w ∈ D1. Similarly, we introduce

D2 = {w = (w1, w2), w0
2 − δ1 ≤ w2 ≤ w0

2 + δ1, w0
1 − δ2 ≤ w1 ≤ 1},

where δ1 and δ2 are sufficiently small positive numbers so that G2(w) > 0 for
w ∈ D2.

Next, we can introduce two rectangles D0
i , i = 1, 2, with common width σ

located inside the rectangles Di as it is shown in Figure 1 (right). We define
the functions φi in such a way that the following conditions are satisfied:

∂φ1
∂w2

≥ 0,
∂φ2
∂w1

≥ 0, (24)

and

φi ≥ 0, Supp φi ⊂ Di, φi(w) = 1 for w ∈ D0
i , i = 1, 2. (25)

We now consider the nonlinearities:

Hi(w) = Gi(w) + kφi(w), i = 1, 2, (26)

where k is some positive constant. The function Hi, i = 1, 2, differs from Gi
in a zone where Gi > 0 (see Figure 1) and it is obtained by adding some
positive term. Consequently the zeros of Hi coincide with the ones of Gi and
Hi(w) > 0 at any point w such that Gi(w) > 0. The conditions (3)-(8) remain
valid for H and the monotonicity condition

∂Hi

∂wj
(w) > 0, i 6= j, (27)

is satisfied.
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Hence the traveling wave problem for this modified nonlinearity which
reads:

u′′ + cu′ +G(u) + kφ(u) = 0, u(±∞) = w±, (28)

where we set φ(u) = (φ1(u), φ2(u)) has a monotone solution for a unique value
of the speed. This value depends on k and we denote it by ck. We aim to show
that if k is large enough then ck > 0.

Lemma 3.1. Let G be a function satisfying the conditions (2)-(8) and let w0

such that G(w0) > 0. Define the rectangles D, D0
i (with width σ) and the

function φi as above. Then if

k >
‖G‖∞
σ

(29)

the speed ck in (28) is positive.

Proof. Let u(x) = (u1(x), u2(x)) denote the solution of (28). Since both com-
ponents of the solution are monotone functions of x, we can express one coor-
dinate as a function of the other one: either u2 = p(u1) or u1 = q(u2). Both
of them are monotone functions of their arguments.

Next consider the solution u(x) as a curve in the plane (w1, w2). It connects
the points w+ and w−. Therefore it crosses the set D0 = D0

1 ∪D0
2 (Figure 2,

right). Moreover necessarily the curve crosses the whole width of either D0
1 or

D0
2.

Without loss of generality we can suppose that the curve crosses the whole
width of D0

1. Then let us consider the function u2 = p(u1) along the curve.
The system (28) reduces to the single equation

u′′1 + cku
′
1 +G1(u1, p(u1)) + kφ1(u1, p(u1)) = 0. (30)

For this scalar equation it is easy to see that

ck =
1

‖u′1‖2L2(−∞,∞)

∫ 1

0

[G1(s, p(s)) + kφ1(s, p(s))] ds.

Hence ck > 0 if and only if∫ 1

0

[G1(s, p(s)) + kφ1(s, p(s))] ds > 0. (31)

Since the function φ1 is non-negative and φ1 = 1 on D0
1, we have∫ 1

0

φ1(s, p(s))ds > σ,

where σ is the width of the rectangle D0
1. Consequently the inequality (31) is

satisfied if the stronger condition∫ 1

0

G1(s, p(s))ds+ kσ > 0 (32)
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holds true. This last condition is clearly satisfied under the assumption (29)
(where ‖G‖∞ denotes the supremum norm of G on the unit square). This
implies that ck > 0 and concludes the proof of the lemma.

�

We will also make use of a classical result that states that the speed of the
waves increases if the nonlinearity is increased (see [8]).

Theorem 3.2. Consider the two problems

u′′ + cu′ +Gk(u) = 0, u(±∞) = w±, k = 1, 2, (33)

where the functions Gk = (Gk1 , G
k
2) are assumed to satisfy conditions (2) (pos-

sibly non-strict) and (3), and furthermore

G1
i (u) ≥ G2

i (u) for w+ ≤ u ≤ w− and i = 1, 2.

If the two problems (33) possess monotone solutions with the values of the
speed c = ck, k = 1, 2, then we have c1 ≥ c2.

3.2 Homotopy

We aim now to construct the homotopy F τ . It is of course such that, for τ = 0,
F 0 = F the given nonlinearity in (1) for which we recall that the wave speed
c is assumed to be positive.

As already noted we need the speed cτ for the traveling wave problem (21)-
(22) to remain positive in the homotopy process. For that purpose we introduce
some (arbitrary) point w0 ∈ (0, 1)2 such that F (w0) > 0 and consider the
function φ = (φ1, φ2) constructed as above in Section 3.1 (with G = F ). We
will require the homotopy to be such that F τ (w0) remains positive as τ varies
so that Lemma 3.1 will apply with G = F τ and φ defined as above.

Step 1 (τ ∈ [0, τ1], τ1 = 1/4). We start by increasing the function F and
introduce:

F τi (w) = Fi(w) + τKφi(w), i = 1, 2, 0 ≤ τ ≤ τ1. (34)

Here K is some arbitrary positive constant which will be specified below.
As noted in Section 3.1 the functions F τi satisfy the conditions (15)-(19)

and there zero lines coincide with the ones of Fi, that is w1 = f1(w2) and
w2 = f2(w1).

Let cτ denote the value of the speed for the problem

u′′ + cτu′ + F τ (u) = 0, u(±∞) = w±. (35)

Since F τi ≥ Fi, Theorem 3.2 yields that cτ ≥ c > 0 for τ ∈ [0, τ1] (without any
assumption on K).
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Step 2 (τ ∈ [τ1, τ2], τ2 = 1/2). Let us introduce the functions:

F̄1(w) = f1(w2)− w1, F̄2(w) = f2(w1)− w2. (36)

The second step of the homotopy will consist in reducing the functions F τ1i
to the functions F̄i while keeping K fixed. Hence we consider

F τi (w) =
τ − τ1
τ2 − τ1

F̄i(w) +
τ2 − τ
τ2 − τ1

Fi(w) + τ1Kφi(w), i = 1, 2, τ1 ≤ τ ≤ τ2.
(37)

The above functions satisfy the monotonicity condition (15) and their zero
lines are still given by w1 = f1(w2) and w2 = f2(w1).

Also F τ (w0) > 0. Hence, due to Lemma 3.1, the wave speed cτ in (35) is
positive for τ ∈ [τ1, τ2] if K is sufficiently large.

Step 3 (τ ∈ [τ2, τ3], τ3 = 3/4). At the end of the step 2 we obtained

F τ21 (w) = f1(w2)−w1+τ1Kφ1(w), F τ22 (w) = f2(w1)−w2+τ1Kφ2(w). (38)

We now aim to reduce the two functions f1 and f2 in (38) to some common
value f0 while keeping the other terms unchanged. Hence the homotopy will
take the form

F τ1 (w) = fτ1 (w2)− w1 + τ1Kφ1(w), (39)

F τ2 (w) = fτ2 (w1)− w2 + τ1Kφ2(w), τ2 ≤ τ ≤ τ3,

where fτ2i = fi and fτ31 = fτ32 = f0.
In order to satisfy the conditions (15)-(17) we will require that

fτi
′(s) > 0 for s ≥ 0, i = 1, 2. (40)

The system w1 = fτ1 (w2), w2 = fτ2 (w1) has three solutions w+, w−, w̄τ in R2
+,

furthermore 0 < w̄τi < 1.
(41)

fτ1
′(0)fτ2

′(0) < 1, fτ1
′(1)fτ2

′(1) < 1, fτ1
′(w̄τ2 )fτ2

′(w̄τ1 ) > 1. (42)

These conditions yield that the graphs of the two functions fτ1 and fτ2 are
located with respect to each other as represented in Figure 1. Besides we ask
that

F τ (w0) > 0, (43)

so that the speed of the wave in (35) is positive if K is sufficiently large.
Finally in preparation of the step 4 below we require that the function

f0 = fτ31 = fτ32 moreover satisfies

The equation f0(s) = s has three solutions : 0, 1, µ; 0 < µ < 1, (44)∫ 1

0

(f0(s)− s)ds > 0. (45)
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We claim that we can define the functions fτi in such a way that all the
above conditions are satisfied. Let us describe this homotopy in more details.

Recall that the system of equations w1 = f1(w2), w2 = f2(w1), has a
single solution (w̄1, w̄2) satisfying the inequalities 0 < w̄i < 1, i = 1, 2. Let
us introduce the inverse function of f1 denoted by f̃1. Then the equation
f2(s) = f̃1(s) has a single solution w̄1 in the interval (0, 1).

Now consider a function h2 such that

h2(0) = 0, h2(w̄1) = f2(w̄1), h2(1) = 1, (46)

h2(s) > f2(s) for w̄1 < s < 1; h2(s) < f2(s) for 0 < s < w̄1. (47)

Next for θ ∈ [0, 1] introduce the function:

hθ2 = (1− θ)f2 + θh2.

Then the equation hθ2(s) = g1(s) has exactly three solutions in [0, 1], namely
0, 1 and w̄1.

An explicit form of the function h2 can be given by:

h2(s) =

 εs for 0 ≤ s < a,
1
ε (s− w̄1) for a ≤ s ≤ b,
ε(s− 1) + 1 for b ≤ s ≤ 1,

where ε > 0 and a, b are obtained by requiring the continuity of h2 at these
points. Then if ε is sufficiently small the functions f1 and hθ2 satisfy the con-
ditions (40)-(43) (with fτ1 = f1 and fτ2 = hθ2) except at the points where hθ2
is not differentiable but we can use smoothing procedure to make it infinitely
differentiable and satisfy the conditions everywhere.

The above procedure allowed to reduce the function f2 to h2 with the
conditions (40)-(43) being satisfied. Next similarly, we reduce f1 to the piece-
wise linear function h1 with

h1(s) =

 εs for 0 ≤ s < r,
1
ε (s− w̄2) for r ≤ s ≤ d,
ε(s− 1) + 1 for d ≤ s ≤ 1

(up to smoothing).
At this point, in the homotopy process, the couple (f1, f2) became (h1, h2)

which are piece-wise linear function depending on ε > 0, w̄1 and w̄2 (up to
smoothing). Now in the definition of h1 and h2 we replace the point w̄ by
by αw̄ with α ∈ [0, 1]. Then if ε and α are sufficiently small the conditions
(40)-(43) remain valid and moreover∫ 1

0

(h1(s)− s)ds > 0,

∫ 1

0

(h2(s)− s)ds > 0.

Note that either h1 ≥ h2 or h2 ≥ h1. For sufficiently small ε and α let us
consider the function f0 which is the maximum of these two functions. The
homotopy of the functions h1 to f0 (or h2 to f0) can be easily constructed in
such a way that the conditions on the homotopy are verified.
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Step 4 (τ ∈ [τ3, 1]). In this last step, we eliminate the functions φi by setting:

F τi (w) = f0(wj)− wi + τ1
1− τ
1− τ3

Kφi(w), i = 1, 2 and j 6= i, τ3 ≤ τ ≤ 1.

(48)
Note that F τi decreases as τ increases. Hence by Theorem 3.2 the speed of the
corresponding traveling wave decreases. However it remains larger than the
one for the limit problem corresponding to τ = 1. This problem reads

u′′ + c u′ + F 1(u) = 0, u(±∞) = w±,

with

F 1(u) = (f0(u2)− u1, f0(u1)− u2).

It possesses a uniquely defined solution such that u1 = u2. The corresponding
speed c1 has the sign of the integral in (45) which is positive. Hence for τ ∈
[τ3, 1] we conclude that cτ ≥ c1 > 0.

3.3 Existence of solutions

We have constructed the homotopy from our original problem to the system

w′′1 + f0(w2)− w1 = 0, w′′2 + f0(w1)− w2 = 0, (49)

on the half axis x > 0 with the boundary condition and the condition at
infinity:

w′(0) = 0, w(∞) = 0. (50)

Let us look for some solution of problem (49)-(50) for which w1 ≡ w2 so that
w1 satisfies

w′′1 + f0(w1)− w1 = 0, w′1(0) = 0, w1(∞) = 0. (51)

Due to the properties of f0 and in particular (45) it is easily seen that (51)
possesses a unique solution satisfying w′1(x) < 0 for x > 0.

We can now prove the existence of solutions of problem (1) satisfying (9).
In Section 3.2 we constructed the homotopy F τ . Let us now consider the

spaces introduced in Section 2 and the operator Aτ given by (20).
Since cτ > 0 for τ ∈ [0, 1], it satisfies the conditions imposed to obtain a

priori estimates of monotonically decreasing solutions (Theorem 2.2). Denote
by B ⊂ E1

µ a ball which contains all monotonically decreasing solutions. Since
the operator Aτ is proper on closed bounded sets with respect to both variables
w and τ , the set of monotonically decreasing solutions of the problem Aτ (w) =
0 is compact. Since they are separated from non-monotone solutions (Theorem
2.3), then we can construct a domain D ⊂ B ⊂ E1

µ such that all monotonically
decreasing solutions (for all τ ∈ [0, 1]) are located inside D and there are no
other solutions in the closure D̄. Indeed it is sufficient to take a union of small
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balls of the radius r (Theorem 2.3) around each monotonically decreasing
solution.

Let us note that only strictly monotone solutions belong to this domain. In
particular, the trivial solution w ≡ 0 does not belong to it since the monoton-
ically decreasing solutions are separated from the trivial solution (Theorem
2.3). This is an important remark because the index of the trivial solution
equals one. If it belongs to the domain D, then the sum of the indices, which
equals the value of the degree, can be zero (see below). If it was the case, then
we could not affirm the existence of solutions for the original problem.

We can now determine the topological degree γ(Aτ , D). We have

γ(A0, D) = γ(A1, D) =
∑
j

ind uj ,

where the sum is taken with respect to all monotonically decreasing solutions
uj of problem (49)-(50), and ind uj denotes the index of the solution. We
have ind uj = (−1)νj , where νj is the number of positive eigenvalues of the
linearized problem. We proved in [5] that νj = 1 so that ind uj = −1. Hence
the degree is different from zero for the original problem, and the equation
A0(w) = 0 has a solution in D. This concludes the proof of the existence
result in Theorem 1.1

Let us note that we used the existence of solutions of the model problem
but not their uniqueness. The index of each monotone solution equals −1.
Therefore the degree is different from zero for any number of solutions if at
least one such solution exists.

4 The model of competition of species

We consider the system of equations

W ′′1 +W1(1−W1 − αW2) = 0, W ′′2 + ρW2(1− βW1 −W2) = 0, (52)

describing the competition of species in population dynamics. The unknowns
are two population densities and the nonlinear expressions represent the rates
of reproduction of the two species. All parameters are positive constants and
we will suppose that α > 1 and β > 1.

Then the system has four stationary points: P0 = (0, 0), P1 = (1, 0), P2 =
(0, 1) and P3 = (W̄1, W̄2) where 0 < W̄i < 1 satisfy W̄1 + αW̄2 = 1 and
βW̄1 + W̄2 = 1. The points P1 and P2 are stable while the points P0 and P3

are unstable.

The above system is not monotone. However it is possible to obtain a
monotone system by introducing the new variable w1 = W1 and w2 = 1−W2.
The system of equations now reads:

w′′1 + F1(w1, w2) = 0, w′′2 + F2(w1, w2) = 0, (53)
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where
F1(w1, w2) = w1(1− w1 − α(1− w2)), (54)

F2(w1, w2) = ρ(1− w2)(βw1 − w2). (55)

These functions satisfy the conditions

∂F1

∂w2
(w1, w2) > 0,

∂F2

∂w1
(w1, w2) > 0, (56)

if w1 > 0 and w2 < 1.

We will also need to consider the system of equations

U ′′1 + cU ′1 +U1(1−U1−αU2) = 0, U ′′2 + cU ′2 +ρU2(1−βU1−U2) = 0, (57)

describing travelling wave solutions of the system of competition of species.
We will look for its solutions with the limits at infinity

U1(∞) = 0, U2(∞) = 1, U1(−∞) = 1, U2(−∞) = 0. (58)

The equivalent problem in terms of the variables u1 = U1 and u2 = 1−U2

reads

u′′1 +cu′1+u1(1−α−u1+αu2) = 0, u′′2 +cu′2+ρ(1−u2)(βu1−u2) = 0, (59)

with the limits :

u1(∞) = u2(∞) = 0, u1(−∞) = u2(−∞) = 1. (60)

Existence and uniqueness of travelling wave, that is of solutions of problem
(57)-(58) (or equivalently (59)-(60)) is known (note that the inequality (56) is
not strict on the closed unit square, but the result still holds, see [8]).

Hereafter we will denote by c0 the corresponding wave speed. The wave
speed c0 can be positive, zero or negative depending on the values of pa-
rameters. If it is positive the wave propagates in the direction of the values
(U1, U2) = (1, 0) reached at −∞. Some elements on the sign of the wave speed
can be found in Section 4.2.

4.1 Existence of pulses for Problem (53)-(56)

4.1.1 Pulses for a perturbed system

As already mentioned the nonlinearity in (53) is such that the system is mono-
tone. However the conditions on the zeros lines stated in (5)-(8) are not sat-
isfied (see Figure 2 below). This leads us to introduce the following modified
functions involving the parameter ε > 0:{

F ε1 (w1, w2) = w1(1− α− w1 + αw2) + εαw2,
F ε2 (w1, w2) = ρ(1− w2)(βw1 − w2)− ερw2.

(61)
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For these new nonlinearities the equations F ε1 (w1, w2) = 0 and F ε2 (w1, w2) =
0 are respectively equivalent to

w2 = f ε1(w1) and w1 = f ε2(w2),

where

f ε1(w1) =
−w1(1− α− w1)

α(ε+ w1)
, f ε2(w2) =

(1− w2 + ε)w2

β(1− w2)
.

For all ε > 0 sufficiently small the functions f ε1 and f ε2 are monotone
functions of their respective arguments (Figure 2), and the system of equations

w2 = f ε1(w1), w1 = f ε2(w2),

possesses three solutions. Let us denote the two exterior points by wε± and the
intermediate point by w̄ε. We have wε+ = (0, 0) and wε− → (1, 1) as ε→ 0.

Fig. 2 Left: zeros of the functions F1 (bold solid) and F2 (bold dashed). Right: zeros of the
functions F ε1 (bold solid) and F ε2 (bold dashed).

For the perturbed nonlinearities the pulse is the solution of the system:

w′′1 + F ε1 (w1, w2) = 0, w′′2 + F ε2 (w1, w2) = 0, wi(±∞) = 0, i = 1, 2, (62)

while the traveling wave problem reads:

u′′1 + cu′1 +F ε1 (u1, u2) = 0, u′′2 + cu′2 +F ε2 (u1, u2) = 0, u(±∞) = wε±. (63)

The existence of travelling waves for the perturbed system is investigated
in [12] where the following result is derived.

Proposition 4.1. For all ε > 0 sufficiently small Problem (63) possesses a
solution for a unique value of c denoted by cε. Moreover, cε is a continuous
function of ε.

Let us note that the limiting value c0 in Proposition 4.1 is the speed of the
travelling wave for the system (59)-(60). In particular if c0 > 0, then cε > 0 for
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all positive and sufficiently small ε. This remark enables us to apply Theorem
1.1 to derive the existence of pulses for the perturbed problem for sufficiently
small ε.

Proposition 4.2. Assume that c0 > 0. Then, for all ε > 0 sufficiently small,
Problem (62) possesses a solution wε such that

w′ε(0) = 0, w′ε(x) < 0 for x > 0, wε(∞) = 0. (64)

4.1.2 Pulses for the original problem

The existence of some pulse for Problem (53) is related to the sign of the speed
c0 as stated in the following result.

Theorem 4.3. System (53) has a solution satisfying

w′(0) = 0, w′(x) < 0 for x > 0, w(∞) = 0

if and only if the speed c0 in problem (59)-(60) is positive.

Proof. Again we refer to [5] for the proof of the non-existence part in Theorem
4.3 for c0 ≤ 0.

Hereafter we assume c0 > 0 and we aim to derive the existence of a pulse.
This will proved by taking the limit ε → 0 for the solutions wε provided by
Proposition 4.2.

Since 0 < wε(x) < wε− and wε− → (1, 1) as ε → 0, the functions wε
are bounded in L∞(R) independently of ε sufficiently small. Hence classical
regularity estimates yield that the Hölder norm in C2+α(R+) of wε is also
bounded independently of ε sufficiently small.

Consequently there exists a subsequence still denoted by wε locally conver-
gent to some limiting function ŵ. The function ŵ satisfies the equations (53),
ŵ(x) ≥ 0 and ŵ′(x) ≤ 0 for x ≥ 0, ŵ′(0) = 0.

Let us first check that
ŵ(0) 6= (0, 0).

Arguing by contradiction suppose that wε(0) converges to the origin as ε→ 0.
Recalling the definition (61) it is easy to check the existence of some neigh-
borhood of the origin in R2

+ such that for all ε sufficiently small and for each
point w > 0 in this neighborhood at least one component of F ε(w) is negative.
Due to its convergence property, wε(0) enters this neighborhood and at least
one component of F ε(wε(0)) is negative. Then due to the equations the second
derivative at x = 0 of the corresponding component of wε is positive, and this
function cannot be decreasing. Similar arguments provide

ŵ(0) 6= (0, 1), ŵ(0) 6= (1, 0).

Next let us verify that
ŵ(0) > (0, 0). (65)
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If this is not true then either ŵ1(0) = 0 and ŵ2(0) > 0 or ŵ1(0) > 0 and
ŵ2(0) = 0. In the first case ŵ1(x) ≡ 0 and ŵ2 satisfies

ŵ′′2 + F2(0, w2) = 0, ŵ2 ≥ 0, ŵ′2 ≤ 0, ŵ′2(0) = 0.

Since F2(0, w2) ≤ 0 this provides readily ŵ′2 = 0 and ŵ2 ≡ c2. The constant
c2 should be such that c2 > 0 and (0, c2) is a zero of F . The only possibility is
c2 = 1 but this is impossible since we noted that ŵ(0) 6= (0, 1). In the second
case similar arguments provide (ŵ1, ŵ2) ≡ (1 − α, 0) which is also impossible
since this point is not a zero of F This shows (65).

The above arguments yield the existence of some constant η > 0 such that
for ε sufficiently small the two components of wε satisfy:

wε,1(0) > η, wε,2(0) > η (66)

(indeed otherwise there exists a sequence wε converging to some ŵ and at least
one component of ŵ(0) vanishes).

In order to verify the convergence of ŵ to the origin as x → ∞, it is
sufficient to prove that the functions wε are bounded independently of ε >
0 sufficiently small in the (weighted) norm of E1

µ. Since they are uniformly
bounded in the Hölder norm without weight, it is sufficient to prove that the
norm supx |wε(x)µ(x)| is uniformly bounded. Let us recall that solutions wε
converge to zero exponentially at infinity. So this norm is bounded for each
solution. Suppose that these functions are not uniformly bounded with respect
to ε in the weighted norm. Then there is a sequence of solutions wεk (with
0 < wεk(x) < wεk− ) for which

sup
x≥0
|wεk(x)µ(x)| → ∞ as k →∞.

Let δ > 0 be sufficiently small so that the exponential decay of the solutions
gives the estimate

|wεk(x)µ(x)| ≤M,

for those values of x such that |wεk(x)| ≤ δ, with some constant M > 0
independent of k. Choosing δ < η where η is given by (66), we can select xk
so that |wεk(xk)| = δ and

|wεk(x)µ(x)| ≤M for x ≥ xk. (67)

If the values xk are uniformly bounded, then the values |wεk(x)µ(x)| are uni-
formly bounded for 0 ≤ x ≤ xk since wεk(x) ≤ wεk . Together with (67), this
provides the required estimate for all x ≥ 0.

Suppose that xk →∞. Consider the sequence of functions uk(x) = wεk(x+
xk). We can choose a subsequence converging to some limiting function û in
C2
loc(R). Then û is a non increasing function defined on the whole axis and

satisfies the equation

û′′ + F (û) = 0.
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The bound (67) yields that û(∞) = (0, 0) while û(−∞) = u−, where u− is
such that F (u−) = 0 and u− 6= (0, 0) since |û(0)| = δ. Hence we obtain a
solution of system (59) with c = 0. Let us show that this is not possible.

Indeed, if u− is the unstable zero of F in (w+, w−), then a solution of
system (21) exists only for negative c [7], [8]. Let us note, that there are two
unstable zeros, w1 = 0, w2 = 1 and w1 = (1 − α)/(1 − αβ), w2 = βw1. If
u− = w− (stable point), then by virtue of the assumption of Theorem 4.3,
c > 0. Hence the function û can not exist, and the sequence xk is bounded.

There remains to show that ŵ′(x) < 0 for all x > 0 (component-wise).
Indeed, suppose that ŵ′i(x0) = 0 for some i and for some x0 > 0. Assuming
for example i = 1 we differentiate the first equation of system (53). Setting
v̂ = −ŵ′1 it provides :

−v̂′′ − a(x)v̂ = b(x),

where

a(x) =
∂F1

∂w1
(ŵ) , b(x) = −∂F1

∂w2
(ŵ) ŵ′2(x).

Since b(x) ≥ 0, v̂(x) ≥ 0 and v̂(x0) = 0, the positiveness theorem yields
v̂(x) ≡ 0 hence ŵ1(x) ≡ 0. As already noted this implies ŵ′2 ≡ 0 hence ŵ2 ≡ 0
which is impossible.

The proof of Theorem 4.3 is completed.
�

Remark. Systems (53) and (52) are equivalent thanks to some appropriate
change of variable. Hence Theorem 4.3 provides the existence of some even
solution W of system (52) satisfying

W1(±∞) = 0, W2(±∞) = 1, W1(x) > 0 and W2(x) < 1 for x ∈ R, (68)

if and only if c0 > 0. Similarly, if c0 < 0, we obtain the existence of some even
solution of (52) such that:

W1(±∞) = 1, W2(±∞) = 0, W1(x) < 1 and W2(x) > 0 for x ∈ R. (69)

Indeed let us compare these two cases. In the first one, after the change
of variables w1 = W1, w2 = 1 −W2 we considered the solution of (53) with
zero limits at infinity. It is proved that it exists if and only if the wave in (59)
with the limits ui(−∞) = 1, ui(∞) = 0 has a positive speed. In terms of the
original variables, these limits are given by (see (58)):

U1(−∞) = 1, U1(∞) = 0, U2(−∞) = 0, U2(∞) = 1. (70)

If we consider a solution of (52) with limits (69), then the change of variables is
different and reads: w̃1 = 1−W1, w̃2 = W2. A study similar to the one for the
first change of variable can be carried out. In particuler, the w̃i have required
to have zero limits at infinity. From the analogous theorem, we conclude that
such solution exists if and only if the corresponding wave with the limits
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ũi(−∞) = 1, ũi(∞) = 0, i = 1, 2 has a positive speed. In terms of the original
variables, these limits read:

U1(−∞) = 0, U1(∞) = 1, U2(−∞) = 1, U2(∞) = 0. (71)

The wave with such limits has a positive speed if and only if the speed of the
wave with the limits (70) is negative. Indeed, it is sufficient to replace Ui(x)
by Ui(−x), i = 1, 2. Thus, depending on the sign of the speed, either there is
a solution with limits (68) or a solution with limits (69) (and no solutions if
c0 = 0).

4.2 The sign of the wave speed

We proved the existence of pulses when the wave speed c0 in problem (57)-
(58) (or equivalently (59)-(60)) is positive. Here we aim to present some simple
conditions on the parameters ρ, α and β which guarantee that c0 > 0.

We start with a case where c0 = 0 that will be useful afterwards.

Lemma 4.4. Suppose ρ = 1 and α = β. Then the speed c0 of the wave solution
of (57)-(58) is equal to zero.

Proof. Let us argue by contradiction and suppose c0 > 0 (the case c0 < 0
is similar). The functions z1(x) = U2(−x) and z2(x) = U1(−x) satisfy the
problem

z′′1 + c∗z′1 + z1(1− z1 − αz2) = 0, z′′2 + c∗z′2 + ρz2(1− αz1 − z2) = 0, (72)

z1(∞) = 0, z2(∞) = 1, z1(−∞) = 1, z2(−∞) = 0, (73)

where c∗ = −c0 < 0. Since the problem (72)-(73) coincides with the prob-
lem (57)-(58), then we conclude that the latter has two different waves, one
with a positive speed and another one with a negative speed. We obtain a
contradiction with the uniqueness of the wave

�

Our main result is the following one.

Theorem 4.5. If ρ = 1 and β > α, then the speed c0 of the wave solution of
(57)-(58) is positive.

Proof. For ρ, α and β satisfying the above conditions let us set

F1(u1, u2) = u1(1− u1 − α(1− u2)), F2(u1, u2) = (1− u2)(βu1 − u2),

and

G1(u1, u2) = u1(1− u1 − α(1− u2)), G2(u1, u2) = (1− u2)(αu1 − u2).
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Applying Lemma 4.4 to the function G we see that the speed of the wave
solution of

u′′ + cu′ +G(u) = 0, u(±∞) = w±,

equals zero. Hereafter we denote by ũ some solution of

ũ′′ +G(ũ) = 0, ũ(±∞) = w± (74)

(the solution is unique up to space translation). Next since β > α we have

F1(u) = G1(u) and F2(u) > G2(u) for 0 < ui < 1. (75)

Hence we can apply Theorem 3.2 to the functions F and G and we conclude
that c0 ≥ 0.

We now aim to show that c0 > 0. Arguing by contradiction let us suppose
that c0 = 0. Consider the Cauchy problem

∂v

∂t
=
∂2v

∂x2
+ F (v), (76)

with the initial condition v(x, 0) = ũ(x), where ũ is a solution of problem (74).
Since

ũ′′ + F (ũ) = F (ũ)−G(ũ) ≥ 0

(the inequality is strict for the second component of the vector), ũ is a lower
function and v(x, t) increases as a function of t for each x fixed. By virtue
of the global asymptotic stability of travelling waves for monotone systems,
v(x, t) converges to a solution u(x) of problem (57)-(58). Hence

u(x) > ũ(x), ∀x ∈ R. (77)

For any h ∈ R the function ũ(x − h) is also a solution of problem (74). If
h is sufficiently large, then the inequality

u(x) > ũ(x− h) (78)

does not hold for some x. Let h0 be the supremum of the h for which (78)
holds for all x ∈ R. If u(x) ≥ ũ(x − h0) for all x and u(x0) = ũ(x0 − h0) for
some x0, then we obtain a contradiction with the positiveness theorem. We
will now consider the case where such finite x0 does not exist and shows that
this case also leads to some contradiction.

According to the assumptions above, there a sequence hn such that hn >
h0, hn → h0 as n→∞ and u(xn) = ũ(xn−hn) for some xn and for one of the
components of the solutions. The sequence xn can not be bounded. Consider
the case where xn →∞.

Let us take some x∗ such that F (u(x∗)) < 0 and some xn > x∗. Such
x∗ exists since u(x) ∼ p exp(−λx) where p > 0 is the eigenvector of the
matrix F ′(0) corresponding to the negative eigenvalue, λ is a positive number.
We consider the boundary value problem for the equation (76) on the half-
axis x > x∗ with the boundary condition v(x∗, t) = u(x∗). It has a unique
stationary solution u(x). Moreover, this solution is globally asymptotically
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stable. Indeed, the initial condition v(x, 0) = u(x∗) provides an upper solution
and the initial condition v(x, 0) = 0 a lower solution. Both of them converge
to the stationary solution u(x) by virtue of its uniqueness.

On the other hand, the function max(u(x), ũ(x− hn)) is a lower function.
Therefore the corresponding solution is greater than u(x) and it cannot con-
verge to u(x) since it increases in time. This contradiction proves that xn
cannot tend to infinity. Similarly, it can be proved that it cannot go to −∞.
This contradiction proves the theorem.

�
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