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Abstract
In this paper the relaxed micromorphic material model for anisotropic elasticity is used to describe the dynam-

ical behavior of a band-gap metamaterial with tetragonal symmetry. Unlike other continuum models (Cauchy,
Cosserat, second gradient, classical Mindlin-Eringen micromorphic etc.), the relaxed micromorphic model is en-
dowed to capture all the main microscopic and macroscopic characteristics of the targeted metamaterial, namely,
stiffness, anisotropy, dispersion and band-gaps.

The simple structure of our material model, which simultaneously lives on a micro-, a meso- and a macroscopic
scale, requires only the identification of a limited number of frequency-independent and thus truly constitutive
parameters, valid for both static and wave-propagation analyses in the plane. The static macro- and micro-
parameters are identified by numerical homogenization in static tests on the unit-cell level. The 3 macro-
parameters are obtained by imposing periodic boundary conditions thus mimicking the structure at large. The
3 micro-parameters can be uniquely identified for a unit-cell, which (i) represents the unit-cell with maximal
stiffness and (ii) preserves its tetragonal symmetry. Both conditions (i) and (ii) are built on the inherent rationale
of the relaxed micromorphic model. The missing mesoscopic elastic parameters directly follow from a recently
developed harmonic-mean type micro-macro homogenization rule, which establishes the general relation between
the elasticities in the micromorphic model on its three scales. The remaining inertia parameters for dynamical
analyses are calibrated on the dispersion curves of the same metamaterial as obtained by Bloch-Floquet analysis
for two wave directions.

We demonstrate via polar plots that the obtained material parameters describe very well the response of the
structural material for all wave directions in the plane, thus covering the complete panorama of anisotropy of the
targeted metamaterial. Our findings suggest, that a deeper understanding of micromorphic continuum models
for anisotropic elasticity can pave the way towards future developments such as the conception of morphologically
complex (meta-) structures by finite element analyses.
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1 Introduction
Engineering metamaterials showing exotic behaviors with respect to both mechanical and electromagnetic wave
propagation are recently attracting growing attention for their numerous possible astonishing applications [4,23,36,
65]. Actually, materials which are able to “stop” or “bend” the propagation of waves of light or sound with no energetic
cost could suddenly disclose rapid and unimaginable technological advancements. Metamaterials exhibiting such
unorthodox behaviors are obtained by suitably assembling different microstructural components in such a way that
the resulting macroscopic material possesses completely new properties with respect to the original one.

By their intrinsic nature, metamaterials show strong heterogeneities at the level of the microstructure and,
except for few particular cases, their mechanical behavior is definitely anisotropic. Depending on their degree of
anisotropy, band-gap metamaterials can exhibit only one or both of the following behaviors:

• anisotropic behavior with respect to deformation (the deformation patterns vary when varying the direction
of application of the externally applied loads),

• anisotropic behavior with respect to band-gap properties (the width of the band-gap varies when varying the
direction of propagation of the travelling wave).
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Thus, the description of anisotropy in metamaterials is a challenging issue, given that extra innovative applications
could be conceived. In fact, a metamaterial in which different modes propagate with different speeds when changing
the direction of propagation could be fruitfully employed as wave-guides or wave filters.

The need of a homogenized model which is able to account for anisotropy in band-gap metamaterials at large
scale is of great concern for the engineering scientific community. Indeed, the ultimate task of an engineer is that
of dealing with models which are able to describe the overall macroscopic behavior of (meta-)materials in the
most simplified possible way in order to proceed towards the conception of morphologically complex engineering
(meta-)structures.

A philosophical reflection is indispensable at this point: what is the most effective way to find a homogenized
model which is able to account for the mechanical behavior of anisotropic elastic metamaterials at a macroscopic
scale? In the best possible situation, we would like to be able to start from the specific characteristics of the
metamaterial’s microstructure and set up a rigorous and simple procedure that, without the need of introducing
cumbersome hypotheses, leads us to the desired homogenized (effective) model. Moreover, we would like the obtained
model to be able to describe all the main characteristics of the metamaterial’s behavior (degree of anisotropy,
dispersion, band-gap properties, etc...) at the macroscopic scale.

It is highly unlikely that such a definitive answer can come from standard homogenization methods. Homoge-
nization techniques can, at the present state of knowledge, be used to get some important indications, such as the
anisotropic behavior of the wave speed of the first two modes (see e.g. [63]) or the fact that enriched continuum
models of the micromorphic type emerge as a result of the homogenization of metamaterials with internal reso-
nances [58, 64], and provide an interpretation of the vibration modes for relatively large wavelength as associated
to the characteristics of the underlying microstructure [7, 11,12,16].

But it is unlikely, if not entirely inconceivable, to think that such homogenization techniques can give a complete
and definitive answer about the “right” homogenized model that has to be used to simultaneously describe, among
others:

• the anisotropic deformation response of metamaterials,

• the dependence of the dispersion curves on the direction of wave propagation, not only for the first acoustic
modes, but also for the optic modes at higher frequencies,

• the “eventually anisotropic” properties of the band-gap,

• a still accurate description of the dispersive behavior of the metamaterial, even for small wavelengths which
become comparable to the size of the unit-cell.

Our answer to this difficult and intricate question is in line with Truesdell and Noll’s remark [69, p. 350, footnote 3].
It is our firm belief that the answer must be searched in the field of enriched (micromorphic) continuum mechanics
and the attention must be switched from “which homogenization technique should be used” to “which enriched
macroscopic continuum model should be used” to describe the desired properties of the considered metamaterials
at the engineering scale.

In some sense, we are entering in the same controversial discussions that characterized the history of the theory
of elasticity for several decades6 (from the late 1600s when Hooke’s law was experimentally discovered, to the first
half of the 19th century when the general governing equations for macroscopic elastic isotropic solids were finally
obtained).

Throughout these years the question was that of establishing the form of the differential equations governing
the macroscopic deformation of an elastic solid in such a way that the experimental evidence could be successfully
explained. For years, arguments based on molecular hypotheses where carried out, trying to derive the equations
of elasticity by imposing the balance of interactions among molecules constituting the considered solid. Among
the most prominent supporters of this “molecular” viewpoint were Navier, Poisson and Saint-Venant, sometimes
accompanied by Cauchy and Lamé (who also adopted different methodologies). The big problem of this molecular
approach was that a consensus could never be found on the general form that the equation of elasticity for solids
should have. For a long time the discussion was centered about the question whether the behavior of an isotropic
solid should be governed by 1 (rari-constant theory) or 2 (multi-constant theory) elastic constants and whether the
behavior of a completely anisotropic solid should count 15 or 21 elastic coefficients.

The results obtained by the application of molecular methods always featured one constant in the isotropic case
and 15 constants in the completely anisotropic one.

6See [37] for a complete treatise on the historical dissertation presented here.
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The second viewpoint concerning the way of deriving the equations of elasticity was supported by Green (see [37])
who proposed in 1837 to derive the equations of elasticity by finding the minimum of the strain energy density of
the solid. He considered for the strain energy density a quadratic form in the strain, which is equivalent to say
that he considered a linear stress-strain relationship. This constitutive assumption was in line with Hooke’s one-
dimensional law and all other experimental evidence suggesting proportionality between stress and strain in the
regime of infinitesimal deformations.

With this simple argument Green was able to set up the equations of elasticity in the form that we know today,
featuring 2 elastic constants in the isotropic case and 21 in the completely anisotropic one.

He did not need any argument concerning the interactions among molecules to obtain this result which only
relied on the macroscopic observation that stress and strain are related in a linear fashion.

The lesson that we retain from this series of events is that the mechanical behavior of materials depends on their
interior molecular arrangement, but we do not necessarily need to know details about such molecular distributions
if our aim is that of mastering the behavior of materials at the macroscopic scale. A simple observation of the
stress-strain response at the macroscopic scale may be sufficient to obtain the correct answer about the macroscopic
equations of motion for elastic solids.7

We completely share the viewpoint of Green and, in this paper, we start giving our answer concerning the
fundamental question of finding the set of differential equations that governs the motion of metamaterials at the
macroscopic scale.

As Green abandoned any attempt to relate the elastic behavior of materials to their molecular arrangements,
we abandon any effort to connect “a priori” the elastic behavior of metamaterials to the arrangement of their
constituting elements. Nevertheless, when the best macroscopic model for the description of the mechanical behavior
of metamaterials will be selected it will be easy to connect “a posteriori” some of its elastic parameters to the specific
properties of the unit-cell. Hence our primary goal is that of establishing which continuum model has to be used
to describe the mechanical behavior of (isotropic and anisotropic) metamaterials at the macroscopic scale.

To this aim, we want to start from the easiest possible “experimental” evidence and then try to build macroscopic
strain and kinetic energy densities which are able to account for the phenomena we are interested in.

Our macroscopic primary observation is the typical behavior of the dispersion curves in a metamaterial (see e.g.
Fig. 2). Since the considered metamaterial is not isotropic, such dispersion curves vary when changing the direction
of propagation of the travelling wave (Fig. 2(a) and (b)).

We start from the observation that the typical dispersion curves of a given metamaterial show different branches
that can be classified roughly as follows:

1. acoustic branches (starting from the origin) which, very close to the origin, are well approximated by straight
lines that coincide with the straight lines obtained by classical linear elasticity. Such branches, at least for
small wavenumbers (large wavelengths) are related to the macroscopic modes of vibration of the unit-cell,

2. optic branches (starting from cut-off values of the frequency) which are related to the modes of vibration of
the microstructure inside the unit-cell.

We then proceed trying to find the simplest possible continuum model which allows us to account for the behavior
of all such dispersion curves. It is clear that classical elasticity is too restrictive to accomplish this task. Indeed,
in the fully anisotropic case, classical elasticity features at most 3 different acoustic dispersion curves which are
straight lines the slopes of which gives the speed of propagation of compression and shear waves inside the material.
In other words, in classical elastic solids waves propagate with the same speed for any wavelength: a classical elastic
solid is said to be “non-dispersive”.

To proceed in the right direction and find a good candidate for the “best” continuum model for metamaterials,
we need to introduce in the model two fundamental things:

1. the ability of describing dispersive behaviors (the acoustic curves are not straight lines but curves),

2. the ability of introducing extra “optic” curves related to the vibration of the microstructure (often these curves
show dispersive behaviors).

7In recent times, we are observing an explosion of research efforts based on the detailed calculation of systems composed by larger
and larger number of particles. More than once, some of the authors assisted to discussions according to which it is not worth to
study continuum models because of the future availability of quantum computers which will allow arbitrarily large sets of particles to
be considered. We strongly disagree with this point of view since this would be equivalent to claiming that it is useless to continue
teaching the theory of elasticity given that such computers will allow for the design of engineering structures by taking into account all
the constituting atoms. The simple fact that airplanes fly and bridges stand up is a testament to the theory of elasticity, showing all
its charm in its astonishing simplicity.
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As we anticipated, none of these two features can be obtained by classical elasticity, but the answer must be found
in the realm of so-called “enriched” continuum models. Nevertheless, the choice of the “best” enriched continuum
model is not a trivial task, considering that a huge variety of such models is present in the literature.

A way to approach point 1. (i.e. introducing dispersive behavior for acoustic modes in the picture) could be
that of using so-called higher-gradient theories. Indeed, it is known that considering a strain energy density which
depends not only on ε = sym∇u, but also on its gradient ∇ε allows for obtaining governing equations of higher
order than those of classical elasticity. This, in terms of dispersion curves, means that the acoustic lines are not
straight, but can show some dispersion (see e.g. [19, 59,61]).

Moreover, generalizing the constitutive form of the strain energy density to account for anisotropic behaviors
not only on the first gradient, but also on the second gradient terms, qualitative anisotropic patterns for the wave
speeds associated to the acoustic compression and shear waves can be obtained (see [60]).

Approaching the modeling of metamaterials through second (or higher) order theories has, at least, two limita-
tions, namely:

• no optic branches can be described, but only some dispersion in the acoustic curves,

• the treatment of anisotropy in the framework of higher gradient continua quickly becomes uselessly compli-
cated. Indeed, the need of introducing non-classical elastic tensors (of the sixth order against the fourth order
of classical elasticity) arises and the study of the class of symmetries of such tensors introduces non-trivial
technical difficulties. On the other hand, the introduced complexity is not justified by a true advantage in
terms of enhanced description of the physical phenomena concerning metamaterials: the only improvements
with respect to classical elasticity are the description of the dispersion for acoustic curves and the description
of anisotropy only for the first two (acoustic) modes.

We will show in the remainder of this paper that both such informations, as well as many extra features such as the
description of optic modes, anisotropy (also at higher frequencies) and band-gaps, can be obtained in a much more
simple fashion which does not need to invoke any new theoretical framework with respect to the classical treatment
of classes of symmetries for classical elasticity.

Having shown that second gradient models are not the right way to answer to the need of an optimal enriched
continuum material model for metamaterials, the attention has to be shifted on so-called micromorphic models. Mi-
cromorphic models feature an enriched kinematics with respect to classical elasticity in the sense that extra degrees
of freedom are added to the continuum. The enriched kinematics thus consists of the macroscopic displacement vec-
tor u plus a second order tensor (generally not symmetric) P which is known as micro-distortion tensor. The simple
fact of enriching the kinematics allows for the possibility of describing extra (optic) dispersion curves, and thus for
including the effect of microstructure on the dynamical behavior of heterogeneous materials (see, e.g., [14,15]). The
properties and the shape of such curves then depend on the constitutive choice that one makes for the strain energy
and kinetic energy densities. The true difficulty is thus that of making a “smart” selection of such constitutive
choices so that:

• the expressions of both the strain energy and the kinetic energy densities are the easiest possible, avoiding
any unuseful complexification,

• such expressions still allow to describe the macroscopic phenomena we are interested in (dispersion and
anisotropy for acoustic and optic modes, band-gaps,...).

We have already addressed the problem of selecting the possible model for description of metamaterials’ elasticity
for the isotropic case (see [18,38,41,43,44]). The answer we found is that this optimal choice is given by the so-called
relaxed micromorphic model whose kinetic and strain energy densities respectively take the form

J (u,t, P,t)=
1

2
ρ ‖u,t‖2 +

1

2

(
η 1 ‖dev symP,t‖2 + η 2 ‖skewP,t‖2 +

1

3
η 3 (trP,t)

2

)
(1)

+
1

2

(
η 1 ‖dev sym∇u,t‖2 + η 2 ‖skew∇u,t‖

2
+

1

3
η 3 (tr∇u,t)2

)
,

W (∇u, P,CurlP ) = µe ‖sym (∇u− P )‖2 +
λe
2

(tr (∇u− P ))
2

+ µmicro ‖symP‖2 +
λmicro

2
(trP )

2 (2)

+µc ‖skew (∇u− P )‖2 +
L2
c

2

(
α1 ‖dev symCurlP‖2 + α2 ‖skewCurlP‖2 +

1

3
α3 (tr CurlP )

2

)
.

The characteristic length scale of the model is denoted by Lc ≥ 0. We showed that this model has the following list
of advantages:
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• it produces the smallest possible number of elastic parameters in the strain energy density with respect to
classical isotropic elasticity,

• all the introduced homogenized parameters are true material constants (exactly as the averaged Young’s
modulus and Poisson’s ratio) since they do not depend on frequency, as it is instead the case for classical
dynamic homogenization results (see e.g. [3, 53,54]),

• the splitting of the displacement gradient ∇u and the micro-distortion P in their sym and skew part allows
from one side, to naturally extend classical elasticity and, from the other side, to isolate macro and micro
deformation modes related to distortions and rotations, respectively,

• it allows the description of dispersion (wave speed varying with the considered wavelength) not only for the
acoustic modes, but also for the optic modes at higher frequencies,

• it allows, when desired, the description of non-localities in metamaterials thanks to the term CurlP which
includes combinations of space derivatives of the micro-distortion P . In this respect, we have to remember that
such a constitutive choice is much less restrictive compared to classical Mindlin-Eringen micromorphic models
featuring the whole gradient∇P of P in the strain energy density [22,47]. We indeed showed (see [38–44,51,52])
that the non-localities introduced by ∇P are so strong that sometimes they preclude the micromorphic model
from describing essential features such as band-gaps. We found the relaxed micromorphic model to be the
best compromise between the description of non-localities and the possibility of allowing realistic band-gap
behaviors,

• when treating the limiting case Lc → 0, the considered relaxed micromorphic continuum tends to a classical
Cauchy continuum with stiffness λmacro and µmacro. Such macro stiffness can be experimentally determined by
using standard mechanical tests on specimens which are large enough that the influence of the underlying mi-
crostructure can be neglected. As a replacement of the true experimental tests on sufficiently large specimens,
finite element methods can be used (at least for periodic media) which feature the introduction of so-called
periodic boundary conditions applied on the unit-cell8. This is indeed the method that we will use in order
to derive the macroscopic coefficients of the metamaterial considered in this paper. In the framework of the
isotropic relaxed micromorphic model, the macroscopic coefficients of the equivalent continuum are related to
the parameters of the relaxed micromorphic model through the homogenization formulas (see [8, 48,49])

µmacro =
µe µmicro

µe + µmicro
, 2µmacro + 3λmacro =

(2µe + 3λe) (2µmicro + 3λmicro)

2 (µe + µmicro) + 3 (λe + λmicro)
. (3)

These formulas are strongly reminiscent of putting two springs with stiffness µe and µmicro in series, resulting
in the combined stiffness (3)1. Such formulas, as we will show in this paper for the anisotropic case, are
essential to characterize the mechanical behavior of heterogeneous metamaterials. In classical micromorphic
media of Mindlin-Eringen type, formulas which are analogous to (3) can also be found ( [8, Section 7]), but
they do not have the simple and transparent expression peculiar to the relaxed micromorphic model,

• in the limiting case Lc →∞ (zoom on the microstructure) the isotropic relaxed micromorphic model reduces
to an equivalent continuum of the Cauchy type with elastic stiffnesses µmicro and λmicro (see [8]). Such micro
stiffnesses can be interpreted as the stiffnesses of the unit-cell which could be determined by performing clas-
sical mechanical tests on a specimen which is made up of a single unit-cell. It is clear that such stiffnesses, as
issued by the described mechanical tests, would have a finite value, albeit larger than the macroscopic stiff-
nesses associated to a large specimen (“smaller is stiffer”). Unlike the relaxed micromorphic model, classical
micromorphic models of the Mindlin-Erigen type do not provide bounded stiffness when considering inhomo-
geneous deformations and letting Lc → ∞, which is equivalent to saying that the mechanical properties of
the unit-cell are grossly overestimated by such models. The relaxed micromorphic model is the only possible
model of the micromorphic type which allows for modeling a finite stiffness of the unit-cell. In this paper, we

8It is indeed well known in the field of homogenization techniques (see e.g. [21, 57]) that the homogenization of a unit-cell on
which one imposes periodic boundary conditions mimics the behavior of a very large specimen of the associated equivalent Cauchy
continuum. Usually, homogenization techniques only provide a direct transition from the micro to the macro scale without considering
the intermediate (transition) scale in which all relevant microstructure-related phenomena are manifest. Some attempts to introduce
a transition scale via the homogenization towards a micromorphic continuum are made in [35, 68], even if it is clear that a definitive
answer is far from being provided (see [35, 68] and references cited there). Our relaxed micromorphic model naturally provides the
bridge between the micro and macro behavior of the considered homogenized material with the simple and transparent homogenization
formulas (3).
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propose to replace the true experiments on the unit-cell by finite element simulations on the unit-cell with
Dirichlet boundary conditions (assigning a displacement on the boundary of the unit-cell is in fact what we
would do performing the experimental tests). It is indeed known (see [32,57]) that finite element simulations
on the unit-cell with Dirichlet boundary conditions give a stiffer response than equivalent simulations with
periodic boundary conditions. Once the micro stiffnesses are known according to the aforementioned pro-
cedure and once the macro stiffnesses of the equivalent continuum are measured via the methods described
previously, the static behavior of the considered metamaterial results to be almost uniquely determined. In
fact the coefficients µe and λe can be derived using the homogenization formulas

µe =
µmacro µmicro

µmicro − µmacro
, 2µe + 3λe =

(2µmacro + 3λmacro) (2µmicro + 3λmicro)

(2µmicro + 3λmicro)− (2µmacro + 3λmacro)
. (4)

The only elastic parameter which is not yet determined by the presented arguments is the Cosserat couple
modulus µc, but it can be evaluated when considering the dynamical analysis of the proposed metamaterial.

At this point, the remaining fundamental question is “how to select the optimal model for the description of
anisotropy in metamaterials”?

We started answering this question in [8] where the generalization of the relaxed micromorphic model to the
anisotropic case was presented. One of the main advantages of this model, as we will see in the remainder of this
paper, is that of describing the anisotropy related to the microstructure. To this aim, no cumbersome treatment
related to the classes of symmetries of higher order tensors is needed since, in our model, everything can be recast
in the classical study of the classes of symmetry of the classical fourth order elasticity tensor.

We end up with the simplest possible continuum model which is able to describe simultaneously:

• macro and micro anisotropies in metamaterials,

• dispersion and band-gaps,

• non-local effects.

We prove the efficacy of this relatively simplified model by superimposing the dispersion curves of our model with
the “phenomenological evidence” which in this paper we suppose to be the dispersion curves of a given anisotropic
(tetragonal) metamaterial obtained by so-called Bloch-Floquet analysis [10,24].

We will also show that our model is able to recover the behavior of the phase velocity as a function of the
direction of propagation of the travelling wave not only for the first two acoustic modes, but also for the optic
modes.

We find an excellent agreement with the phenomenological evidence, often not only for large wavelengths, but
also for wavelengths which become relatively close to the size of the unit-cell.

In the present paper, while developing a relaxed micromorphic theoretical framework which is capable to gen-
erally treat full anisotropy in metamaterials (also based on the results obtained in [8]), we will present a first
application to an actual metamaterial with a low degree of anisotropy. More specifically, we select a metamate-
rial with a particular microstructure for which the band-gap is almost isotropic (not varying with the direction of
propagation of the traveling wave), but which has an anisotropic (tetragonal) elastic behavior. As a second step,
we use the anisotropic relaxed micromorphic model to reproduce both the patterns of the dispersion curves and of
the phase velocity as function of the angle giving the direction of propagation of the travelling wave.

We compare the obtained results with the analogous ones issued by a classical Bloch wave analysis of the same
metamaterial, showing that the relaxed micromorphic model is able to catch the main features of the mechanical
behavior of such metamaterial, namely:

• the overall patterns of the dispersion curves as function of the direction of propagation,

• the polar plots of the phase velocity,

• the band-gap characteristics.

In order to accomplish this task, we will make strong use of a generalization of the procedure proposed before
for the identification of the micro and macro coefficients for the isotropic case. More particularly we will use the
fundamental results derived in [8] according to which

• for Lc → 0 the homogenization formula takes the form

Cmacro = Cmicro (Cmicro + Ce)−1 Ce,
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• for Lc →∞ the equivalent continuum (unit-cell) has stiffness Cmicro.

As explained before, the elastic tensors Cmacro and Cmicro will be determined by using finite element simulations on
the unit-cell with periodic and Dirichlet boundary conditions, respectively. This paper is now organized as follows:

• in Section 2 we introduce the notation used in the paper,

• in Section 3 we present the general anisotropic relaxed micromorphic model in a variational format and we
derive the PDEs governing the system by performing the first variation of the introduced action functional,

• in Section 4 we introduce the plane wave ansatz on the unknown kinematical fields in order to show how it is
possible to reduce the system of governing PDEs to an algebraic problem, describing the procedures to derive
the dispersion curves,

• in Section 5 we consider a particular periodic microstructure which has tetragonal symmetry and we perform
the Bloch-Floquet analysis in order to derive the dispersion curves associated to the equivalent continuum.
The dispersion curves obtained with this method will be used in following sections to calibrate the parameters
of the relaxed micromorphic model,

• in Section 6 we particularize the general framework of the anisotropic relaxed micromorphic model presented
in Section 3 to the particular case of the tetragonal material symmetry,

• in Section 7 we show how almost all the elastic coefficients of the relaxed micromorphic model (except the
Cosserat couple modulus µc) can be determined on the basis of purely static tests on very large specimens of
metamaterial and on suitable unit-cells of the metamaterial itself. To this aim, finite element simulations on
the unit-cell with periodic and Dirichlet boundary conditions are used, respectively,

• in Section 8 we present in detail the fitting procedure that we used to obtain the remaining parameters of the
relaxed micromorphic model which have not been determined by static arguments. This will be done via the
superposition of the dispersion curves obtained from our model to those obtained via Bloch-Floquet analysis,

• in Section 9 we show how the proposed anisotropic relaxed model is able to catch the anisotropic behavior of
the considered tetragonal metamaterial. This is done by comparing the polar plots of the phase velocity as
obtained with the relaxed micromorphic model to those obtained via Bloch-Floquet analysis. We show that a
very good agreement exists for all directions of propagation and for wavelength which can become very small,
even comparable to the size of the unit-cell.

2 Notation
Throughout this paper the Einstein convention of summation over repeated indexes is used unless stated otherwise.
We denote by R3×3 the set of real 3 × 3 second order tensors and by R3×3×3 the set of real 3 × 3 × 3 third order
tensors. The standard Euclidean scalar product on R3×3 is given by 〈X,Y 〉 R3×3 = tr(X · Y T ) and, thus, the
Frobenius tensor norm is ‖X‖2 = 〈X,X〉 R3×3 . Moreover, the identity tensor on R3×3 will be denoted by 1, so that
tr(X) = 〈X,1〉. We adopt the usual abbreviations of Lie-algebra theory, i.e.:

• Sym (3) := {X ∈ R3×3 |XT = X} denotes the vector-space of all symmetric 3× 3 matrices,

• so (3) := {X ∈ R3×3 |XT = −X} is the Lie-algebra of skew symmetric tensors,

• sl(3) := {X ∈ R3×3 |tr(X) = 0} is the Lie-algebra of traceless tensors ,

• R3×3 ' gl(3) = {sl(3) ∩ Sym (3)} ⊕ so (3) ⊕ R ·1 is the orthogonal Cartan-decomposition of the Lie-algebra
gl(3).

In other words, for all X ∈ R3×3, we consider the orthogonal decomposition

X = dev symX + skewX +
1

3
tr(X)1 (5)

where:

• symX = 1
2 (XT +X) ∈ Sym (3) is the symmetric part of X,

8



• skewX = 1
2 (X −XT ) ∈ so (3) is the skew-symmetric part of X,

• devX = X − 1
3 tr(X)1 ∈ sl(3) is the deviatoric (trace-free) part of X.

Throughout all the paper we indicate:

• with hat, i.e. L̂, a sixth order tensor L̂ : R3×3×3 → R3×3×3,

• with overline, i.e C, a fourth order tensor C : R3×3 → R3×3,

• without superscripts, i.e.C, a classical fourth order tensor acting only on symmetric matrices
(C : Sym (3)→ Sym (3)) or skew-symmetric ones (Cc : so (3)→ so (3)) ,

• with tilde, i.e. C̃c, a second order tensor C̃c : R3 → R3 appearing as elastic stiffness of certain coupling terms.

We indicate by CX the linear application of a tensor of 4th order to a tensor of 2nd order; the analogous notation
is used for the linear application of a tensor L̂ of 6th order to a 3rd order tensor and that of a tensor M of 3rd order
to a 2nd order tensor. More specifically,(

CX
)
ij

= CijhkXhk ,
(
L̂A

)
ijh

= L̂ijhpqrApqr , (MX)α = Mαij Xij . (6)

The operation of simple contraction between tensors of suitable order is denoted by · ; for example,(
C̃ · v

)
i

= C̃ijvj ,
(
C̃ ·X

)
ij

= C̃ihXhj . (7)

Typical conventions for differential operations are used, such as a comma followed by a subscript to denote the
partial derivative with respect to the corresponding Cartesian coordinate, i.e. (·),j = ∂(·)

∂xj
.

The curl of a vector field v is defined as
(curl v)i = εijk vk,j ,

where εijk is the Levi-Civita third order permutation tensor. Let X ∈ R3×3 be a second order tensor field and
X1, X2, X3 ∈ R3 three vector fields such that

X =

XT
1

XT
2

XT
3

 .

The Curl of X is defined as follows:

CurlX =

(curlX1)
T

(curlX2)
T

(curlX3)
T


or in index notation,

(CurlX)ij = εjmnXin,m.

For the iterated Curl we find

(Curl Curl P )ij = εjmn (CurlP )in,m = εjmn (εnabPib,a),m = εjmnεnabPib,am

= − εnmjεnabPib,am = − (δmaδjb − δmbδja)Pib,am = Pim,jm − Pij,mm.

The divergence div v of a vector field v is defined as div v = vi,i and the divergence DivX of a tensor field X ∈ R3×3

as

DivX =

divX1

divX2

divX3


or, in index notation, (DivX)i = Xij,j . Given two differentiable vector fields u, v : Ω ⊆ R3 → R3, we find9

div (u× v) = 〈curlu, v〉 − 〈u, curl v〉 , (8)
9We denote by u× v the cross product of two vectors u, v.
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since

div (u× v) = (εijkujvk),i = εijkuj,ivk + εijkujvk,i = εkijuj,ivk − ujεjikvk,i = 〈curlu, v〉 − 〈u, curl v〉 .

We also introduce the Sobolev spaces

H1
(
Ω,R3

)
=
{
u ∈ L2

(
Ω,R3

)
| ∇u ∈ L2

(
Ω,R3×3

)}
,

with norm ‖u‖2H1(Ω,R3) = ‖u‖2L2(Ω,R3) + ‖∇u‖2L2(Ω,R3×3), and

H
(
Curl;Ω,R3×3

)
=
{
P ∈ L2

(
Ω,R3×3

)
| CurlP ∈ L2

(
Ω,R3×3

)}
,

with norm ‖P‖2H(Curl;Ω,R3×3) = ‖P‖2L2(Ω,R3×3) + ‖CurlP‖2L2(Ω,R3×3).

3 Variational formulation of the relaxed micromorphic model
The kinematical fields of the problem are the displacement field u and the micro-distortion tensor P , where

u : Ω× [0, T ]→ R3, (x, t) 7→ u (x, t) , P : Ω× [0, T ]→ R3×3, (x, t) 7→ P (x, t) ,

Ω is an open bounded domain in R3 with a piecewise smooth boundary ∂Ω and closure Ω and [0, T ] ⊆ R is the
time interval. The mechanical model is formulated in the variational context. This means that we have to consider
an action functional on an appropriate space of functions. Setting Ω0 = Ω× {0}, the space of configurations of the
problem is

Q :=
{

(u, P ) ∈ H1
(
[0, T ] ;H1

(
Ω,R3

)
×H

(
Curl; Ω,R3×3

))
| (u, P ) verifies conditions (B1) and (B2)

}
where

• (B1) is the imposition of the boundary conditions u (x, t) = ϕ (x, t) and Pi (x, t) × n = ψi (x, t), i = 1, 2, 3,
(x, t) ∈ ∂Ω× [0, T ], where n is the unit outward normal vector at ∂Ω× [0, T ], Pi, i = 1, 2, 3 are the rows of P
and ϕ,ψi are prescribed functions,

• (B2) is the imposition of the initial conditions u|Ω0
= u0, u,t|Ω0

= u0, P |Ω0
= P0, P,t|Ω0

= P 0 in Ω0, where
u0 (x) , u0 (x) , P0 (x) , P 0 (x) are prescribed functions.

The action functional A : Q → R is the sum of the internal and external action functionals A int
L ,A ext : Q → R

defined by

A int
L [(u, P )] :=

∫ T

0

∫
Ω

L (u,t,∇u,t, P,t,∇u, P,CurlP ) dv dt, (9)

A ext [(u, P )] :=

∫ T

0

∫
Ω

(〈
fext, u

〉
+
〈
Mext, P

〉)
dv dt,

where L is the Lagrangian density of the system and fext,Mext are the body force and body double force,
respectively. In this work we will consider fext = 0, Mext = 0 and the derivatives have to be understood in
the sense of distributions. In order to find the stationary points of the action functional, we have to calculate its
first variation:

δA = δA int
L = δ

∫ T

0

∫
Ω

L (u,t,∇u,t, P,t,∇u, P,CurlP ) dv dt.

Results of well-posedness for variational problems of this type (existence, uniqueness and stability of solution) have
been proved in [28, 50, 51]. In order to effectively compute this first variation, a specific form for the Lagrangian
has to be specified.
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3.1 Constitutive assumptions on the Lagrangian and equations of motion
For the Lagrangian energy density we assume the standard split into kinetic minus potential energy:

L (u,t,∇u,t, P,t,∇u, P,CurlP ) = J (u,t,∇u,t, P,t)−W (∇u, P,CurlP ) . (10)

When considering anisotropic linear elastic micromorphic media, as reported in [8, 51], the kinetic energy density
and the potential one may take on the form

J (u,t,∇u,t, P,t) =
1

2
〈ρ u,t, u,t〉+

1

2
〈Jmicro symP,t, symP,t〉+

1

2
〈Jc skewP,t, skewP,t〉 (11)

+
1

2
〈T sym∇u,t, sym∇u,t〉+

1

2
〈Tc skew∇u,t, skew∇u,t〉 ,

W (∇u, P,CurlP ) =
1

2
〈Ce sym (∇u− P ) , sym (∇u− P )〉R3×3︸ ︷︷ ︸

anisotropic elastic - energy

+
1

2
〈Cmicro symP, symP 〉R3×3︸ ︷︷ ︸

micro - self - energy

(12)

+
L2
c

2
(〈L symCurlP, symCurlP 〉R3×3 + 〈Lc skewCurlP, skewCurlP 〉R3×3)︸ ︷︷ ︸

curvature

+
1

2
〈Cc skew (∇u− P ) , skew (∇u− P )〉R3×3︸ ︷︷ ︸

invariant local anisotropic rotational elastic coupling

with

ρ : Ω→ R+ macro-inertia mass density,
Jmicro : Sym (3)→ Sym (3) classical 4thorder free micro-inertia density tensor,
T : Sym (3)→ Sym (3) classical 4thorder gradient micro-inertia density tensor,
Jc,Tc : so (3)→ so (3) 4thorder coupling tensors,

Ce,Cmicro,L : Sym (3)→ Sym (3) classical 4thorder elasticity tensors with 21 independent components,
Cc,Lc : so (3)→ so (3) 4th order coupling tensors with 6 independent components,

where Lc is the characteristic length of the relaxed micromorphic model. We demand that the bilinear forms induced
by Jmicro,T,Ce,Cmicro,L are positive definite, i.e.,

∃ c+, τ+, c+e , c
+
m, c

+
l > 0 | ∀S ∈ Sym(3) :



〈Jmicro S, S〉 R3×3 ≥ c+‖S‖2R3×3 ,

〈T S, S〉 R3×3 ≥ τ+‖S‖2R3×3 ,

〈Ce S, S〉 R3×3 ≥ c+e ‖S‖2R3×3 ,

〈Cmicro S, S〉 R3×3 ≥ c+m‖S‖2R3×3 ,

〈L S, S〉 R3×3 ≥ c+l ‖S‖2R3×3 ,

(13)

while the bilinear forms induced by Jc,Tc,Cc,Lc are only required to be positive semi-definite, i.e.

∀A ∈ so (3) :


〈
Jc A,A

〉
R3×3 ≥ 0,〈

Tc A,A
〉
R3×3 ≥ 0,〈

Cc A,A
〉
R3×3 ≥ 0,〈

Lc A,A
〉
R3×3 ≥ 0.

(14)

The equations of motion10 are given as a set of 3 coupled PDE-systems for u, symP and skewP :
10For the explicit derivation of these equations, see Appendix (11.1).
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ρ u,tt −Div (T sym∇u,tt)
−Div (Tc skew∇u,tt) = Div (Ce sym (∇u− P ) + Cc skew (∇u− P )) , (15)

Jmicro symP,tt = Ce sym (∇u− P )− Cmicro symP − L2
c symCurl (L symCurlP + Lc skewCurlP ) ,

Jc skewP,tt = Cc skew (∇u− P )− L2
c skewCurl (L symCurlP + Lc skewCurlP ) .

4 Plane wave propagation in anisotropic relaxed micromorphic media
As it is known in the context of dynamical analysis, a particular class of solutions of the system of partial differential
equations (15) can be found considering the monochromatic plane wave form for the kinematics fields, i.e.

u (x, t) = û cos (〈k, x〉 − ωt) , P = P̂ sin (〈k, x〉 − ωt) , k = k k̂, (16)

where û = (û1, û2, û3) is the so-called polarization vector in R3 , k̂ = (k1, k2, k3) ∈ R3,
∥∥k̂∥∥ = 1 is the direction of

wave propagation and P̂ ∈ R3×3. Under this hypothesis, when replacing (16) in (15), the search of solutions to (15)
turns into an algebraic problem. Indeed, the system of partial differential equations (15) becomes the following one:

D (k, ω) · v = 0, (17)

where, in this specific case, D (k, ω) is a 12 × 12 matrix with real-valued entries, whose components are functions
of the constitutive tensors11 and of (k, ω). Moreover, we set

v =
(
û1, P̂

D, P̂S , û2, P̂(12), P̂[12], û3, P̂(13), P̂[13], P̂(23), P̂[23], P̂
V
)
∈ R12, (18)

in which P̂D, P̂S , P̂V , P̂(12), P̂(13), P̂(23), P̂[12], P̂[13], P̂[23], are defined, following [18,43], as

P̂D =
2

3
P̂11 −

1

3

(
P̂22 + P̂33

)
, P̂(αβ) = P̂(βα) =

1

2

(
P̂αβ + P̂βα

)
if α 6= β, P̂[αβ] =

1

2

(
P̂αβ − P̂βα

)
= −P̂[βα],

P̂S =
1

3

(
P̂11 + P̂22 + P̂33

)
, P̂V = P̂22 − P̂33 2 P̂S − P̂D = P̂22 + P̂33.

Clearly, the algebraic problem (17) admits non-trivial solutions if and only if the determinant of the matrix D is
zero. The equation detD = 0 allows to calculate the eigenvalues ω = ω (k). The curves ω = ω (k) plotted in the
(ω, k) plane are called dispersion curves. The nature of the solutions to this specific algebraic problem is hard
to investigate and at the moment, a rigorous mathematical description of the behavior of the dispersion curves is
missing. For example, for the general relaxed micromorphic model, we need

(C1) to show that under the hypothesis of positive definiteness of the Lagrangian density12 we have real wave
velocity (i.e. real ω) and to find conditions that characterize this phenomenon (this kind of analysis has
already been performed for the isotropic case: in [52] the authors showed that the rank one convexity condition
does not imply real wave propagation and they found another characterizing condition),

(C2) to prove that under the hypothesis of positive definiteness of the Lagrangian the problem (17) admits as
solutions a finite set of regular dispersion curves {ω̂i (k)}n∈Ni=1 .

At the moment, we simply assume the validity of the two conjectures C1 and C2 (postponing to future works the
aim to rigorously prove them) and will only numerically check that, for our choice of the material parameters,
we have only real wave propagation. Due to the complicated form of the components of the matrix D (k, ω) as
a function of the constitutive parameters in the fully anisotropic case, we will not explicitly write them here but,
we can say that, in general, the matrix D (k, ω) has the structure D (k, ω) = A2 k

2 + B2 ω
2 + A1k + C0, where

A2, B2, A1, C0 are matrices in R12×12 depending on the material parameters.
11This means that the components Dij of the matrix D are functions Dij (k, ω,T,Tc, Jmicro, Jc,Ce,Cc,Cmicro,L,Lc, Lc). In the

following, we will explicitly state only the dependence on (k, ω) if not differently specified.
12With positive definiteness of the Lagrangian density we mean that all the 4-order symmetric tensors present in L are positive

definite (i.e. the associated bilinear forms are positive definite). On the other hand we say that L verifies the Legendre-Hadamard
strong ellipticity condition if letting z = (u, P ) ∈ R12 and Z = (∇u,∇P ) we have that ∇2

ZL (z, Z) (ξ ⊗A, ξ ⊗A) ∀ ξ ∈ R3, A ∈ R3×3.
It is well known (for example see [17]) that if L is C 2 with respect to Z, then the Legendre-Hadamard strong ellipticity condition is
equivalent to rank-one convexity, i.e. to the convexity in θ of the function θ 7→ L (z, Z + θ (ξ ⊗A)) at all (z, Z) (see [52]).
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4.1 Reduction to the 2D plane strain case
In what follows, we will be interested (for simplicity of the computational task) only in the study of the wave propa-
gation with k̂ in the plane (x1, x2, 0). In this way, setting the amplitudes out of the plane, û3, P̂13, P̂23, P̂33, P̂31, P̂32,
equal to zero, the vector of the unknown amplitudes v given in (18) reduces to13

ṽ =
(
û1, P̂

D, P̂S , û2, P̂(12), P̂[12]

)
.

The system of algebraic equations (17) simplifies to

D̃ (k, ω) · ṽ = 0, (19)

where the explicit expression of the 6× 6 matrix D̃ is given in Appendix 11.3. The dispersion curves ω = ω (k) that
we will show in the following are then the solutions of the algebraic equation

det D̃ (k, ω) = 0.

5 Unit-cell and discrete numerical simulations via Bloch-Floquet anal-
ysis

In this section, we perform some discrete numerical simulations of wave dispersion in a precise metamaterial which
will be further used to suitably show how the proposed relaxed micromorphic model can describe its (effective)
homogenized behavior. Chosen the microstructure, we perform a Bloch-Floquet analysis of the wave propagation
in the generated periodic infinite medium thanks to the FEM code COMSOLr. This kind of analysis can be easily
implemented using the Bloch-Floquet boundary conditions which are built in the code. The microstructure Ωc (see
Fig.1(b)) we account for is realized as follows: given the plane structure Σc shown in Fig.1(a), with dimensions
specified in Table 1, we define Ωc = Σc × [0, 1] in which the unit is in meters. The grey region of Σc is filled by
aluminum while the white one is empty. The group symmetry of the introduced microstructure is the tetragonal
one (i.e., in the language of group theory, the generated solid is invariant under the action of the discrete subgroup14
D4 of SO(3)).

(a) (b) (c)

Figure 1: Microstructure implemented in COMSOLr: (a) Plane cell Σc, (b) 3D tetragonal cell Ωc, (c) infinite
periodic medium Ω.

The geometric dimensions and the mechanical parameters (Young’s modulus and Poisson’s ratio) of the presented
microstructure are given in Table 1.

13Note that once P̂D and P̂S are known then P̂V is automatically determined and, in general, not vanishing.
14D4 is the dihedral group of order 4. It counts 8 elements.
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a b c d

[mm] [mm] [mm] [m]

1 0.9 0.3 1

E ν µ λ

[GPa] − [GPa] [GPa]

70 0.33 26.32 51.08

Table 1: Geometry of the unit-cell (Fig. 1) and elastic parameters of Aluminum.

We can now determine the apparent density ρ of the unit-cell Ωc. In order to do this, denoting with Val the
volume occupied by the aluminum in the unit-cell (55%), we find that

Mal = ρalVal = 2.7× 103 × 5.5× 10−7

[
kg

m3

] [
m3
]

= 14.85× 10−4 [kg] ,

where Mal is the mass of the volume occupied by the aluminum and ρal = 2.7 × 103
[

kg
m3

]
is the aluminum mass

density. Having that the volume of the unit-cell is Vol (Ωc) = 10−6
[
m3
]
we find that

ρ =
Mal

Vol (Ωc)

[
kg

m3

]
= 1485

[
kg

m3

]
. (20)

When fixing the parameters of the unit-cell as in Table 1 and when performing a Bloch-Floquet analysis on the
considered periodic structure, the dispersion curves shown in Fig.2 are obtained.
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(a) (b)

Figure 2: COMSOLr model (plane strain Bloch-Floquet analysis). In (a) we plot the dispersion branches for
k̂ = (1, 0, 0) (horizontal wave propagation) and in (b) for k̂ =

(√
2/2,
√

2/2, 0
)
(wave propagation at 45°).

These curves for the two directions will be used in Section 8 to fit the dynamical parameters of the relaxed
micromorphic model.

6 The tetragonal case in the relaxed micromorphic model
In this section we are able to show one of the main interests of using the proposed relaxed micromorphic model
for the description of the homogenized mechanical behavior of anisotropic metamaterials. Indeed, classical elastic
tensors of linear elasticity can be used once the symmetry class of the material is identified. This avoids unnecessary
complexifications related to the study of the symmetry classes of higher order tensors as happens in gradient elasticity
(see, e.g., [5, 61]).
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Having remarked that the crystallographic symmetry group of Ωc is D4, we specify the general anisotropic model
of a continuum which has the tetragonal symmetry property. This means that all involved structural tensors C
have to respect the invariance condition

QaiQbjQchQdkCabcd = Cijhk, ∀Q ∈ D4. (21)

In order to express the constitutive tensors as 6 × 6 matrices, we use the following identification C → C̃ ∈ R6×6

(see [8]), where

C̃ =



C1111 C1122 C1133
2
cC1123

2
cC1113

2
cC1112

C2211 C2222 C2233
2
cC2223

2
cC2213

2
cC2212

C3311 C3322 C3333
2
cC3323

2
cC3313

2
cC3312

2
cC2311

2
cC2322

2
cC2333

4
c2C2323

4
c2C2313

4
c2C2312

2
cC1311

2
cC1322

2
cC1333

4
c2C1323

4
c2C1313

4
c2C1312

2
cC1211

2
cC1222

2
cC1233

4
c2C1223

4
c2C1213

4
c2C1212


(22)

and c ∈ R. According to the considered transformation, the strain tensor ε ∈ Sym (3) transforms in the vector
ε̃ ∈ R6 according to:

ε̃ =
(
ε11, ε22, ε33, c ε23, c ε13, c ε12

)T
. (23)

On the other hand, the stress tensor σ ∈ Sym (3) is transformed into the vector σ̃ ∈ R6 as

σ̃ =
(
σ11, σ22, σ33,

2
c σ23,

2
c σ13,

2
c σ12

)T
= C̃ · ε̃. (24)

According to this notation, the classical tensorial stress-strain relation σij = Cijhk εhk can be written in compact
vector form as

σ̃ = C̃ · ε̃. (25)

In the following, all the elastic tensors Ce,Cc,Cmicro,L,Lc, Jmicro, Jc,T,Tc appearing in eqs. (11), (12) will be
written in compact form according to the transformation (25) and considering c = 2 (Voigt notation). This means
that all the introduced second order elastic tensors and the associates stress and strain vectors σ̃ and ε̃ will take
the particular (Voigt) form15

C̃ =



C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212


, σ̃ =


σ11

σ22

σ33

σ23

σ13

σ12

 , ε̃ =


ε11

ε22

ε33

2 ε23

2 ε13

2 ε12

 . (26)

In the considered tetragonal case, the matrices corresponding to the considered tensors have the following structure
15Many different other choices exist in literature, for example c =

√
2 is known as Mandel notation. Nevertheless, it has to be

remarked that changing the values of c changes not only the elastic tensor, but also the way in which the tensors σ and ε transform in
the corresponding vectors σ̃ and ε̃ (see eq. (25)).
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(see e.g. [8]):

C̃e =



2µe + λe λe λ∗e 0 0 0
λe 2µe + λe λ∗e 0 0 0

λ∗e λ∗e (C̃e)33 0 0 0

0 0 0 (C̃e)44 0 0

0 0 0 0 (C̃e)44 0
0 0 0 0 0 µ∗e

 , C̃c =

4µ∗c 0 0
0 4µ∗c 0
0 0 4µc

 ,

L̃ =



2α1 + α3 α3 α∗3 0 0 0
α3 2α1 + α3 α∗3 0 0 0

α∗3 α∗3 L̃33 0 0 0

0 0 0 L̃44 0 0

0 0 0 0 L̃44 0
0 0 0 0 0 α∗1

 , L̃c =

4α∗2 0 0
0 4α∗2 0
0 0 4α2

 ,

T̃ =



2η1 + η3 η3 η∗3 0 0 0
η3 2η1 + η3 η∗3 0 0 0

η∗3 η∗3 T̃33 0 0 0

0 0 0 T̃44 0 0

0 0 0 0 T̃44 0
0 0 0 0 0 η∗1

 , T̃c =

4η∗2 0 0
0 4η∗2 0
0 0 4η2

 ,

J̃micro =



2η1 + η3 η3 η∗3 0 0 0
η3 2η1 + η3 η∗3 0 0 0

η∗3 η∗3 (J̃micro)33 0 0 0

0 0 0 (J̃micro)44 0 0

0 0 0 0 (J̃micro)44 0
0 0 0 0 0 η∗1

 , J̃c =

4η∗2 0 0
0 4η∗2 0
0 0 4η2

 , (27)

C̃micro =



2µmicro + λmicro λmicro λ∗micro 0 0 0
λmicro 2µmicro + λmicro λ∗micro 0 0 0

λ∗micro λ∗micro (C̃micro)33 0 0 0

0 0 0 (C̃micro)44 0 0

0 0 0 0 (C̃micro)44 0
0 0 0 0 0 µ∗micro

 .

Remark 1. We explicitly remark that in the considered plane strain 2D case (no micro and macro motion in the
3-direction) some of the components of the elastic tensors do not explicitly appear neither in the PDEs (15) nor
in the algebraic system (19). This is equivalent to say that, in the considered 2D tetragonal case, the only active
components of the involved elastic tensors can be identified as follows:

C̃e =


2µe + λe λe ∗ 0 0 0

λe 2µe + λe ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 0 0 ∗ 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 µ∗e

 , C̃c =

∗ 0 0
0 ∗ 0
0 0 4µc

 . (28)

A similar reducibility holds for the other involved tensors.
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7 Parameter identification by numerical homogenization
The main task which has to be accomplished to successfully apply constitutive laws to the real material world
is the identification of their parameters. For the present relaxed micromorphic model there are three sets of
material parameters Cmicro, Ce and Cmacro describing the size-independent static response. By virtue of the recently
established harmonic mean-type micro-macro homogenization rule (51), the elasticities of the three scales are
connected such that the determination of two sets is enough to infer on the third one. Only the micro as well as
mesoscale-elastic parameters appear in the relaxed micromorphic energy (12), while Cmacro refers to a macroscopic,
energetically equivalent, linear elastic surrogate model. In view of these characteristics, the coefficients of Cmacro can
be identified by standard homogenization on the periodic unit-cell level. The identification of the micro parameters
through homogenization is non-standard, since novel criteria have to be established to identify an appropriate
unit-cell and boundary conditions.

For analyses of the considered tetragonal metamaterial in the plane, the number of independent material con-
stants in linear elasticity is three for each of the scales. Both the macro- as well as the microscopic elasticity
parameters are computed by numerical homogenization on the unit-cell level. To that aim we employ the Finite-
Element Heterogeneous Multscale Method FE-HMM [21], a two-level finite element method, which is based on
asymptotic homogenization and on the most general Heterogeneous Multiscale Method HMM [20]. A mathematical
analysis of FE-HMM for linear elasticity is provided in [1], an overview of the method is given in [2].

A key advantage of FE-HMM is its sound mathematical foundation. In [1] error estimates for the fully dis-
crete case are derived, which cover the micro and the macro error in a unified manner. The error introduced
by approximating the exact elasticity tensor C0

ij by its numerical counterpart C0,h
ij follows for sufficiently regular

problems
|C0,h
ij − C0

ij | ≤ C(h/δ)2q , (29)

where h is the characteristic mesh-size, δ is the side length of the unit-cell, and q is the polynomial degree of the
finite element shape functions. Here, it holds δ = a (see Table 1) whereas for linear shape functions q = 1.

7.1 Determination of the macroscopic parameters Cmacro - periodic homogenization

Figure 3: The Finite Element Heterogeneous Multiscale Method: a computational strategy for multiscale PDEs.

Since periodic boundary conditions (PBCs) mimic an infinite number of unit-cells, they are employed to compute
the macroscopic parameters of the relaxed micromorphic model. A uniform discretization of the unit-cell is shown
in the left of Fig. 3. The Lamé constants for the converged solution are obtained for h = 1/2560 mm; they are
displayed in Table 2.

geometry boundary conditions elasticity parameters

Fig.6 in x-y-dir./loading λmacro µmacro µ∗macro

[GPa] [GPa] [GPa]

(a)–(d) periodic 1.738 5.895 0.620

Table 2: Homogenized macroscopic Lamé constants identified under plane strain and PBCs.
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On the right of Fig. 3 the convergence diagram for the error in the coefficients of C0,h
ij is displayed, where the

fully converged solution served as reference. Due to the low regularity of the problem – reentrant corners along
with the infinite stiffness contrast between the phases – the observed convergence order is in the range of 1.32 to
1.43 and therefore far behind the nominal convergence order of 2q = 2 according to (29).

More specifically, the macroscopic stiffness Cmacro is obtained by using the classical result of periodic homoge-
nization (see e.g. [9, 12,13]):

1

2
〈Cmacro Ē, Ē〉 := inf

{
1

|Ωc|

∫
ξ∈Ωc

1

2

〈
C (ξ) sym

(
∇ξv (ξ) + E

)
, sym

(
∇ξv (ξ) + E

)〉
dξ
∣∣∣ v ∈ C∞(Ωc,R3

)
is periodic

}
,

(30)
where C(ξ) is the elasticity tensor of the aluminum phase or air depending on the position of ξ in the unit-cell16 and
E = sym∇u (x). For the computation of these macroscopic elasticity coefficients we use the two-scale finite element
method FE-HMM [21] (see also [46,66,67]) and we assume that the microproblem is driven under macroscopic plane
strain conditions.

The transition from a heterogeneous unit-cell of tetragonal symmetry to the case of homogeneous isotropy is
shown in Fig. 4, which, for a cross-shaped pore of vanishing size, results in the Lamé constants of aluminum, see
Table 3.

Figure 4: Decreasing the cross size recovers the homogeneous case of isotropic elasticity.

7.2 Determination of the microscopic parameters Cmicro – nonstandard criteria im-
posed on homogenization by the relaxed micromorphic model

(a) (b)

Figure 5: Identification of the (a) standard square unit-cells of sidelenght a and (b) rotated square unit-cells of
sidelength a

√
2. Yellow/blue shading indicates tetragonal/orthorhombic symmetries. No shading for cells with only

one symmetry axis. Note that the metamaterial obtained by the infinite repetition of all these unit-cells is the same
tetragonal metamaterial.

As has been shown in previous works [57], Cmicro represents the stiffness of an equivalent micro problem when
letting the characteristic length Lc → ∞, i.e., a maximal zoom on the microstructure. The relaxed micromorphic
model is the only micromorphic type model that features a finite micro-stiffness; in fact, classical Mindlin-Eringen
models or even higher gradient models always provide an infinite stiffness when letting Lc → ∞ and assuming

16Here, x is the macro space variable of the continuum, while ξ is the micro-variable spanning inside the unit-cell.
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inhomogeneous loading. In conclusion, by its very construction, the relaxed model is endowed to treat the class of
heterogeneous metamaterials as a well-posed problem both at macro and micro scales.

Similar to the macro parameters, the micro set Cmicro shall be identified by numerical homogenization. In
contrast to the macroscopic scale, the relaxed micromorphic model imposes conditions at the micro-scale, which
are non-standard, and in particular, in their combination, very selective as far as the choice of the unit-cell is
concerned. The conditions which are imposed by the relaxed micromorphic model on choice of the unit-cells and
on the boundary conditions read:

(i) they correspond to the case Lc →∞, a maximal zoom into the material,
(ii) they represent the maximal stiffness of the (meta)material at the micro-scale,
(iii) they reflect the material’s (tetragonal) symmetry.

The first condition Lc →∞ is rather vague and not very selective. The zoom into the single solid phase of the
material however can be ruled out, since the resultant isotropy of aluminum violates condition (iii).

Condition (ii) alone suggests to consider constant strain conditions, since they yield the upper bound of stiffness,
the Voigt-bound. Under constant strain assumption however, symmetry information of the microstructure is lost;
numerical homogenization results in an isotropic material response, µ = µ∗, see Table 3, which again violates
condition (iii). The conclusion is, that conditions (ii) and (iii) cannot be fulfilled by the constant strain assumption
except for the trivial case of isotropy.

Among the boundary and loading conditions fulfilling the Hill-Mandel postulate (see footnote 20), linear Dirichlet
boundary conditions are the candidate to find the maximal stiffness while preserving material symmetries. It is well
known, that PBCs yield less stiff results, and the constant stress assumption defines the lower bound of stiffness,
the Reuss-bound.

There is an infinite number of valid, hence “equivalent” unit-cell variants for the homogenization of periodic
media, if PBCs are applied17. Figure 5 shows some of them for the case of periodic tessellation based on squares
of side length a and based on rotated squares of sidelength a

√
2. Additionally, other quadrilaterals like rectangles

and parallelograms can be used for valid periodic tessellation. They all result in the same material macroscopic
stiffness and they all preserve the tetragonal symmetry, if PBCs are applied to the unit-cell.

The application of linear Dirichlet BCs (kinematically uniform boundary conditions KUBC) drastically reduces
the above set of periodically ”equivalent” unit-cells of sidelenghts a and a

√
2, since only four of them capture the

tetragonal symmetry under these boundary conditions. These cells are highlighted in yellow color in Fig. 5, those
with two symmetry axes of orthorhombic materials appear in blue shading. The rest of the displayed unit-cells
exhibit only one symmetry axis. While KUBC render the symmetry criterion (iii) very selective for unit-cells, the
requirement for maximal stiffness on top of that condition determines without ambiguity the variant (d) in Fig. 6
as the stiffest unit-cell, see Table 3.

(a) (b) (c) (d)

Figure 6: Various regular square unit-cells respecting tetragonal symmetry.
17For a discussion of the non-uniqueness of the unit-cell, see [62].
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geometry boundary conditions elasticity parameters

Fig.6 in x-y-dir./loading λhom µhom µ∗hom

(a)–(d) PBCs 1.738 5.895 0.620

(a) KUBC 1.752 5.932 0.627

(b) 2.126 5.899 2.264

(c) 4.370 6.242 8.332

(d) 11.96 12.51 9.917 Cmicro

(a)–(d) constant strain - Voigt 28.10 14.47 14.47

aluminum full KUBC and PBCs 51.08 26.32 26.32

Table 3: Homogenized material parameters [GPa] for tetragonal unit-cell variants (a)–(d) in Fig. 6 for KUBC
and PBCs, for constant strain assumption (Voigt-bound), and the case of single phase aluminum. We remark that
taking any other set of values, (a),(b),(c) KUBC for Cmicro does not lead to a consistent fitting.

In Table 3, we also report the computed values of the unit-cell stiffnesses using constant-strain conditions, as
well as the stiffness of a unit-cell completely filled by aluminum computed both with KUBC and PBCs.

We repeat again that constant-strain conditions cannot be retained to compute Cmicro because they are not
compatible with the fact of considering a microstructure with a given symmetry (note that the obtained result is
that of an isotropic material). Finally, we remark that in the case of an isotropic unit-cell (full aluminum) the
homogenization results for KUBC and PBCs coincide.

In conclusion, the homogenization requirements (i)–(iii) for the microparameter set along with the Hill-Mandel
condition lead without ambiguity to KUBC and uniquely identify the stiffest unit-cell in terms of the corresponding
Lamé-parameters. With Cmicro and Cmacro in hand, we are able to compute Ce with formula (50).

Conditions (i)–(iii) shall be underpinned by mathematical arguments in the next Section 7.3.

Remark 2. The restriction to a and a
√

2 as the sidelength of quadratic unit-cells is based on the observation that
for KUBC, increasing the size of the selection window decreases stiffness and, for an N ×N ensemble of unit-cells,
leads for N →∞ to the stiffness of a unit-cell subject to PBCs.

7.3 Rigorous determination of Cmicro as the maximal stiffness of a suitable unit-cell
In this section we describe our mathematical approach towards determining the stiffness Cmicro in the relaxed
micromorphic model. We do this in the static case, in which the equilibrium problem (15) can be obtained as the
energy minimization problem

I (u, P ) :=

∫
Ω

W (∇u, P,CurlP ) dx −→ min (u, P ) (31)

with

W (∇u, P,CurlP ) =
1

2
〈Ce sym (∇u− P ) , sym (∇u− P )〉R3×3︸ ︷︷ ︸

anisotropic elastic - energy

+
1

2
〈Cmicro symP, symP 〉R3×3︸ ︷︷ ︸

micro - self - energy

+
L2
c

2
(〈L symCurlP, symCurlP 〉R3×3 + 〈Lc skewCurlP, skewCurlP 〉R3×3)︸ ︷︷ ︸

curvature

(32)

+
1

2
〈Cc skew (∇u− P ) , skew (∇u− P )〉R3×3︸ ︷︷ ︸

invariant local anisotropic rotational elastic coupling

.

For the displacement u we propose the overall affine Dirichlet boundary conditions

u|∂Ω (x) = B · x, B ∈ R3×3 (33)
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and the microdistortion P has to satisfy the boundary condition

∇u|∂Ω (x) · τ1,2 = P |∂Ω (x) · τ1,2 , (34)

where τ1,2 are tangent vectors to ∂Ω. One then observes that the minimal energy content of a solution (u, P ) to
the minimization problem (31),(33),(34) is easily bounded above by choosing the macroscopic fields such that

∇u (x) = P (x) in Ω. (35)

This gives

inf
(u,P )

∫
x∈Ω

W (∇u, P,CurlP ) dx ≤ inf
u

∫
x∈Ω

W (∇u,∇u, 0) dx = inf
u

∫
x∈Ω

1

2
〈Cmicro sym∇u (x) , sym∇u (x)〉 dx.

(36)
Therefore, the maximal possible stored elastic energy of the relaxed micromorphic model over an arbitrary window
Ω̃ ⊂ Ω is

inf
u

∫
x∈Ω̃

1

2
〈Cmicro sym∇u (x) , sym∇u (x)〉 dx, (37)

and this value is attained for ∇u (x) = P (x). Below, we will evaluate the latter condition over a given unit-cell
V (x) = Ω̃ attached at the macroscopic point x ∈ Ω. Since ∇u and P are still macroscopic variables18 (where P
is supposed to transport some information from the micro-scale to the macro-scale in the point x ∈ Ω) we may
assume that they are approximately constant over the unit-cell V (x). Due to the inhomogeneity of the unit-cell we
allow for interior fluctuations. More precisely, we can always assume that over the unit-cell, ∇u (x) and P (x) can
be represented as

u (x+ ξ) = B·ξ+ε2 ũ

(
ξ

ε

)
, ∇ξu (x+ ξ) = B+ε∇ξũ

(
ξ

ε

)
, P (x+ ξ) = B+ε P̃

(
ξ

ε

)
, ξ ∈ V (x) , (38)

where ε > 0 is assumed to be much smaller than any characteristic length of the given unit-cell with the interior
fluctuation ũ ∈ C∞0

(
ε V (x) ,R3

)
. This means we allow fluctuations of ∇u (x) around the constant value B in the

order of ε > 0. The average displacement gradient satisfies [71, 3.1, u ∈ C∞]

1

|V (x)|

∫
ξ∈V(x)

∇ξu (x+ ξ) dξ =
1

|V (x)|

∫
ξ∈∂V(x)

u (x+ ξ)⊗ n (ξ) dSξ

=
1

|V (x)|

∫
ξ∈∂V(x)

(
B · ξ

)
⊗ n (ξ) dSξ +

ε2

|V (x)|

∫
ξ∈∂V(x)

ũ

(
ξ

ε

)
⊗ n (ξ) dSξ︸ ︷︷ ︸

=0 since ũ∈C∞0 (ε V (x),R3)

(39)

=
1

|V (x)|

∫
ξ∈V(x)

B dξ = B.

Since the integrand in (37) is convex (quasiconvex) and Cmicro is constant by assumption, the maximal storage of
elastic energy in V (x), according to the relaxed micromorphic model, is realized by the homogeneous displacement
B · ξ which yields

inf
u

∫
ξ∈V (x)

1

2
〈Cmicro sym∇ξu (x+ ξ) , sym∇ξu (x+ ξ)〉 dξ =

1

2

〈
Cmicro symB, symB

〉
|V (x)| (40)

=
1

2

〈
CmicroE,E

〉
|V (x)| , E = symB.

Macroscopic variables are conceptionally some “averages” over the microscale. Hence the attached unit-cell V (x)
must be considered to be loaded such that it produces the given superposed macroscopic average ∇u (x). There
are several choices satisfying this requirement; prominently KUBC and PBCs. It is well known that affine Dirichlet
conditions generate stiffer response than PBCs [34,57]. Under affine Dirichlet conditions (KUBC) the linear elastic

18Despite the name micromorphic model.
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stored energy of the unit-cell is given by

inf

{∫
ξ∈V (x)

1

2
〈C (ξ) sym∇ξ ṽ (ξ) , sym∇ξ ṽ (ξ)〉 dξ

∣∣∣ ṽ|∂V(x) (ξ) = B · ξ

}

= inf

{∫
ξ∈V (x)

1

2

〈
C (ξ) sym

(
∇ξ
[
v (ξ) +B · ξ

])
, sym

(
∇ξ
[
v (ξ) +B · ξ

])〉
dξ
∣∣∣ v ∈ C∞0 (

V (x) ,R3
)}

(41)

= inf

{∫
ξ∈V (x)

1

2

〈
C (ξ)

(
sym∇ξv (ξ) + E

)
, sym∇ξv (ξ) + E

〉
dξ
∣∣∣ v ∈ C∞0 (

V (x) ,R3
)}

=

∫
ξ∈V (x)

1

2

〈
C (ξ)

(
sym∇ξ v̂E (ξ) + E

)
, sym∇ξ v̂E (ξ) + E

〉
dξ,

where (the corrector) v̂E ∈ C∞0
(
V (x) ,R3

)
is the realizing minimizer. We now demand that the coarse-scale en-

ergy (41) should equal the fine-scale energy (36)left over the same domain V (x) under the same affine boundary
conditions. This means

inf
(u,P )

{∫
ξ∈V (x)

W (∇ξu (x+ ξ) , P (x+ ξ) ,CurlP (x+ ξ)) dξ
∣∣∣ u|ξ∈∂V (x+ ξ) = B · ξ, B · τ1,2 = P |ξ∈∂V (x+ ξ) · τ1,2

}

= inf
(u,P )

{∫
ξ∈V (x)

1

2

〈
C (ξ)

(
sym∇ξv + E

)
, sym∇ξv + E

〉
dξ
∣∣∣ v ∈ C∞0 (

V (x) ,R3
)
, E = symB

}
. (42)

Figure 7: The process of homogenization. We need to demand energy equivalence of the fine-scale linear elastic
energy (left) with the coarse-scale relaxed micromorphic energy (right) over the same domain V (x).

22



With estimate (36) and (40) we obtain the inequality

1

2

〈
CmicroE,E

〉
|V (x)|︸ ︷︷ ︸

coarse scale micromorphic
upper energy limit

≥ inf

{∫
ξ∈V (x)

1

2

〈
C (ξ)

(
sym∇ξv (ξ) + E

)
, sym∇ξv (ξ) + E

〉
dξ
∣∣∣ v ∈ C∞0 (

V (x) ,R3
)}

︸ ︷︷ ︸
fine-scale linear elastic energy

.

(43)
On the other hand, according to the classical19 Hill-Mandel20 lemma [30, 31, 33, 45, 71] we can define a unique
apparent [34] stiffness tensor21 CVKUBC, independent of E, but depending on the unit-cell V , by requiring

1

2
|V (x)|

〈
CVKUBCE,E

〉
= inf

{∫
ξ∈V (x)

1

2

〈
C (ξ)

(
sym∇ξv (ξ) + E

)
, sym∇ξv (ξ) + E

〉
dξ
∣∣∣ v ∈ C∞0 (

V (x) ,R3
)}
.

(46)
Combining this with (43) we have for all E ∈ Sym (3)

1

2

〈
CmicroE,E

〉
≥ 1

2

〈
CVKUBCE,E

〉
. (47)

19And not any of the ambiguous extended versions for generalized continua [25–27].
20The Hill-Mandel energy equivalence for KUBC can be obtained easily. We provide it for the convenience of the reader.
On the one hand we have in mechanical equilibrium

∫
ξ∈∂V

〈u (ξ) , σ (ξ) · n〉R3 dSV =

∫
ξ∈∂V

〈
σT (ξ) · u (ξ) , n

〉
R3
dSV =

∫
ξ∈V

div
(
σT · u

)
dV =

∫
ξ∈V

div (σ · u) dV

=

∫
ξ∈V
〈∇u, σ〉R3×3 +

〈
u,Divσ︸ ︷︷ ︸

=0

〉
dV =

∫
ξ∈V
〈σ (ξ) , ε (ξ)〉 dV. (44)

On the other hand, for KUBC, we have u|∂V = B · ξ and

∫
ξ∈∂V

〈u (ξ) , σ (ξ) · n〉R3 dSV =

∫
ξ∈∂V

〈
B · ξ, σ (ξ) · n

〉
R3 dSV =

∫
ξ∈V

div
(
σT ·

(
B · ξ

))
dV

=

∫
ξ∈V

div
(
σ ·
(
B · ξ

))
dV =

∫
ξ∈V

〈
∇
[
B · ξ

]
, σ
〉
+
〈
B · ξ,Divσ︸ ︷︷ ︸

=0

〉
dV

=

∫
ξ∈V

〈
B, σ

〉
dV =

〈
B,

∫
ξ∈V

σ dV

〉
= |V |

〈
B,

1

|V |

∫
ξ∈V

σ dV

〉
= |V |

〈
symB, σ

〉
. (45)

Since symB = E = ε, see (39), taking (44) and (45) together we obtain

〈σ, ε〉 =
1

|V |

∫
ξ∈V
〈σ (ξ) , ε (ξ)〉 dV.

21The Hill-Mandel lemma implies that for KUBC (among others) it holds that,

〈σ, ε〉 =
1

|V |

∫
ξ∈V
〈σ (ξ) , ε (ξ)〉 dξ, divσ (ξ) = 0, u|∂V = B · ξ,

where ε, σ are the mean strain and stress, respectively.
Let us assume that on the fine scale we have the linear elastic constitutive law σ (ξ) = C (ξ) ε (ξ), where C (ξ) is uniformly positive

definite. Then the equilibrium equation div (C (ξ) ε (ξ)) = 0, u|∂V (ξ) = B · ξ has a unique (inhomogeneous) solution û (ξ), such that
ε (ξ) = sym∇û (ξ) depends linearly on E = symB. Thus, the stress σ̂ (ξ) = C (ξ) ε (ξ) depends also linearly on E. On the other hand,
it follows by partial integration that ε = E see (39), and moreover, that the mean stress σ = 1

|V |
∫
ξ∈V σ (ξ) dξ depends also linearly on

E. This means that there exists a mapping CVKUBC such that σ = CVKUBC E. Therefore we must have

1

2

〈
CVKUBC E,E

〉
= inf

(
1

|V |

∫
ξ∈V

1

2

〈
C (ξ)

(
sym∇ξv (ξ) + E

)
, sym∇ξv (ξ) + E

〉
dξ
∣∣∣ v ∈ C∞0 (

V (x) ,R3
))

.
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Figure 8: Affine Dirichlet loading (KUBC) of the unit-cell V (x). The macroscopic deformation state ∇ξu (x) = B
defines a microscopic Dirichlet boundary value problem on the boundary of the microvolume V (x) attached to each
macroscopic material point x ∈ Ω. Here, we show the superposition of simple shear and elongation.

In our given periodic arrangement there are many different possibilities to choose unit-cells, see Fig. 6. In the
following we use an extended Neumann’s principle [70], suitably adapted to our setting:

Extended Neumann’s principle
The invariance group of every stiffness tensor of the relaxed
micromorphic model should contain the maximal invariance

group of the periodic metamaterial.

Applying this principle, the number of candidate unit-cells in (46) is reduced to the 4 unit-cells from Fig. 6
showing tetragonal symmetry22.

Finally, we close the inequality gap in (43) by maximizing 1
2

〈
CVKUBCE,E

〉
with respect to all admissible unit-

cells V and setting then
1

2

〈
CmicroE,E

〉
:= max

V

1

2

〈
CVKUBCE,E

〉
. (48)

This defines Cmicro unambiguously23. The calculation of Cmicro is then done in the FEM - framework as shown in
Table 3 for all possible unit-cells presenting tetragonal symmetry.

Note again that for PBCs, the geometry of the unit-cell does not matter as far as the macroscopic stiffness
Cmacro is concerned. In contrast, it is well known that, under affine Dirichlet conditions (see Fig. 8) the size and
geometry of the unit-cell critically matters [29,34].

Some further remarks are in order. Our approach is invariant under considering Lc → ∞ and stable under
perturbation of the affine boundary conditions into

u|∂V (x+ ξ) = B · ξ + ε g (ξ) .

The latter with non-affine g (ξ) will only induce a slight inhomogeneity of the solution on the coarse scale, the
identification procedure remaining the same.

In contrast, if we consider the relaxed micromorphic model with full gradient contribution as a representative
of the classical Mindlin-Eringen micromorphic approach (using ∇P instead of CurlP ), then (40) will turn into

inf
u

{∫
ξ∈V

1

2
〈Cmicro sym∇ξu (x+ ξ) , sym∇ξu (x+ ξ)〉+ L2

c

∥∥D2
ξ ũ

(
ξ

ε

)∥∥2dξ
∣∣∣ u|ξ∈∂V (x+ ξ) = B · ξ + ε g (ξ)

}
(49)

which is singular for Lc → ∞ and non-zero, non-affine g (ξ). Now, in (49) it is not possible to separate the effects
of curvature and strain over the unit-cell, as done in (46). This implies that fittings for Cmicro based on (49) would

22Consider any other unit-cell. The stiffness tensor Cmicro determined from (46) will not be tetragonal. The square unit-cell candidates
are restricted to sidelength a

√
2, which is done in view of the maximal stiffness, since larger cells become less stiff.

23Considering the Voigt upper bound as representing the maximal microscopic stiffness is not useful for two reasons:
First, CVoigt will be isotropic and lose the information of the geometry of the unit-cell. Second, the actual deformation in the unit-cell

will never exhibit constant strain.
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be correlated to fittings of the characteristic length scale Lc. The obtained values for Cmicro would be length scale
dependent and would therefore not qualify as true material parameters. This observation points to the special
role played by CurlP as the unique curvature measure in the relaxed micromorphic model. Static identification
procedures similar to (49) have been carried out for the description of periodic composites as an equivalent couple
stress continuum in [13] or a Cosserat medium in [25].

The salient features of our novel approach of parameter identification are:

• if the unit-cell is homogeneous (no contrast of material parameters), then Cmicro = Cmacro, Ce = +∞ and the
relaxed micromorphic model automatically turns into classical linear elasticity with stiffness Cmacro while the
classical Mindlin-Eringen model would turn into a second gradient formulation.

• Cmicro represents the stiffest possible linear elastic response of any admissible tetragonal unit-cell under affine
Dirichlet boundary conditions.

• Both Cmicro and Cmacro are readily available by numerical homogenization FEM-calculations on the unit-cell
level as shown before.

• Both Cmicro and Cmacro can be determined independently of the characteristic length-scale Lc of the relaxed
micromorphic model (it remains to be seen whether Lc scales with the size of the assumed unit-cell).

• For large rigid inclusions in the unit-cell, we have in the limit of infinite rigidity that Cmicro → +∞, reducing
the relaxed micromorphic model effectively to a Cosserat model (model with “rigid microstructure”).

8 Fitting material parameters and analysis of dispersion curves
In this section, firstly we introduce all the technical tools needed to calibrate the relaxed micromorphic model and,
secondly, we will give the comparison with the Bloch-Floquet analysis performed with COMSOLr. We will show
how:

• thanks to the general anisotropic micro-macro homogenization formula developed in [8] it is possible to
establish a functional dependence between the components of the tensors Ce and Cmicro appearing in the
relaxed micromorphic model and those of the elastic macroscopic elasticity tensor Cmacro of the effective
(Cauchy) relaxed micromorphic limit model when considering the tetragonal case. Since Cmicro and Cmacro
are known from static arguments, Ce can be readily computed,

• the derivation of the tangents to the acoustic branches in zero, when considering the curves in Fig. 2, supplies
useful relations to calculate the numerical values of the macro (Cauchy) parameters Cmacro as functions of
the relaxed micromorphic ones, Ce and Cmicro. This dynamical method for the computation of Cmacro gives
results compatible with those obtained when calculating Cmacro on static tests,

• the calculation of the cut-off frequencies provides the possibility to obtain four extra relations between the
micro elastic parameters and the micro inertia terms, thus finally allowing the computation of the micro
inertiae and of the Cosserat couple modulus µc.

8.1 Micro-macro homogenization formula
We now particularize the tensorial micro-macro homogenization formulas obtained in [8, 48, 49] for the general
anisotropic framework to the tetragonal case. To this aim, we start counting the parameters of the relaxed micro-
morphic model for the tetragonal case, which are

(µe, λe, µ
∗
e, µc, µmicro, λmicro, µ

∗
micro, µmacro, λmacro, µ

∗
macro, Lc, α1, α2, α3, α

∗
1)

for the potential part of the energy and

(ρ, η1, η2, η3, η
∗
1 , η1, η2, η3, η

∗
1)
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for the kinetic one, then we use the fundamental homogenization formula found in [8]. In [8] it is shown that
in the limit Lc → 0 it is possible to homogenize the relaxed micromorphic model to a Cauchy one whose elastic
(macroscopic) stiffness Cmacro is linked to the relaxed micromorphic material parameters, Cmicro,Ce by the relation

Cmacro = Cmicro (Cmicro + Ce)−1 Ce (50)

⇐⇒ Ce = Cmicro (Cmicro − Cmacro)
−1 Cmacro,

which, in our tetragonal case, gives the identities

µmacro =
µe µmicro

µe + µmicro
, 2µmacro + 3λmacro =

(2µe + 3λe) (2µmicro + 3λmicro)

2 (µe + µmicro) + 3 (λe + λmicro)
, µ∗macro =

µ∗e µ
∗
micro

µ∗e + µ∗micro
,

⇐⇒ (51)

µe =
µmacro µmicro

µmicro − µmacro
, 2µe + 3λe =

(2µmacro + 3λmacro) (2µmicro + 3λmicro)

(2µmicro + 3λmicro)− (2µmacro + 3λmacro)
, µ∗e =

µ∗macro µ
∗
micro

µ∗micro − µ∗macro
.

Equations (51) give the explicit relations between the parameters of the tetragonal relaxed micromorphic model and
the corresponding macroscopic parameters of the Cauchy model seen as a limiting case of the relaxed micromorphic
model when Lc → 0.

The importance of this micro-macro homogenization formula can hardly be overestimated. Indeed, it allows
for calibrating the a priori unknown material parameters of the linear relaxed micromorphic model Ce against the
in principle known and measurable macroscopic response Cmacro and microscopic response Cmicro. In our case,
Cmacro has been obtained via numerical homogenization of periodic media (see Section 7.1). On the other hand,
Cmacro can be equivalently determined from a comparison with the Bloch-Floquet analysis as it will be shown in
Section 8.4. More precisely, we will show how the macroscopic parameters µmacro, λmacro and µ∗macro can be directly
related to the slopes of the acoustic branches of a Cauchy continuum with tetragonal symmetry, and this will allow
the determination of the macro parameters for the given metamaterial. We will check that the macro parameters
obtained with the two methods turn out to be the same.

The clear physical interpretation of the micro stiffnesses Cmicro, on the other hand, is more complicated. In-
deed, we know that such micro stiffnesses must be related to the mechanical properties of the unit-cell and true
experimental static tests should be run on a specimen composed by a single unit-cell in order to obtain their values.
As we showed in Section 7.2, different stiffnesses of the unit-cell can be obtained when changing the representative
unit-cell for the same metamaterial. However, we established rigorously that the elastic parameters of the stiffest
unit-cell must be chosen as Cmicro.

Once the macro and micro parameters Cmacro and Cmicro have been determined, the micro-macro homogenization
formula (50) allows us to uniquely determine the stiffness Ce which realizes the transition between the macro and
micro scale. In particular, for the considered tetragonal metamaterial, and considering the values of Cmacro and
Cmicro given in Tables 2 and 3 respectively, the values of Ce given in Table 4 can be easily computed through the
homogenization formula (51).

λe µe µ∗e

[GPa] [GPa] [GPa]

0.43 11.15 0.66

Table 4: Obtained numerical values for the parameters related to the transition scale.

8.2 Cut offs for the optic branches
Thanks to the determination of Cmacro and Cmicro based on the static arguments presented in Section 7 and that
of Ce through formula (50), only the Cosserat couple modulus µc remains to be determined as far as the purely
elastic parameters are concerned. On the other hand, all the micro inertiae η1, η

∗
1 , η2, η3, η1, η

∗
1, η2, η3 appearing in

the kinetic energy (11) remain to be determined as well. To this aim we consider the so-called cut-off frequencies.
Solving the equation det D̃ = 0 imposing that k = 0, we find the following characteristic frequencies:

ωr =

√
µc
η2
, ωs =

√
µe + µmicro

η1
, ω∗s =

√
µ∗e + µ∗micro

η∗1
, ωp =

√
µe + µmicro + λe + λmicro

η1 + η3
. (52)
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Such characteristic frequencies correspond to the starting point (k = 0) of the dispersion curves and are known as
cut-off frequencies. They are independent of the wave direction.

The simple fact of imposing that such characteristic frequencies are equal to the numerical values of the cut-offs
calculated via the Bloch-Floquet analysis (see Fig.(2)) allows us to establish specific relations for computing some
of the parameters of the relaxed micromorphic model which are still free. In particular, as we will show in the next
Section, the last three formulas of equation (52) enable us to compute η1, η

∗
1 and η3.

8.3 Fitting of the parameters on the dispersion curves
In this Section we show the fitting procedure that we used to calibrate the remaining free parameters of our relaxed
micromorphic model on the metamaterial introduced in Section 5. To do so, we denote by ωr, ωs, ωp and ω∗s the
numerical values of the cut-offs calculated by the Bloch-Floquet analysis. Moreover, we also denote by aL and aT the
numerical values of the slopes of the tangents to the acoustic curves obtained via the Bloch-Floquet analysis. Note
again that the third (out-of-plane) acoustic branch is not present in this case since we implemented a Bloch-Floquet
analysis of a fully 2D metamaterial. In Fig. 9 we identify such numerical quantities. We explicitly remark that if the
numerical values of the cut-off frequencies directly allow the computation of some micro inertiae, the identification
of the numerical value of the slopes is not essential for the calibration procedure, given that the purely elastic
parameters have already been determined. Nevertheless, as we will show in Section 8.4 the numerical determination
of the slopes of the acoustic curves allows on the one hand to provide an alternative method for the computation
of the macro parameters Cmacro and, on the other hand, to clearly connect the relaxed micromorphic model to the
corresponding equivalent Cauchy homogenized continuum.

Figure 9: Dispersion curves of the selected metamaterial and identification of the key numerical quantities needed
for the fitting procedure. The cut off frequency ωr, ωs, ω∗s and ωp are direction independent, while the tangents to
the acoustic curves aTA and aLA depend on the direction of wave propagation.

The numerical values of the cut-off frequencies corresponding to Fig. 9 are given in Table 5.

ωr ωs ω∗s ωp

[rad/s] [rad/s] [rad/s] [rad/s]

0.4 · 107 1.68 · 107 1.68 · 107 1.75 · 107

Table 5: Numerical values of the cut-offs for the considered metamaterial.
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At this point, replacing in the last three equations (52) the values of the cut-off frequencies given in Table 5
as well as the values of the elastic parameters given in Tables 3 and 4, we can uniquely determine η1, η

∗
1 and η3,

obtaining the values in Table 6.

η1 η3 η∗1

[kg/m] [kg/m] [kg/m]

8.38 · 10−5 3.39 · 10−5 3.75 · 10−5

Table 6: Numerical values for micro inertia parameters.

The parameters of the relaxed micromorphic model which remain free after these considerations are η2, η1, η2, η3, η
∗
1.

To complete the fitting procedure, we start slowly increasing these free parameters, starting from zero, so as to op-
timally fit dispersion curves of Fig. 9 both for ϑ = 0 and ϑ = π/4. The order with which the free inertia parameters
are increased is related to the effect that such parameters have on the dispersion curves. More particularly:

• η2 and η2 have an effect on the acoustic curves LA and TA and are adjusted to best fit such curves,

• the remaining parameters η1, η
∗
1, η3 are eventually increased only for fine-tuning the fitting. Their effect is

mainly visible for higher wavenumber (smaller wavelength).

As for the characteristic length Lc, we set here Lc = 0. Nevertheless, we know that a non-vanishing Lc is a crucial
point for a finer fitting of the dispersion curves. On the other hand, this task is really delicate and we need to
postpone it to a further work where a micro-inertia related to Curl P,t will also be introduced.

Summarizing the results obtained up to now, we show in Table 7 the values for the inertiae and in Table 8 a
summary of all the elastic parameters computed before.

ρ η1 η2 η3 η∗1 η1 η2 η3 η∗1[
kg/m

3
]

[kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m]

1485 8.38 · 10−5 1 · 10−7 3.39 · 10−5 3.75 · 10−5 4.8 · 10−5 0 0 0

Table 7: Summary of the numerical values for inertia parameters.

λe µe µ∗e

[GPa] [GPa] [GPa]

0.43 11.15 0.66

λmicro µmicro µ∗micro

[GPa] [GPa] [GPa]

11.96 12.51 9.92

µc

[GPa]

1.85 · 10−3

λmacro µmacro µ∗macro

[GPa] [GPa] [GPa]

1.74 5.89 0.62

Table 8: Summary of the numerical values for the elastic parameters of the tetragonal relaxed micromorphic model
in 2D. The macroscopic parameters of the resulting homogenized metamaterial are also provided in the last Table.

In Fig. 10 we show the obtained fitting for ϑ = 0 and ϑ = π/4.
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(a) (b)

Figure 10: Comparison between our relaxed micromorphic continuum model and the COMSOLr one. In (a) we
plot the dispersion branches for k̂ = (1, 0, 0) and in (b) for k̂ =

(√
2/2,
√

2/2, 0
)
. Dotted lines represent COMSOLr

dispersion curves, continuous lines represent the dispersion curves obtained with the relaxed micromorphic model.
The two directions k̂ are used in the fitting procedure.

The result is quite satisfactory for a wide range of wavelengths. The only relevant differences can be found in
the curve TO1 both for ϑ = 0 and ϑ = π/4 and TA at ϑ = π/4. This discrepancy is mainly due to the fact that at
present the relaxed micromorphic model is not yet able to give rise to decreasing dispersion curves. Such possibility
will be taken into account in future work by adding suitably non-local terms in the kinetic energy and considering
Lc > 0.

At this point we want to strongly remark that the parameter calibration that we present in Section 7 and 8 is
the most natural and simple approach imaginable using enriched continuum models. Indeed, the elastic parameters
are calibrated on simple mechanical tests on both macro and micro specimens of the considered metamaterial. On
the other hand, dynamical parameters (micro-inertiae) are determined by imposing simple relations on the cut-off
frequencies. After that, very few parameters remain free and they are slowly varied to improve the fitting of the
dispersion curves at higher wavenumbers (small wavelengths). We can hence strongly claim that we are providing
a transparent and efficient characterization of the considered mechanical metamaterial by means of an enriched
continuum model.

Our method is physics-based and it is far-away from parameter fittings that are often provided when dealing with
the superposition of generalized continuum models to phenomenological data: we do not need to calibrate a huge
number of parameters by using “ad hoc” optimization methods, we just obtain the fitting as a simple consequence
of our mechanical observations.

We also remark that slight differences can be found in the fitting for some of the higher optic curves when
considering high wavenumbers (wavelength smaller than twice the unit-cell), while in general most of the dispersion
curves fit well the overall behavior also for wavelength which go down to the size of the unit-cell. We will show in
further works that generalizing the expression of the kinetic energy will allow to obtain an even better fitting for
the whole considered range of wavelengths.

8.4 Equivalent dynamical determination of the macroscopic stiffness Cmacro

In this Section, we show how the macroscopic parameters previously obtained by simple static arguments can be
equivalently computed using the slopes of the acoustic dispersion curves close to the origin. This equivalent method
is very useful to make a strong connection between the relaxed micromorphic model and classical elasticity, but it
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does not add any extra feature to the fitting procedure presented above. This Section can therefore be skipped in
a first instance by a reader interested mainly in the fitting procedure.

8.4.1 Tangents in zero to the acoustic branches

Let us consider the “macroscopic” Cauchy partial differential system of equations (since this is linear elasticity with
elastic stiffness tensor Cmacro)

ρ u,tt −Div (Cmacro sym∇u) = 0 (53)

which is the limiting case of the relaxed micromorphic model. In this classical case, it is possible to obtain an
analytical expression for the dispersion curves. In order to do so, we make the plane wave ansatz for u, i.e., we
assume that there exist ũ ∈ R3 and a function24 φ ∈ C2(R,R) , s 7→ φ (s) with somewhere non-vanishing second
derivative, such that

u (x, t) = ũ φ (〈k, x〉 − ω t) .

Setting s (x, t) := 〈k, x〉 − ω t, (s ∈ C∞
(
Ω× [0, T ] ,R

)
) we calculate the space and time derivatives of u:

ui,j = ũi
∂

∂xj
φ (s (x, t)) = ũi

dφ

ds
(s (x, t))

∂

∂xj
(〈k, x〉 − ω t) = ũi kj

dφ

ds
, (54)

u,t = ũ
d

dt
φ (s (x, t)) = ũ

d

dt
φ (s (x, t)) = ũ

d

ds
φ (s (x, t))

d

dt
(〈k, x〉 − ω t) = −ω ũ dφ

ds
,

u,tt = ũ
d2

dt2
φ (s (x, t)) = ũ

d2

ds2
φ (s (x, t))

(
d

dt
(〈k, x〉 − ω t)

)2

= ω2 ũ
d2φ

ds2
. (55)

From (54), we derive

sym∇u =
dφ

ds
sym (ũ⊗ k) ,

and thus
Cmacro sym∇u =

dφ

ds
Cmacro sym (ũ⊗ k) . (56)

We calculate the divergence of (56):

Div (Cmacro sym∇u) = Div
(
dφ

ds
Cmacro sym (ũ⊗ k)

)
or equivalently in index notation

=
∂

∂xj

[
dφ

ds
(s (x, t)) (Cmacro)ijmn

1

2
(ũmkn + ũnkm)

]
=

d

ds

dφ

ds
(s (x, t))

∂

∂xj
(〈k, x〉 − ω t) (Cmacro)ijmn

1

2
(ũmkn + ũnkm)

=
d2φ

ds2
kj (Cmacro)ijmn

1

2
(ũmkn + ũnkm)

=
d2φ

ds2
(Cmacro)ijmn kj

1

2
(ũmkn + ũnkm) =

d2φ

ds2
Cmacro (k ⊗ sym (ũ⊗ k)) . (57)

In this way, entering (55) and (57) in (53) we find

ρω2 d
2φ

ds2
ũ =

d2φ

ds2
Cmacro (k ⊗ sym (ũ⊗ k)) ⇐⇒

(
ρω2 ũ− Cmacro (k ⊗ sym (ũ⊗ k))

) d2φ

ds2
= 0. (58)

Thanks to the hypothesis that d2φ
ds2 is somewhere non-vanishing, equation (58) is verified for all s ∈ R if and only if

ρω2 ũ− Cmacro (k ⊗ sym (ũ⊗ k)) = 0. (59)

In order to calculate the dispersion relations, it is useful to rewrite the term Cmacro (k ⊗ sym (ũ⊗ k)) as follows.
24for example es, cos s, sin s.
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Firstly, from the symmetries of Cmacro, we remark that

(Cmacro (k ⊗ sym (ũ⊗ k)))i = (Cmacro)ijmn kj
1

2
(ũmkn + ũnkm)

=
1

2

[
(Cmacro)ijmn kj ũmkn + (Cmacro)ijmn kj ũnkm

]
(60)

=
1

2

[
(Cmacro)ijmn kj ũmkn + (Cmacro)ijnm kj ũnkm

]
= (Cmacro)ijmn kj ũmkn.

We find

(Cmacro (k ⊗ ũ⊗ k))i = (Cmacro)ijmn kj ũmkn =
[
(Cmacro)ijmn kjkn

]
ũm. (61)

Using eq. (60) together with (61), and remembering that k = k k̂ with k =
∥∥k∥∥ ∈ R+ and k̂ = k/k, we can finally

rewrite eq. (59) as

ρω2 ũ︸︷︷︸
= 1·ũ

−Cmacro (k ⊗ sym (ũ⊗ k)) = 0 ⇐⇒
(
ρω2 δim − k2 (Cmacro) ijmnk̂j k̂n

)
ũm = 0. (62)

The equation (62) is an eigenvalues problem for the linear application k2 (Cmacro) ijmnk̂j k̂n. The stated problem
admits non-trivial solutions if and only if the determinant of ρω2 δim − k2 (Cmacro) ijmnk̂j k̂n is zero. In this way,
we are interested in looking for couples (k, ω) such that

det
(
ρω2 δim − k2 (Cmacro) ijmnk̂j k̂n

)
= 0. (63)

Moreover, we are interested in studying this problem as a function of the direction of propagation k̂ of the wave.
In order to do this, it is convenient to introduce spherical coordinates for the wave vector k̂ ∈ S2 (the unit sphere
in R3):

k1 = sinϕ cosϑ, k2 = sinϕ sinϑ, k3 = cosϕ, (64)

where ϑ ∈ [0, 2π) is the polar angle and ϕ ∈ [0, π] is the azimuthal angle. For the problem in the (x1, x2, 0) plane,
the angle ϕ is π/2, so

k1 = cosϑ, k2 = sinϑ, k3 = 0, (65)

and

k̂ ⊗ k̂ =

 cos2 ϑ cosϑ sinϑ 0
cosϑ sinϑ sin2 ϑ 0

0 0 0

 .

Let us now consider the Voigt representation of the tensor Cmacro in the case of the tetragonal symmetry

C̃macro =



2µmacro + λmacro λmacro λ∗macro 0 0 0
λmacro 2µmacro + λmacro λ∗macro 0 0 0

λ∗macro λ∗macro (C̃macro)33 0 0 0

0 0 0 (C̃macro)44 0 0

0 0 0 0 (C̃macro)44 0
0 0 0 0 0 µ∗macro

 .

A direct calculation gives

(Cmacro) ijmnk̂j k̂n =

 µ∗macro sin2 ϑ+ cos2 ϑ (λmacro + 2µmacro) cosϑ sinϑ (µ∗macro + λmacro) 0
cosϑ sinϑ (µ∗macro + λmacro) cos2 ϑµ∗macro + sin2 ϑ (λmacro + 2µmacro) 0

0 0
(
C̃macro

)
44

 ,

thus, for ρω2 δim − k2 (Cmacro) ijmnk̂j k̂n, we find ρω2 − k2
(
µ∗macro sin2 ϑ+ cos2 ϑ (λmacro + 2µmacro)

)
−k2 cosϑ sinϑ (µ∗macro + λmacro) 0

−k2 cosϑ sinϑ (µ∗macro + λmacro) ρω2 − k2
(
µ∗macro cos2 ϑ+ sin2 ϑ (λmacro + 2µmacro)

)
0

0 0 ρω2 −
(
C̃macro

)
44
k2

 .

31



In this way we can compute

det
(
ρω2 δim − k2 (Cmacro) ijmnk̂j k̂n

)
=

=
(
ρω2 −

(
C̃macro

)
44
k2
) [ (

ρω2 − k2
(
cos2 ϑ (λmacro + 2µmacro) + µ∗macro sin2 ϑ

))
(66)(

ρω2 − k2
(
sin2 ϑ (λmacro + 2µmacro) + µ∗macro cos2 ϑ

))
− k4 sin2 ϑ cos2 ϑ (λmacro + µ∗macro) 2

]
.

The dispersion curves for the classical limit Cauchy model are obtained solving the equation (63), or equivalently
(66), with respect to ω2. We call {±ωmacro,i (k, ϑ)}3i=1 the dispersion curves for the Cauchy continuum obtained
by solving (63) for the special tetragonal case given in (66). A direct calculation shows that the positive solutions
{ωmacro,i (k, ϑ)}3i=1 of (63) for the tetragonal case are three straight lines in the (ω, k) plane with slopes (here, and
only here, we use the abbreviations µM = µmacro, λM = λmacro, µ∗M = µ∗macro):

aLA =

√
λM + µ∗M + 2µM +

√
2 cos(4ϑ) (λM + µM ) (µM − µ∗M ) + 2λMµM + λ2

M + µ∗2M − 2µMµ∗M + 2µ2
M

2ρ
, (67)

aTA =

√
λM + µ∗M + 2µM −

√
2 cos(4ϑ) (λM + µM ) (µM − µ∗M ) + 2λMµM + λ2

M + µ∗2M − 2µMµ∗M + 2µ2
M

2ρ
,

aTA3 =

√√√√(C̃M)
44

ρ
. (68)

Note the complete absence of the Cosserat couple modulus µc in the latter formulas.

(a) (b)

Figure 11: Dispersion branches for the limiting tetragonal Cauchy continuum with k̂ = (1, 0, 0) (Fig. (a)) and
k̂ =

(√
2/2,
√

2/2, 0
)
(Fig. (b)).

Such dispersion curves are called (in-plane) longitudinal-acoustic (LA), (in-plane) transverse-acoustic (TA) and
(out-of-plane) transverse acoustic (TA3). Since in this paper we are interested only in vibrations in the (x1, x2, 0)
plane, the third acoustic line with slope aTA3 will not be considered for the fitting procedure since it corresponds
to out-of-plane vibrations.
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One remarkable property of the relaxed micromorphic model is that the slopes of its acoustic curves close to the
origin, are exactly given by the slopes of the acoustic lines (67) of the equivalent Cauchy continuum. More precisely,
the slopes at zero of the acoustic branches of the dispersion curves as obtained via the relaxed micromorphic model
can be computed by means of equations (67) when using the identities (51).

8.4.2 Dynamical calculation of the macroscopic stiffness Cmacro

Based on the results of Section 8.4.1, we can compute the numerical values of the macroscopic parameters µmacro, λmacro
and µ∗macro which represent the measure of the macroscopic stiffness of the considered tetragonal metamaterial. To
this aim, considering the two directions of propagation ϑ0 = 0 and ϑ1 = π/4, we set up the following system of
algebraic equations:

aLA (ϑ0, λmacro, µmacro, µ
∗
macro) =

√
2µmacro + λmacro

ρ
= aLA (ϑ0) ,

aLA (ϑ1, λmacro, µmacro, µ
∗
macro) =

√
µmacro + µ∗macro + λmacro

ρ
= aLA (ϑ1) , (69)

aTA (ϑ0, λmacro, µmacro, µ
∗
macro) =

√
µ∗macro

ρ
= aTA (ϑ0) ,

aTA (ϑ1, λmacro, µmacro, µ
∗
macro) =

√
µmacro

ρ
= aTA (ϑ1) .

This system of algebraic equations counts 4 equations and the unknowns. We use the first 3 equations to calculate
the unknowns λmacro, µmacro, µ

∗
macro and then plug the found values in the fourth equation.

If our hypothesis according to which the metamaterial we are considering has a tetragonal symmetry is correct,
the fourth equation has to be automatically satisfied. This is indeed the case.

The numerical values of the macroscopic parameters which are found with the described procedure are given in
Table 9.

Bloch - Floquet periodic homogenization

λmacro µmacro µ∗macro

[GPa] [GPa] [GPa]

1.77 5.95 0.65

λmacro µmacro µ∗macro

[GPa] [GPa] [GPa]

1.74 5.89 0.62

Table 9: Left: numerical values of the macroscopic parameters of the relaxed micromorphic model as obtained
via the dynamical fitting and Bloch-Floquet analysis. Right: for comparison the values obtained by periodic
homogenization.

We remark that these macroscopic parameters are almost equivalent to those computed by FE-analysis and
shown in Table 2.

9 Predictive analysis of dispersion and anisotropy in tetragonal meta-
materials

In this Section we show the capability of the anisotropic relaxed micromorphic model to describe complex phenomena
in specific metamaterials.

We have already seen in Section 5 that the metamaterial targeted in this paper has a tetragonal symmetry.
Moreover, in Sections 7 and 8 we have developed the procedure allowing to calibrate the material parameters of the
relaxed micromorphic model on the considered metamaterial.

In the present section, we show that the relaxed micromorphic model, as calibrated on the considered tetragonal
metamaterial, is able to simultaneously reproduce very complex observable macroscopic phenomena, namely

• the dispersive behavior both for the acoustic and the optic curves,

• anisotropic (tetragonal) mechanical behavior of the considered metamaterial for the first six modes.
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The first characteristic, i.e. the dispersive behavior of the metamaterial, has already been underlined in the previous
Section when noticing that the dispersion curves are not straight lines, but curves. This means that the speed of
propagation of each mode is not a constant (as is the case in classical Cauchy continua) but varies when changing
the wavelength of the travelling wave. We show again in this Section how the dispersive behavior of the considered
metamaterial can be highlighted by introducing the concept of phase velocity. The phase velocity is defined as the
ratio ω (k) /k and, in dispersive media, changes when changing the wavenumber (or equivalently the wavelength).

The phase velocity also changes when changing the direction of propagation of the travelling wave if the consid-
ered medium is not isotropic. Both such features of the phase velocity are easily understandable since:

• the speed of propagation of waves reasonably changes when the travelling wave reaches a wavelength which is
comparable to the characteristic size of the underlying microstructure. Such wavelength are easily attainable
for the most common metamaterials for which the microstructure has typically the size of millimeters or more,

• if the medium is anisotropic, i.e. if its deformation response varies when varying the direction of application
of the external load, it is clear that the speed of propagation of waves inside the medium changes as well when
changing the direction of propagation of the travelling wave itself.

We can simultaneously show both such characteristics (anisotropy and dispersion) by looking at the polar plots of
the phase velocity ω (k) /k for each mode and for different values of the wavenumber k and of the angle ϑ giving
the direction of propagation of the travelling wave.

We start presenting the case of a classical tetragonal non-dispersive Cauchy medium (see Fig. 12).
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Figure 12: Polar plots of the phase velocity ω/k for the two acoustic modes of the equivalent tetragonal Cauchy
medium, the elastic parameters of which are related to those of the relaxed micromorphic model through formulas
(51) and using the values given in Table 9. In each plot, each radial line from zero indicates the direction of
propagation of the travelling wave and the length of any segment going from zero to a point of the curve is the
measure of the phase velocity ω/k in the considered direction.

In Fig. 12 we show the polar plots of the phase velocity ω/k for the tetragonal Cauchy continuum which is
obtained as a limiting case of the relaxed micromorphic model as fitted on the considered tetragonal metamaterial
(see Sections 7.1 and 8.4). More particularly, Fig. 12 shows that:

1. the two acoustic modes which are described by the Cauchy theory do not describe dispersion. In fact, since in
Cauchy theory the dispersion curve is a straight line, once fixed the value of k, the phase velocity ω/k takes
a constant value for any chosen value of k. It is for this reason that, in Cauchy media, we find only one curve
in the polar plot of the phase velocity.

2. Cauchy theory can only describe the first two acoustic modes without any possibility of describing higher
modes.
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According to these observations, it becomes clear that a Cauchy theory is too restrictive for describing the rich
behavior of metamaterials.

As already remarked, second gradient theories could somewhat improve the description of the dispersive be-
haviors with respect to the Cauchy theory, but in any case only the first 2 modes could be analyzed in the 2D
case.

As far as the relaxed micromorphic model is concerned, we will show in the remainder of this Section that it is
able to describe:

• not only the first two, but also other modes related to higher frequencies,

• anisotropy, not only for the first two, but also for the other modes,

• dispersion for all the considered modes (here the first 6).

We can start remarking from Fig. 13 that the transverse acoustic mode is perfectly described for lower values of k
(external curve), while some differences with the Bloch-Floquet analysis of the metamaterial arise for higher values
of k (more internal curves).

The larger difference can be detected for waves travelling at 45°. This is coherent with Fig. 10(b) in which it
can be easily seen that the transverse wave TA calculated via the relaxed micromorphic model starts diverging from
the one calculated via the Block-Floquet analysis when increasing the value of k. This means that, as far as the
transverse acoustic mode TA is concerned, its description via the relaxed micromorphic model is less accurate when
considering propagation at 45° and higher wavenumbers (smaller wavelengths). As a matter of fact, the description
of the TA mode at 45° starts being less accurate for wavelengths twice the characteristic size of the unit-cell and
smaller25.

This lack of accuracy for small wavelengths is not present for the longitudinal acoustic mode LA for which the
relaxed micromorphic model describes well the behavior of the LA curve for all directions of propagation and for
wavelengths which become very small and even comparable to the size of the unit-cell.

The behavior of the curve TO1 has to be considered carefully. Indeed, we fitted our relaxed micromorphic model
to the TO1 dispersion curve with an almost horizontal curve. We are hence able to recover for this mode the average
dispersive behavior, but not the true patterns of the phase velocity which show anisotropic behaviors for higher
wavenumbers (smaller wavelengths). This behavior will be improved in further works when the non-locality of the
matematerial will be considered by considering Lc > 0 and by adding a term CurlP,t in the kinetic energy.

We also recall that the relaxed micromorphic model is able to catch some other essential features of the description
of the considered metamaterial, such as the presence of band-gaps (see Fig.10).

Based on some preliminary studies, we already know that the typical decreasing behavior of the TO1 curve
obtained via the Bloch-Floquet analysis can be described by the relaxed micromorphic model if we allow it to
include non local effects. In other words, if we consider the case Lc > 0, a better and finer fitting of the TO1

curve could be obtained. Nevertheless, the study of this additional case deserves extra attention since an extra
micro-inertia term involving CurlP,t should also be considered. We will hence treat such complete non-local cases
in further works, building on the results presented here.

In Fig. 14 we can see that the relaxed micromorphic model describes almost perfectly both dispersion and
anisotropy for the higher optic modes.

25One could argue that an effective medium model like the relaxed micromorphic model should only be operative in describing
the response for wavelength larger than a certain threshold, like e.g. 4 times the unit-cell. This is not our point of view. We are
optimistic to calibrate the relaxed micromorphic model up to wavelength comparable to the chosen size of the unit-cell used in the static
homogenization for Cmicro.

35



relaxed micromorphic model Bloch-Floquet analysis

TA 0

15 °

30 °

45 °

60 °

75 °
90 °

105 °

120 °

135 °

150 °

165 °

180 °

195 °

210 °

225 °

240 °

255 °
270 °

285 °

300 °

315 °

330 °

345 °

0. 500. 1000. 1500. 2000.

LA 0

15 °

30 °

45 °

60 °

75 °
90 °

105 °

120 °

135 °

150 °

165 °

180 °

195 °

210 °

225 °

240 °

255 °
270 °

285 °

300 °

315 °

330 °

345 °

0. 1000. 2000. 3000.

TO1 0

15 °

30 °

45 °

60 °

75 °
90 °

105 °

120 °

135 °

150 °

165 °

180 °

195 °

210 °

225 °

240 °

255 °
270 °

285 °

300 °

315 °

330 °

345 °

0. 1250. 2500. 3750. 5000.

Figure 13: Phase velocity as a function of the direction of wave propagation k̂ for the first three modes as calculated
with the relaxed micromorphic model (left) and with the Bloch-Floquet analysis (right). The plotted curves have

been calculated for the values of the wave number equal to π,
2π

3
,
π

3

[rad]

[mm]
. For any curve, the distance from the

center of the circle to a point of the curve itself gives the value of the phase velocity ω/k. More external curves are
relative to lower values of k, while the curves become closer to the origin when increasing the value of k. The most
internal curve corresponds to a wavelength comparable to the unit-cell.
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Figure 14: Phase velocity as a function of the direction of wave propagation k̂ for higher modes as calculated with
the relaxed micromorphic model (left) and with the Bloch-Floquet analysis (right). The plotted curves have been

calculated for the values of the wave number equal to π,
2π

3
,
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. For any curve, the distance from the center

of the circle to a point of the curve itself gives the value of the phase velocity ω/k. More external curves are relative
to lower values of k, while the curves become closer to the origin when increasing the value of k. The most internal
curve corresponds to a wavelength comparable to the unit-cell.
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10 Conclusion and further perspectives
In this paper we particularize the general anisotropic relaxed micromorphic model developed in [8] to the case of
tetragonal symmetry. We show that this particular symmetry class allows us to describe the anisotropic behavior
of a band-gap metamaterial with specific tetragonal microstructure.

We explicitly show the true advantage of using the relaxed micromorphic model [8] in describing the mechanical
behavior of metamaterials by introducing only standard fourth order elasticity tensors (in Voigt-notation) as it is
the case for classical elasticity. This efficient theoretical framework allows us to avoid unnecessary complexifications
related e.g. to the introduction of elastic tensors of order higher than four, as it is the case for higher gradient
elasticity (see e.g. [6, 55, 56]). Indeed, the study of the anisotropy classes of the tensors appearing in the relaxed
micromorphic model follows the classical lines and does not require any extra development.

Once it has been established that the selected metamaterial has a tetragonal symmetry, we particularize the
anisotropic relaxed micromorphic model to this case. As a second step, we set up a fitting procedure to determine
the values of the parameters of the relaxed micromorphic model by i) computing the purely elastic parameters via
suitably conceived static tests and ii) obtaining the values of dynamical parameters by superimposing the dispersion
curves obtained with the relaxed micromorphic model to the corresponding ones obtained with a classical Bloch-
Floquet analysis. The relaxed micromorphic model is a “macroscopic continuum” homogenized model which is able
to reproduce the macroscopic behavior of the selected metamaterial with only few material parameters which do
not depend on frequency.

In our micro-macro homogenization formula (50) we need to have that Cmicro −Cmacro is positive definite (and
therefore invertible). For this, consider

|V (x)| 1
2

〈
(Cmicro − Cmacro)E,E

〉
(70)

= inf

{∫
ξ∈V (x)

1

2

〈
C (ξ)

(
sym∇ξv (ξ) + E

)
, sym∇ξv (ξ) + E

〉
dξ
∣∣∣ v ∈ C∞0 (

V (x) ,R3
)}

− inf

{∫
ξ∈V (x)

1

2

〈
C (ξ)

(
sym∇ξv (ξ) + E

)
, sym∇ξv (ξ) + E

〉
dξ
∣∣∣ v ∈ C∞ (V (x) ,R3

)
is periodic

}
=: Q

(
E,E

)
.

By compactness it would be sufficient for strict positive definiteness of Cmicro − Cmacro that Q
(
E,E

)
> 0 ∀E ∈

Sym (3) . Although it is easy to see that Q
(
E,E

)
≥ 0 in general, it remains to investigate under which assumptions

on the geometry and material of the unit-cell this property can be established for other metamaterials. This will
be subject of further research.

We did not yet approach the determination of the static curvature parameters, i.e. the characteristic length
scale Lc and the tensors L and Lc in (12). This will be greatly facilitated in future works since we already know
the size-independent material parameters Cmicro and Cmacro. It suffices then, in principle, to perform a range of
inhomogeneous boundary value problems which activate the curvature terms of the relaxed micromorphic model in
order to fit Lc, L and Lc via the Hill-Mandel energy equivalence condition.

The advantage of our continuum model can be found in the perspective of modeling metamaterials in a simplified
framework with transparent mechanical interpretation and thus by so providing a concrete possibility for the design
of the relatively complex metastructures by means of the use of a relatively simplified model.

Moreover, the fact that such an enriched continuum model is available allows us to simplify the study of other
problems that would be otherwise difficult to treat, such as, e.g., the study of interfaces between different anisotropic
metamaterials.

The pertinence of the proposed model is shown not only on the dispersion curves but also on the polar plots
of the phase velocity which are in good agreement with the analogous results obtained by means of the discrete
approach. The few differences that can be found between the discrete and the continuum model are limited to few
modes and to high wavenumbers (small wavelengths). Such differences will be treated in future works in which the
role of the non-local inertia terms will be investigated together with the case of non-vanishing characteristic length
Lc > 0.

Future investigations will also focus on the mechanical characterization of a larger class of band-gap metamate-
rials with the final aim of the FE-implementation of morphologically complex band-gap metastructures.

Finally, the application of the relaxed micromorphic model to more complex metamaterials including e.g. piezo-
electric effects will also be investigated.
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11 Appendix

11.1 Variation of the kinetic energy

δ

∫ T

0

∫
Ω

J (u,t,∇u,t, P,t) dmdt = δ

∫ T

0

∫
Ω

1

2

(
〈ρ u,t, u,t〉+ 〈Jmicro symP,t, symP,t〉+ 〈Jc skewP,t, skewP,t〉

+ 〈T sym∇u,t, sym∇u,t〉+ 〈Tc skew∇u,t, skew∇u,t〉
)
dmdt

= ρ

∫ T

0

∫
Ω

〈u,t, δu,t〉 dmdt︸ ︷︷ ︸
K1

+

∫ T

0

∫
Ω

〈Jmicro symP,t, sym δP,t〉 dmdt︸ ︷︷ ︸
K2

+

∫ T

0

∫
Ω

〈Jc skewP,t, skew δP,t〉 dmdt︸ ︷︷ ︸
K3

+

∫ T

0

∫
Ω

〈T sym∇u,t, sym∇δu,t〉 dmdt︸ ︷︷ ︸
K4

+

∫ T

0

∫
Ω

〈Tc skew∇u,t, skew∇δu,t〉 dmdt︸ ︷︷ ︸
K5

.

Integrations by parts:

K1 = ρ

∫ T

0

∫
Ω

d

dt
〈u,t, δu〉 dmdt− ρ

∫ T

0

∫
Ω

〈u,tt, δu〉 dmdt

= ρ

∫ T

0

d

dt

(∫
Ω

〈u,t, δu〉 dm
)
dt− ρ

∫ T

0

∫
Ω

〈u,tt, δu〉 dmdt

= ρ

∫
Ω×{T}

〈u,t (x, T ) , δu (x, T )〉 dmdt− ρ
∫

Ω×{0}
〈u,t (x, 0) , δu (x, 0)〉 dmdt− ρ

∫ T

0

∫
Ω

〈u,tt, δu〉 dmdt.

K2 =

∫ T

0

∫
Ω

d

dt
〈Jmicro symP,t, sym δP 〉 dmdt−

∫ T

0

∫
Ω

〈Jmicro symP,tt, sym δP 〉 dmdt

=

∫ T

0

d

dt

(∫
Ω

〈Jmicro symP,t, δP 〉 dm
)
dt−

∫ T

0

∫
Ω

〈Jmicro symP,tt, δP 〉 dmdt

=

∫
Ω×{T}

〈Jmicro symP,t (x, T ) , δP (x, T )〉 dm−
∫

Ω×{0}
〈Jmicro symP,t (x, 0) , δP (x, 0)〉 dm

−
∫ T

0

∫
Ω

〈Jmicro symP,tt, δP 〉 dmdt.

K3 =

∫ T

0

∫
Ω

d

dt
〈Jc skewP,t, skew δP 〉 dmdt−

∫ T

0

∫
Ω

〈Jc skewP,tt, skew δP 〉 dmdt

=

∫ T

0

d

dt

(∫
Ω

〈Jc skewP,t, δP 〉 dm
)
dt−

∫ T

0

∫
Ω

〈Jc skewP,tt, δP 〉 dmdt

=

∫
Ω×{T}

〈Jc skewP,t (x, T ) , δP (x, T )〉 dm−
∫

Ω×{0}
〈Jc skewP,t (x, 0) , δP (x, 0)〉 dm−

∫ T

0

∫
Ω

〈Jc skewP,tt, δP 〉 dmdt.
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K4 =

∫ T

0

∫
Ω

〈T sym∇u,t,∇δu,t〉 dmdt

=

∫ T

0

∫
∂Ω

〈(T sym∇u,t) · n, δu,t〉 dmdt−
∫ T

0

∫
Ω

〈Div (T sym∇u,t) , δu,t〉 dmdt

=

∫
∂Ω×{T}

〈(T sym∇u,t (x, T )) · n, δu,t (x, T )〉 dm−
∫
∂Ω×{0}

〈(T sym∇u,t (x, 0)) · n, δu,t (x, 0)〉 dm

−
∫ T

0

∫
∂Ω

〈(T sym∇u,tt) · n, δu〉 dmdt

−

(∫ T

0

∫
Ω

d

dt
〈Div (T sym∇u,t) , δu〉 dmdt−

∫ T

0

∫
Ω

〈Div (T sym∇u,tt) , δu〉 dmdt

)
.

K5 =

∫ T

0

∫
Ω

〈Tc skew∇u,t,∇δu,t〉 dmdt

=

∫ T

0

∫
∂Ω

〈(Tc skew∇u,t) · n, δu,t〉 dmdt−
∫ T

0

∫
Ω

〈Div (Tc skew∇u,t) , δu,t〉 dmdt

=

∫
∂Ω×{T}

〈(Tc skew∇u,t (x, T )) · n, δu,t (x, T )〉 dm−
∫
∂Ω×{0}

〈(Tc skew∇u,t (x, 0)) · n, δu,t (x, 0)〉 dm

−
∫ T

0

∫
∂Ω

〈(Tc skew∇u,tt) · n, δu〉 dmdt

−

(∫ T

0

∫
Ω

d

dt
〈Div (Tc skew∇u,t) , δu〉 dmdt−

∫ T

0

∫
Ω

〈Div (Tc skew∇u,tt) , δu〉 dmdt

)

So considering only the bulk parts, we find for the kinetic energy∫ T

0

∫
Ω

(〈−ρu,tt + Div (T sym∇u,tt + Tc skew∇u,tt) , δu〉 − 〈Jmicro symP,tt + Jc skewP,tt, δP 〉) dmdt.

11.2 Variation of the potential energy

δ

∫ T

0

∫
Ω

W (∇u, P,CurlP ) dmdt = δ

∫ T

0

∫
Ω

1

2
〈Ce sym (∇u− P ) , sym (∇u− P )〉 dmdt︸ ︷︷ ︸

P1

+ δ

∫ T

0

∫
Ω

1

2
〈Cmicro symP, symP 〉 dmdt︸ ︷︷ ︸

P2

+ δ

∫ T

0

∫
Ω

1

2
〈Cc skew (∇u− P ) , skew (∇u− P )〉 dmdt︸ ︷︷ ︸

P3

+ δ

∫ T

0

∫
Ω

L2
c

2
〈L symCurlP, symCurlP 〉 dmdt︸ ︷︷ ︸

P4

+ δ

∫ T

0

∫
Ω

L2
c

2
〈Lc skewCurlP, skewCurlP 〉 dmdt︸ ︷︷ ︸

P5

.

Integration by parts:

40



P1 =
1

2

∫ T

0

∫
Ω

(〈Ce sym (∇δu− δP ) , sym (∇u− P )〉+ 〈Ce sym (∇u− P ) , sym (∇δu− δP )〉) dmdt

(sym of Ce) =

∫ T

0

∫
Ω

〈Ce sym (∇u− P ) , sym (∇δu− δP )〉 dmdt =

∫ T

0

∫
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=

∫ T

0

∫
Ω

〈Ce sym (∇u− P ) ,∇δu〉 dmdt−
∫ T

0

∫
Ω

〈Ce sym (∇u− P ) , δP 〉 dmdt

=

∫ T

0

∫
Ω

div ((Ce sym (∇u− P )) · δu) dmdt−
∫ T

0

∫
Ω

〈Div (Ce sym (∇u− P )) , δu〉 dmdt

−
∫ T

0

∫
Ω

〈Ce sym (∇u− P ) , δP 〉 dmdt

=

∫ T

0

∫
∂Ω

〈(Ce sym (∇u− P )) · n, δu〉 dmdt−
∫ T

0

∫
Ω

〈Div (Ce sym (∇u− P )) , δu〉 dmdt

−
∫ T

0
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Ω

〈Ce sym (∇u− P ) , δP 〉 dmdt.

In an analogous way we have

P2 =
1

2

∫ T

0

∫
Ω

(〈Cmicro sym δP, symP 〉+ 〈Cmicro symP, sym δP 〉) dmdt

(sym of Cmicro) =

∫ T

0

∫
Ω

〈Cmicro symP, sym δP 〉 dmdt =

∫ T

0

∫
Ω

〈Cmicro symP, δP 〉 dmdt.

Variation of P3:

P3 =
1

2
δ

∫ T

0

∫
Ω

〈Cc skew (∇u− P ) , skew (∇u− P )〉 dmdt

(sym of Cc) =

∫ T

0

∫
Ω

〈Cc skew (∇u− P ) , skew (∇δu− δP )〉 dmdt

=
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0

∫
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=

∫ T

0

∫
Ω
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∫ T

0

∫
Ω

〈Cc skew (∇u− P ) , δP 〉 dmdt

=

∫ T

0

∫
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∫ T

0

∫
Ω
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−
∫ T

0

∫
Ω

〈Cc skew (∇u− P ) , δP 〉 dmdt,
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For P4 we find

P4 =
L2
c

2
δ

∫ T

0

∫
Ω

〈L symCurlP, symCurlP 〉 dmdt

(sym of L) = L2
c

∫ T

0

∫
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= L2
c

∫ T

0

∫
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c

∫ T
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∫ T

0

∫
Ω

3∑
i=1

〈(L symCurlP )i , curl (δP )i〉R3 dmdt

= L2
c
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div ((L symCurlP )i × curl (δP )i) + 〈curl (L symCurlP )i , (δP )i〉R3

)
dmdt

= L2
c

3∑
i=1

∫ T

0

∫
∂Ω

〈((L symCurlP )i × curl (δP )i) , n〉 dmdt

+ L2
c

∫ T

0

∫
Ω

〈Curl (L symCurlP ) , δP 〉R3×3 dmdt.

For the P5 part we have

P5 =
L2
c

2
δ

∫ T

0

∫
Ω

〈Lc skewCurlP, skewCurlP 〉 dmdt

(sym of Lc) = L2
c

∫ T

0

∫
Ω

〈Lc skewCurlP, skewCurl δP 〉 dmdt

= L2
c

∫ T

0

∫
Ω

〈Lc skewCurlP,Curl δP 〉 dmdt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

〈(Lc skewCurlP )i , (Curl δP )i〉R3 dmdt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

〈(Lc skewCurlP )i , curl (δP )i〉R3 dmdt

= L2
c

∫ T

0

∫
Ω

3∑
i=1

(
div ((Lc skewCurlP )i × curl (δP )i) + 〈curl (Lc skewCurlP )i , (δP )i〉R3

)
dmdt

= L2
c

3∑
i=1

∫ T

0

∫
∂Ω

〈((Lc skewCurlP )i × curl (δP )i) , n〉 dmdt

+ L2
c

∫ T

0

∫
Ω

〈Curl (Lc skewCurlP ) , δP 〉R3×3 dmdt.

11.3 Components of the matrix

Wa give the explicit expression of the matrix D̃ ∈ R6×6 for the plane problem: we denote with D̃i, i = 1, . . . , 6 the
columns of the matrix.

D̃1 =


k2
(
−ω2

(
sin2 ϑ (η̄∗1 + η̄2) + (2η̄1 + η̄3) cos2 ϑ

)
+ sin2 ϑ (µc + µ∗e) + (λe + 2µe) cos2 ϑ

)
− ρω2

− 1
3k cosϑ (λe + 4µe)
− 2

3k cosϑ (λe + µe)
k2 sinϑ cosϑ

(
ω2 (−η̄∗1 + η̄2 − η̄3)− µc + λe + µ∗e

)
−k sinϑµ∗e
−kµc sinϑ
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D̃2 =



1
2k cosϑ (λe + 4µe)

1
6

(
λe + 10 (µe + µmicro)− (10η1 + η3)ω2 + λmicro

)
1
3

(
λe + µe − (η1 + η3)ω2 + λmicro + µmicro

)
1
2k sinϑ (λe − 2µe)

0
0



D̃3 =


2k cosϑ (λe + µe)

2
3

(
λe + µe − (η1 + η3)ω2 + λmicro + µmicro

)
4
3

(
λe + µe − (η1 + η3)ω2 + λmicro + µmicro

)
2k sinϑ (λe + µe)

0
0



D̃4 =


k2 sinϑ cosϑ

(
ω2 (−η̄∗1 + η̄2 − η̄3)− µc + λe + µ∗e

)
− 1

3k sinϑ (λe − 2µe)
− 2

3k sinϑ (λe + µe)
k2
(
−ω2

(
cos2 ϑ (η̄∗1 + η̄2) + (2η̄1 + η̄3) sin2 ϑ

)
+ cos2 ϑ (µc + µ∗e) + (λe + 2µe) sin2(ϑ)

)
− ρω2

−k cos(ϑ)µ∗e
kµc cos(ϑ)



D̃5 =


2k sinϑµ∗e

0
0

2k cosϑµ∗e
2
(
µ∗e − ω2η∗1 + µ∗micro

)
0



D̃6 =


2kµc sinϑ

0
0

−2kµc cosϑ
0

2
(
µc − η2ω

2
)
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