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Abstract—Instant fields of surface current are retrieved from
shore-based and unmanned aerial vehicle videos by an optical
flow (OF) method named “Typhoon”. This computer vision
algorithm estimates dense two-dimensional 2-component velocity
fields from the observable motion of foam patterns in the surf
zone. Despite challenging image data resolution and quality,
comparison of OF surface current estimates with measurements
by an acoustic Doppler velocimeter reveals its ability to capture
both wave-to-wave fluctuations and low-frequency variations.
The method is also successfully applied to the monitoring of
a “flash rip” event. Our study shows clearly the high potential
of this method in the nearshore, where the rapid development of
webcams and drones offers a large amount of applications for
swimming and surfing safety, engineering and naval security and
research purpose, by providing quantitative information.

Index Terms—Remote sensing, Sea surface, Sea coast, Image
motion analysis, Geophysical inverse problems, Wavelet trans-
forms, Unmanned aerial vehicles, Rip currents.

I. INTRODUCTION

THE observation of the nearshore circulation is essential
for many aspects. For example, rip currents are the main

cause of drowning of swimmers at many beaches around
the world. Currents are also crucial for quantifying sediment
transport, in particular longshore drift and transient exchanges
between surf zone and outer part. Since the mooring of
instruments is rather costly and unsafe in such energetic envi-
ronments, remote sensing techniques have emerged to estimate
surface current structure and velocity: marine radars relying
on the backscattered signal from rough surface [1] as well
as video-based systems have been developed for over twenty
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years [2]. A few studies were dedicated to the estimation of
current along one dimension [3], [4]. For two-dimensional
(2D) measures, most approaches rely on cross-correlation (CC)
methods [5], [6], although alternative tracking methods exist
[7]. Particle image velocimetry (PIV) [8], also based on CC,
is preferred for laboratory experiments where high temporal
and spatial resolutions can be achieved [9], [10]. Classical PIV
(or CC) methods are particularly interesting when applied to
isolated zones but may become computationally intense when
wide fields are considered. As formerly suggested by [5],
related but alternative methods based on dense optical flow
(OF) [11] are promising.

Recent advances in optical sensors enable to apply such
methods to unmanned aerial vehicles (UAVs) [12] and per-
manent camera images. Although UAVs suffer from relatively
short flight times, they offer wide fields of view and thus com-
plement conventional measurements by visualizing the spatial
structures of wave-by-wave current (e.g., orbital velocities or
swash flow within a cusp) or transient circulations (e.g., rip
pulsations and shear waves). Permanent cameras appear better
suited to the study of day-to-day or longer-term dynamics
(e.g., longshore current), such as storm erosion-recovery cycles
and seasonal evolution. These data complete nicely wave-
dissipation patterns and bathymetry or topography estimates,
in particular in connection with the development of data-
assimilation methods in three-dimensional numerical models
[13], with a former attempt to include radar-based currents by
[14].

The overall aim of the present study is to test an OF
algorithm named Typhoon, formerly applied to aerosol lidar
images for wind estimation [11], to recover two-component
and 2D surface currents from videos recorded at Grand Popo,
Benin (Gulf of Guinea, West Africa). After briefly introducing
the method, its potential is first assessed through a comparison
with a high-frequency acoustic Doppler velocimeter (ADV),
then by the monitoring of a “flash rip” event highlighted by a
dye release.

II. THE TYPHOON ALGORITHM

The Typhoon algorithm belongs to the family of dense OF
estimators. Such methods feature two major differences with
respect to the CC-based approaches. First, they rely on a
global formulation: the entire vector flow field is estimated
simultaneously by solving a single problem. Second, they
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provide a dense vector field, that is to say one vector at every
pixel of the input image. CC vector fields, on the opposite, are
estimated by solving as many independent problems as vectors
in the field. And, from the size of interrogation windows,
CC fields are usually sparser than input images. The Typhoon
software has been previously validated on synthetic and actual
PIV data, and more recently on aerosol lidar imagery for wind
measurement in the lower atmosphere [11]. This section gives
a rapid overview on the algorithm; details on the mathematical
developments and implementation as well as earlier validations
can be found in [15], [16].

Let In(x) , I(x, tn) be the image intensity at pixel x
and discrete time tn. The OF algorithm estimates the 2D 2-
component apparent displacement field u(x) at every pixel x
of input images. This displacement is measured in pixel (px).
When image resolution δx m/px and acquisition time-step δt s
are available, an estimate of the instantaneous velocity v(x)
is given by

v(x) =
δx
δt
u(x) . (1)

The entire displacement field u is estimated by minimizing a
functional defined over the image domain Ω:

u = arg min
u

{1

2

∫
Ω

[fdata(I,u)]
2
dx

+
α

2

∫
Ω

[freg(u)]
2
dx
}
.

(2)

fdata is the data model that connects input images I to the
unknown displacement u. The regularization freg depends on
u only. The parameter α > 0 balances the two terms and is
fixed by the user.

The data model used in Typhoon is the “displaced frame
difference” (DFD):

In+1(x + u(x, tn)) = In(x) . (3)

This model assumes the consistency of image intensity along
the trajectory of tracers during the time interval [tn; tn+1]. In
the context of surface current estimation, this assumption is
challenged by the large displacements and important visual
deformations of foam patterns that occur when waves roll
over the surf zone. The scene illumination is also subject to
rapid changes e.g. from cloud shadows. Thus, it is important
to note that from formulation (2), the data model is not strictly
enforced. Instead, the solution achieves a balance between
trying to follow the model on one hand and the regularization
on the other, giving more weight to either one of these two
terms according to the α parameter.

Regularization schemes often encourage the estimate u
to follow some smoothness assumption. This work uses the
simplest first-order regularization, originally introduced in
[17], which penalizes strong velocity gradients. For each
displacement component ui, i = 1, 2:

freg(ui) = |∇ui| =

√(
∂ui
∂x1

)2

+

(
∂ui
∂x2

)2

. (4)

The regularizer also takes precedence over the data model
locally where the latter is inefficient. Typically, this happens

within uniform regions of the input images, e.g. off the surf
zone where little to no foam features are observed.

The DFD model (3) and the Horn and Schunck regularizer
(4) inserted into (2) complete the motion estimation problem:

u(tn) = arg min
u

{
1

2

∫
Ω

[In+1(x + u(x, tn))− In(x)]
2
dx

+
α

2

∫
Ω

∑
i=1,2

|∇ui(x, tn)|2 dx

}
.

(5)
The DFD model (3) is not linear in u, so that the whole func-
tional (5) is not quadratic. To ensure a successful minimiza-
tion, optical flow methods often rely on an incremental multi-
resolution strategy. The largest displacements are estimated
first on a coarse version of input images, and then the flow
field is iteratively refined as the algorithm progresses towards
finer scales. In Typhoon, this “coarse-to-fine” estimation is
handled with the help of wavelets.

Wavelet bases offer multi-resolution (or equivalently, multi-
scale) representations of signals [18]. Here, each motion
component ui is expressed as the inverse transform of (i.e.
reconstruction from) its corresponding multi-scale wavelet
coefficients ci:

ui = Winv(ci) , i = 1, 2 ,

where Winv denotes here the inverse wavelet transform. The
set of wavelet coefficients {c1, c2} hence becomes the un-
known to the estimation problem. Coarse-scale coefficients are
estimated first, then finer-scale details are successively added.
The wavelet representation thus enables a “natural” coarse-to-
fine estimation [15]. Furthermore, regularization schemes such
as (4) find a relatively simple yet very accurate implementation
in the wavelet framework [16].

The algorithm is implemented in C++ with a GPU-
acceleration in NVIDIA CUDA1. An online interface2 to a
CPU-only version is available for testing purposes.

III. SITE AND DATA

The Bight of Benin (Fig. 1.b) is a sandy open wave-
dominated microtidal environment exposed to long-period
swells coming from high latitudes in the South Atlantic
(ECMWF Era-interim reanalysis 1979–2013 annual deep wa-
ter wave averages: Hs = 1.36 m, Tp = 9.4 s, Dir = S–SW,
see [19]). This stretch of coast presents a longshore-uniform
low tide terrace and a steep upper shoreface (Fig. 1.a). Year-
round oblique long swells [20] drive an important eastward
littoral drift of 0.8 to 1.5 × 106 m3/yr [21], [22], together
with frequent flash rips (dangerous offshore-oriented transient
currents, [23]).

A field experiment was conducted at Grand Popo beach
(6.2◦N, 1.7◦E, Fig. 1.a) from 10 to 18 March 2014 [24].
A Nortek ADV was deployed in the swash zone during
daylight hours (Fig. 1.d). Every day, various drifter releases
were conducted in the surf zone around mid-tide to determine

1Compute Unified Device Architecture.
2http://allgo.inria.fr/app/typhoon
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longshore current variability [23]. Tide varied from neap to
spring tidal ranges during the experiment, from 0.3 m to
1.2 m respectively. Waves were energetic and relatively long
(1.2 m < Hs < 1.6 m and Tp = 10–12 s), with initial higher
waves (up to 1.8 m), coming from south-west, generating
consistent eastward longshore currents. Surf zone longshore
current varied from 0.4 m/s to 0.8 m/s, inner shelf current
from 0.05 to 0.3 m/s, and swash current from 0 to 0.5 m/s.

A long-term video camera VIVOTEK IP7361 (Fig. 1.c) was
deployed in February 2013 [24] on a 15-m high semaphore
belonging to the Navy of the Republic of Benin, 80-m distant
from the shore (which is the approximate beach width). During
the experiment, 2 Hz videos were recorded at 1600×728 px; a
sample frame is shown Fig. 1.a. Rectification of images from
pixel to real world coordinates was accomplished by direct
linear transformation using GPS ground control points [25]
after a correction for the lens radial distortion [26]. Although
varying somewhat throughout the field of view, the pixel
footprint was on the order of 0.25 and 0.05 m in the region
of interest (surf zone of the instrumented zone) for the cross-
shore and alongshore directions, respectively.

Additionally, dye releases of different colors were con-
ducted in the surf zone at mid-tide (Fig. 1.e) to monitor the
dispersion induced by flash rips [23]. This was coupled with
UAV flights (STB DS6 hexacopter) at an elevation of 100 m
(Fig. 1.f). The UAV camera (NIKON D700) was looking
down, with a vertical angle, and recorded 4256×2832 px
scenes at 1 Hz. No proper rectification was possible with this
data set, but the image sequence was nonetheless compensated
for the UAV motion after acquisition. Some remaining camera
motion can still be noticed over the entire 293-frame sequence,
but the frame-to-frame camera motion is sufficiently negligible
to apply OF. Without rectification, this UAV data set will
help to qualitatively assess the ability of the OF estimates to
reproduce the flow behavior observed through the dye.

IV. RESULTS

A. Pre-processing: reducing the influence of propagating
rollers

As with most video methods, a robust pre-processing of
the raw data is essential. First, color images (red, green,
blue channels – RGB) are converted to grayscale. The shore
images were processed with an usual luminance formula:
I = 0.2125R+0.7154G+0.0721B. Regarding the UAV data,
this is achieved by keeping the blue channel only (I = B),
as the blue dye that was released does not show up in this
channel. This way, the additional information brought by the
dye motion is not used by the estimator, but rather serves
as a qualitative reference. Then, when estimating surface
current, the challenge is to separate wave-breaking rollers,
which propagate at phase speed, from remaining currents. As
shown previously by [27] breaking bores have a signature
rather correlated alongshore. This can be removed by applying
a radial filtering in the polar space using the Radon transform
[4]. A high-pass 2D median filter was preferred in this work,
being less computationally intensive than the Radon filter
and yielding comparable results. The high-pass median filter

removes the largest structures (cloud shadows, sand bars,
rollers) and improves the visualization of the residual small-
scale patterns. Fig. 2 presents the color input images as well
as the grayscale median-filtered output for the shore and UAV
data.

B. Wave-by-wave currents: comparison with an acoustic
Doppler velocimeter

The OF is applied to a 60×60 m area (at 0.1 m/px image
resolution) located in the surf zone around the ADV (Fig. 1.a),
over a 4.5-hour window (≈ 32000 video frames). Instanta-
neous fields retrieved by Typhoon are spatially averaged, over
a disk of radius 1 m located next to the ADV, in order to obtain
time-series to be compared with the ADV measures. Neither
OF nor ADV measures are controlled for outliers. A video
illustrating this setup is provided as additional material at
http://ieeexplore.ieee.org. It was found after the field campaign
that the camera acquisition time-step fluctuated around the
theoretical 0.5 s, with 12.5% time-steps between 0.85 s and
0.95 s — nearly twice the expected value. Therefore, both
ADV and OF time-series are resampled from 8 Hz and ≈ 2 Hz,
respectively, down to 0.5 Hz by averaging values within each
2-s bin.

Figures 3 and 4 present measures obtained for the cross-
and alongshore velocity components, respectively, in terms of
wave-to-wave fluctuations u, v (resampled 0.5-Hz signal) and
slow variations ū, v̄ (2-min rolling mean). Both components
feature low-frequency oscillations (Fig. 3 and 4, top) induced
by groupiness, infragravity or shear waves [23], [28]. Passing
waves with an oblique angle (Hs = 1.1 m, Tp = 11 s,
Dir = 10◦, see [28]) are the dominant signal in the 0.5 Hz
cross-shore component (Fig. 3, bottom). For this component
the instantaneous measures u appear to be in good agreement,
while the slow variations ū seem hardly comparable. This last
observation can be explained by the sheared vertical profile
of the cross-shore component. The OF estimates the apparent
surface current and shows a net onshore flux (ū > 0), while
the ADV provides a measurement at 0.2–0.3 m under the
surface (over a total depth of ≈ 1 m) where the average
flux is already weaker. Significant differences between OF
and ADV measures can therefore be expected in the cross-
shore direction. Regarding the alongshore component (Fig. 4),
the slow variations v̄ match well between OF and the ADV,
while the instantaneous measures are less in agreement. Here,
a possible explanation is that the important visual deformation
of the foam patterns due to the passing waves, well captured in
the cross-shore component u, considerably affect the accurate
OF estimation of the instantaneous alongshore displacement
v.

The statistics of Table I confirm the prior observations from
the time-series, with correlation coefficient r being the highest
for the instantaneous cross-shore u (r = 0.54) and the 2-min
averaged alongshore v̄ (r = 0.76) components. The mean rela-
tive errors (MRE) are particularly high for u and ū, however as
per the previous remarks a direct comparison with the ADV is
less relevant for these components. The limited accuracy of the
OF estimation, in the given conditions, also contributes to such

 http://ieeexplore.ieee.org
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Fig. 1. Field experiment. View of the the beach of Grand Popo, Benin (a) in the Gulf of Guinea, West Africa (b), as taken by the camera mounted on a
semaphore of the Navy (c). The circle and diamond markers in (a) represent the location of the ADV (d) and the dye release (e), respectively. Black polygons
in (a) delimit the regions of interest for the surface current estimation: time-series comparison with the ADV (60×60 m, continuous line) and monitoring of a
“flash rip” event (120×60 m, dashed line). The UAV hexacopter, also used to monitor the flash rip, is shown in (f). Image (b) Landsat/Copernicus; US Dept
of State Geographer; Data SIO, NOAA, U.S. Navy, NGA, GEBCO; c©2016 Google.

high relative errors. If displacements were measured in integer
values on the image grid and, assuming a perfect model, ideal
data and conditions, the systematic error would be ±0.5 px.
For the OF measures from images at ≈ 2 Hz and 0.1 m/px, this
corresponds to ±0.5δx/δt = ±0.1 m/s. With instantaneous
alongshore velocities on the order of 0.5 m/s, this gives an
already significant relative error of 0.2. As discussed further
below, the conditions are here fairly difficult and image data is
far from ideal, which explains even larger errors. Nonetheless,
it can be noted that with a root mean squared error (RMSE)
of 0.12 m/s, the 2-min averaged alongshore component v̄ is
very close to the theoretical 0.1 m/s bound.

Power spectral densities (PSD) are estimated from the 4.5
hour time-series at 0.5 Hz using Welch’s periodogram (over-
lapping segments of 15 min), they are presented Fig. 5 (top).
Spectra are in good agreement for both velocity components,
although the OF u peak appears broadened toward the high
frequencies. For the main peak, this can be explained by the
Doppler shift in the apparent frequencies seen by the instru-
ments. As already observed in Fig. 3 (top), the mean cross-
shore velocity varies significantly between OF observations at
the surface and ADV measures down below. Consequently,
the apparent frequencies are Doppler-shifted differently on
the two instruments. For each frequency f and cross-shore
velocity observations u by a given instrument, the corrected

frequency can be estimated to first order by f0 = c
c+ūf , where

the average ū is here taken over the entire time-series for
this instrument, c =

√
gh and the water depth h = 1 m.

Corrected spectra are shown in Fig. 5 (bottom). The peak in
the cross-shore spectra now line up for both OF and ADV
at a frequency of 0.08 Hz (period of 12.5 s) corresponding
to the passing waves. This suggests that the surface mean
cross-shore velocities seen by OF and presented Fig. 3 (top)
are correct. However, the residual shift at highest frequencies
remain unexplained.

TABLE I
STATISTICS COMPUTED FOR THE VARIOUS VELOCITY COMPONENTS:

CORRELATION COEFFICIENT (r), MEAN RELATIVE ERROR (MRE) AND
ROOT MEAN SQUARE ERROR (RMSE).

component # points r (r2) MRE RMSE (m/s)
u 8130 0.54 (0.29) 1.20 0.65
v 8130 0.22 (0.05) 0.58 0.58
ū 135 0.36 (0.13) 4.13 0.22
v̄ 135 0.76 (0.58) 0.21 0.12

C. Flash rip: comparison with dye release

1) From shore-based camera: An important potential of
using the OF method in the nearshore is the monitoring of
transient circulation. In this experiment, a dye release is first
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Fig. 2. Before (color, left) and after pre-processing (grayscale, right) of input
frames for the shore (top) and UAV (bottom) data. Shore video data is rectified
(a), UAV data is motion-compensated (c). The median filtering (b), (d) limits
the influence of wave rollers. 5 m and 35 px windows were used for the shore
and UAV data, resp. Note how the dye in (c) is not visible in (d).

taken out of the surf zone and dispersed by a flash rip filament,
then drifts over hundreds of meter following the alongshore
current. Here, the motion estimation was performed on a wider
120×60 m field (Fig. 1.a, dashed black line) at 0.2 m/px
resolution. Surface current fields of Fig. 6, superimposed on
input images, show steps of the rip generation, development
and drifting: first, (a) a large individual wave breaking oc-
curs with strong onshore-oriented current, generating several
seconds later (b) a current oriented offshore (x = 40 m)
which (c) intensifies, drifts (x = 70 m) and (d) impacts
back on breaking pattern and vanishes slowly. The signature
of the drifting dye, advected by the rip, is barely visible as
a faint blue streak, starting after the large breaking event.
The offshore-oriented current signature of the rip can then be
noticed in the estimated vector field as it drifts. Throughout
the rip inception and development duration, there is a good
spatio-temporal coherence between the breaking and current
patterns. A video illustrating the estimated surface current is
provided as additional material.

2) From UAV: The dye release was also monitored by UAV.
Fig. 7 presents a sequence of four images (after UAV motion
compensation, before any filtering, akin to Fig. 2.c) featuring
the inception and development of the rip into a narrow filament
[28]. Without proper image rectification for this data set,
the conversion from observed displacement to instantaneous
velocity (1) is not possible. Instead, virtual passive tracers
enable to assess the match between the estimated flow and the
actual one. This approach can be interpreted as a qualitative
lagrangian error.

The virtual drifter experiment is handled as follows. First,
estimated velocity fields are averaged in time over a 10 s
centered window in order to attenuate the influence of rollers.
Second, 100 drifters are randomly generated in a 40×150 px
rectangular box (the “seeding box”) centered at (m,n) =
(980, 275) px. The seeding box effectively extends across
the surf zone and covers the dye release location. Then, the
drifters are advected by the time-averaged estimated flow.
At every time-step, the seeding box is translated horizontally
(alongshore) by the median of the horizontal displacement of
the 100 drifters. Drifters ending up too far off the surf zone
(n < 150 px) or on the beach (n > 370 px) are simply
re-generated within the moving seeding box. In this time-
averaged sequence of 280 s, the average tracer lifetime is 59 s
with a standard deviation of 49 s.

The passive drifters are superimposed on the images of
Fig. 7. They are caught offshore by the rip and grouped into the
filament that lays out of the surf zone, offshore of the peak
of longshore current [4]. Their location closely follows that
of the dye throughout the entire sequence, suggesting a good
match between OF estimations and the actual surface flow.
Two videos of the full sequence are available as additional
material: instantaneous and 10-s averaged velocities (same as
Fig. 7).

V. DISCUSSION

A. Data resolution and quality

It must be mentioned first that the Grand Popo 2014 field
campaign (Fig. 1) was not designed with the OF application in
mind. Shore images were acquired at 2 Hz. At such temporal
resolution, wave rollers result in important visual deformations
of the foam pattern, which perturb the OF estimation. These
deformations are amplified by the low elevation angle of the
shore camera which captures some of the rollers’ vertical
motion. While the rectification and the high-pass median
filter help reducing the influence of the rollers, a slightly
higher and more stable acquisition frequency should help
improving significantly the quality of estimates. However, with
a computation time currently on the order of 2 s per frame pair,
the algorithm is presently unable to keep up with the real-time.
One possibility, often seen in PIV, consists in increasing the
camera framerate while performing the estimation at a lower
frequency (e.g. to estimate every 2 s from a pair of frames
separated by δt = 0.25 s). Another difficulty comes here from
the pixel footprint: with a value of 0.25 m in the vertical
image direction at the ADV location, it is greater than the
0.1 m/px rectified grid resolution. As such, rectified images
show limited fine scale details, which impacts the estimation
precision. There is much room for improvement however, as
the camera operated only slightly above 1 Mpx during this
experiment. The “optimal” temporal and spatial resolutions are
connected to the range of velocities to be observed as well as
to hardware limitations. This choice is here complicated by the
huge discrepancy between the large-scale, rapid rollers and the
small-scale, slow foam features.

On another note, the shore videos often presented artifacts
as a results of droplets or sand on the camera housing, leading
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Fig. 3. Time-series of current measured by the ADV (dark gray) and from OF (orange), on March 13 2014 at Grand Popo, Benin in the cross-shore direction.
The upper panel exhibits the slow variations over 4.5 h through the 2-min rolling mean. The lower panel focuses on a 10 min window (shown as a light gray
area above) and presents the instantaneous measures resampled at 0.5 Hz.

Fig. 4. Time-series of current measured by the ADV (dark gray) and from OF (orange), on March 13 2014 at Grand Popo, Benin in the alongshore direction.
The upper panel exhibits the slow variations over 4.5 h through the 2-min rolling mean. The lower panel focuses on a 10 min window (shown as a light gray
area above) and presents the instantaneous measures resampled at 0.5 Hz.

to blurry regions in the rectified images. Overall, this data set
proved fairly challenging for the OF.

B. Typhoon (OF) and cross-correlations

Comparing estimates given by these two methods is out of
the scope of this paper and left for future work. Nevertheless, a
few words can be said about the benefits and disadvantages of
both approaches. CC-based methods are usually more robust
to large displacements, which would make them suitable
to handle the wave rollers. And, by their design, they are
particularly useful when a few vectors only are needed (e.g.,
to monitor currents at a specific location in the camera field
of view, akin to a virtual probe). OF approaches, on the
opposite, are designed to provide entire fields. Typhoon has
also demonstrated its ability to estimate finer structures than
CC on PIV [15] and lidar [11] data. Thus, without considering
their respective accuracy and precision, the two methods
can be seen as complementary: CC for isolated observations
of rather large displacements, OF for entire fields of finer
motions.

VI. CONCLUSIONS

We have presented a methodology based on the “Typhoon”
implementation of a wavelet-based optical flow (OF) algorithm

to estimate nearshore surface currents from image sequences.
This approach computes entire 2D 2-component fields from
the apparent motion of foam pattern in the surf zone. A
2D high-pass median filter proved efficient at isolating these
fine-scale foam patterns from large-scale structures such as
propagating wave rollers. The shore camera data was fairly
challenging for the algorithm with its fluctuating acquisition
time-step, perspective distortions, important deformations, ver-
tical wave motion as well as artifacts due to the environment
(salt, sand). Furthermore the spatial and temporal resolutions
of the image sequence were low considering the range of
velocities to be measured, resulting in somewhat large relative
errors. Comparison of OF measures to that of an ADV were
limited by their different location on the vertical profile:
surface for OF versus 1/4 depth for the ADV. Nevertheless,
the OF estimates appear to capture the wave-by-wave current
in the surf zone, especially in the cross-shore direction, and
the slower variations of the alongshore component are in good
agreement. A spectral analysis leans toward validating the slow
variations of the cross-shore component. The method was then
successfully applied to the detection and monitoring of a flash
rip event from shore-based camera and UAV images.

Our study highlights the potential of OF methods such as
Typhoon in the nearshore where the rapid development of
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Fig. 5. PSD of cross-shore u (thick lines) and alongshore v (thin lines)
velocity components for the ADV (dark gray) and OF (orange). Cross-shore
spectra are offset by one order of magnitude for better readability. Upper
panel shows raw spectra while those in the lower panel have been corrected
for the Doppler shift.

webcams and drones offers many applications for swimming
and surfing safety, engineering and naval security and research
purpose, by providing quantitative information at a reasonable
instrumental and computational cost. This bridges the gap
of nearshore studies between isolated Eulerian measurements
and large-scale measurements, through Lagrangian temporally
sparse drifters [29]) or dye methods [30]. In addition to
previous 1D methods computing the alongshore current from
time-stacks or spatio-temporal images, based on correlation
[3] or Radon transform [4], this algorithm provides directly an
instant 2D field, which enables to monitor both the average and
transient circulation, such as flash rips, for which the location
of occurrence is random and instrumentation is extremely
difficult. Overall, these results promote the use of such a
method for data assimilation, such as in [14] where surface
current are provided by radar, together with wave energy fluxes
(dissipation and celerity, beach Wizard, [13]), in particular
with 3D numerical models (e.g., Delft3D, CROCO [31]) to
account for the vertical profile of currents.
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Fig. 7. Virtual drifters advected by the flow estimated from UAV images. The velocity fields were averaged over a 10-s centered window. Drifters are
initialized in the “seeding box” in (a) and closely follow the dye in (b)–(d) as it progressively forms a filament over the course of approximatively 4 min.
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