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MORITA EQUIVALENCE OF POINTED FUSION
CATEGORIES OF SMALL RANK

MICHAËL MIGNARD, PETER SCHAUENBURG

Abstract. We classify pointed fusion categories C(G,ω) up to
Morita equivalence for 1 < |G| < 32. Among them, the cases
|G| = 23, 24 and 33 are emphasized. Although the equivalence
classes of such categories are not distinguished by their Frobenius-
Schur indicators, their categorical Morita equivalence classes are
distinguished by the set of the indicators and ribbon twists of their
Drinfeld centers. In particular, the modular data are a complete
invariant for the modular categories Z(C(G,ω)) for |G[< 32. We
use the computer algebra package GAP and present codes for treat-
ing complex-valued group cohomology and calculating Frobenius-
Schur indicators.
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1. Introduction

Fusion categories are semisimple rigid monoidal categories with finitely
many isomorphism classes of simple objects, such that the space of
automorphisms of every simple object is of dimension one. Classical
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examples are the category of representations of a finite group, and
more generally the category of representations of finite dimensional
semi-simple Hopf algebras; and hence the representations of quantum
groups. Classical references on fusion categories include [5] and [6], and
a more genereal review can be found in [16].

A first toy example of fusion categories is that of pointed fusion
categories: A fusion category is called pointed if all simple objects are
invertible. Therefore the set of simple objects has the structure of a
finite group G, and the pentagon axiom for associativity leads naturally
to a 3-cocycle on the bar resolution of G.

The dual of a fusion category C with respect to an indecomposable
C-module categoryM is the functor category C∗M := FunC(M,M). A
category D that is equivalent to the category C∗M is called categorically
(or weakly) Morita equivalent to C, [22]. Categorical Morita equiva-
lence of categories is an equivalence relation, see [15]. Moreover, two
fusion categories are categorically Morita equivalent if and only if their
Drinfeld centers are equivalent as braided fusion categories. The struc-
ture of a dual category over a pointed fusion category C(G,ω) is given
by the additional cohomological data (H,µ) where H is a subgroup of
G and µ a 2-cochain on H such that ∂µ = ω|H×H×H . The quadruple
(G,H, ω, µ) is called group-theoretical data and the associated dual cat-
egory a group-theoretical category. Group-theoretical categories form
a huge class of fusion categories, with interactions in many areas of
both mathematics and physics.

One of these interactions arose from a reconstruction theory of orb-
ifold vertex operator algebras studied in [3], in the form of twisted
doubles of finite groups. A twisted quantum double Dω(G) of a finite
group G is a certain quasi-triangular quasi-Hopf algebra defined by
a 3-cocycle on G. The study of these algebras and their representa-
tion categories, which are modular categories and in particular braided
fusion categories, is important in several mathematical physics con-
texts. It is, in particular, interesting to classify such algebras up to
so-called gauge equivalence. A definition of gauge transformation for
quasi-bialebras can be found in [12], but we will take a categorical point
of view of gauge equivalence. Indeed, two doubles Dω(G) and Dω′(G

′)
are gauge equivalent if and only if their module categories are equiva-
lent as braided fusion categories. Also, the category Dω(G) −Mod is
equivalent to the Drinfeld center Z(C(G,ω)). Therefore, gauge equiva-
lence classes of doubles Dω(G) coincide with Morita equivalence classes
of pointed fusion categories C(G,ω).

We note that [8] and [17] completely classify Morita equivalent pointed
categories for groups of order 8, though both with different points of
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view and techniques. We generalize this result to all groups whose or-
der lies between 2 and 31. We mainly use two ingredients in order to
obtain such a classification. The first one is the main tool of [8] that
states a particular Morita equivalence between C(G,ω) and C(G′, ω′)
for special pairs (G,ω) and G′, ω). To wit: G and G′ are extensions
1 → A → G → Q → 1 and 1 → Â → G′ → Q → 1 with A abelian,
and the cocycles ω, ω′ can be computed by inflations of cocycles on the
quotient and some extra data. The second one is an explicit compu-
tation of the Frobenius-Schur indicators of pointed fusion categories,
their dual categories and their centers; we use also the ribbon twists of
these centers.

Frobenius-Schur indicators of pivotal categories are generalisations of
the second indicator ν2(χ) defined for an irreducible character of a finite
group by its namesakes in 1906. Several generalisations of those indi-
cators, including categorical second indicators [1][7], higher indicators
for modules over semi-simple Hopf algebras [13] and second indicators
for modules over semi-simple quasi Hopf algebras [14], led to the defi-
nition of higher indicators in [21]. A new formula for higher indicators
of general group-theoretical categories has been found in [25], including
formulas for pointed categories and modules over a twisted quantum
double of a finite group. The proof of this result is strongly based on a
trick used by [19] that permits us to change a general modular data to
an equivalent one which can be described with restricted cohomology
settings. These formulas will allow us to compute the indicators with
GAP based programms.

In fact we view it as a goal of the paper of independent interest to
implement the computation of indicators in GAP. Also, the construc-
tion of group-theoretical categories requires making the cohomological
data involved in this construction available in an efficient fashion, and
we think that the approach to this problem we will present is also of
independent interest.

The paper is organized as follows: Section 2 gathers preliminary
results concerning calculations with group cohomology wich is useful
to describe both the objects we are dealing with and their Frobenius-
Schur indicators. In Section 3, general background about pointed fu-
sion categories is recalled and we give formulas for the Frobenius-Schur
indicators of these categories. Our results are given in section 4 and
can be summarized by theorems 4.7 and 4.8.

Throughout the paper, linear categories will be taken over the field
of complex numbers, and all groups are assumed to be finite.
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2. Complex valued cohomology with GAP

In this section, we present GAP/HAP code that calculates the coho-
mology groups of a finite group G with coefficients in C×. We take for
granted that we have suitable resolutions available (usually provided
by HAP).

It is well-known (see below) that Hn(G,C×) is a finite abelian group,
but it is defined as the cohomology group of a cochain complex of
abelian groups that are not finitely generated (simply since C× is al-
ready not finitely generated as an abelian group). Thus, even if the
cohomology group we need is finite, we cannot naively compute it by
feeding the complex defining it to a computer algebra system.

Denote by µm ⊂ C× the subgroup of m-th roots of unity. As we will
discuss below in detail, the Universal Coefficient Theorem implies that
Hn(G,C×) is naturally an epimorphic image of Hn(G, µm) for suitable
m. The latter group now is defined as the cohomology group of a
cochain complex of finite abelian groups, and thus readily accessible
to machine calculations. In other words, every cohomology class in
Hn(G,C×) is represented by a cocycle taking values in µm. This is the
way proposed by the makers of HAP to obtain all cohomology classes
in Hn(G,C×) [4].

A slight drawback is that the kernel of the map Hn(G, µm) →
Hn(G,C×) is not trivial. In other words, a nontrivial cocycle with
values in µm may be trivial when regarded as a cocycle with values in
C×. While the kernel is known through the Universal Coefficient Theo-
rem and not hard to compute as an abstract group (it is the Ext-group
of a cyclic group by a homology group), it is not immediately available
as a subgroup of Hn(G, µm).

We use the following approach. The Universal Coefficient Theorem
implies that Hn(G,C×) is isomorphic to Hom(Hn(G), µm) for suitable
m, and Hn(G) can be obtained as the homology of a complex of finitely
generated free abelian groups. The isomorphism and the form of all
homomorphisms defined on Hn(G) can be made sufficiently explicit as
to obtain an (additive) presentation

Hn(G,C×) = 〈x1, . . . , xk|sixi = 0〉,
i. e. an explicit isomorphism

Hn(G,C×) ∼= Z/(s1)× · · · × Z/(sk).
We start with standard definitions. Let K be a chain complex of

abelian groups Kn, with differential maps ∂n : Kn → Kn−1. Denote by
Zn(K), Bn(K) ⊂ Kn the subgroups of cycles, resp. boundaries, and by
Hn(K) := Zn(K)/Bn(K) the n-th homology group.
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For an abelian group A we consider the cochain complex Hom(K,A)
with differential δn(f) := f ◦ ∂n+1. We denote by Zn(K,A), Bn(K,A),
and Hn(K,A) the groups of cocycles, coboundaries, and the cohomol-
ogy group of this cochain complex.

We recall the following standard result :

Theorem 2.1. (Universal Coefficient Theorem)
Let K be a complex of free abelian groups. One has a short exact

sequence of abelian groups:

EA : 0→ Ext(Hn−1(K), A)
βA
↪→ Hn(K,A)

αA
� HomZ(Hn(K), A)→ 0

This sequence is natural in both K and A. Moreover, it has a (non-
natural) splitting πA : HomZ(Hn(K), A)→ Hn(K,A)

We use this theorem in the following way. For any positive integerm,
define the map φ : Z/mZ→ C∗, n 7→ ζnm, where ζm denotes a primitive
m-th root of unity. Since the exact sequence given by the UCT is
natural in A, we have a chain map between the exact sequences EC∗
and EZ/mZ. Also, since C∗ is divisible, Ext(C,C∗) is trivial for any
abelian group C. We obtain then the following diagram with exact
rows:

0 // Hn(K,C×)
∼= // HomZ(Hn(K),C×) // 0

0 // Ext(Hn−1(K),Z/mZ)

OO

// Hn(K,Z/mZ)

γ

OO

// // HomZ(Hn(K),Z/mZ)

OO

// 0

Put m := Exp(Hn(K)). Then the rightmost vertical arrow from
HomZ(Hn(K),C×) to HomZ(Hn(K),Z/mZ) is an isomorphism. By
naturality, the right hand square commutes, and so the map γ from
H(K,Z/mZ) to Hn(K,C×) is surjective. Moreover, the composition
γ◦πZ/mZ is an isomorphism from HomZ(Hn(K),Z/mZ) to Hn(K,C×).

We now show how to implement this in GAP. All codes are gathered
in 2.3.

2.1. Calculating cohomology groups. We describe in detail how
we compute cohomology groups using GAP/HAP code. From now on
K will always be a complex of free Z-modules. Also, we fix a basis K :=
(e1, . . . , eN) for Kn, where N is its rank. Cochains, coboundaries and
boundary maps are then described by integer row vectors and matrices.
The strategy is to use the isomorphism between HomZ(Hn(K),Z/mZ)
and Hn(K,C×) instead of just the surjection γ: we compute the group
HomZ(Hn(K),Z/mZ), and then lift its elements to Hn(K,C×), using
the composition of a section of the UCT sequence for Z/mZ and the
surjection from Hn(K,Z/mZ) to Hn(K,C×) as described before.
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First, we give details about the section map of the UCT. The nota-
tions are the same as in theorem 2.1. Following [9] —where the reader
will find a complete proof of theorem 2.1— we construct the map αA
and its right inverse.

Take f ∈ Zn(K,A). The cohomology class of f in Hn(K,A) is
denoted by f̄ . By definition, we have that δn(f) = f ◦ ∂n+1 = 0. So
f |Bn(K) = 0 and f factors over Hn(K). Take αA(f̄) := f |Zn(K). We
have to verify that αA is actually well-defined. If f ∈ Bn(K,A), then
there exists f̃ : Kn−1 → A such that f = δn−1(g̃) = f̃ ◦ ∂n. Therefore,
f ◦ ∂n+1 = 0 and αA is well-defined.

Now, the exact sequence 0 → Zn(K) ↪→ Kn � Bn−1(K) → 0
splits since Bn−1(K) is free. Let π denote a splitting of the injec-
tion Zn(K) ↪→ Kn, that is π is a surjective map from Kn to Zn(K)
which restricts to the identity on Zn(K). Composing π with a func-
tion f : Zn(K) → A that vanishes on Bn gives a function f̃ :=
f ◦ π : Kn → A that still vanishes on Bn. Also, we have that
α(f̃) = α(f ◦ π) = (f ◦ π)|Zn(K) = f ◦ idZn(K) = f , so the compo-
sition with π gives a splitting of α, denoted πA.

Now we get some information about Hn(K), which is the quotient
of the free modules Zn(K) and Bn(K). Let k, l be their ranks, respec-
tively, and we assume that we also have bases Z := (z1, . . . , zk) and
B := (b1, . . . , bl). We recall the following theorem for free modules over
euclidean rings :

Theorem 2.2 (Adapted Basis Theorem). Let A be an euclidean ring.
If F is a free module over A of rank k, and S is a free submodule
of F of rank l, then there exists a basis B = {b1, . . . , bk} of F and
non-zero elements s1, . . . , sl of A, such that s1|s2| . . . |sl and the set
{s1 · b1, . . . , sl · bl} is a basis of S.

This theorem is equivalent with the existence of the Smith Normal
Form for matrices with coefficients in A. To wit: if one has a basis for F
and a system of generators for S, take M the matrix of decomposition
of this system of generators into the basis of F . Then the elements
si, called the invariant factors, are the coefficients of the SNF of M.
There exists in GAP a function that computes such bases from provided
systems of generators for both F and S. We slightly complete it, so
that it also gives the change of bases needed for our implementation.

Remember that Zn(K) and Bn(K) are submodules of Kn with basis
(e1, . . . , eN), which we identify as the free module ZN with its canonical
basis. For a system Γ = (γ1, . . . γk) of elements in Kn, we will also
denote as Γ the matrix formed by the decomposition as row vectors of
the γi in the canonical basis.
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We obtain then, from a basis Z := {z1, . . . , zk} of Zn(K), and a basis
(or system of generators) B of Bn(K), a new basis Z ′ := {z′1, . . . , z′k} of
Zn(K) and the invariant factors {s1, . . . , sl} such that {s1 ·b1, . . . , sl ·bl}
is a basis of Bn(K). We denote C the matrix such that Z ′ = CZ.

Therefore, the quotient Hn(K) = Zn(K)/Bn(K) is a finite abelian
group isomorphic to Z/s1Z × · · · × Z/slZ. Also, as s1| . . . |sl we have
that the exponent of this group is sl. Now, we want a description of the
set HomZ(Hn(K),Z/mZ) where m is (a multiple of) the exponent sk.
The elements of this set are homomorphisms f from Zn(K) to Z/mZ
such that f |Bn(K) = 0. For a morphism f : Zn(K)→ Z/mZ, we denote
f̄ := (f(z′1), . . . , f(z′k)). This row vector represents then the morphism
f in the basis Z ′.

For all 1 6 i 6 l, we have :

f(b′i) = f(si · z′i) = si · f(z′i)

Then, f |Bn(K) = 0⇔ si · f(z′i) = 0 mod m for all 1 6 i 6 l.
One can then describe an explicit system of generators for

HomZ(Hn(K),Z/mZ) by setting, for 1 6 i 6 l, the vector h̄i of size k:

h̄i :=

(
0, . . . ,

m

si
, . . . , 0

)
where the only non-zero coordinate is in the i-th position.
The morphisms hi represented in Z ′ by the row vectors h̄i are then a

system of generators of HomZ(Hn(K),Z/mZ). To express them in the
basis Z, one has just to multiply those vectors h̄i by the matrix C−1
(and reduce the results modulo m) ; we denote those new row vectors
by h̃i. Just note the fact that if si is equal to 1, the corresponding
vector h̃i is equal to the null vector modulo m. Once those removed,
each remaining vector represents a cyclic part of the abelian group
HomZ(Hn(K),Z/mZ). Thus, the list of orders of those vectors modulo
m, which is the list of the si that are not equal to 1, gives us the torsion
of Hn(K,C×).

Then we lift those generators hi to elements of Hn(K,Z/mZ). For
this, we are going to use the section of the UCT we described earlier.

We use theorem 2.2 for Kn and Zn(K) ; the obtained basis of Kn

is denoted K ′ = {κ1, . . . , κN}. The advantage here is that, as the
quotient of Kn by Zn(K) is isomorphic to the free module Bn−1(K),
the invariant factors are all equal to 1, and so Z ′′ := {κ1, . . . , κk} is a
basis for Zn(K). We denote respectively C1 and R1 the matrices such
that Z ′′ = C1Z and K′ = R1K.
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Thus, one can easily express in those bases an (N × k)-matrix I
coding a surjective map from Kn to Zn(K), denoted π, such that :

π(κi) = κi , 1 6 i 6 k

π(κi) = 0 , k + 1 6 i 6 N

Then, for a vector h̃ representing a morphism h : Hn(K) → Z/mZ in
the basis Z, the vector ĥ := C1×h̃ represents h in the basis Z ′′. Apply-
ing the matrix I to ĥ gives a row vector, denoted ω̂, withN coordinates,
whose are the image in Z/mZ of the basis elements {κ1, . . . , κN} by
h◦π. The application ω : Kn → Z/mZ is an n-cocycle for the complex
K. Finally, multiplying this row vector ω̂ by the matrix R−11 gives a
row vector ω̃ that represents ω in the canonical basis of Kn.

We obtain by this procedure, from the set of vectors h̃i, a set of
vectors ω̃i representing elements ωi = hi◦π ofHn(K,Z/mZ). Using the
fact that the composition of the section of the UCT and the (surjective)
map γ is an isomorphism, each γ(ωi) generates a different cyclic part
of order si in Hn(K,Z/mZ) ∼= Z/s1Z× · · · × Z/slZ.

2.2. Functoriality. Now, we consider two complexes K and K ′ and a
chain map f : K → K ′. We keep the same notations as in the previous
section, and add a single quote to all objects associated to K ′. We have
seen how to compute Hn(K,C×) explicitly through an isomorphism
with a group of homomorphisms Hom(Hn(K),Z/mZ). Now we want to
extend this description to cover the induced homomorphism Hn(f,C×)
by completing the diagram

Hn(K ′,C×)
Hn(f,C×)

//

∼=
��

Hn(K,C×)

∼=
��

Hom(Hn(K ′),Z/m′Z))
F̂ // Hom(Hn(K),Z/mZ))

We get first a matrix description of the homomorphim Hn(f) :
Hn(K) → Hn(K ′). From the chain map f : K → K ′ we form the
(N × N ′)-matrix F whose rows are the images of the canonical basis
of Kn by fn, decomposed in the canonical basis of K ′n. Remember
that a morphism h′ : Hn(K ′) → Z/m′Z, where m′ is a multiple of
Exp(Hn(K ′)), is described by a row vector of size N ′ with integral
coefficients, but whose supposed to been seen modulo m′.

However, as m′ was taken to be a multiple of the exponent of Hn(K ′)
and because in general this is not a multiple of the exponent of Hn(K),
we cannot just multplying this vector by F in order to get the compo-
sition Hn(f) ◦ h′. We need first to extend the rings Z/mZ and Z/m′Z
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in such a way that this product makes sense. This procedure is sum-
marized by the following diagram.

Take p a multiple of lcm(m,m′), ξm, ξm′ and ξp respectively m, m′
and p primitive roots of unity, t, t′ and s generators of (respectively)
Z/mZ, Z/m′Z and Z/pZ, we construct h : Hn(K)→ Z/mZ such that
h̃′ ◦Hn(f) = h̃, where h̃′ = (t′ 7→ ξm′) ◦ h′ and h̃ = (t 7→ ξm) ◦ h.

Hn(K ′)
h′ //

h̃′

%%

Z/m′Z

(t′ 7→ξm′ )
��

� u

((
C× Z/pZ

(s′ 7→ξp)oo

Hn(K)

Hn(f)

OO

h //

h̃

99

Z/mZ

(t7→ξm)

OO

) 	

66

Therefore, we multiply the coordinates of h by the integer p
m
, apply to

the result the matrix F , and finally divide the coordinates of the formed
row vector (of size N) by the integer p

m′
. That the last vector repre-

senting h is integral is garanted by the commutativity of the diagram.
Reducing this vector modulo m gives the image of h′ by composition
with Hn(f), that is F̂ (h′) = h.

Finally, in order to get a description of Hn(f,C×), we recall the
isomorphism γ ◦ πZ/mZ : Hom(Hn(K),Z/mZ) → Hn(K,C×). That is,
from a cocycle ω̃′ ∈ Zn(K ′,Z/m′Z) representing ω′ ∈ Zn(K ′,C×), we
form the homomorphism h′ ∈ Hom(Hn(K ′),Z/m′Z) image of ω̃′ by the
surjection of the UCT for K ′. We compute then a homomorphism h ∈
Hom(Hn(K),Z/mZ) be the previous procedure. Applying γ ◦πZ/mZ to
h gives a cocycle ω ∈ Hn(K,C×) such that its cohomology class is the
image of the cohomology class of ω′ by Hn(f,C×).

Remark 2.3. In our applications, the complexes K,K ′ will arise from
tensoring free resolutions for groups G,G′ with Z, and the chain map
f will arise from a group homomorphism φ : G → G′. The fact that
we can represent cohomology classes in Hn(K,C×) = Hn(G,C×) by
homomorphisms Hn(K) → Z/mZ (and not by equivalence classes
of cocycles) has computational advantages: For example, it is easier
to take orbits of a cohomology group under the automorphism group
of the group in question, if we act on homomorphisms instead of on
equivalence classes modulo coboundaries. Similarly, it is easy to check
whether the restriction of a cohomology class to a subgroup is trivial,
or if a cohomology class is the inflation of another cohomology class
with respect to a group epimorphism.
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There is a caveat, however: While we can also obtain in this fash-
ion a cocycle ω : K → Z/mZ representing the image in Hn(G,C×)
of the cohomology class in Hn(G′,C×) represented by a given cocycle
ω′ : K ′ → Z/m′Z, it is generally not true that ω would be the restric-
tion of ω′ along Hn(f) (even if we properly treat the difference between
m and m′). This is due to the fact that we had to choose a section
πZ/mZ above. In particular, if we find that the restriction of a cohomol-
ogy class to a subgroup is trivial, this does not give us a representative
of the cohomology class whose restriction would be the trivial cocycle;
the restriction will in general only be a coboundary, and we have no
information on the cochain whose coboundary it is. In particular, if
we pass from cocycles given in an arbitrary free resolution to cocy-
cles ω : Gn → C× with respect to the bar resolution, we may know that
such a cocycle represents a cohomology class whose restriction to a sub-
group H ⊂ G is trivial, but we will not have ν : Hn−1 → C× in hand
such that the restriction of ω is dν. We believe that it is not a prob-
lem to add such a feature to our treatment of C×-valued cohomology;
clearly it would be useful since, for example, treating group-theoretical
categories in full generality one has to computationally deal with just
such a situation. However, since for our concrete problems we hap-
pened to chance upon sufficiently many cocycles where the restrictions
in question are not only cohomologically, but rather outright trivial,
we postponed this.

2.3. GAP implementation. We give now the codes we have imple-
mented in order to compute the C×-valued cohomology groups of finite
groups, and the morphism Hn(φ) : Hn(H,C×) → Hn(G,C×) for a
group morphism φ : G → H. Let G be a finite group. Let R be a
resolution of Z[G]-modules, and A a Z-module. By the Hom-Tensor
adjunction, we have that

HomZ[G](R,A) ∼= HomZ[G](R,HomZ(A,Z))
∼= HomZ(R⊗ Z, A)

HAP provides free resolutions of a given size n for finite groups, by
using for example the command

R:=Reso lut ionFin i teGroup (G, n ) ;

or other commands that may be available for specific groups; we note
that it is essential to have a command that produces a free resolution
with a contracting homotopy which HAP uses to calculate cocycles in
the bar resolution.

Also, we can construct the chain complex K := R⊗ Z by :
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K:=TensorWithIntegers (R) ;

Now, we can implement the algorithm previously described to obtain
the torsion of the homology group Hn(K,A), together with a system
of generators — one for each cyclic part.

Un ive r sa lCoe f f i c i ent sTheorem := function (K, n)
local ZZ , # a ba s i s f o r Z_n(K)

B, # a ba s i s f o r B_n(K)
r , # the ABT fo r Z_n(K) and B_n(K)
C, # the matrix C
D, # the l i s t o f the i n va r i an t f a c t o r s
m, # the exponent o f the H_n(K)
homlist ,# a " ba s i s " f o r Hom(H_n(K) ,Z/mZ)
r2 , R1 ,C1 ,

# the d i f f e r e n t v a r i a b l e s imp l i c a t ed
# in the ABT fo r K_n and Z_n(K)

I , # the matrix I
c o c y c l e l i s t ;

# a " ba s i s " f o r H^n(K,C^∗)

ZZ:=NullspaceIntMat ( TransposedMat (
BoundaryMatrix (K, n ) ) ) ;

i f not S i z e (ZZ)>0 then return
rec ( complex :=K,

c y c l e b a s i s :=ZZ ,
c y c l e t r an s := [ ] ,
hombasis := [ ] ,
c o c y c l e b a s i s := [ ] ,
t o r s i o n := [ 1 ] ,
exponent := 1 ,
l i f t := [ ]

) ;
f i ;
B:=BaseIntMat ( TransposedMat (

BoundaryMatrix (K, n+1)) ) ;
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r :=ComplementIntMatWithTransforms (ZZ ,B) ;
C:= r ! . f u l l t r a n s ;
D:= r ! . moduli ;
m:=D[ S i z e (D) ] ;
homl i s t : = [ ] ;
L i s t ( F i l t e r e d (D, x−>not x=1) ,x−>

Li s tWi th Id en t i c a lEn t r i e s ( S i z e (ZZ ) , 0 ) ) ;
for i in [ 1 . . S i z e (D) ] do

i f D[ i ]=1 then continue ; f i ;
hom:= L i s tWi th Id en t i c a lEn t r i e s ( S i z e (ZZ ) , 0 ) ;
hom[ i ] :=m/D[ i ] ;
Add( homlist , hom) ;

od ;
homl i s t := L i s t ( homlist , x−>((C^(−1))∗x ) mod m) ;

r2 :=ComplementIntMatWithTransforms (
IdentityMat (K! . dimension ( 3 ) ) , ZZ ) ;

C1:= r2 ! . subtrans ;
R1:= r2 ! . f u l l t r a n s ;

I :=Concatenation ( IdentityMat ( S i z e (ZZ) ) ,
NullMat (K! . dimension (n)−S i z e (ZZ) , S i z e (ZZ ) ) ) ;

c o c y c l e l i s t := L i s t ( homlist , x−>(R1^(−1)∗( I ∗(C1∗x ) ) )
mod m) ;

return ( rec (
complex :=K,
c y c l e b a s i s :=ZZ ,
c y c l e t r an s :=C,
hombasis := homlist ,
c o c y c l e b a s i s := c o c y c l e l i s t ,
t o r s i o n := F i l t e r e d (D, x−>not x=1) ,
exponent := m,
l i f t :=R1^(−1)∗ I ∗C1

)
) ;

end ;
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Remark 2.4. There is already a command in HAP computing the tor-
sion of the cohomology (or homology) of a finite group with values
in Z. Our command (whose primary result is of course a system of
generators and relations) always gives the torsion in the form of the
invariant factors of the cohomology group, due to the use of the Smith
Normal Form; the HAP command sometimes gives the primary factors
instead.

The generators for Hn(K,A) are represented as vectors; the order of
the cohomology class corresponding to such a vector is given by the
function:

CocycleOrder := function ( f ,m)
local l i s t ;
l i s t := L i s t ( F i l t e r e d ( f , x−>not x=0) ,

x−>m/Gcd(x ,m) ) ;
i f l i s t =[ ]

then return 1 ;
else return Maximum( l i s t ) ;

f i ;
end ;

Now, for a chain map f from a complex K1 to a complex K2, and
an integer n, we give the code that provides the matrix F representing
the homomorphism Hn(f).

GroupCohomologyFunctor := function (K1,K2, phi , n )
local UCT1, # UCT fo r K1

m1, # the exponent o f H_n(K1)
Z1 , # the adapted b a s i s o f Z_n(K1)
UCT2, # UCT fo r K2
m2, # the exponent o f H_n(K2)
Z2 , # the adapted b a s i s o f Z_n(K2)
p , # p=lcm (m1,m2)
F, # the matrix F
hphi ; # the morphism H_n( phi )

UCT1:=Unive r sa lCoe f f i c i ent sTheorem (K1, n ) ; ;
m1:=UCT1 ! . exponent ; ;
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Z1:=UCT1 ! . c y c l e b a s i s ;
s :=NormalFormIntMat (Z1 , 1 3 ) ;
UCT2:=Unive r sa lCoe f f i c i ent sTheorem (K2, n ) ; ;
m2:=UCT2 ! . exponent ; ;
Z2:=UCT2 ! . c y c l e b a s i s ;
F:= L i s t (Z1 ,

x−>Solut ionIntMat (Z2 , phi ! . mapping (x , n ) ) ) ; ;
p:=Lcm(m1,m2 ) ; ;

hphi := function ( f )
return ( (F∗(m1∗ f ) ) /m2) mod m1;

end ;
return rec (

matrix :=F,
mapping:=hphi ,
p:=p ,
m1:=m1,
m2:=m2) ;

end ;

3. Frobenius-Schur indicators of group-theoretical
categories

3.1. Preliminaries. A fusion category (over C) is a rigid semi-simple,
C-linear and (non-strict) monoidal category with finitely many classes
of isomorphism of simple objects. We also require that Hom(s, t) = k
if s and t are isomorphic simple objects, and 0 otherwise. A pivotal
structure in a fusion category is a monoidal natural isomorphism j :
Id→ ( )∗∗.

Recall also that a braiding in a monoidal category is a family of nat-
ural isomorphisms cX,Y : X⊗Y → Y ⊗X satisfying an hexagon axiom.
A monoidal category equipped by a braiding is called braided. A twist
in a braided category is a family of natural isomorphisms θV : V → V ∗

such that θX⊗Y = (θX ⊗ θY )cX,Y cY,X and θX∗ = (θX)∗. A braided cat-
egory with twist is called a ribbon category. For more background on
braided and ribbon categories, we refer the reader to [12].

The Drinfeld center Z(C) of a monoidal category C is the category
whose objects are couple (X, cX,_), where X is an object of C and cX,_
is a family of natural isomorphisms cX,Y : X ⊗ Y → Y ⊗X such that,
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for all Y and Z, the following diagram commutes:

X ⊗ Y ⊗ Z
cX,Y⊗Z //

cX,Y ⊗Z

((

Y ⊗ Z ⊗X

Y ⊗X ⊗ Z

Y⊗cX,Z
66

If C is a fusion category, Z(C) is a modular category, and in particular
a braided fusion category. Moreover, the Frobenius-Schur indicators of
simple objects of Z(C) can be extracted from its S and T matrices.

A pointed fusion category is a fusion category in which every object is
invertible with respect to the tensor product. Pointed fusion categories
are parametrized by couples (G,ω) where G is a finite group and ω
is a C×-valued 3-cocycle on G - they are denoted C(G,ω). Simple
objects of these are the elements of G, the tensor product is given by
multiplication and the associativity constraint between g, h, k ∈ G is
the scalar tranformation given by ω(g, h, k) Id : (gh)k → g(hk). We
note that the category VectωG of G-graded vector space with twisted
tensor product (u⊗ v)⊗w) = ω(g, h, k)u⊗ (v ⊗w) for respectively g,
h and k homogenous elements u,v and w. is often used. C(G,ω) is a
skeletal category equivalent VectωG. We refer the reader to [23].

Following [22], we say that two fusion categories C and D are called
categorically Morita equivalent if and only if there exists an indeco-
posable C-module category M such that D is equivalent (as fusion
categories) to C∗M. This is an equivalence relation that contains the
usual equivalence of categories. Also, two categories are categorically
Morita equivalent if and only if they have equivalent (as braided fusion
categories) centers. Categories that are Morita equivalent to pointed
fusion categories are called group theoretical categories (g.t.c.). They
are parametrized by quadruples (G,ω,H, µ), where G is a finite group,
H is a subgroup of G, ω a 3-cocycle on G and µ a 2-cochain on H such
that dµ = ω|H×H×H . Such a quadruple is called a group theoretical
data and the associated category is denoted C(G,ω,H, µ).

3.2. Projective characters. Simple objects of group-theoretical cat-
egories are parametrized by irreducible projective characters of certain
subgroups of the groups defining the categories. Since we need to do ex-
plicit calculations with these objects, we recall here some basic notions
from projective character theory, and we give the GAP codes we use
for dealing with them. General references for projective representation
theory are [11] or [10].

A projective representation is a group homomorphism ρ : G→ PGL(V )
for a finite dimensional vector space V . If we choose an inverse image
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ρ(g) ∈ GL(V ) for ρ(g) ∈ PGL(V ) = GL(V )/Z(GL(V )) for each g ∈ G
(taking ρ(1) = 1), then we obtain a map ρ : G → GL(V ) which is a
group homomorphism only up to scalar factors:

Definition 3.1. Let α : G×G→ C× be a map. An α-projective rep-
resentation, or simply α-representation, of G, is the data of a complex
vector space V and a mapping ρ : G→ GL(V ), such that the following
equalities hold:

ρ(gh) = ρ(g)ρ(h)α−1(g, h)(3.1)
ρ(1) = 1(3.2)

The character of ρ is the map tr ◦ρ : G → C, and an α-projective
character is the character of an α-projective representation.

If ρ is an α-projective representation, then α is necessarily a normal-
ized two-cocycle.

Consider the central extension
1→ µn → Gα → G→ 1

defined by such a two-cocycle, where Gα denotes the “twisted direct
product” µn ×α G with the group µn of n-th roots of unity, whose
structure is given by:

(z, g) · (z′, g′) = (zz′α(g, g′), gg′) , ∀z, z′ ∈ µn , ∀g, g′ ∈ G
Then any α-projective representation ρ gives rise to an ordinary rep-

resentation ρ̃ : Gα → GL(V ) by ρ̃(z, g) = zρ(g), whose restriction to µn
is the tautological representation of µn by multiplication. Conversely,
any representation of Gα whose restriction to µn is the tautological
representation of µn arises in this fashion from an α-representation of
G. Note that, for a representation ρα of Gα and its character χα, the
restriction of ρα to µn is the tautological representation iff the restric-
tion of χα to µn is the character of the tautological representation, that
is χα(ζn) = dim(V )ζn for some generator ζn of µn.

We now give our implementation in GAP of α-representations through
central extensions. We use the package HapCocyclic of GAP for this
implementation. We did add a few new commands and modified some
code to improve the efficiency of the package for our purposes, but we
will not discuss these merely technical details here.

P ro j e c t i v eCharac t e r s := function (G, alpha , o )
local A, r ,Ga,Gaa , i r e , t , l i f t , t e s tp r o ;

# we repre s en t the c y c l i c group as a G−Outer group
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A:=GOuterGroup ( ) ;
SetActingGroup (A,G) ;
i f o=1 then

SetActedGroup (A, GroupByGenerators (
[One( CyclicGroup ( o ) ) ] ) ) ;

else
SetActedGroup (A, CyclicGroup ( o ) ) ;

f i ;
SetOuterAction (A, function ( g , x ) return x ; end ) ;

# we repre s en t the cocyc l e f as a
# standard 2−cocyc l e in HAP

r :=Standard2Cocycle ( ) ;
SetActingGroup ( r ,A ! . ActingGroup ) ;
SetMapping ( r , function (x , y ) return

(A ! . ActedGroup .1)^ alpha (x , y ) ;
end ) ;

SetModule ( r ,A) ;

# now , we cons t ruc t the ex t ens i on o f G by A along r
# we a l s o g i v e i t s charac t e r t a b l e

Ga:=CcGroup(A, r ) ;
Gaa:=UnderlyingGroup (Ga ) ;
i r e := I r r (Gaa ) ;

# we g i v e the e lement in Gaa t ha t corresponds to
# the genera tor s o f the c y c l i c group , and a
# se c t i on o f the ep i o f Gaa on G

t :=CcElement ( FamilyObj (One(Ga) ) , GeneratorsOfGroup (
Ga ! . Fibre ) [ 1 ] , One(Ga ! . Base ) , InCcGroup (One(Ga ) ) ) ;

l i f t := function ( g )
return CcElement ( FamilyObj (One(Ga) ) ,

One(Ga ! . Fibre ) , g , InCcGroup (One(Ga ) ) ) ;
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end ;

# f i n a l l y , we g i v e the func t i on t ha t t e s t s f o r a
# chara te r o f Gaa i f i t comes from a p r o j e c t i v e
# charac t e r o f G

t e s tp r o := function ( l )
local l i s t , ch i ;
l i s t : = [ ] ;
for ch i in l do

i f t^ch i /E( o)=( t^S i z e (Ga))^ ch i
then Add( l i s t , ch i ) ;

f i ;
od ;
return l i s t ;

end ;

return rec (
Gaa:=Gaa ,
l i f t := l i f t ,
t ab l e := t e s tp r o ( i r e )
) ;

end ;

This will allows us to compute with GAP simple objects of a group the-
oretical category C(G,ω,H, 1) with adapted ω, that are parametrized
by representatives g of right cosets gH and ωg-projective characters of
the stabilizer S := StabH(gH) = H

⋂
g . H.

3.3. Frobenius-Schur indicators. It is easy to modify general group
theoretical data (G,ω,H, µ) to give data of the form (G,ω′, H, 1) that
gives rise to an equivalent fusion category. One simply has to divide
ω by the coboundary of an arbitrary extension of µ to a cochain on
G. In [19], Natale showed that one can even replace ω by ω′ in such
a way that ω′|G×G×H is trivial, which is a slightly stronger condition.
We call such ω adapted cocycle. Using that trick, one of the authors
[25, 26] extracted formulas for higher indicators of simple objects in
group-theoretical categories, for both adapted and general cocycles.
As a special case, a formula for doubles is also given. We recall those
formulas and refer to [25, 26] for further details. The way we compute



POINTED FUSION CATEGORIES OF SMALL RANK 19

adapted cocycles is the same as in [26] and we give its implementation
at the end of this section.

We define for g, x, y ∈ G and ω ∈ Z3(G,C×) the following symbols:

ωg(x, y) := ω(x, y, g)

αg(x, y) := ω(x, y, g)ω−1(x, y . g, y)ω(xy . g, x, y),

where . denotes the conjugation action. We also define the symbols
πm(x) fixed for m ∈ Z by

π0(x) := 1 and πm+1(x) := ω(x, xm, x)πm(x) for m ∈ Z

As the sequence of numbers ω(x, xm, x) is periodic of period o the order
of x ∈ G, we can use the following to compute efficiently πm(x):

πm+o(x) =

( ∏
m6k6m+o−1

ω(x, xk, x)

)
πm(x)

=

( ∏
06k6o−1

ω(x, xk, x)

)
πm(x)

= πo(x)πm(x)(3.3)

Theorem 3.2. For a simple object M in C(G,ω,H, 1) with adapted
cocycle corresponding to the couple (g, χ) where χ is an ωg-projective
character of S, we have:

νm(M) =
1

|S|
∑

x ∈ gH
xm ∈ S

π−m(x)χ(x−m)(3.4)

=
1

|S|
∑
h ∈ H

(gh)m ∈ S

π−m(gh)χ((gh)−m)(3.5)

Corollary 3.3. For a simple object M in C(G,ω) corresponding to g,
we have:

νm(M) =

{
π−m(g) if gm = 1G

0 if gm 6= 1G

Now, the simple objects of the category Z(C(G,ω)) are parametrized
by representatives g of conjugacy classes of G and αg-projective char-
acters on CG(g).
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Theorem 3.4. For a simple object M in Z(C(G,ω)) corresponding to
the couple (g, χ) where χ is an αg-projective character of CG(g), we
have:

(3.6) νm(M) =
1

|CG(g)|
∑
x ∈ G

(gx)m = xm

αxm(g, x)
πm(gx)

πm(x)
χ(xm)

The higher indicators are invariants of pivotal fusion categories. In
particular, they are not related to the braiding in Z(C(G,ω)). Some
information about this aspect of the double is contained in the ribbon
structure.

Recall from [8] the following:

Lemma 3.5. For a simple object M in Z(C(G,ω)) associated to the
couple (g, χ), the ribbon structure θM ∈ Hom(M,M∗) ∼= C× is given
by the formula:

θM = χ(g)/χ(1G)

Finally, we recall that the sequence of Frobenius-Schur indicators of
a simple object in a fusion category is periodic. The least common
multiple of those periods for all simple object is called the Frobenius-
Schur exponent of the category and is studied in [20]. The authors
showed in particular that this exponent is exactly the order of the
ribbon twist of the center. For a pointed category C(G,ω), the FS
exponent is given by:

FSexp(C(G,ω)) = lcm(|C||ωC |)
where C runs through the cyclic subgroups of G and |ωC | is the order
of the cohomology class of the restriction of ω to C.

We finish this section by our implementation in GAP of the formulas
given in corollary 3.3, theorems 3.2 and 3.4, and lemma 3.5.

We use functoriality of cohomology groups to get the exponent of the
category C(G,ω), for a group G, a free resolution R for G, the complex
K := R⊗Z, the record given by our function UniversalCoefficientsTheorem(K,3)
and a 3-cocycle ω:

ExponentOfPFC:= function (G,R,K,UCT,hom)
local H,

R2 ,
K2,
UCT2,
m,
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phi ,
chainmap ,
res ,
l i s t ;

l i s t : = [ ] ;
for H in F i l t e r e d ( AllSubgroups (G) ,

I sCy c l i c and I sNonTr iv ia l ) do
R2:=Reso lut ionFin i teGroup (H, 4 ) ;
K2:=TensorWithIntegers (R2 ) ;
UCT2:=Unive r sa lCoe f f i c i ent sTheorem (K2 , 3 ) ;
m:=UCT2 ! . exponent ;
phi :=GroupHomomorphismByFunction (H,G, h−>h ) ;
chainmap:=TensorWithIntegers (

EquivariantChainMap (R2 ,R, phi ) ) ;
r e s :=GroupCohomologyFunctor (

K2,UCT! . complex , chainmap , 3 ) ! . mapping (
hom) ;

Add( l i s t , [ S i z e (H) , CocycleOrder ( res ,m) ] ) ;
od ;
return Lcm( L i s t ( l i s t , x−>x [ 1 ] ∗ x [ 2 ] ) ) ;
end ;

Now, we will use cocycles in the bar resolution. For an n-cocycle
omega in a resolution R with values in a cyclic ring of order m, we use

StandardCocycle (R, omega , n ,m) ;

for getting the image of omega along a chain map between R and the
bar resolution. we note that for using this command, HAP needs a
contracting homotopy of R.

The symbols πm we defined in 3.3 can be computed, for an element
x ∈ G of order o, m ∈ {0, . . . , o} and a 3-cocycle ω ∈ H3(G,C×)
of exponent n, by the following function. In order to get πm(x) for
values of m that are negative or greater than o, we use eq. (3.3). For
convenience, the code stores the values for m ∈ {0 . . . e}, where e :=
Exp(G), for every element of G.

ValuesOfPiSymbols := function (G,R,K,UCT, x , f )
local n , e , o , l i s t 1 , l i s t 2 ,m, i , j ;
n:=UCT! . exponent ;
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e :=Exponent (G) ;
o:=Order (x ) ;
l i s t 1 : = [ 1 ] ;
for m in [ 1 . . o ] do
Add( l i s t 2 ,
f a c t o r s [ S i z e ( l i s t 2 ) ] ∗E(n)^ f (x , x^(m−1) ,x ) ) ;

od ;
l i s t 2 : = [ 1 ] ;
for j in [ 1 . . e ] do
Add( l i s t 2 , ( l i s t 1 [ o+1]^QuoInt ( j , o ) )

∗( l i s t 1 [ RemInt ( j , o )+1 ] ) ) ;
od ;
return l i s t 2 ;
end ;

We can then give the functions that compute our invariants. Again,
we describe simple objects of Z(C(G,ω)) by couples (g, χ) where g is
a representative of a conjugacy class of G, and χ is an αg-projective
character of CG(g).

First, the function Twist gives the ribbon structure for a simple ob-
ject of Dω(G). The arguments of this function are: class represents
the representative g, C is the centralizer CG(g), lift is the section of the
epimorhism Cαg → C and finally chi is a character of Cα induced by
an αg-projective character of C.

Twist := function ( c l a s s , C, l i f t , ch i )
return l i f t ( c l a s s ) ^ ch i /

l i f t ( c l a s s ^ S i z e ( C ) ) ^ ch i ;
end ;

Now, we store all the values of the π symbols for all x ∈ G in a list.

l i s tG :=Enumerator (G) ;
p i va l u e s := L i s t ( l i s tG , x−>

ValuesOfPiSymbols (G, x , n , f ) ) ;

Finally, the following function gives them-Frobenius-Schur indicator
of a simple object.

FSIforDoubles := function (
G,
f ,
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c l a s s ,
proj , i ,
n ,
l i s tG ,
p iva lues ,
m
)

local e ,C,Gaa , l i f t , chi , sum , x ;
e :=Exponent (G) ;
C:=Cen t r a l i z e r (G, c l a s s ) ;
Gaa:= pro j ! . Gaa ;
l i f t := pro j ! . l i f t ;
ch i := pro j ! . t ab l e [ i ] ;
sum:=0;
for x in G do

i f ( c l a s s ∗x)^m=x^m then
sum:=sum + E(n)^ alphag (x^m) ( f ) ( c l a s s , x )∗
( ( p i va l u e s [ Po s i t i on ( l i s tG , c l a s s ∗x ) ] [ e+1]/
p i va l u e s [ Po s i t i on ( l i s tG , x ) ] [ e+1])^QuoInt (m, e ) )∗
( p i va l u e s [ Po s i t i on ( l i s tG , c l a s s ∗x ) ] [ RemInt (m, e )+1]/
p i va l u e s [ Po s i t i on ( l i s tG , x ) ] [ RemInt (m, e )+1])∗
l i f t ( ( x^m))^ ch i ;

f i ;
od ;
return sum/ S i z e (C) ;
end ;

And also, we give the codes that computes the indicators of pointed
fusion categories and adapted group-theoretical categories. First, for
pointed categories.

FSIforPFC:= function (G, omega )
local R,K,UCT, n , f , l i s tG , p iva lues , l i s t , r e s u l t , nu , g ,m;
R:=Reso lut ionFin i teGroup (G, 4 ) ;
K:=TensorWithIntegers (R) ;
UCT:=Unive r sa lCoe f f i c i ent sTheorem (K, 3 ) ;
n:=UCT! . exponent ;
f :=StandardCocycle (R, omega , 3 , n ) ;
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l i s tG :=Enumerator (G) ;
p i va l u e s := L i s t ( l i s tG , x−>

ValuesOfPiSymbols (G,R,K,UCT, x , f ) ) ;
nu:= function (G, f , x ,m)
local o ;
i f x^m=One(G) then

o:=Order (x ) ;
return ( p i va l u e s [ Po s i t i on ( l i s tG , x ) ] [ o+1]

^(QuoInt(−m, o)−1))
∗ p iva l u e s [ Po s i t i on ( l i s tG , x ) ] [ o−RemInt(−m, o )+1 ] ;

else return 0 ;
f i ;
end ;
r e s u l t : = [ ] ;
for g in G do

l i s t : = [ ] ;
for m in [ 0 . . ExponentOfPFC(G,R,K,UCT,

(UCT! . c y c l e b a s i s ∗omega ) mod n)−1] do
Add( l i s t , nu (G, f , g ,m) ) ;

od ;
Add( r e su l t , l i s t ) ;

od ;
return r e s u l t ;
end ;

Now we show how, from a group-theoretical data (G,ω,H, 1), we adapt
the 3-cocycle ω whose restriction to H is trivial to a 3-cocycle ω′ such
that ω′|G×G×H = 1.

d:= function ( eta )
return

function ( g , h , k )
return eta (h , k)−eta ( g∗h , k)+eta (g , h∗k)−eta ( g , h ) ;

end ;
end ;

moduloQ:= function (G,N,Q, g )
local p ;
for p in Q do
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i f p^(−1)∗g in N then return [ p , p^(−1)∗g ] ; f i ;
od ;
end ;

I sAdaptatedCocycle := function (G,R,N, omega )
local e , g , h , k , bool ;
e :=R ! . exponent ;
bool :=true ;
for g in G do

for h in G do
for k in N do

bool :=(omega (g , h , k)=0 mod e ) ;
i f bool=fa l se
then

break ;
f i ;

od ;
od ;

od ;
return bool ;

end ;

F i r s tS t ep := function (G,R,N, omega )
local Q, eta_1 , omega_0 ;
Q:= L i s t ( RightCosets (G,N) , x−>Representat ive (x ) ) ;
eta_1:= function ( g , h )
return omega (moduloQ(G,N,Q, g ) [ 1 ] ,

moduloQ(G,N,Q, g ) [ 2 ] , moduloQ(G,N,Q, h ) [ 2 ] ) ;
end ;
omega_0:= function ( g , h , k )
return omega (g , h , k)+d( eta_1 ) ( g , h , k ) ;

end ;
return omega_0 ;
end ;

SecondStep := function (G,R,N, omega_0)
local Q, eta_2 , omega_1 ;
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Q:=L i s t ( RightCosets (G,N) , x−>Representat ive (x ) ) ;
eta_2:= function ( g , h )
return
−(omega_0(g , moduloQ(G,N,Q, h ) [ 1 ] ,

moduloQ(G,N,Q, h ) [ 2 ] ) )
+omega_0(moduloQ(G,N,Q, g ) [ 1 ] , moduloQ(G,N,Q, g ) [ 2 ] ,
moduloQ(G,N,Q, h ) [ 1 ] ) ;

end ;
omega_1:= function ( g , h , k )
return omega_0(g , h , k)+d( eta_2 ) ( g , h , k ) ;

end ;
return omega_1 ;
end ;

And finally, we can give the code for the FSI of group-theoretical cat-
egories with adapted cocycles.

FSIforAGT:= function (G,N, omega )
local R,K,UCT,hom, FSexp , f , omega_0 , omega_1 ,

co se t s ,PC, l i s t , r e s u l t , i , j , nu ,m;
R:=Reso lut ionFin i teGroup (G, 4 ) ;
K:=TensorWithIntegers (R) ;
UCT:=Unive r sa lCoe f f i c i ent sTheorem (K, 3 ) ;
hom:=(UCT! . c y c l e b a s i s ∗omega ) mod UCT! . exponent ;
FSexp:=ExponentOfPFC(G,R,K,UCT,hom) ;
f :=StandardCocycle (R, omega , 3 ,UCT! . exponent ) ;
omega_0:=F i r s tS t ep (G,R,N, f ) ;
omega_1:=SecondStep (G,R,N, omega_0 ) ;
c o s e t s :=DoubleCosets (G,N,N) ;
PC:= L i s t ( co se t s , g−>Pro j e c t i v eCharac t e r s (

I n t e r s e c t i o n (N,N^( Representat ive ( g )^(−1))) ,
function (x , y )
return omega_1(x , y , Repre sentat ive ( g ) ) ;

end ,
UCT! . exponent ) ) ;

nu:= function (G,UCT,N, f , c l a s s , l i s t , i ,m)
local x , sum , S , Pf , l i f t , chi , l i s tG , p iva lues , r , o ;
S:= I n t e r s e c t i o n (N,

N^( Repre sentat ive ( c l a s s )^(−1))) ;
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Gaa:= l i s t ! . Gaa ;
l i f t := l i s t ! . l i f t ;
ch i := l i s t ! . t ab l e [ i ] ;
l i s tG :−Enumerator (G) ;
p i va l u e s := L i s t ( l i s tG , x−>

ValuesOfPiSymbols (G,R,K,UCT, x , f ) ) ;
sum:=0;
for r in N do
i f ( Repre sentat ive ( c l a s s )∗ r )^m in S
then
o:=Order ( Representat ive ( c l a s s )∗ r ) ;
sum:=sum
+(p iva lu e s [ Po s i t i on ( l i s tG ,

Repre sentat ive ( c l a s s )∗ r ) ] [ o+1]
^(QuoInt(−m, o)−1))

∗ p iva l u e s [ Po s i t i on ( l i s tG ,
Repre sentat ive ( c l a s s )∗ r )

[ o+RemInt(−m, o )+1]
∗ l i f t ( ( ( Representat ive ( c l a s s )∗ r )^(−m)))^ ch i ;

f i ;
od ;
return sum/ S i z e (S ) ;
end ;
r e s u l t : = [ ] ;
for i in [ 1 . . S i z e (PC) ] do
for j in [ 1 . . S i z e (PC[ i ] ! . t ab l e ) ] do
l i s t : = [ ] ;
for m in [ 0 . . FSexp−1] do
Add( l i s t ,

nu (G,UCT,N, omega_1 , c o s e t s [ i ] ,PC[ i ] , j ,m) ) ;
od ;
Add( r e su l t , l i s t ) ;

od ;
od ;
return r e s u l t ;
end ;
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4. Classification of C(G,ω) up to |G| < 32

In [8], the authors showed that there exist exactly 20 Morita equiva-
lence classes of C(G,ω) for |G| = 23 = 8, but only for the sets of couple
(G,ω) for whom the bialgebra Dω(G) is non commutative. In order
to obtain this result, they went through the following strategy. First,
find representatives for the orbits of 3-cocycles under automorphisms
of G. Then, find Morita equivalences coming from theorem 4.1. This
gives an upper bound for the number of classes which is lower that
just the number of automorphism orbits of cocycles. Finally compute
the FS indicators and twists associated to chosen representatives of
couples (G,ω) under the equivalence relation generated by theorem 4.1
and automorphism orbits. Since the number of different sets of ta-
ble is the same as the number of those representatives, they lead to
non-equivalent categories.

We will here follow a slightly different strategy, which uses computer
help more directly and needs less knowledge about the cohomology
groups considered. We will not distinguish the cases where the bial-
gebra structure of Dω(G) is commutative or not, but take for a fixed
order of G all pointed categories C(G,ω). We take automorphism group
orbits of cocycles since we know that cocycles in the same orbit give
equivalent categories. Then we collect all those categories that give the
same tables of invariants, and see if we can show that the categories
affording the same invariants are in fact equivalent.

First, we describe our approach for some particular orders, mostly
for |G| = pα where p is a prime. This includes the known case where
G has order 23 = 8, where 4.2, together with computer calculations, is
sufficient to conclude; we obtain then similar results for the case |G| =
33 = 27. Finally, we treat the more complicated case |G| = 24 = 16, for
which we have to use indicators of some group-theoretical categories
to conclude. We also not that Uribe et Munoz [17] obtained the same
results for |G| = 8 using the Lyndon-Hochschild-Serre spectral sequence
of finite groups.

4.1. Morita equivalence of pointed fusion categories. Equiva-
lences of two pointed fusion categories are described as follows: Two
pointed categories (G1, ω1) and (G2, ω2) are equivalent if and only if
there exists an isomorphism φ : G1

∼= G2 such that ω1 is cohomol-
ogous to φ∗(ω2). In particular, consider the action of the group Φ
of automorphisms of G on H3(G,C×) given by (ω / φ)(g, h, k) :=
ω(φ(g), φ(h), φ(k)) with ω ∈ Z3(G,C×) and φ ∈ Φ. Then two cate-
gories C(G,ω) and C(G,ω′) are equivalent iff the cohomology classes of
ω and ω′ are in the same automorphism orbit.
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Trivially, equivalent categories are categorically Morita equivalent.
In particular, C(G1, ω1) and C(G2, ω2) are categorically Morita equiv-
alent if there is an isomorphism φ : G1 → G2 with ω1 and φ∗ω2 coho-
mologous, and if G2 = G1 = G, they are equivalent if the cohomology
classes of ω1 and ω2 are in the same orbit under automorphisms of G.

For a group G and its automorphisms group Φ, we give a procedure
to obtain automorphism orbits of Hn(G,C×) under the action of Φ.
This gives a list of lists, whose elements are the different automorphism
orbits. For this, we use a part of the functoriality described in 2.3.

AutomorphismOrbits := function (G,R,K,UCT)
local rcv ,

coho ,
aut ,
gens ,
autmat ,
o r b i t s ;

rcv := function (x , n )
return L i s t (x , y−>ZmodnZObj(y , n ) ) ;
end ;

coho :=NearAdditiveGroup (
L i s t (UCT! . hombasis , x−>rcv (x ,UCT! . exponent ) ) ) ;

aut :=AutomorphismGroup (G) ;
gens :=GeneratorsOfGroup ( aut ) ;
autmat:= L i s t (

gens , phi−>TransposedMat (
GroupCohomologyFunctor (
K,K, TensorWithIntegers (
EquivariantChainMap (R,R, phi ) ) ,
3 ) ! . matrix ) ) ;

autmat:= L i s t (
autmat , x−>Li s t (

x , y−>rcv (y ,UCT! . exponent ) ) ) ;
o r b i t s :=OrbitsDomain ( aut , coho , gens , autmat ) ;
return L i s t ( o rb i t s , x−>Li s t (x , y−>Li s t (

y , z−>Int ( z ) ) ) ) ;
end ;
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To treat categorical Morita equivalence of pointed fusion categories,
which is a larger equivalence relation, one needs to understand when
C(G,ω,H, µ) is pointed, and identify the group G′ and the cocycle ω′
in a category equivalence C(G,ω,H, µ) ∼= C(G′, ω′). In principle, an
approach to solving this is contained in [24], where for an adapted co-
cycle, a coquasibialgebra whose comodule category is C(G,ω,H, 1) is
explicitly described; however, the description is not as computation-
ally accessible as to allow an immediate extraction of G′ and ω′ after
deciding if the category is pointed (i.e. the coquasibialgebra cocom-
mutative). In a special case that we will discuss below, an explicit
description of (G′, ω′) is in fact extracted in [8]. As we will point out,
it is particularly convenient since, in conjunction with our use of in-
variants of the centers, it allows to deduce certain categorical Morita
equivalences by calculations on the level of cohomology classes (rather
than standard cocycles). In the general situation, a complete solu-
tion is in [18] in terms of group cohomology. This solution involves
calculations with cocycles in the standard resolution with nontrivial
coefficients, however a more cohomological interpretation of the results
of [18] is given in [27] and applied to the case of groups of order eight
in [17].

We did not attempt to treat the criteria from [18] or [27] compu-
tationally, but used more ad hoc methods to find categorical Morita
equivalences. The first one is a special case of Theorem 4.1 of [8] stated
in Corollary 4.2; the second one involves computation of Frobenius-
Schur indicators and is described in our examples, see 4.2.3.

We recall now the result of [8]. Take H a finite group and A a right
H-module with action /. We define two different extensions of H. The
first one is the semi-direct product E := HnA given by multiplication

(x, a)(y, b) := (xy, (a / y)b)

Then we have the following extension

1→ A→ E → H → 1

For the second extension, take Â = Hom(A,C×) with left H-action .:

(h . χ)(a) := χ(a / h)

Then, for any 2-cocycle η ∈ Z2(H, Â), one can construct an extension

1→ Â→ G→ H → 1

where G := Âoη H has multiplication

(χ, x)(ψ, y) := (χ(x . ψ)η(x, y), xy)
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For ζ ∈ Z3(H,C×), using the projections of both extensions, we can
define the inflations ζE ∈ Z3(E,C×) and ζG ∈ Z3(G,C×) of ζ. Also,
for σ a H-module automorphism of A, one can define the 3-cocycle
ωσ ∈ Z3(E,C×) by

ωσ ((a1, h1), (a2, h2), (a3, h3)) := η(h2, h3) (σ(a1))

Theorem 4.1. Take σ ∈ AutH(A). The categories C(G, ζG) and
C(E,ωσζE) are categorically Morita equivalent.

Corollary 4.2. Let 1 → A → G → Q → 1 be an extension with A
abelian, and η ∈∈ H3(Q,C×). Then there is a semidirect product AoQ
and a three-cocycle α on A o Q such that C(G, InfGQ η) is categorically
Morita equivalent to C(A o Q,α). If the extension G is central, the
semidirect product is a direct product.

4.2. Some cases with |G| = pα.

4.2.1. |G| = 23. First, we review the basic facts on finite groups of
order 8. The structure of the groupG, the cohomology groupH3(G,C),
the size of the group Aut(G) of automorphism of G and the number
of automorphisms orbits of 3-cocycles are summarized in the following
table:

G H3(G,C×) |Aut(G)| Number of orbits
Z/8Z Z/8Z 4 8

Z/4Z× Z/2Z Z/4Z× Z/2Z× Z/2Z 8 9
D8 Z/4Z× Z/2Z× Z/2Z 8 12
Q8 Z/8Z 24 8

(Z/2Z)3 (Z/2Z)7 168 10

Table 1

Thus there are at most 47 Morita equivalence classes of pointed fu-
sion categories of rank 8. We obtained a lower bound of the number
of those classes by computing our invariants. Let us first fix some no-
tations. The five groups of order 8 are labeled by integers from 1 to
5 in the same order as in the table; for example, the dihedral group
is denoted as G3. For each group, we fix an order on the set of rep-
resentatives of automorphism orbits of cocycles we are given; the j-th
representatives on the i-th group is denoted as ωji . For the 47 objects
we consider, we obtain 38 different sets of invariants, which gives us a
lower bound. Now, we prove that this bound is optimal: We consider
the different pairs of a group and a cocycle that share the same tables
of invariants, to see whether the associated twisted doubles are in fact
equivalent.
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Among the list of 38 tables, there are already 30 that appear only
once, so we know that those characterize their respective gauge classes.
For the eight remaining tables, seven appear twice and one appears
three times. For example, the following table comes from the couples
(G2, ω

7
2) and (G5, ω

5
5): The first columns labelled µi contain the values

of FS indicators, the column labelled θ gives the ribbon twists and the
last colum gives the number of simple objects that share a same set of
those invariants.

ν0 ν1 ν2 θ m
1 1 1 1 1
1 0 0 1 12
1 0 1 1 7
1 1 1 −1 1
1 0 0 i 12
1 0 0 −i 12
1 0 −1 i 12
1 0 −1 −i 12

Table 2. FS indicators for Z(C(G2, ω
7
2)) and Z(C(G5, ω

5
5))

The table that is repeated three times is the one for the couples (G3, ω
5
3),

(G4, ω
1
4) and (G5, ω

4
5):

ν0 ν1 ν2 θ m
1 1 1 1 1
1 0 1 1 7
2 0 1 1 3
2 0 1 −1 3
2 0 −1 1 1
2 0 −1 −1 1
2 0 −1 i 3
2 0 −1 −i 3

Table 3. FS indicators for Z(C(G3, ω
5
3)), Z(C(G4, ω

1
4))

and Z(C(G5, ω
4
5))

Now, we explain how to deal with the seven occurrences of a table
repeated twice. We list the couples (Gi, ω

j
i ) involved by pairing them

according to their tables:

(G2, ω
7
2) and (G5, ω

5
5) ,

(G2, ω
1
2) and (G5, ω

3
5) ,

(G1, ω
1
1) and (G2, ω

2
2) ,

(G1, ω
5
1) and (G2, ω

4
2) ,
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(G4, ω
2
4) and (G5, ω

6
5) ,

(G3, ω
9
3) and (G5, ω

8
5) ,

(G3, ω
1
3) and (G5, ω

2
5) .

We discuss the first case, the other ones can be treated in the same
way. We use Corollary 4.2. For the groupsG2 = Z/4Z×Z/2Z andG5 =
(Z/2Z)3, there is a common abelian normal subgroup A, isomorphic to
Z/2Z, such that the inflation of a 3-cocycle on Q ∼= (Z/2Z)2 to G2 lies
in the same cohomology class as ω7

2. We find this cocycle by using the
functoriality along the natural projection of G5 over Q, and computing
the inflations inH3(G,C×) of all cohomology classes ofH3(Q,C×). The
theorem therefore asserts that there must be a 3-cocycle α on G5 such
that C(G2, ω

7
2) and C(G5, α) are Morita equivalent. We can conclude

that α must be in the orbit of ω5
5, since we have calculated invariants

for each cocycle orbit on G5, and only the invariants of Z(C(G5, ω
5
5))

agree with those of Z(C(G2, ω
7
2)), as they have to if the categories are

to be equivalent.
We still have to deal with the table that appears for the couples

(G3, ω
5
3), (G4, ω

1
4) and (G5, ω

4
5). Despite the fact that there are three

couples that share this table, the same argument as before works since
G5 has only one cocycle orbit affording the same invariants as the
other two. Thus, we can find Morita equivalences between C(G3, ω

5
3)

and C(G5, ω
4
5) first, and then between C(G4, ω

1
4) and C(G4, ω

4
5) (which

is enough since Morita equivalence is an equivalence relation).
More precisely, both of the groupsD8 andQ8 have a central subgroup

isomorphic to Z/2Z, with the quotient isomorphic to (Z/2Z)2 (and so,
the direct product is (Z/2Z)3). It is easy to deduce a Morita equivalence
between C(G4, ω

1
4) and C(G5, ω

4
5), as the cocycle ω1

4 is the trivial 3-
cocycle on Q8 and is therefore the inflation of the trivial 3-cocycle on
the quotient. For the equivalence between C(G3, ω

5
3) and C(G5, ω

4
5), we

find again a 3-cocycle on (Z/2Z)2 with inflation ω5
3. We can then state

the following:

Theorem 4.3. There are exactly 38 Morita equivalence classes of pointed
fusion categories of rank 8.

4.2.2. |G| = 33. As in the previous subsection, we recall all information
we need about groups of order 27, their cohomology, and the number
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of orbits under the action of the automorphism group.

G H3(G,C×) |Aut(G)| Number of orbits
Z/27Z Z/27Z 18 7

Z/9Z× Z/3Z Z/9Z× Z/3Z× Z/3Z 108 16
(Z/3Z)2 o Z/3Z (Z/3Z)4 432 15
Z/9Z o Z/3Z (Z/3Z)2 54 9

(Z/3Z)3 (Z/3Z)7 11232 14

We then compute the 61 tables of our invariants for the given represen-
tatives of automorphism orbits. There are 47 different tables, so some
appear for several group-cocycle pairs: 34 tables appear once, 12 tables
appear twice, and one table appears three times. The couples involved
are given, with the same kind of notations as before:

(G1, ω
7
1) and (G2, ω

6
2) ,

(G1, ω
6
1) and (G2, ω

4
2) ,

(G1, ω
1
1) and (G2, ω

2
2) ,

(G2, ω
9
2) and (G5, ω

5
5) ,

(G2, ω
14
2 ) and (G5, ω

7
5) ,

(G2, ω
1
2) and (G5, ω

3
5) ,

(G3, ω
1
3) and (G5, ω

2
5) ,

(G4, ω
4
4) and (G5, ω

6
5) ,

(G4, ω
7
4) and (G5, ω

8
5) ,

(G3, ω
13
3 ) and (G5, ω

14
5 ) ,

(G3, ω
10
3 ) and (G5, ω

12
5 ) ,

(G3, ω
7
3) and (G5, ω

10
5 ) ,

(G3, ω
5
3) , (G4, ω

1
4) and (G5, ω

4
5).

In the same way as in section 4.2.1, using Corollary 4.2 , we find Morita
equivalences between all the 12 pairs that share a table, and also be-
tween C(G3, ω

5
3) and C(G5, ω

4
5) and C(G4, ω

1
4) and C(G5, ω

4
5). And so,

we can state:

Theorem 4.4. There are exactly 47 Morita equivalence classes of pointed
fusion categories of rank 27.
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4.2.3. |G| = 24. There are 14 groups of order 16 for 17.312 pairs of
a group and a cohomology class. As usual, we gathered all this data
in the next table, along with the orders of the automorphisms group
and the number of different classes of 3-cocycles under the action of
the automorphism group. One can note that the third cohomology of
the abelian group (Z/2Z)4 is quite large (it is a vector space of dimen-
sion 14 over Z/2Z), but luckily its automorphism group is also large
(GL4(2), of order 20.160). In the end, there are only 23 automorphism
orbits to consider for this group.

G H3(G,C×) |Aut(G)| Number
of orbits

Z/16Z Z/16Z 8 12
Z/4Z× Z/4Z (Z/4Z)2 96 12

(Z/4Z× Z/2Z) o Z/2Z (Z/2Z)2 × (Z/4Z)2 32 30
Z/4Z o Z/4Z Z/2Z× (Z/4Z)2 32 24
Z/8Z× Z/2Z (Z/2Z)2 × Z/8Z 16 18
Z/8Z o Z/2Z Z/2Z× Z/8Z 16 16

D16 (Z/2Z)2 × Z/8Z 32 24
QD16 Z/2Z× Z/8Z 16 16
Q16 Z/8Z 32 12

Z/4Z× (Z/2Z)2 (Z/2Z)6 × Z/4Z 192 34
Z/2Z×D8 (Z/2Z)6 × Z/4Z 64 57
Z/2Z×Q8 (Z/2Z)3 × Z/8Z 192 18

(Z/4Z× Z/2Z) o Z/2Z (Z/2Z)3 × Z/8Z 48 32
(Z/2Z)4 (Z/2Z)14 20160 23

Table 4

Then, we compute the invariants for the 328 classes that remain. The
groups and the representatives of cohomology classes under the action
of the automorphism group are labeled by numbers, in the same organi-
zation as in the previous cases. We already note that for the group G11

and the cocycles ω14
11 and ω32

11, we get the same table. This phenomenon
of a group giving rise to two non equivalent pointed categories that are
(as we shall see) categorically Morita equivalent does not appear for
groups of lower order. We give here the set of Frobenius-Schur indica-
tors and T-matrix for the center of this Morita class, and discuss the
details later. In this table, we denote the primite 8-th root of unity
κ := exp

(
iπ
4

)
.
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ν0 ν1 ν2 ν4 θ m
1 0 1 1 1 7
1 1 1 1 1 1
2 0 −1 1 −1 2
2 0 −1 1 1 2
2 0 −1 1 −κ2 2
2 0 −1 1 κ2 2
2 0 −1 1 −κ 2
2 0 −1 1 −κ3 2
2 0 −1 1 κ3 2
2 0 −1 1 κ 2
2 0 1 1 −1 2
2 0 1 1 1 2
2 0 1 1 −κ2 2
2 0 1 1 κ2 2
2 0 1 2 −1 2
2 0 1 2 1 4
4 0 −1 2 −κ2 2
4 0 −1 2 κ2 2
4 0 1 2 −1 2
4 0 1 2 1 2

Table 5. FSI for C(G7, ω
13
7 ), C(G9ω

1
9), C(G11, ω

14
11) and

C(G11ω
32
11)

There are 230 different tables among the 328 that we computed.
In detail, 160 tables occur only once, 52 twice, 12 three times, three
appear four times, two appear five times and finally one appears six
times.

First, we deal with the cases when a table appears only twice. We
use Corollary 4.2 like before. A new difference between the previous
cases and this one is that this method does not answer the question
whether the two considered categories are Morita equivalent in three
cases, namely:

(G3, ω
14
3 ) and (G4, ω

4
4) ,(4.1)

(G3, ω
16
3 ) and (G4, ω

8
4) ,(4.2)

(G3, ω
17
3 ) and (G4, ω

6
4) .(4.3)

Indeed, we could not find an extension 1 → Â → G3/4 → H → 1
such that one of the six cocycles considered could been seen as the
inflation of a 3-cocycle on H. So we cannot use corollary 4.2 and
need a different argument to conclude that the different couples define
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categorically Morita equivalent categories. More precisely, we need to
consider a general group-theoretical category C(G,ω,H, µ), decide if
it is pointed, and identify (G′, ω′) such that C(G,ω,H, µ) ∼= C(G′, ω′).
It turns out that for our purposes it is sufficient to restrict ourselves
to group-theoretical categories such that the 3-cocycle is trivial on the
subgroup, that is group-theoretical cateories C(G,ω,H, 1) such that
ω(g, h, k) = 1 for all elements g, h, k of H. This spares us another step
in our treatment of cohomology groups (see 2 above), but we note that
it seems merely accidental that we find enough group-theoretical cate-
gories of this form. We can then arrange that the cocycle ω is adapted.
To decide whether C(G,ω,H, 1) is pointed we can simply count its sim-
ples, or calculate the dimension of the simples in the form of their 0-
th Frobenius-Schur indicators (which is a reasonable only sincewe are
interested in listing indicators anyway). If C(G,ω,H, 1) = C(G′, ω′)
is thus found to be pointed, it is still not immediately obvious how
to extract G′ and ω′ (or rather the cohomology class of the latter).
Here, we were successful with the following approach: We can calcu-
late the Frobenius-Schur indicators for the group-theoretical category
C(G,ω,H, 1) which is categorically Morita equivalent to C(G,ω). If
C(G,ω,H, 1) is to be equivalent to C(G′, ω′), then the Frobenius-Schur
indicators for C(G′, ω′) need to coincide with the Frobenius-Schur indi-
cators for C(G,ω,H, 1). Moreover (G′, ω) is then categorically Morita
equivalent to C(G,ω), thus the invariants of the centers of C(G,ω) and
C(G′, ω′) necessarily coincide (which is how we determined the pairs
(G,ω) and (G′, ω′) that we are interested in in the first place). As it
turns out, these conditions are sufficient to draw the desired conclu-
sions.

First of all, we compute the Frobenius-Schur indicators for the 6
considered pointed categories; it happens that for the three cases,
the two pointed categories associated have different sets of indica-
tors. So, to conclude it suffices to find a subgroup H of G3 such that
some group-theoretical categories C(G3, ω

14
3 , H, µ), C(G3, ω

16
3 , H, µ) and

C(G3, ω
17
3 , H, µ), are pointed and have, respectively, the same sets of

Frobenius-Schur indicators as the pointed categories C(G4, ω
4
4), C(G4, ω

8
4)

and C(G4, ω
6
4). In order to obtain group-theoretical categories that are

pointed, it is sufficient to consider abelian normal subgroups of G3.
Also, we restrict ourselves to subgroups H such that the respective
restrictions of the cocycles ω14

3 , ω16
3 and ω17

3 are trivial in C3(H,C×).
Take δ ∈ {14, 16, 17}. For each value of δ we find such an H, such that
the group-theoretical category C(G3, ω

δ
3, H, 1) is pointed; we see this by

computing the invariants first, and then look of the values of the 0-th
Frobenius-Schur indicators, which gives the dimensions of the simple
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objects. Moreover, it has the same indicators as the pointed category
C(G4, ω

δ
4). So, we can conclude for those three couples that the associ-

ated pointed fusion categories are categorically Morita equivalent, and
so the doubles are gauge equivalent.

Remark 4.5. We have used the fact that Frobenius-Schur indicators
distinguish certain pointed categories (up to equivalence) to help us
conclude that they are categorically Morita equivalent. Note that, in
general, indicators do not classify pointed categories: The smallest
example is for pointed categories of rank 8, for which there exist 47
non-equivalent categories, but only 34 different sets of indicators.

For the remaining 18 tables that occur for more than two categories,
except one, we can use the same kind of argument as for Table 3 in
4.2.1. More precisely, for a given table, suppose that we find a group
of the form H×Q that has only one cocycle affording this table (let us
denote it µ). Then for every other couple (G,ω) sharing this table, if we
find a central extension 1→ H → G→ Q→ 1 with ω the inflation of
a 3-cocycle on Q, the conditions of theorem 4.1 are satisfied and there
exists a Morita equivalence between C(G,ω) and C(H × Q, µ). This
reasoning gives us only a part of the categorical Morita equivalence
relation, but in our cases a simple inspection shows that the fact that
categorical Morita equivalence is an equivalence relation implies that
all couples sharing an identical table are in fact equivalent.

We illustrate this with an exemple. The six couples (G4, ω
1
4), (G10, ω

6
10),

(G11, ω
13
11), (G12, ω

2
12), (G13, ω

2
13) and (G14, ω

8
14) share the same table.

We will show by the above arguments that each of the pointed cate-
gories associated to the first five couples is categorically Morita equiv-
alent to C(G14, ω

8
14); note that ω8

14 is the only cocycle orbit on G14

giving rise to the invariants in question on the double. The group G4

is a semidirect product Z/4Z o Z/4Z and its center H as well as the
quotient Q = G4/H is isomorphic to Z/2Z × Z/2Z. The trivial co-
cycle on this quotient inflates to the trivial cocycle on G4 and so we
conclude an equivalence between the couples (G4, ω

1
4) and (G14, ω

8
14),

as G14 is isomorphic to H × Q. For all of the four groups G10, G11,
G12 and G13, there exists a central extension with subgroup isomor-
phic to Z/2Z and quotient isomorphic to (Z/2Z)3: Each of the four
respective cocycles can be seen as inflations from cocycles on the re-
spective quotients. Since also G14 = Z/2Z× (Z/2Z)3, we can conclude
that the couple (G14, ω

8
14) is equivalent to any of the five others, and

so those six couples define Morita equivalent pointed categories. The
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procedure we have outlined in this particular example of six categori-
cally Morita equivalent categories can be easily implemented in order
to let the computer automatically search for such equivalences.

There is one single table for which the preceding argument does not
say if the data that give this table determine equivalent categories.
This table is the one we emphasized before and occurs for the couples:

(4.4) (G7, ω
13
7 ) , (G9, ω

1
9) , (G11, ω

14
11) and (G11, ω

32
11) .

Again, we need to compute Frobenius-Schur indicators of the 4 pointed
categories and some group-theoretical categories. The two pointed cat-
egories C(G11, ω

14
11) and C(G11, ω

32
11) have the same set of Frobenius-

Schur indicators, but it is different from the tables for C(G7, ω
13
7 ) and

C(G9, ω
1
9); also, the two last ones are different from each other. We de-

note those 3 sets of invariants respectively PT1, PT2 and PT3. Then,
we search for abelian normal subgroups of the groups G7, G9 and G11,
such that the restrictions of the involved cocycles are trivial.

ν0 ν1 ν2 ν3 ν4 ν5 ν6 ν7 m

1 0 0 0 −1 0 0 0 2
1 0 −1 0 1 0 −1 0 5
1 0 0 0 1 0 0 0 2
1 0 1 0 1 0 1 0 6
1 1 1 1 1 1 1 1 1

Table 6. PT1: FSI for C(G11, ω
14
11) and C(G11, ω

32
11)

ν0 ν1 ν2 ν3 ν4 ν5 ν6 ν7 m

1 0 0 0 0 0 0 0 4
1 0 −1 0 1 0 −1 0 4
1 0 0 0 1 0 0 0 2
1 0 1 0 1 0 1 0 5
1 1 1 1 1 1 1 1 1

Table 7. PT2: FSI for C(G7, ω
13
7 )

ν0 ν1 ν2 ν3 ν4 ν5 ν6 ν7 m

1 0 0 0 0 0 0 0 4
1 0 0 0 1 0 0 0 10
1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1

Table 8. PT3: FSI for C(G9, ω
1
9)
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There is only one subgroup H1 of G7 such that ω13
7 |H1×H1×H1 = 1. The

category C(G7, ω
13
7 , H1, 1) is pointed, and its set of Frobenius-Schur in-

dicators is PT3. So, we can say that the category C(G7, ω
13
7 ) is categori-

cally Morita equivalent to at least one of the two categories C(G11, ω
14
11)

and C(G11, ω
14
11), but we cannot directly know to which one of them.

We get much more information with the couple (G9, ω
1
9): ω1

9 is the
trivial cocycle on G9, so each abelian normal subgroups of G9 define
a group-theoretical category; there are 3 of them. Let us denote H2

the normal abelian group of the quasi-dihedral group G9
∼= QD16 iso-

morphic to a cyclic group of order 8. The category C(G9, ω
1
9, H2, 1) is

pointed and its set of invariants is PT1. So, we can conclude that the
categories C(G7, ω

13
7 ) and C(G9, ω

1
9) are categorically Morita equivalent.

The two other subgroups give pointed categories that are equivalent to
either C(G11, ω

14
11) or C(G11, ω

14
11), but again we could say no more.

Now, we have a look on the abelian normal subgroups of G11: there
are 13 such groups, ω14

11 and ω32
11 are trivial on respectively 5 and

3 of them. We found subgroups H3 and H4, such the restrictions
ω14
11|H3×H3×H3 and ω32

11|H4×H4×H4 are trivial and the categories
C(G11, ω

14
11, H3, 1) and C(G11, ω

32
11, H4, 1) are pointed and both have their

set of indicators equal to PT1. So we can conclude that the four cou-
ples in eq. (4.4) define categorically Morita equivalent pointed fusion
categories.

Finally, we are able to state:

Theorem 4.6. There are exactly 230 Morita equivalence classes of
poinbted fusion categories of rank 16.

4.3. Results and perspectives. In this section we gather the results
obtained in the paper and ask a few questions that we think deserve to
be observed. The results are either results of complete classification of
pointed categories up to Morita equivalence or properties of complete-
ness of the invariants used. Table 9 summarizes the number of Morita
equivalence classes and usual equivalence classes of pointed categories
for each order of G, from 2 to 31. It includes therefore theorems 4.3, 4.4
and 4.6, along with other particular orders we did not discuss in details
in the present paper. Among them, groups of order p and p2 where p
is a prime show a rather predictable behavior; we will try to treat this
in general in a separate paper. The table also contains the groups of
order p3 for p = 2, 3, as seen in the previous sections; here also, we
think some common behavior could be extracted for all p, although
this case should be more complicated. Also, some groups of order pq
where p and q are distinguished prime numbers are treated, but we will
again look more closely at them in another study. For the proofs of
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theorem 4.7 and theorem 4.8 we only note that they are obtained by
the same arguments and techniques used in section 4. Except for the
case |G| discussed in 4.2.3, indicators of group-theoretical categories
are necessary only for |G| = 18.

Theorem 4.7. There are exactly 1126 non-Morita equivalent pointed
categories C(G,ω) with |G[< 32.

Theorem 4.8. The set of Frobenius-Schur indicators and T-matrix,
and a fortiori the set of S and T-matrices, is a complete set of invari-
ants for the modular categories of the form Z(C(G,ω)) with |G[< 32.
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do
ub

le
s

D
ω
(G

)

2 1 2 2
3 1 3 3
4 2 8 7
5 1 3 3
6 2 12 12
7 1 3 3
8 5 47 38
9 2 10 9
10 2 12 12
11 1 3 3
12 5 60 54
13 1 3 3
14 2 12 12
15 2 9 9
16 14 328 230
17 1 3 3
18 5 58 54
19 1 3 3
20 5 58 52
21 2 12 12
22 2 12 12
23 1 3 3
24 15 474 393
25 2 10 9
26 2 12 12
27 5 61 47
28 4 54 48
29 1 3 3
30 4 72 72
31 1 3 3

Table 9. Number of pointed categories and twisted
quantum doubles for 1<|G|<32
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Not surprisingly, we have tried the methods we have described above
to treat pointed categories Z(C(G,ω)) with |G| = 32. We postpone
details about this class of pointed fusion categories, as we have not yet
obtained the exact number of non-equivalent Morita classes. We just
note that there are at most 4081 such classes, this number being the
sum of automorphism orbits of cocycles running over the finite groups
of order 32, and at least 2315, corresponding to the number of different
sets of Frobenius-Schur indicators and ribbon twist of the centers of
these categories. In order to get over the difficulties we encounter in this
case, we think that explicit computation of Frobenius-Schur indicators
of general group-theoretical categories cannot be avoided. However, we
also find 20 sets of Frobenius-Schur indicators and ribbon twists such
that each occurs for exactly two couples of group-cocycle pairs (G1, ω1)
and (G2, ω2) with G1 = G2 and such that the corresponding pointed
categories C(G1, ω1) and C(G2, ω2) are not distinghuished by their own
Frobenius-Schur indicators. Computing indicators of group-theoretical
categories is then useless for these cases, and we are not able, using
only the methods above, to answer if the categories Z(C(G1, ω1)) and
Z(C(G2, ω2)) are indeed equivalent.

In a separate paper we will present examples of two modular cate-
gories of the form Z(C(G,ω)) which are non-equivalent but share the
same the set of Frobenius-Schur indicators and ribbon twist. More-
over, we prove that even the set of S and T-matrices is not a com-
plete invariant in this case, providing a counterexample for the “belief”
professed in [2]. The examples we found are for the semi-direct prod-
ucts Z/qZ o Z/pZ where p and q are two primes greater than 3 such
that q|p− 1; the smallest such example thus occurs for the nonabelian
group of order 55, while we have seen that up to order 31 categorical
Morita equivlence classes of pointed categories are distinguished by the
Frobenius-Schur indicators and T-matrices of their centers. In partic-
ular, up to dimension 31 the centers of pointed fusion categories are
distinguished by their modular data, but not in dimension 55. It may
be that the smallest example occurs for some order smaller than 55,
but we were not able to decide this.
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