
HAL Id: hal-01573648
https://hal.science/hal-01573648v1

Submitted on 7 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Questions of uncertainty in geography
Giovanni Fusco, Matteo Caglioni, Karine Emsellem, Myriam Merad, Diego

Moreno, Christine Voiron

To cite this version:
Giovanni Fusco, Matteo Caglioni, Karine Emsellem, Myriam Merad, Diego Moreno, et al.. Ques-
tions of uncertainty in geography. Environment and Planning A, 2017, 49 (10), pp.2261-2280.
�10.1177/0308518X17718838�. �hal-01573648�

https://hal.science/hal-01573648v1
https://hal.archives-ouvertes.fr


Questions of uncertainty in geography

Giovanni Fusco, Matteo Caglioni, Karine Emsellem, Myriam Merad, 
Diego Moreno and Christine Voiron-Canicio
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Abstract

The concept of uncertainty has fostered in the last decade’s fundamental and applied 
research in different disciplinary fields. Couclelis (2003) clearly demonstrated the 
pervasiveness of uncertainty in the production process of geographical knowledge. 
The paper shares this epistemological point of view. Pragmatically, its goal is to show 
how questions of uncertainty arise in the praxis of geographic research. It suggests that 
scientific work can be enriched, and not hindered, by addressing uncertainty in knowledge. 
The paper discusses eight domains within the activity of the geographer, where 
questions of uncertainty arise: geographic information, geographic definitions, the 
explanation of geographic phenomena, the complexity of spatial systems, 
geosimulation, the representation of spatial knowledge, subjectivity in spatial 
phenomena, and planning. Within each domain uncertainty issues are identified as well 
as their possible interrelations.

Keywords
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Introduction: a growing awareness of uncertainty
The concept of uncertainty was first introduced in economics (Knight, 1921) to extend the 
traditional view of error theory and risk assessment. In the last 30 years, it has fostered 
fundamental and applied research in different disciplinary fields. More particularly, applied 
mathematics and computer science have developed formal theories of uncertain knowledge 
(Dubois and Prade, 1988; Gaines, 1978; Halpern, 2005; Shafer, 1976; Zadeh, 1978) in 
artificial intelligence. More recently, natural and social sciences, like archeology (De Runz, 
2008), biology (Hey et al., 2003; Zbilut and Giuliani, 2008) and, of course, economics and 
management (Walker et al., 2003, 2013) have formulated practical questions of uncertain 
knowledge, which correspond only partially to these theoretical
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frameworks. Interdisciplinary research is also arising on issues of uncertain knowledge 
(Fusco et al., 2015).

In geography, like in other disciplines, the concept of uncertainty is an umbrella term 
(Longley et al., 2011) covering different aspects on non-certain knowledge in geographical 
space: incomplete knowledge, inaccurate knowledge, imprecise knowledge, fuzzy 
knowledge, disputed knowledge, ambiguous knowledge, impossible knowledge, etc. 
Questions of uncertain knowledge were perceived earlier in the domain of geographical 
information (Duckham et al., 2001). The formalization needed in geographical information 
systems confronted geographers and GIS scientists with the ‘‘weaknesses’’ of real 
geographical data. But in the GIS domain, knowledge was also considered through the 
narrow prism of data-related issues.

At the same time, a growing awareness of the conceptual and theoretical implications of 
uncertain knowledge arose in the discipline, beyond technical considerations in the GIS 
domain. In this respect, interest in uncertain knowledge can be put in parallel with the 
postmodern turn in many social sciences (Best and Kellner, 1997). Within the traditional 
positivist paradigm, scientific knowledge was certain knowledge. Uncertainty was thus a 
negative term, whose limits had to be pushed further by scientific research. This view is still 
shared common sense in our discipline. Nevertheless, uncertainty is now recognized by a 
growing number of geographers (Burrough and Frank, 1996; Couclelis, 2003; Fisher, 2000; 
Plewe, 2002; Rolland-May, 1984) as an essential component of geographic knowledge. 
Previously ‘‘hidden under the carpet’’, uncertainty becomes thus an issue that cannot be 
avoided in geographic research, both theoretical and applied.

Couclelis (2003) clearly demonstrated the pervasiveness of uncertainty in the production 
process of geographical knowledge from GIS data. Uncertainty is not only a question of 
poor, imprecise, inaccurate, incomplete data, which could be overcome (at least in theory) 
with new, better data. Much more fundamentally, uncertainty arises whenever knowledge is 
produced from data through human reasoning. The authors of this paper share this 
epistemological point of view.

Fourteen years after Couclelis’ founding paper, we want to widen the discussion to other 
uncertainties in geographic knowledge, not necessarily related to treatments of GIS data. Our 
main goal is to show how questions of uncertainty do arise in the praxis of geographic 
research. More precisely, we want to suggest how scientific work can be enriched, and not 
hindered, by addressing uncertainty in knowledge. We thus identified eight domains within 
the activity of the geographer, where questions of uncertainty arise. Within this exploratory 
analysis, we want to understand which questions are more crucial in each domain, and how 
they interrelate.

Uncertainty in geographic information
Uncertainty was firstly tackled in GIS studies, and this domain remains the one where 
questions of uncertainty are most widely conceptualized and solutions are proposed 
(Duckham, 2002; Duckham et al., 2001; Fisher et al., 2006; Foody and Atkinson, 2002; Prade 
et al., 2010; Zhang and Goodchild, 2002). The aforementioned works focus on the treatment 
of uncertainty in spatial data, which is a prerequisite for further spatial analysis. Uncertainty 
appears in the incoherences between the modelling primitives of GIS and real spatial 
information, in data granularity, in spatio-temporal aggregation and disaggregation of data, in 
incomplete and/or conflicting data sources, etc. (Foody and Atkinson, 2002; Caloz, 2005; 
Olteanu-Raimond et al., 2009). Sometimes data are already affected by error functions, when 
they are derived from measurement or sampling procedures. Global data



quality has thus to be stored in metadata or uncertainty levels referred to specific geographic 
objects can be integrated as semantic information. Heuvelink (2002) shows the complexity of 
propagating uncertainty in GIS. Even when probabilities are given to quantify data 
uncertainty, standard Monte Carlo simulations are normally not enough to propagate 
uncertainties correctly. Huge conditional probabilities matrices should be stored with GIS data 
and correct geostatistical estimation methods should be applied before performing Monte 
Carlo simulations. However, GIS users will rarely be willing to use such time-consuming 
procedures. Simpler, approximate and less time-consuming procedures are needed. 
Following Vazirgiannis et al. (2003), He et al. (2004) propose to use uncertainty-based 
protocols of knowledge discovery from spatial databases. Bayesian probabilities, fuzzy logics 
and evidence theory are proposed as possible frameworks to integrate uncertainty in spatial 
data mining. Comber et al. (2007) apply these protocols to landscape element recognition, 
showing how scale and grain are paramount in problem definition.

Several authors have also proposed taxonomies of uncertainty in geographic information 
(Fisher, 2005; Fisher et al., 2006; Shu et al., 2003). As these works show, one of the 
most crucial issues of uncertainty in geographic information is to be able to distinguish the 
precise nature and origin of uncertainty and to use the most appropriate formalisms to 
model them with a GIS.

Some classical spatial analysis techniques directly deal with questions of uncertainty, 
even if in strict terms of probabilistic modelling. Kriging is thus based on a probabilistic 
approach to data interpolation, point pattern analysis techniques also implement statistic 
tests based on Poisson random process, etc. Several contributions in Foody and 
Atkinson (2002) address the issue of the uncertainties introduced (or removed) in 
the geostatistical treatments. As already pointed out by Heuvelink (2002, 2007), the 
issue here is to integrate uncertain inputs and propagate their uncertainties in the geo-
processing.

New emerging issues can also be mentioned, as the questions of uncertainty 
in volunteered geographic information (VGI) (Flanagin and Metzger, 2008; Ostermann 
and Spinsanti, 2011) and in big-data (Bendler et al., 2014). Volunteered information, 
for example, increases the quantity and variety of data available for analysis on GIS: 
images, street networks, land-uses, opinions are now constantly being edited from 
citizens on the Internet. In the absence of an ‘‘authoritative’’ source evaluating the quality 
and the protocols of these data, uncertainty questions become even more central. As we 
will see in section Uncertainty in planning and risk management, Roche et al. (2013) show 
how uncertainties in VGI, and more in general in GeoWeb, play a role in reducing complete 
ignorance, while at the same time introducing new uncertainties, in the context of crisis 
management.

The importance of the research field of uncertainty in GIS is witnessed by the success of 
at least two major research networks, both linked to a biennial conference: the International 
Spatial Accuracy Research Association and the International Symposium on Spatial Data 
Quality. Nevertheless, however rich this research field is, it does not cover all questions of 
uncertainty in geographic knowledge. It seems to us that it has even focused the attention of 
geographers and shadowed other fundamental uncertainty questions, which will be 
addressed in the following sections.

Uncertainty in geographic definitions
Uncertainty in the definition of geographic objects is widely discussed among geographers, 
but is rarely formalized and integrated in geographic analysis. Major issues in geographical 
analysis are related to uncertainty in ambiguous, heterogeneous or differently applicable 
definitions of objects and concepts: city, region, continent, frontier, system, etc. Some of



these objects can have non-ambiguous and crisp definitions through social conventions (as 
the limits of most administrative units, when they are not disputed), but many more suffer 
fundamental uncertainties in their theoretical, as well as practical, definitions. Coombes et al. 
(1979), for example, highlight the difficulties and the ambiguities inherent in a theoretical and 
practical definition of urban regions, even when ‘‘objective’’ data like commuter flows are 
used to identify functional regions. These uncertainties are the consequence of the 
unavoidable gap between geographic reality and the logical categories used in geographic 
analysis semantics (Ban and Ahlqvist, 2009; Bennett, 2001; Burrough and Frank, 1996; 
Fisher, 2000; Plewe, 2002). They can have an impact on the previously mentioned 
uncertainty in geographic information, much more than measurement errors or missing data. 
Following the evolution of urban population in a country is thus not just a problem of reliable 
census data over time, but much more of consistent and appropriate definitions of ‘‘city’’ and 
‘‘inhabitant’’. The theoretical and practical impossibility of forcing the continuum of reality in 
crisp logical categories, suggests the use of fuzzy set theory, fuzzy logic (Burrough and 
Frank, 1996; De Ruffray, 2007; Fisher, 2000; Plewe, 2002; Rolland-May, 1984) and rough set 
theory (Murgante et al., 2007) to describe geographical space. When uncertainties derive 
from ambiguous or conflicting definitions, belief functions can offer interesting solutions. It is 
thus to be regretted that Dempster-Shafer evidence theory is essentially used to fuse 
conflicting geographic data (Malpica et al., 2007) and that no application has been attempted 
to conflicting object definitions given by geographers or formal geographic ontologies. 
Comber et al. (2007), for example, use evidence theory to classify landscape elements by 
taking into account conflicting elements of evidence, but they do not address the case of 
conflicting conceptual definitions of landscape classes.

Uncertainties in the definition of geographic objects should clearly be of utmost importance 
for uncertainties in GIS data. This is, unfortunately, seldom the case. Uncertainties in 
attributing an urban and a rural census population to a municipality is thus not just a problem 
of census data accuracy but much more fundamentally a problem of geographic definition. In 
France, the National Statistics Institute defines as urban all municipalities as having more 
than 2000 inhabitants, in China, this threshold is orders of magnitude higher and is 
inextricable from administrative criteria (Chung and Lam, 2010), in India, functional criteria 
like the percentage of non-agricultural workers is also considered, and so on. Which 
uncertainties arise from the use of these thresholds? How could GIS data take into 
consideration both data inaccuracy and data sensitivity to definitions of geographic objects? 
Formal ontologies have traditionally been seen as a way to reduce uncertainty in geographic 
object definitions. Projects like Citygml (Kolbe, 2005) have thus been developed to eliminate 
uncertainties deriving from incoherences in object definition by different urban practitioners. It 
is nevertheless questionable whether crisp ontologies can always find a consensus in the 
scientific community for modelling such complex and fuzzy objects like cities, informal 
settlements, local ecosystems, functional regions, cultural areas, etc. Within the artificial 
intelligence community, Bobilo and Straccia (2011), Costa et al. (2008), Ding and Peng 
(2004) and Loiseau et al. (2006) propose uncertainty-based ontologies for dealing with 
uncertain object definitions. Fuzzy logics, Bayesian probabilities and possibility theories are 
the proposed methods to enrich traditional formal ontologies. Laskey et al.(2010) have thus 
proposed applications of uncertainty-based ontologies for geospatial information. Caglioni 
and Fusco (2014) proposed to extend the use of uncertainty-based ontologies to models of 
relations between geographic phenomena. Uncertainty-based formal ontologies should be 
challenged in the future to tackle the description of complex geographic phenomena like 
spatial processes resulting from systems of relations among geographic



objects evolving in time and space (urbanization, globalization, gentrification, geo-
morphogenetic processes, climate change, etc.).

Uncertainty in the explanation of geographic phenomena
Uncertainty can also characterize the kind of explanatory knowledge geographers can 
produce. In his foreword to Foody and Atkinson (2002), Curran (2002) draws a distinction 
between measurement uncertainty and understanding uncertainty. The former relates to the 
accuracy of spatial data and has drawn much attention from the GIS community. The latter 
qualifies the confidence we have in our explanations of phenomena; contrary to public 
opinion expectations, scientific knowledge is always affected by uncertainty: ‘‘Scientific 
knowledge is a body of statements of varying degrees of certainty - some most unsure, some 
nearly sure, but none absolutely certain’’ (Feynman, 1988: 245). Two main issues are 
particularly relevant for geographers here.

The first concerns the way geographers can identify explanations of geographical 
phenomena, abstracting from data. The traditional view in theoretical and quantitative 
geography, well presented by Harvey (1969), can use a probabilistic approach to test 
theoretical explanations using empirical data. The underlying hypothesis is nevertheless the 
possibility of identifying the ‘‘good’’ explanation for observed data, with negligible uncertainty. 
Contrary to this view, Quine (1980[1953]) argues that empirical data under-determine any 
theoretical lawful explanation (several theories can explain the same data). Von Bertalanffy 
(1968) shows that this is normally the case for phenomena within open systems and uses the 
concept of equifinality. Varenne (2015) develops Quine’s and Von Bertalanffy’s argument to 
theoretical and quantitative geography, remarking the existence of a double under-
determination: empirical data under-determine statistical laws (Law/Data under-
determination, as several statistical laws can conveniently fit the data); but statistical laws 
under-determine geographic processes (Process/Law under-determination, as several 
theoretical processes can produce the same statistical distributions). This double under-
determination results in irreducible uncertainties in the kind of explanatory knowledge 
geographers can produce. What geographers need are thus methods to identify and 
eventually quantify these uncertainties, and to integrate them in geographic reasoning in a 
context of multiplicity of possible explanations, as for example in Fusco and Tettamanzi 
(2017).

The second issue concerns the capability of geographical explanations to be generalized. 
In the first place, geographical ‘‘laws’’ are regularities obtained through comparative analysis, 
whether qualitatively (case-study analysis) or quantitatively (identification of statistical 
regularities, see above). As they are not deterministic natural laws, they suffer exceptions and 
are specific to a given spatio-temporal context. This is even more true for human geography. 
In this respect, what uncertainties arise when a general knowledge is used to explain a given 
case study? What uncertainties characterize, on the other hand, the generalization of the 
explanation found for a given geographic space to another? The first question relates to the 
fact that geographical ‘‘laws’’ are summaries of system properties (general causation), 
whereas explaining a given case study is a question of specific causation. This is a distinction 
which is well known in forensic studies (Federal Judicial Center, 2011) and passing between 
the two categories of causation is known to arise questions of uncertainty. The second 
question needs a clarification. Geographers rarely apply ‘‘laws’’ blindly to new case studies, 
when these ‘‘laws’’ were determined for a different context. When this is done, the ‘‘law’’ is 
considered as a hypothesis to be verified, and its applicability to the new case studies is by 
definition uncertain. What is peculiar to the



production of knowledge in the social sciences is precisely the interest and the need 
to always test ‘‘laws’’ with new data. The validity of an explanatory knowledge is 
never absolute, and researchers need to accumulate evidence for its soundness and/
or limits to its validity by confronting it to new case studies. In this context, being 
aware of the levels of uncertainty of present theoretical explanations is a way to improve 
the heuristics of geographical research.

Of course, uncertainties attached to the explanation of geographical phenomena are also 
linked to uncertainties in data and in object definitions. Uncertain explanation of the link 
between land-use and transportation in a city is thus at the same time a problem of multiple 
causation, of poor data quality and of approximate or arbitrary definition of land-uses and 
mobility system elements.

Uncertainty and the complexity of spatial systems
Complexity is a new paradigm which has renewed scientific research in several disciplinary 
fields. The underlying hypothesis of complexity is that many research objects are complex 
systems characterized by a multitude of elements and relations among elements. Their 
overall behaviour cannot be deduced directly from the characteristics of the single elements 
(holistic approach), as the classical reductionist approach of Descartes proposed, because 
new system properties emerge from the interactions of its components. Complex systems are 
also characterised by nested levels of organisation, which can reproduce the whole system at 
different scales (holographic behaviour). Another important characteristic of complex systems 
is, paradoxically, their capacity to deal with high levels of micro-disorder (entropy) and meso- 
and macro-order (negentropy) through self-organising processes. According to Morin (1990, 
1994), these characteristics are peculiar of most social and biological systems. Weaver 
(1948) indeed recognised two forms of complexity: disorganized and organized complexity, 
the former characterizing many physical systems, the latter corresponding to Morin’s 
definition of complex socio-biological systems.

The knowledge we can have of complex systems is by definition uncertain. The extreme 
numerosity of parameters precludes the researcher from having any complete set of 
measurements of the objects under investigation. Even more crucially, the impossibility of 
reductionist approaches to complex systems, would make any set of ‘‘complete’’ 
measurements of individual components inadequate to the understanding of the organic 
whole. According to Weaver (1948), probabilistic models can still give adequate descriptions 
of disorganized complexity. On the contrary, knowledge of organized complexity often resists 
descriptions in terms of simple probabilistic models. Higher levels of uncertainty arise, linked 
to the impossibility of exhaustive descriptions both of individual components/relations and of 
overall behaviours, which are often emerging properties of the many interactions within the 
system. Within an open complex system (and all real-world geographic systems are open), 
the already mentioned equifinality problem also poses the question of the knowability of the 
processes producing observed phenomena.

Manson (2001) and Dauphiné  (2003) propose general theories of complexity for 
geographical systems. More specifically, complex system approaches have been proposed 
and used in urban geography (Allen, 1997; Batty, 2013; Portugali, 2000). In an interesting 
review of Dauphiné  ’s work, Di Mé o (2005) points out that, as in other human and social 
sciences, the high numerosity of elements and relations (aggregate complexity) is not the 
only source of complexity in geography. Hermeneutics of subjects within a social context (see 
section Uncertainty and subjectivity in spatial phenomena) also contribute to complexity in 
geographic systems.



This debate goes clearly beyond the scope of our paper and points to the complementarity 
of knowledge on complex systems produced by different research approaches in our 
discipline. In this respect, uncertainties (which are hard to quantify) could be attributed to 
results obtained by any sub-disciplinary approach in a context of concurrent (and sometimes 
divergent) theoretical bodies of knowledge.

We want to stress the necessity to explore the implications of the complex system 
approach on the kind of knowledge we can produce on geographic phenomena. 
Unpredictability has, for example, been identified already in deterministic complexity: simple 
deterministic systems can exhibit chaotic behaviour with system state being particularly 
sensitive to initial conditions. Lorentz (1969) applied these considerations very early to 
meteorological phenomena. O’Sullivan (2004) has promptly observed that other 
characteristics of complex systems (namely the convergence to organization which is typical 
of organized complexity) create a tension with the apparent randomness and unpredictability 
of certain geographic phenomena. In his view, this apparent contradiction between 
convergence and divergence can be solved when we consider the geographical scale of 
analysis. Divergence and unpredictability of phenomena at the micro-scale could thus be 
compatible with convergence to some structural properties at the macro-scale. These 
properties could nevertheless only be appreciated qualitatively. Uncertain, approximate, 
‘‘soft’’ knowledge seems the only possible knowledge of complex systems in many practical 
situations (Capra, 1997). An issue often underestimated by geographers using complex 
system approaches is thus the importance of formalizing their research results in terms of 
uncertain knowledge. More operational considerations will be addressed when models of 
complex systems are used for geographic space (see next section).

Uncertainty in geosimulation
Since Tobler’s (1979) proposal for a Cellular Geography, geosimulation has proved its utility 
in depicting geographic phenomena. Geosimulation offers a set of techniques going beyond 
statistical and differential equation models. Much more, it offers the new perspective of 
simulating spatial phenomena as the emerging results of collective dynamics of interacting 
objects, an approach well suited to model complex spatial systems (Benenson and Torrens, 
2004). Complexity of simulated phenomena leads to non-deterministic models, beyond Von 
Neumann’s original cellular automaton. These models are not predictable by definition and 
the consequence of this is the ignorance of analytical solutions. Before performing a 
simulation of a non-deterministic model, we cannot know the behaviour of the model. The 
value of parameters and variables will be calculated locally with numerical methods, the 
overall behaviour of the system emerges from these local calculations.

Uncertainty in spatial modelling and simulation is an important issue in theoretical and 
quantitative geography. Modelling is one way to describe and understand geographic space, 
but it requires a simplification of observed complex phenomena. Choices in entitization and 
variable selection imply uncertainties in geographic information and definition of geographic 
objects, as previously discussed (see sections Uncertainty in geographic information and 
Uncertainty in geographic definitions). Modelling also deals with uncertainty in describing 
relationships between entities (rules, equations, spatial and temporal relations). Hypotheses 
underlying those relationships are uncertain and imply causality links, which are not always 
provided by empirical studies (see section Uncertainty in the explanation of geographic 
phenomena).
Entities and their relationships constitute the model structure. Another common simplification 
is considering the invariance of this structure over time, above all in human



geography. Stationarity of processes and of model structure is a strong hypothesis that 
leads to a divergence between model and reality, and it adds uncertainty in our 
simulation of reality. Nowadays we can consider non-stationary models thanks to advanced 
methods like adaptive algorithms and the evolutionary design of models (Ribeiro et 
al., 2005); nevertheless, uncertainty is omnipresent in simulation results.

Geosimulation models provide a virtual laboratory for geographers and even a second 
empirical reality (Daudé  , 2005). This virtual geographic space introduces further levels of 
uncertainty in the knowledge produced during all the modelling chain: from the chosen 
hypotheses of formal representation of real-world phenomena to model conceptualisation, 
from input data to output data, from rules and equations to the results of simulation, from 
the parameter and variables choice to their calibration using uncertain data, from 
representation and visualisation to evaluation and validation of results.

A major issue in geosimulation is thus to develop methods to quantify uncertainty, like 
sensitivity analysis, expert assessment, model comparison or statistical approaches (Uusitalo 
et al., 2015). Error theory explains how variance is propagated through several calculation 
sequences, but simulation results can show different shades of uncertainty, depending not 
only on data errors. Even though we are computationally able to model a dynamic process in 
some detail, infinite spatial simulations can be produced based on different parametrizations 
and specifications of the model. Not all model outputs are equally plausible, and several 
scenarios are more probable/possible than others. Moreover, the validity of model results for 
the understanding of real-world phenomena is neither assured by the internal coherence of 
the model nor verifiable with external data, given the equifinality problem (O’Sullivan, 2004). 
Modelling complex hydrological systems, Beven and Freer (2000) have addressed equifinality 
through the generalized likelihood uncertainty estimation (GLUE) methodology. This is a 
multiple model identification procedure allowing for equifinality and integrating the possibility 
of multiple model specifications producing a set of uncertain results. Models explored by the 
GLUE methodology must nevertheless belong to a given family of models, a constraint which 
is probably acceptable in hydrological problems, but not necessarily in the more varied 
geosimulation models of socioeconomic interactions in space. More in general, and without 
addressing specifically complex geosimulation models, Walker et al. (2013) identify several 
levels of uncertainty in the modelling process, from complete certainty to total ignorance. In 
presence of shallow uncertainty, it is still possible to calibrate a given model (considered as 
‘‘certain’’ in its correspondence to reality) and obtain a statistical distribution of errors. At 
deeper uncertainty levels we are no longer able to describe the system in statistical terms; 
several models of the same reality are possible. More than simple sensitivity analysis, an 
exploration of model results under different parameterizations (behaviour space analysis) and 
specifications (model comparison) is needed. Evaluation of result robustness and validity 
through a mix of expert assessment and statistical procedures is the most usual way of 
addressing uncertainty. In this context, GLUE represents an interesting alternative for a 
probabilistic evaluation of uncertainty through model ‘‘fusion’’. Specific computational 
problems arise when models have the complex architecture of geosimulation models. Here 
new perspectives are opened by platforms of intensive calculus and distributed computing, 
like OpenMole (Reuillon et al., 2015). Thus, Pumain and Reuillon (2017) show using the 
OpenMole platform how to tackle uncertainties related to equifinality issues in geosimulation: 
a multi-modelling framework is used to model urban growth in soviet and post-soviet cities by 
including several concurring explanatory mechanisms. Exploration of



parameter space can identify the most plausible combinations of mechanisms which 
consistently produce the observed data.

Nevertheless, at even deeper levels of uncertainty, we could have several (often 
incomplete) models based on conflicting and incompatible theoretical assumptions, with 
incomparable structures, allowing different narratives of system behaviour and possible 
outcomes. At this level of uncertainty, a harmonized quantification of the uncertainties of 
model results seems unattainable.

When geosimulations are used in decision support contexts (see section Uncertainty 
in planning and risk management), the uncertainty-burdened results clearly suggest that 
model outcomes should be only used to explore possible scenarios (equally 
plausible or of graduated plausibility) and not as forecasts of future state of a spatial 
system.

Uncertainty in representing spatial knowledge
The representation and visualization of geographic knowledge have traditionally found in 
maps a well suited vector of communication. Ancient maps were already confronted with 
questions of uncertain knowledge (‘‘Terra incognita’’ writings are found on maps and pilot 
books until the early XVIII century). The on-going investigation of the globe surface, the 
advances in geodesy and topography and the availability of new spatial data allowed the 
production of modern cartography and choropleth thematic maps. Given the scale of 
representation and the object selection associated with this scale, modern 
cartography favours the impression of a geographic reality perfectly known. Graphic 
semiology of map representations is particularly conceived for ‘‘well known’’ geographic 
objects and phenomena.

In his ‘‘Atlas of Ignorance’’, Boggs (1949) was the first to point out the practical and 
theoretical impossibility of this paradigm of complete, certain knowledge in maps. As a 
popular quotation among cartographers goes, generally attributed to Bert Friesen, once a 
map is drawn people tend to accept it as a reality. In the last decades, postmodern criticism 
of cartography has thus highlighted the fallacies of maps (Harley, 1988; Monmonier, 1993), in 
particular when they play on the impression of objective, complete, certain knowledge 
communicated to their users.

Representing uncertain knowledge in maps is thus a double challenge: we need in the first 
place to find appropriate protocols of representation and communication of uncertain 
geographic knowledge; in the second place, we also have to overcome the tacit assumption 
of certain knowledge conveyed by modern maps and thematic maps.

On the first point, research was carried out since the 1990s on new cartographic solutions 
for representing uncertain geographic data (Arnaud and Davoine, 2009; Buttenfield and 
Weibel, 1988; Cedilnik and Reinghans, 2000; Fisher, 1994; MacEachren, 1992; MacEachren 
and Taylor, 1994; Pang et al., 1997; Rocchini et al., 2011). Representing data on a map is not 
all: sometimes more synthetic geographic knowledge can benefit from representation in the 
form of a sketch which can eventually be formalized as a chorematic diagram (Brunet, 1980). 
Unfortunately, chorematic diagrams were never conceived to represent uncertain geographic 
knowledge. More recent research projects, aiming at automated production of synthetic 
chorematic diagrams from spatial data (Del Fatto, 2009; Laurini and Servigne, 2011) miss the 
point of introducing questions of uncertain knowledge.

On the contrary, sketches and chorematic diagrams have an unexploited potential for 
representing uncertain knowledge. First, they aim at representing general structures of



geographic knowledge and not choropleth data; they are thus more qualitative in nature and 
can better represent uncertain, imprecise geographical objects and phenomena. 
Furthermore, they integrate time better than maps. Both Couclelis (2010) and Brunet (1980) 
underline that a sketch and a chorematic diagram are to be read in time: it is not the final 
representation that matters but the step-by-step procedure to enrich the sketch/diagram and 
to arrive to the final representation. Time can thus be used to overlay conflicting knowledge 
over which the geographer is not certain. The role of uncertainty in schematic representations 
has been further studied from a cognitive point of view. Scrivener et al. (2000), for example, 
analyse the link between uncertainty, memory recall and cognitive process in designer’s 
sketches. Their work could open further research on mental maps of geographic space, but is 
also relevant when schematic representations are produced by analysts as a synthesis of 
their expert knowledge: uncertainty should be better recognised as a main driver in the 
geographer’s cognitive process and sketching can help in this endeavour.

Introducing time in knowledge representation and using digital platforms have thus 
become key ingredients of some of the latest solutions for the representation of uncertain 
geographic knowledge: interactive geographic data visualization. First attempts of interactive 
representation of uncertain geographic data were proposed in the 1990s (Ehlschlaeger et al., 
1997) even if they were not considered particularly effective in their applications (Evans, 
1997). Advances of the software interfaces have since been considerable and new 
applications seem to be both more user-friendly and scientifically sophisticated (Ban and 
Ahlqvist, 2009; Cao and Fusco, 2015; Dubois et al., 2017; Kunz et al., 2011). These 
applications link together interactive representations in the forms of maps, diagrams and text. 
Interactive representation of more synthetic geographic knowledge through sketches and 
chorematic diagrams is still a research perspective.

Uncertainty-related issues of representation are directly linked to the use of uncertain 
geographic knowledge in decision support, as in planning or in risk management (see section 
Uncertainty in planning and risk management). Several authors thus relate of the evaluation 
of different solutions for representing uncertain geographic knowledge in a decision support 
or in a communication process (Aerts et al., 2003; Edwards and Nelson, 2001; Evans, 1997; 
Harrower, 2007). The Netherlands Environmental Assessment Agency has thus produced a 
guidance for uncertainty assessment and communication (Visser et al., 2006) to help the 
reporting, representation and communication of uncertain spatial data on environmental 
issues.

Uncertainty and subjectivity in spatial phenomena
Geography also deals with the perceived space (Cosgrove, 1998; Di Mé  o, 1991; Tuan, 
1977) which goes beyond what could be considered as material and objective space 
described in the previous points. Some authors (see for example Lake, 1993 and Smith, 
1979) tend at that point to oppose ‘‘objectivity’’ that is accurate and ‘‘subjectivity’’ that is 
considered as ill-framed, uncertain and volatile. This perceived experience of space is based 
on identity, feelings, social constructs, values, ideologies, etc. in short on all ‘‘rational’’ and 
‘‘irrational’’ elements that drive the behaviour of individuals and social groups in space. 
Indeed, subjective space is the one of the individuals in their singularities and their 
specificities, but is also perceived and constructed collectively through the establishment of 
meta- spatial structures.



Publications and research on this field tend to be divided into three major categories. A 
first category of research, that we called ‘‘descriptive’’, explores the diversity of factors that 
can explain how perception of space is framed and how, these ‘‘perceived issues’’ that are a 
way to deal with the unknown and the uncertain can be explicit for an actor or a group of 
actors. This is the case for the works done for example by Fini et al. (2015) and by Weichhart 
(2013) that we present hereafter.

Indeed, Fini et al. (2015) point out the fact that the way space is apprehended is 
subjective. The perception of what is considered as ‘‘near’’ and as ‘‘far’’ is dependent on our 
motion capabilities. The authors also show that the needs of humans to reduce their 
uncertainties associated to an agent (or an interface) and to increase the level of confidence 
on it are achieved through an anthropomorphism process.

Since the future is uncertain, Weichhart (2013) suggested an innovative approach to 
learning based on Bertalanffy’s General System Theory mixing Chaos and Complex Adaptive 
Systems theories. In this paper, the author supports Dewey’s criticisms on traditional 
educational approaches and suggests to frame new learning environments, such as GIS for 
example, that are more adapted to face the uncertain and the unknown. These tools can be 
used to enable the education of self-controlled active agents capable of creative problem-
solving.

A second category of research, that we call ‘‘prescriptive’’, suggests new methods to deal 
with the different issues of the individual, the group and the aggregate perception for decision 
support or for problem structuring. The researches produced by McCarty et al. (2014) and 
Thill and Sui (1993) are an illustration of this category. McCarty et al. (2014) propose a model 
to explain why there is an increasing polarized US Congress with an apparently stable and 
centrist US electorate. Based on previous works, they suggest to follow the literature on the 
distribution of preference across voters rather than considering the average behaviour. 
Indeed, the median voter was found to be an inadequate predictor of candidate or legislative 
positions. Based on the geography of preferences, they suggested a model of uncertainty 
over the median legislator that could help to solve the Fiorina puzzle.1

Preferences are a construct. Considering this point, there is a variability in people liking 
and disliking places. Based on the early work done by Gould, on preferences for geographic 
space and residential desirability, Thill and Sui (1993) have empirically tested and 
demonstrated that the dominant viewpoint in a group is not affected by the fuzziness in 
individual space preferences. They show that mental maps based on Gould’s ranking 
methodology can reveal a distorted representation of residential preferences. Their study 
confirms that interval scales are more adapted than ordinal scales for mental mapping and 
more largely for behavioural analysis.

And it is here that the scientific question of uncertainty appears. Indeed, the emergence of 
higher-level spatial structures implies generalizing individual subjective space. But how to 
combine the different subjectivities in space? As any spatial characteristic of the subjective 
space refers to personal features, singular, not standardized, and inevitably rich and varied, 
how can we have a collective vision without uncertainty? So when two spatial perceptions 
differ (even slightly), which values can be attributed with certainty to a place? Similarly, as 
field geographers, how can we address the subjectivity of interview data and their related 
uncertainties? Moreover, given the abundance of self-produced data by citizens (VGI on 
nuisances, on the different perceptions, etc.), how to deal with data which are rich and new, 
but overexposed to the uncertainties (of location, knowledge of the subject and the object, the 
very existence of the object, etc.). In short, the dimension of the perceptual ‘‘subject’’ 
undeniably raises the question of uncertainty.



A third category of research, that we call ‘‘problem setting’’, questions the way uncertainty 
and perception are considered and investigated until now. The concepts of ‘‘validity’’ and 
‘‘accuracy’’ are than evoked. Some can consider that the theme of uncertainty seems to be 
not sufficiently explicated in social and cultural readings of space. They argue that in the large 
majority of scientific work addressing subjective space, uncertainty is not clearly mentioned, 
sometimes forgotten or poorly discussed. The research addresses more the richness and the 
diversity of individual subjectivity, and aims at highlighting the effects of spatial (distance, 
situation, etc.) or social structures (transmission, kinship, cultural filters, etc.) on the 
perception. These researches hardly question the variability, the relativity, the blurring or the 
accuracy of these individual and collective spatial behaviours. Individual cases accumulate in 
space but the validity and significance of the constructed spatial meta-structure seem not 
formally addressed. One of the critics can be illustrated, for example, by looking at gender 
studies (Di Mé o, 2012) that reveal the territories, the networks and the places of women in 
town; they show the influence of political and urban structures. But subjectively perceived 
spaces and lived spaces are not discussed in their similarity and their ability to be 
generalized. This subjectivity is discussed primarily on its legitimacy where the state of 
knowledge of the subject matters more than its validity, and hence introduces a degree of 
inherent uncertainty for the researchers.

However, some studies deal with the uncertainty dimension of subjective space data. 
Lynch (1960) and Rowntree (1997), for example, have raised the issue of the difficult 
passage from individual mental maps of urban space to collective mental maps for a given 
social group. Unfortunately, they did not explore and formalize the questions of uncertainty 
associated to this passage. Didelon et al. (2011) have addressed uncertain knowledge of a 
territorial object (Europe) and cartographic solutions to represent it. Their simple question 
‘‘draw me Europe’’ asked to almost 10,000 students implies several types of uncertainty 
(imprecision, vagueness, graduation, ambiguity, etc.) on various elements: the territorial 
object, cartographic knowledge, personal experience of European space, knowledge of 
geography of Europe, etc. The use of fuzzy set theory allows them to define degrees of 
belonging to Europe. Other authors have more particularly assessed the uncertainties 
associated to VGI (Flanagin and Metzger 2008; Ostermann and Spinsanti, 2011, see section 
Uncertainty in geographic information).

Considering these three categories of research in the field of uncertainty on subjective 
knowledge of space as a main contribution could eventually become a bridge between 
quantitative geography and social and cultural geography.

Uncertainty in planning and risk management
Within the last two decades, uncertainty has become a growing issue in planning. Questions 
of sustainable development and environmental concerns favoured the awareness that the 
future is undetermined and possible trajectories of development for local territories are 
uncertain. The way to consider uncertainty differentiates spatial strategic foresight from 
planning. Planning was traditionally based on forecast analyses where the future was 
considered as a continuation of past trends and structural factors were considered invariant. 
Spatial strategic foresight differs from forecast analysis because it considers it impossible to 
‘‘forecast’’ the future (Cuhls, 2003). Loinger and Spohr (2005) consider spatial strategic 
foresight (prospective territoriale in French) as an effort of organization in the presence of 
uncertainty, and even, to a certain degree, of ‘‘planning’’ the uncertain.

Nevertheless, other authors like Chalas and Soubeyran (2010), show that uncertainty was 
never absent neither in the theory nor in the praxis of planning; on the contrary, it was



linked, in different forms, to planning. First, uncertainty is what the planner tries to eliminate 
by programming an action in a place. Secondly, uncertainty is linked to the unintentional 
consequences of planning actions. Planners tackle it by trying to estimate future risks, by 
carrying out impact assessments or simulations for the possible futures of the planned 
operation. A last uncertainty puts in question planning as conscious and deliberate 
intervention on geographic space. Indeed, the meaning of the operation will only emerge a 
posteriori and cannot be as deliberate as planning theory goes. Examples of unintentional 
consequences of planning actions, with negative consequences on the environment or on the 
local community, put then in question the meaning of the planned actions and of the very 
decision making process. In front of this kind of uncertainty, planners are at a loss.

In her PhD thesis, Pellegrino (2010) deals with uncertainty in urban planning. Uncertainty 
is considered as inherent in society. She identifies a ‘‘positive uncertainty’’ in the praxis of 
urban projects, where planning goes beyond the action of professional planners and where 
new strategies are set up to deal with unforeseeable processes. These strategies rely on new 
participative, multi-source, flexible, fuzzy tools within a multi-scale approach.

Today, uncertainty is intruding into local project management in different ways. First, by 
involving public consultations in the project definition, monitoring and assessment. Second, 
by including more flexibility in the operation under development. Since the early 1990s, 
mediating participatory modelling has been used to enable local communities to improve their 
adaptability to the uncertainty of their environment; to find the practice that is best adapted to 
the uncertain climate, by using role-playing games and agent-based models, for instance 
(D’Acquino and Bah, 2013a). This new approach can be described as ‘‘surfing on uncertainty 
(Berkes and Folke, 1998) rather than contending with it’’ (D’Acquino and Bah, 2013b). Third, 
the awareness of the unpredictability of the future challenged traditional planning strategies 
and tools and favoured a new planning approach: reversibility. The concept of reversibility 
and its operationalization are currently encouraged in urban planning (Scherrer and Vanier, 
2013). Blecic and Cecchini (2016) go even further by applying Taleb’s antifragility concept to 
planning. Antifragility is the property of complex systems that can improve themselves 
through perturbations of their environment (Taleb, 2012). Even if they do not give concrete 
examples of antifragile plans (rigid planning being by definition fragile), Blecic and Cecchini 
open the way for a new approach of intervention on geographic space: increase 
redundancies, leave some slack capacity in order to take advantage of unforeseeable 
opportunities, avoid optimization (which increases the fragility of any plan), take advantage of 
collective intelligence through participatory processes and bottom-up actions.

As far as risk management is concerned, uncertain events were traditionally described 
through probabilistic models. These probabilistic models were mobilized mainly to prevention 
purposes. In the presence of a possible risk, prevention means acting on the risk, even in a 
context of scientific uncertainty, by evaluating what is at stake and the magnitude of possible 
damage. One of the main critics to probabilistic approach of risk is that they are not 
conceived to deal with the unknown (Merad, 2010; Merad et al., 2016; Taleb, 2007). This new 
scientific uncertainty and uncertainty of non-intentional effects of actions produced two other 
management strategies. The first is the precautionary principle, 15th principle of the Rio 
Declaration. In the presence of a reasonable doubt, precaution means taking proportionate 
actions, even in a context of scientific uncertainty, by evaluating what is at stake and the 
magnitude of possible damage. The second is anticipative crisis management. The 
unpredictability of natural and social phenomena, the week capacity to foresee and 
anticipate, brought policies to favour crisis management more than risk



management, by focusing actions on emergency measures, early-warning systems 
and procedures of general mobilization in the event of a crisis.

The very topic of crisis management reveals an interesting link with uncertainty in 
geographic data. Roche et al. (2013) highlight how VGI is becoming new precious resource in 
crisis management, in situations where authoritative uncertainty-assessed geographic data 
are of little help (catastrophic events have considerably changed the geographic reality, official 
data are outdated or unavailable, etc.). Globally, VGI helps reduce uncertainty in crisis 
management: it is a way through which collective intelligence is used to monitor a complex 
system in particularly critical conditions and foster collective action on it. At the same time, 
peer-review assessment of VGI could not be enough or fast enough in the context of crisis 
management. From this point of view, classical command and control management using 
only authoritative geographic information will have to accept much more uncertainty and 
adaptive intervention strategies in close link with bottom-up feeds of information.

In conclusion, the unpredictability of extreme events, the new role of citizens in project 
management (and in data production), the diversity of viewpoints associated with it, 
environmental concerns challenging the public interest of projects, all contribute to 
increase uncertainty in planning and risk management. In this respect, these 
conscious and coordinated interventions on geographic space could in the future 
be more demanding of uncertainty-based geographical analyses than they have 
traditionally been.

Conclusions and perspectives
Our review of questions of uncertainty in geographical research highlights a striking contrast. 
On the one hand, works on uncertain geographic data and their representation are 
particularly rich and varied, but are often focused on the most technical aspects of uncertainty 
treatment and underestimate impacts deriving from uncertainties in hypotheses and 
concepts. On the other hand, works on uncertain geographic concepts, synthetic knowledge 
and subjective perception of space are relatively rare and are seldom connected to 
operational issues of geographic data treatment. More holistic approaches emerge in 
planning and in complex systems analysis. Here, the practical and theoretical impossibility of 
predicting the future state of a geographic system brings researchers to more general 
conceptions of uncertainty, which go well beyond questions of data validity and error 
management. Traditional probabilistic modelling of uncertain events is also reconsidered, as 
the fitting of probabilistic laws seems less and less justified: traditional shallow uncertainties 
become thus medium or deep uncertainties (Walker et al., 2013). Advances of knowledge 
seem thus inevitably linked to the increasing awareness of uncertain knowledge and even of 
non-knowledge.

In his already mentioned foreword, Curran (2002) points to a certain pragmatism in 
uncertainty research in the geo-sciences: being more frequent, of smaller magnitude and 
more readily tractable in practice, measurement uncertainty has absorbed much of the 
research effort. Understanding uncertainty, linked to uncertainties in explanations, concept 
and model definitions, has a considerably greater magnitude, Curran admits, but fortunately 
enough, it also has a considerably lower frequency. From our perspective, this observation 
has far reaching implications. Very rare events, with disruptive outcomes, are precisely what 
Taleb (2007) defines as ‘‘black swans’’. Understanding uncertainty can thus easily become 
the black swan of the geographer’s knowledge production process, undermining our research 
praxis and discrediting passage from academic research to decision support.
In this context, the scientific agenda for uncertainty-aware geographers seems to us the 
following. Instead of or (when possible) beyond reducing uncertainty, geographers



should accept uncertainty as a necessary component of the research activity and results. 
Possible uncertainties in explanations, concept and model definitions should be given 
absolute priority, in order to avoid over-treatment of measurement uncertainties. Models of 
complex systems should not aim at replicating the simple sensitivity to parameter approach of 
classical models. Representation and decision support should reflect the state of our 
knowledge and take advantage of subjective perceptions within participative processes. 
Ideally, research agendas should be designed in more flexible ways to take advantage of a 
‘‘positive uncertainty’’: considering the uncertainties associated to the different phases of the 
knowledge production process, from concept definition to data treatment and geosimulation, 
should produce more productive research heuristics. Conflicting, gradual, vague, imprecise, 
‘‘soft’’ knowledge is the natural fuel of scientific work. Certain knowledge would thus be an 
extreme case, and even a less stimulating one in geographic research.
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Note
1. There is a large density of districts where the median or average voter is quite moderate, but 
voting behavior of the representative is extreme, and the legislature is far more sharply polarized 
than is the distribution of district medium.
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ville. L’Information Géographique 76: 72–94.
Ding Z and Peng Y (2004) A probabilistic extension to ontology language OWL. In: Proceedings of the

37th Hawaii International Conference on System Sciences, Big Island (HI), 5–8 January 2004, doc
40111.1, pp. 1–10. Washington: IEEE Computer Society Press.

Dubois D, Fusco G, Prade H, et al. (2017) Uncertain logical gates in possibilistic networks:
Theory and application to human geography. International Journal of Approximate Reasoning 82:
101–118.

Dubois D and Prade H (1988) Possibility Theory: An Approach to Computerized Processing of
Uncertainty. New York: Plenum Press.

DuckhamM (2002) Uncertainty and geographic information: Computational and critical convergence.

Research paper, Department of Computer Science, University of Keele, Staffordshire, UK.
Duckham M, Mason K, Stell J, et al. (2001) A formal approach to imperfection in geographic

information. Computer, Environment and Urban Systems 25: 80–103.

Edwards L and Nelson E (2001) Visualizing data certainty: A case study using graduated circle maps.
Cartographic Perspectives 38 (Winter): 19–36.

Ehlschlaeger C, Shortridge A and Goodchild M (1997) Visualizing spatial data uncertainty using
animation. Computers & Geosciences 23: 387–395.

Evans B (1997) Dynamic display of spatial data-reliability: Does it benefit the map user? Computers &
Geosciences 23: 409–422.

Federal Judicial Center (2011) Reference Manual on Scientific Evidence, 3rd ed. Washington: National

Research Council of the National Academies.
Feynman R (1988) What do you Care What Other People Think. London: Harper Collins.
Fini C, Committeri G, Müller BCN, et al. (2015) How watching pinocchio movies changes our

subjective experience of extrapersonal space. PLoS One 10: e0120306.
Fisher P (1994) Visualization of the reliability in classified remotely sensed images. Photogrammetric

Engineering and Remote Sensing 60: 905–910.

Fisher P (2000) Sorites paradox and vague geographies. Fuzzy Sets and Systems 113: 7–18.
Fisher P (2005) Models of uncertainty in spatial data. In: Longley et al. (eds) Geographical Information

Systems. Principles, Techniques, Management and Applications. Chichester: John Wiley and Sons,
pp.191–205.

Fisher P, Comber A and Wadsworth R (2006) Approaches to uncertainty in spatial data. In: Devillers
R and Jeansoulin R (eds) Fundamentals of Spatial Data Quality. London: ISTE, pp. 49–64.

Flanagin AJ and Metzger MJ (2008) The credibility of volunteered geographic information.

GeoJournal 72: 137–148.
Foody G and Atkinson P (eds) (2002) Uncertainty in Remote Sensing and GIS. Chichester: Wiley.
Fusco G and Tettamanzi A (2017) Multiple Bayesian models for the sustainable city. The case of urban

sprawl. ICCSA 2017 – 17th international conference on computational science and its applications,
Trieste, 3–6 July 2017, Lecture Notes in Computer Science, Vol. 10407. Berlin: Springer (in press).



Fusco G, et al. (2015) Faire science avec l’incertitude: Réflexions sur la production des connaissancesen
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Rolland-May C (1984) Les EspacesGéographiques flous. Thèsed’Etaten Sciences Humaines, Université
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