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Abstract

It is known that an adaptation of Newton's method allows for the computation of functional
inverses of formal power series. We show that it is possible to successfully use a similar
algorithm in a fairly general analytical framework. This is well suited for functions that
are highly tangent to identity and that can be expanded with respect to asymptotic scales
of �exp-log functions�. We next apply our algorithm to various well-known functions coming
from the world of quantitative �nance. In particular, we deduce asymptotic expansions for
the inverses of the Gaussian and the Black�Scholes functions.

1 Introduction

One notoriously complex problem in �nance is the pricing of derivative products that are frequently
traded on �nancial markets. Practitioners have proposed various sophisticated models for the
dynamics of �nancial assets. In particular, it has been necessary to account for the existence of
U-shaped �volatility smiles� which play a central role in the pricing of so-called vanilla options.
Some models seem more reasonable than others because they explain not only the volatility smile,
but also have properties that are directly exploitable in practice, notably the existence of easily
implementable pricing formulas involving mathematical parameters that are easy to calibrate.

Subsequently, the volatility smile has been studied in a fairly general way, with a minimum of
hypotheses on the probabilistic distribution of the assets [2, 1, 21, 6, 12]. This has made it possible
to isolate intrinsic behaviours that are shared by a large number of models in the study of volatility
smiles.

The next step has been to study the volatility smile in a model-free setting. This ultimately leads to
focusing not on the Black�Scholes formula itself but on its inverse [26, 10, 8, 32]. A notable advan-
tage of this approach is that it simpli�es pricing problems. Indeed, in the case of vanilla options,
such problems usually do not admit closed form solutions (except in the Black�Scholes model),
so we need to resort to approximate solutions. Di�erent techniques have been proposed to this
purpose: perturbation methods with partial or stochastic di�erential equations, Lie symmmetry
theory, Watanabe theory, heat kernel expansion theory and Minakshisundaran�Pleijel's formula,
large deviation theory, etc. [23, 22, 16, 9, 13, 5]. Most of these techniques give the asymptotics of
price for large or small values of certain parameters involved in the computation of option prices.
The study of the inverse function of the Black�Scholes formula then transforms vanilla option price
asymptotics into implicit volatility asymptotics, which is the quantity of interest.

The problem of inverting Black�Scholes formula is challenging because of its non-analytic boundary
behaviour. In fact, since the Black�Scholes model (as any other stochastic model) uses Brownian
motion, it is not surprising that the asymptotics of the Black-Scholes formula involves logarithms.
More precisely, after a suitable change of variables, the relation between vanilla option price and
volatility can be expressed via an asymptotic expansion

y � x+ �0+
�1
x
+
�2
x2
+ ���; (1)
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where �0; �1; ::: are polynomials in log x [8, 10]. In particular, this means that

y = x+ �0+
�1
x
+ ���+ �n

xn
+O (x¡n¡1/2); (2)

for every n2N. We are interested in computing a similar expansion for x in terms of y.

In computer algebra, various techniques have been developed for asymptotic expansions in general
asymptotic scales. For instance, several algorithms exist for the asymptotic expansion of �exp-
log� functions [30, 11, 25, 18, 31]. Such functions are built up from the rationals and an in�nitely
large variable x!1 using the �eld operations, exponentiation and logarithm. An example of an
exp-log function is exp(x2¡x log x)/log log (xx+3). The theory of transseries [7, 17, 19] makes it
possible to cover asymptotic expansions of an even wider class of functions comprising many formal
solutions to non-linear di�erential equations.

Several algorithms also exist for the functional inversion of exp-log functions [28, 29]. However,
the right-hand side �(x) := x+ �0+ �1 x

¡1+ �2 x
¡2 of (1) is usually not an exp-log function, so

these algorithms cannot be applied directly. When considering �(x) as a formal transseries, there
are also methods for computing the formal inverse  = y+ 0+ 1 y

¡1+ 2 y
¡2+ ��� of � [17, 19].

However, a priori , the analytic meaning (2) is lost during such formal computations. In this paper,
we will show how to invert asymptotic expansions of the form (1) from the analytic point of view.

For each n2N, let G n be the ring of n-fold continuously di�erentiable functions at in�nity (x!1).
Then G 1 :=

T
n2N G n is a di�erential ring. We recall that a Hardy �eld is a di�erential sub�eld

K of G 1. It is well-known that Hardy �elds [14, 15, 3] provide a suitable setting for asymptotic
analysis. In section 2, we will introduce the abstract notion of an �e�ective Hardy �eld�, which
formalizes what we need in order to make this asymptotic calculus fully e�ective. Typical examples
of e�ective Hardy �elds are generated by exp-log functions. For instance, in Sections 2.3 and 2.4,
we will show that Q(log x; x; ex; ex

2
) is e�ective Hardy �eld. Using the aforementioned work on

expansions of exp-log functions, it is possible to construct various other e�ective Hardy �elds.

Let K be a Hardy �eld. We say that � 2 K> n R with � = O(1) is steep if for any f 2 K, there
exists a c 2R with f = O (�c). An element f 2K is said to be highly tangent to identity if there
exists a c> 0 with (f ¡x)/x=O (�c). For instance, if K =Q(log x; x), then �=x¡1 is steep and
x+ logx+3 log2x/x is highly tangent to identity, contrary to x+x/ logx. Now assume thatK is an
e�ective Hardy �eld. We say that a germ f 2G 1 admits an e�ective asymptotic expansion over K
if for every n2N we can compute an element 'n2K with f ¡'n=O (�n). If '1 is highly tangent
to identity and f 0= O(1), then we will prove in Section 3 that f admits a functional inverse that
also admits an e�ective asymptotic expansion over K. Applied to the case when K=Q(log x; x),
this gives an algorithm for inverting asymptotic expansions of the form (1). Our algorithm relies on
two main ingredients: Taylor's formula for right composition with functions that are highly tangent
to identity, and Newton's method for reducing functional inversion to functional composition.

For our application to mathematical �nance, it would have su�ced to work with the particular
e�ective Hardy �eld K =Q(log x; x). There are several reasons why we have chosen to prove our
main result for general e�ective Hardy �elds. First of all, the more general result may be useful in
other areas such as combinatorics [27]. Indeed, functional inverses frequently occur when analyzing
asymptotic behavior using the saddle point method. Secondly, our general setup only requires
a moderate �investment� in the terminology from Section 2. Finally, it is natural to prove the results
from Section 3 in this setup; the proofs would not become substantially shorter in the special case
when K=Q(log x; x).

This paper contains three main contributions. As far as we are aware, the application of modern
asymptotic expansion algorithms to mathematical �nance is new. Secondly, we introduce the
framework of e�ective Hardy �elds which we believe to be of general interest for e�ective asymptotic
analysis. One major advantage of this framework is that it separates the potentially di�cult
question of constructing a suitable e�ective Hardy �eld from its actual use. The existing literature
on exp-log functions and transseries can be put to use for such constructions. But for various
other problems, it su�ces to assume the e�ective Hardy �eld to be given as a blackbox. The third
contribution of this paper is to show that this is particularly the case for the inversion of asymptotic
expansions that are �highly tangent to identity�.
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2 E�ective Hardy �elds

2.1 Hardy �elds

Consider the di�erential ring G 1 :=
T
n2N G n, where G n denotes the ring of n-fold continuously

di�erentiable functions at in�nity (x!1) for each n. We recall that a Hardy �eld is a di�erential
sub�eld K of G 1. Since any non zero element f of Hardy �elds is invertible, the sign of f(x) is
ultimately constant for x!1. We de�ne f >0 if f(x) is ultimately positive. It can be shown that
this gives K the structure of an ordered �eld.

The well-known asymptotic relations 4, �, � and � can be de�ned in terms of the ordering on K:
given f ; g 2K, we write

f =O (g) () f 4 g () 9B 2Q>; jf j6B jg j
f = O(g) () f � g () 8"2Q>; jf j<" jg j

and

f � g () f 4 g4 f
f � g () f ¡ g� g:

The quasi-ordering 4 is total on K=/ : given f ; g 2K=/ , we have f 4 g, g � f .

Example 1. The set E of exp-log germs at in�nity is the smallest subset of G 1 that contains Q
and the identity function, and which is closed under +, ¡, �, /, exp and log. For instance,
exp(xx ¡ x log x)/(x ¡ 3) + p log log x 2 E . In his founding work [14, 15], Hardy showed that E
forms a Hardy �eld.

Example 2. More generally, given a Hardy �eld K, its Liouville closure KLi is the smallest subset
of G 1 that contains K and that is stable under +, ¡, �, /, exp, log and integration. It is well
known that KLi is again a Hardy �eld [3].

2.2 Basic properties

Let K be a Hardy �eld. Given f ; g 2K, let us show that

f 4 g^ g�/ 1 =) f 04 g 0 (3)
f � g^ g�/ 1 =) f 0� g 0: (4)

Let us �rst assume that f 0 � g 0, whence g 0 4 f 0, and let x0 2 R and A > 0 be such that
jg 0(x)j6A jf 0(x)j for all x> x0. Modulo a further increase of x0, we may assume without loss of
generality that the signs of g 0(x) and f 0(x) are constant for x>x0. Then, for all �>x0, we have����Z

�

x

g 0(t) dt

����= Z
�

x

jg 0(t)j dt6A
Z
�

x

jf 0(t)j dt=A
����Z

�

x

f 0(t) dt

����: (5)

Consequently, g + a4 f + b for suitable integration constants a; b 2R. If g � 1, then this yields
g4 f . If f � 1 and g� 1, then we may take �=1 in (5), so that a= b= 0, and we again obtain
g4 f . If f < 1 and g� 1, then we clearly have g� 14 f . This proves that f 0� g 0) f � g _ g� 1,
which implies (4). One proves f 04/ g 0) f 4/ g_ g� 1 and (3) in a similar way.
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2.3 E�ective Hardy �elds

Let K be a Hardy �eld. We say that K is e�ective if its elements can be represented by instances
of a concrete data structure and if we have algorithms for carrying out the basic operations +;¡;
�; /; @, as well as e�ective tests for the relations 6, <, 4 and �.

In particular, the e�ective inequality test for 6 yields an equality test. Inversely, if we have an
algorithm to compute signs of elements in K, then this yields e�ective inequality tests for both 6
and <. Similarly, if, given f 2K, we have a way to test whether f 4 1 and f � 1, then this yields
e�ective tests for the relations 4 and �. Indeed, given f 2K and g2K=/ , we have f 4 g, f / g41
and f � g, f /g� 1.

Example 3. Let us show that K =Q(x) is an e�ective Hardy �eld. The basic operations +, ¡,
�, / and @ can clearly be carried out by algorithm, and it is also clear how to do the equality
test. Now consider f =(Pp xp+ ���+P0)/(Qq x

q+ ���+Q0)2K=/ with P0; :::; Pp; Q0; :::; Qq2Q and
Pp=/ 0, Qq=/ 0. Then f � (Pp/Qq) x

p¡q. Consequently, sign(f) = sign(Pp/Qq) and f 4 1, p6 q
(resp. f � 1, p< q).

Example 4. We claim that K = Q(log x; x) is an e�ective Hardy �eld. As above, the basic
operations +, ¡, �, /, @ and the equality test are straightforward. Now any non zero element
f 2 K=/ can be written as a fraction f = (Pp x

p + ��� + P0) / (Qq x
q + ��� + Q0) 2 K=/ with

P0; :::; Pp; Q0; :::; Qq 2 Q(log x) and Pp =/ 0, Qq =/ 0. Similarly, we may write Pp / Qq =

(Aa (logx)a+ ���+A0)/(Bb (logx)b+ ���+B0)2K=/ withA0; :::;Aa;B0; :::;Bb2Q andAa=/ 0,Bb=/ 0.
Then f� (Aa/Bb) xp¡q (logx)b¡a. Consequently, sign(f)= sign(Aa/Bb) and f41, (p;a)6 (q; b)
(resp. f � 1, (p; a)< (q; b)). Here we used the lexicographical ordering on pairs: (p; a)6 (q; b) if
and only if p< q or p= q and a6 b.

Example 5. Let K be an e�ective Hardy �eld and let '2K be such that '> 0 and '� 1. Then
'0 > 0, whence ' is ultimately strictly increasing and invertible for composition. Let  = 'inv

be the inverse of ' and assume that '0 �  2 K. Then K � ' = ff � ': f 2 Kg is again
an e�ective Hardy �eld. Indeed, since right composition preserves the �eld operations and the
ordering, K �' is e�ectively isomorphic to K as an ordered �eld. The derivation on K �' is given
by (f � ')0=(('0 �  ) � f 0) � '.

2.4 Adjunction of steep exponentials

Let f ; g 2K=/ and let �; �=�1 be such that f �< 1, g�< 1. We de�ne the �atness relations ��, ��
and ¡̀a by

f �� g () 9c2Q>; jf j�4 jg j�c
f �� g () 8c2Q>; jf j�� jg j�c

f ¡̀a g () f �� g�� f:

Let f y= f 0/f denote the logarithmic derivative of a function f . Taking logarithms, and using (3)
and (4), we observe that

f �� g () log jf j4 log jg j () f y4 gy
f �� g () log jf j � log jg j () f y� gy

f ¡̀a g () log jf j � log jg j () f y� gy;

for all f 2K=/ and g 2K�/ = fh2K:h�/ 1g.
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An element � 2K> is said to be steep if f �� � (whence f y 4 �y) for all f 2K=/ . If � � 1, then
this allows us to de�ne a valuation with respect to �: we set v�(f) = lim (f y / �y) for f 2 K=/

and v�(0) =1. Notice that the corresponding valuation group ¡� = im v� is a subgroup of R. In
particular, ¡� is archimedean. For f 2K and g 2K=/ , we notice that

f 4 g =) v�(f)> v�(g):

Indeed, since f 4 g, f / g 4 1 and v�(f / g) = v�(f) ¡ v�(g), it su�ces to show this for g = 1.
Now assume that c := v�(f)< 0. Then f y> c

2
�y, whence log jf j> log �c/2+C > log �c/3 for some

constant C 2R. It follows that f > �c/3� 1. If ���x, then we also notice that v�(�y)=0. Indeed,
��� x, log �� log x) �y=(log �)0� (log x)0� x¡1 and 1/ �y�x) (1/ �y)0� �yy/ �y� 1, whence
v�(�

y)= lim �yy/ �y=0.

Two examples of steep elements are x in Q(logx;x) and e¡x
2
in Q(logx;x; ex; ex

2
). The aim of the

remainder of this section is to generalize Example 4 and prove in particular that Q(logx;x;ex; ex
2
)

is indeed an e�ective Hardy �eld.

Let K be an e�ective Hardy �eld and let '2K�=fh2K:h�1g be such that f y�'0 for all f 2K.
By what precedes, this implies that  := e'�� f for all f 2K. We claim that L :=K( ) is again
an e�ective Hardy �eld. Modulo the replacement of  by j ¡1j (and ' by ¡'), we may assume
without loss of generality that  >0 and  �1. We clearly have algorithms for the �eld operations
of L. Using the rule  0= ' , it is also straightforward to compute derivatives of elements of L.

Now consider a polynomial P ( ) = Pp  
p + ��� + P0 2 K[ ]. If Pp =/ 0, then for each i < p, we

have Pi/Pp��  , so that Pi i�Pp p. Hence Pp=/ 0 implies P ( )�Pp p. This also shows that
P ( )=0,P0= ���=Pp=0, which provides us with an e�ective zero test for K[ ], as well as for L.
Given a rational function P ( )/Q( ) = (Pp 

p+ ���+P0)/(Qq 
q+ ���+Q0)2L with Pp=/ 0 and

Qq=/ 0, we also have P ( )/Q( )� (Pp/Qq)  
p¡q. Consequently, sign(f)= sign(Pp/Qq) and f41

if and only if p< q or p= q and Pp4Qq. Similarly, f �1 if and only if p< q or p= q and Pp�Qq.

Example 6. Starting with K =Q(log x; x) as in Example 4, applying the above argument twice
shows that both K(ex) and K(ex; ex

2
) =Q(log x; x; ex; ex

2
) are e�ective Hardy �elds. Applying

Example 5 for '= log x, we also obtain that Q(log log x; log x; x; xlog x) is an e�ective Hardy �eld.

Remark 7. In order to compute with more general exp-log germs in E , one also needs to show
that �elds such as Q(x; ex; e 2

p
x) form e�ective Hardy �elds. One even more di�cult problem is to

provide an e�ective zero test for exp-log constants, i.e. constants formed from the rationals, using
+, ¡, �, /, exp and log. Provided that Schanuel's conjecture holds, such an algorithm was given
by Richardson [24]. His algorithm always returns correct results, but might not terminate if one
explicitly hits a counterexample to the conjecture. Given a zero-test for exp-log constants, it can
be shown that E forms an e�ective Hardy �eld [18].

2.5 Limits and asymptotic scales

Let K be a Hardy �eld. Given f 2K4=f'2K:'41g, there exists a unique `2R with f ¡ `�1,
which is called the limit of f , and denoted by ` = lim f . We say that K is closed under limits
if lim f 2K for all f 2K. If K is e�ective and lim:K4!K is computable, then we say that K
admits an e�ective limit map.

An asymptotic scale for K is a multiplicative subgroup M � K> such that M is totally ordered
for 4 and such that there exists a mapping d:K=/!M with d(f)� f for all f 2K=/ . We call d(f)
the dominant monomial of f and notice that d is necessarily a group homomorphism. If K is
e�ective and d is computable, then we call M an e�ective asymptotic scale.

Assume thatK is closed under limits and thatK also admits an asymptotic scaleM. Given f 2K=/ ,
we call �(f) = (lim f /d(f)) d(f) the dominant term of f , and notice that f � �(f). If d and lim
are both computable, then the same clearly holds for � .
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Example 8. In Example 3, we have given a method for the explicit computation of an equivalent
in Q=/ xZ=fc xk: c2Q=/ ; k2Zg for any f 2Q(x)=/ . This both shows that Q(x) admits an e�ective
limit map and that it admits xZ as an e�ective asymptotic scale. Similarly, Example 4 shows that
the same holds for Q(log x; x), in which case the asymptotic scale becomes (log x)Z xZ.

More generally, let K be an e�ective Hardy �eld and let ';  be as in Section 2.4. Assume that K
admits an e�ective limit map and that M is an e�ective asymptotic scale. For each f 2K( )=/ , we
have shown how to compute an equivalent f� g  k� �(g)  k with g2K=/ and k2Z. Since g�� k
for any g 2M and k=/ 0, the group M  Z is totally ordered for 4. This shows that K( ) admits
both an e�ective limit map and an e�ective asymptotic scale M  Z.

Example 9. Let K be an e�ective Hardy �eld and let ' be as in Example 5. If K admits an
e�ective limit map, then so does K � ', since lim f � ' = lim f for all f 2 K=/ . If K admits an
e�ective asymptotic scale M, then K � ' admits M � ' as an e�ective asymptotic scale, with
d(f � ')= d(f) � ' for all f 2K=/ .

3 Composition and functional inversion

LetK be a Hardy �eld which contains the identity function x, as well as a steep element �2K>;�=
f'2K>: '� 1g. If � ¡̀ax, then also assume that �=x¡1.

An element f 2K is said to be highly tangent to identity if there exists a c > 0 with (f ¡x)/x=
O (�c). Equivalently, this means that f is of the form f =x+ � with v�(�)>v�(x). If �=x¡1, then
this is the case when �� �� for some �>¡1. If ���x, then we rather should have �� �� for some
� > 0. In particular, in both cases we have � 0 � 1 and even v�(� 0) > 0. We will denote by T the
subset of K of all elements that are highly tangent to identity.

Since Hardy �elds are not necessarily closed under composition and functional inversion, the
set T does not necessarily form a group. The main aim of this section is to show that a suitable
completion of T does form a group (Theorem 20 below). Moreover, under suitable hypothesis,
there are algorithms for computing asymptotic expansions of compositions and functional inverses.

3.1 First order functional inversion

Lemma 10. Let � 2T ¡x. Then for any germ � 2 G 1 with �4 � and � 0� 1, we have

(x+ �)inv¡x = O (�):

Proof. Without loss of generality, we may assume that � > 0. For any c 2 R, we claim that
� � (x+ c �)� �. Indeed, given "> 0, let x0 be such that � 0(x) has constant sign and j� 0(x)j<" for
x>x0. Assume also that �(x+ c �(x)) is de�ned for x>x0. Then

j�(x+ c �(x))¡ �(x)j 6
����Z

x

x+c�(x)

� 0(t) dt

���� < " jcj �(x);

for all x>x0. We conclude that � � (x+ c �)¡ �� �, by letting " tend to zero.

The assumption that � 0�1 implies that (x+ �)0�1, whence '(x) :=x+ �(x) is strictly increasing
for su�ciently large x. This shows that ' indeed admits an inverse function  at in�nity. Let
A > 0 be such that j�(x)j 6 A �(x) for su�ciently large x. Setting l(x) = x ¡ 2 A �(x) and
r(x)=x+2A�(x), our claim implies

'(l(x)) = l(x)+ �(l(x)) 6 l(x) +A�(l(x)) < l(x)+ 2A�(x) = x
'(r(x)) = r(x)+ �(r(x)) > r(x)¡A�(r(x)) > r(x)¡ 2A�(x) = x;
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for su�ciently large x. Since ' is strictly increasing, it follows that l(x) <  (x)< r(x). In other
words, j (x)¡xj6 2A�(x) for su�ciently large x. �

3.2 First order right composition

Lemma 11. Let f 2K and g=x+"2T. Then for any germs �;�2G 1 with �4 f and �4", we have

� � (x+ �) = O (f):

Proof. Since � is a steep element, there exists a constant A > 0 with jf yj 6 A j�yj. We also
notice that �y "� 1. Indeed, this is immediate if �=1/x. If ���x, then "� �c for some c> 0 and
�y "� �y �c� (�c)0� 1, since �c�x.

Let us �rst show that f � g � f , whenever f � x and g > x. Since f � x implies f 0 � 1, the
function jf 0j is ultimately decreasing. For su�ciently large x, it follows that jf 0(t)j 6 jf 0(x)j for
t2 [x; g(x)], whence

jf(g(x))¡ f(x)j 6
Z
x

g(x)

jf 0(t)j dt 6 jf 0(x)j "(x) 6 A j�y(x)j "(x) jf(x)j:

Since �y "� 1, this shows that f � g� f .

Let us next show that we also have f � g� f in the case when f � x and g < x (so that " < 0).
Then Lemma 10 implies ginv= x+ O ("), whence x < ginv< x¡B " for some B 2R>. Let � > 0.
By what precedes, there exists an x0 with jf(x¡B"(x))¡ f(x)j6� jf(x)j for all x>x0. Modulo
a further increase of x0, we may also arrange that f(x) is monotonic for x > x0. It follows that
jf(ginv(x))¡ f(x)j6� jf(x)j, whence f � ginv� f . Post-composing with g, we again obtain f � g� f .

Let us �nally assume that f < x. Then the above arguments prove that (1 / f) � g � (1 / f).
Consequently, f � g=((1/f) � g)¡1� (1/f)¡1= f .

The above argments conclude the proof in the case when �= f and �= ". Let us next consider the
case when we still have �= f , but �4" is general. Let B>0 be such that j� j6B j"j. For su�ciently
large x, it follows that f(x+ �(x)) is comprised between f(x¡B j"(x)j) and f(x+B j"(x)j), which
are both equivalent to f(x). This shows that f � (x+ �)� f .

As to the general case, let C>0 be such that j� j6C jf j. By what precedes, we have j�(x+ �(x))j6
C jf(x+ �(x))j6 2C jf(x)j for all su�ciently large x. This shows that � � (x+ �)4 f . �

3.3 General composition

Lemma 12. Let f 2 K and g 2 T. Let ';  2 K and n 2 N be such that x +  2 T and
f (n) � (g¡x)n4 '. Then for any �; "2 G 1 with �4 ' and "4  , we have

(f + �) � (g+ ") = f + f 0 � (g¡x)+ ���+ 1

(n¡ 1)! f
(n¡1) � (g¡x)n¡1+O (max (j'j; jf 0  j)):

Proof. Let us �rst consider the case when �= "=0 and consider

� = f + f 0 (g¡x)+ ���+ 1

(n¡ 1)! f
(n¡1) (g¡x)n¡1

R = f � g¡ �

For su�ciently large x, Taylor's formula with integral remainder yields

R(x) =

Z
x

g(x) 1
(n¡ 1)! f

(n)(t) (g(x)¡ t)n¡1dt:

7



For su�ciently large x, the function f (n) is also monotonic, whence

jR(x)j 6 1
n!

max (jf (n)(x)j; jf (n)(g(x))j) jg(x)¡xjn:

By Lemma 11, we have f (n) � g4 f (n), whence R4 f (n) (g¡x)n4 '. This completes the proof in
the case when �= "=0.

As to the general case, we have

jf(g(x) + "(x))¡ f(g(x))j 6
Z
g(x)

g(x)+"(x)

jf 0(t)j dt 6 max(jf 0(g(x))j; jf 0(g(x)+ "(x))j) j"(x)j;

for all su�ciently large x. Now Lemmas 10 and 11 imply '� (g+")='� (x+"� ginv)� g4'� g4'
and similarly f 0 � (g+ ")4 f 0. Consequently,

j(f + �) � (g+ ")¡ � j 6 j� � (g+ ")j+ jf � (g+ ")¡ f � g j+ jf � g¡ � j
4 max (j' � (g+ ")j; jf 0 "j; j'j)
4 max (jf 0 "j; j'j):

This concludes the proof in the general case. �

Lemma 13. For any f 2K, g 2T and '2K=/ , there exists an n2N with f (n) � (g¡x)n4 '.

Proof. Let us �rst consider the case when � = x¡1, so that v�(g ¡ x)>¡1. For any f 2K=/ , we
have f 0= f y f 4 �y f � f /x, whence v�(f 0)> v�(f)+ 1. Consequently,

v�(f
(n) (g¡x)n) > v�(f)+n+n v�(g¡x):

It thus su�ces to take n>(v�(')¡v�(f))/(v�(g¡x)+1) in order to ensure that v�(f (n) (g¡x)n)>
v�(') and therefore f (n) (g¡x)n4 '.

Assume next that � �� x, so that v�(g ¡ x)> 0. We again have f 04 �y f for all f 2K=/ , but this
time, we rather obtain v�(f 0)> v�(f), since v�(�y)= 0. Therefore,

v�(f
(n) (g¡x)n) > v�(f)+n v�(g¡x):

Taking n> (v�(')¡ v�(f))/v�(g¡x), we again obtain the desired result. �

If K is an e�ective Hardy �eld, then the above lemmas lead to the following algorithm for approx-
imate composition:

Algorithm compose(f ; g; ')
Input: f 2K, g 2T and '2K=/ with v�(')>v�(x f 0)
Output: h2K with f � g=h+O (')
Moreover, for all �; "2G 1 with �4', " f 04' and v�("/x)>0, we have (f+ �)� (g+")=h+O (')

Let n2N be minimal with f (n) � (g¡x)n4 '
Return f + ���+ 1

(n¡ 1)! f
(n¡1) � (g¡x)n¡1

Theorem 14. The algorithm compose is correct.
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Proof. The existence of n is ensured by Lemma 13. Since K is e�ective, we have an algorithm for
doing the test f (n) (g¡x)n4', which enables us to compute n. Setting  ='/ f 0, our assumption
that v�(')>v�(x f 0) ensures that x+  2T . The result now follows from Lemma 12. �

Remark 15. In addition, by considering both cases � = x¡1 and � �� x, it can be veri�ed that
v�(h)= v�(f), that f 2T implies h2T , and that v�(f ¡ 1)> 0 implies v�(h¡ 1)> 0.

3.4 General functional inversion

A well-known way to solve functional equations of the form f � g=x is Newton's method [4]. We
will now show that this method indeed yields a quadratic convergence in our setting.

Lemma 16. Let f ; g2T and "2K be such that f � g¡x=O (x ") and v�(")> 0. Let g~2T be such
that

g~ = g¡ f � g¡x
f 0 � g +O (x "2):

Then f � g~¡x=O (x "2).

Proof. Since f�x, we notice that f 0�1 and f 0� g�1. Let �= g¡ g~= f � g¡ x

f 0 � g +O (x "2)=O (x ").
For all su�ciently large x, we have

f(g~(x)) = f(g(x))¡ f 0(g(x)) �(x)+
Z
g(x)

g(x)¡�(x)
f 00(t) (g(x)¡ �(x)¡ t) dt;

whence, using the ultimate monotonicity of f 00 on [g(x); g~(x)],

f � g~ = f � g¡ (f 0 � g) �+O (max (jf 00 � g j; jf 00 � g~j) �2):

Using Lemma 11, we also have f 00 � g4 f 00 and f 00 � g~4 f 00, whence

f � g~ = f � g¡ (f 0 � g) �+O (f 00 �2):

Consequently,

f � g~¡x = (f � g¡x)¡ (f 0 � g) �+O (f 00 �2)

= (f 0 � g) �+O (x "2)¡ (f 0 � g) �+O (f 00 �2)

= O (x "2)+O (f 00 �2):

Now f ¡x�x implies (f ¡x)0� 1� log x and f 00=(f ¡x)00�x¡1. Consequently,

f � g~¡x=O (x "2) +O (f 00 �2)=O (x "2)+O (�2/x)=O (x "2):

This completes the proof. �

If K is an e�ective Hardy �eld, then this lemma leads to the following algorithm for the compu-
tation of approximate functional inverses:

Algorithm invert(f ; ")
Input: f 2T and "2K=/ with v�(")> 0
Output: g 2T with f inv= g+O (x ")

9



Moreover, for any � 2 G 1 with �4x " and � 0� 1, we have (f + �)inv= g+O (x ")

Let g :=x
repeat

Let h := compose(f ; g; x "2)
If h¡x4x " then return g
Let d := compose(f 0; g; x "2)
Let g := g¡ (h¡x)/d

Theorem 17. Let � = (f ¡ x)/x. The algorithm invert is correct and terminates after at most
blog(v�(")/v�(�))/ log 2c+1 iterations of the main loop.

Proof. Let us �rst show that g 2T throughout the algorithm. This is clear at the start. At each
iteration g := g ¡ (h ¡ x)/d, Remark 15 implies v�(h ¡ x)> v�(x) and v�(d ¡ 1)> v�(1), whence
v�((h¡x)/d)>v�(x), so that g¡ (h¡x)/d2T .

On termination, we have h= f � g+O (x "2) and h=x+O (x "), whence f � g¡x=O (x "). Applying
Lemma 10 with x " and f � g¡x in the roles of � and �, we obtain ginv� f inv¡x=(f � g)inv¡x=
O (x "). Consequently, f inv = g � (ginv � f inv) = g + O (g 0 � (ginv � f inv¡x)) = g + O (x ").
Furthermore, (f + �)inv = [(x + � � f inv) � f ]inv = f inv � (x+ � � f inv)inv = f inv � (x+O (�))inv =
f inv � (x+O (x "))inv= f inv � (x+O (x "))= f inv+O ((f inv)0x ") = g+O (x ").

As to the termination, consider the quantity

� := v~�

�
f � g¡ x

x

�
:= sup

n
�2R:

f � g¡x
x

=O (��)
o
:

At the very start, we have � = v~�(�) = v�(�)> 0. At every iteration g~ := g ¡ (h ¡ x)/d, we have
g~ = g ¡ f � g¡ x

f 0 � g + O (x "2). Lemma 16 therefore ensures that � doubles at least, whereas the
algorithm terminates as soon as � >v�("). This happens after at most blog(v�(")/v�(�))/ log2c+1
iterations. �

3.5 E�ective asymptotic expansions

We now extend the de�nition of high tangency to identity to all germs. We say that a germ f 2G 1

is highly tangent to identity if there exists a c>0 with f ¡x=O (x �c) and f 0=1+O(1). We denote
by T 1 the set of such germs. We say that f admits an asymptotic expansion over K if for every
n2N, there exists an element 'n2K with f ¡'n=O (�n). If we have an algorithm for computing
'n as a function of n, then we say that f admits an e�ective asymptotic expansion over K.

Proposition 18. Assume that f 2G 1 and g2T 1 admit e�ective asymptotic expansions over K.
Then so does f � g. If f 2T 1, then f � g 2T 1.

Proof. Given n > 1, we may compute 'n 2 K and  n 2 T with � := f ¡ 'n 4 �n and
" := g ¡  n4 �n. Assume that there exists an n02N with f 4/ �n0. Then for all n> n0, we must
have 'n� �n0 and v�(x'n0 )6n0<n. Consequently, we may compute �n= compose('n;  n; �n),
and f � g= ('n+ �) � ( n+ ") = �n+O (�n). If f 4 �n for all n2N, then we also have f � g4 �n

for all n2N.

If f 2 T 1, then we also get 'n;  n; �n 2 T , whence v�(f � g ¡ x) = v�(�n ¡ x + O (�n)) >
min (v�(�n ¡ x); n)> v�(x). Moreover, (f � g)0= g 0 � f 0 � g = (1 + O(1)) (1 + O(1) � g) = 1 + O(1),
whence f � g 2T 1. �

Proposition 19. Assume that f 2 T 1 admits an e�ective asymptotic expansion over K. Then
so does f inv and f inv2T 1.

10



Proof. Given n> 1, we may compute 'n2 T with � := f ¡ 'n4 �n. Let  n= invert('n; �n/x).
Then f inv = ('n + �)inv =  n + O (�n). Moreover, (f inv)0 = (f 0 � f inv)¡1 = ((1 + O(1)) � f inv) =
1+ O(1), whence f inv2T 1. �

Combining these two propositions, we have shown the following:

Theorem 20. The set of germs in T 1 that admit e�ective asymptotic expansions over K forms
a group for functional composition. �

4 Examples and applications to �nance

Example 21. (Lambert function) The Lambert function W is de�ned to be the inverse function
of x 7¡!x ex. Using our algorithm, we can compute the asymptotic expansion of the inverse function
W (ex) of x 7¡!x+ log x. This also yields the asymptotic expansion of W (x) for large x.

Example 22. (Gaussian law) Let (�n)n>0 be de�ned formally by

log

 
1+

X
n>0

anX
n

!
=
X
n>0

�n (a1; :::; an)X
n (6)

and let Q be the Gaussian law:

Q(x) :=
1

2 p
p

Z
¡1

x

e
¡t2

2 dt (7)

Then, the well-known relation

Q(x) =
e
¡x2

2

2 px
p

 
1+

X
i=1

n
(¡1)i 1 � 3 ��� (2 i¡ 1)

x2i
+ O

�
1
xn

�!
; (8)

valid for any n2N, shows that

q(x) = x+ log x+ '0+
X
i=1

n
'i
xi
+ O

�
1
xn

�
; (9)

with x > 0, q(x) :=¡2 log Q( x
p

), '0 := 2 log
¡

2 p
p �

and 'i :=¡�i(¡1; :::; (¡1)i 1 � 3 ��� (2 i¡ 1))
for i > 0. Our algorithm now allows us to compute the asymptotic expansion of the inverse
function of Gaussian law at +1. This is potentially of great interest in �nance when it comes to
calculate �values-at-risk�. Such computations are imposed by regulators to manage market risks,
among others.

Example 23. (Incomplete Gamma function) Let (uk)k>0 be de�ned by u0 = 1 and, for k > 0,
uk=(a¡ 1) (a¡ 2):::(a¡ k). A well-known relation for ¡(a; z) tells that for a2R and z > 0,

¡(a; z) = za¡1 e¡z

 X
k=0

n
uk
zk
+ O

�
1
xn

�!
:

Taking logarithms, we get

¡log¡(a; z) = z¡ (a¡ 1) log z+
X
k=1

n
'k
zk

+ O

�
1
xn

�
; (10)
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with 'k=¡�k (u1; :::; uk).

Example 24. (Black�Scholes formula). By de�nition, a call option is a contract which gives to the
owner the value Max(ST ¡K;0) at a future T -date (known today) called maturity of the contract,
where ST denotes the value at T -date (unknown today) of an asset (like a stock) whose initial
value is S today, and K is a constant called strike (known today). The initial price of this contract
is denoted by C(S; K; T ). In general, by no-arbitrage arguments, the option price C(S; K; T ) is
always greater than the �intrinsic value� (S ¡K)+ and lower than the spot value S:

(S ¡K)+<C(S;K; T )<S (11)

In the Black�Scholes model, the dynamics of (St) is assumed to be log-normal:

dSt = �StdWt (12)

where (W )t is a Brownian motion and � is a constant parameter called volatility. In this framework,
the well known Black�Scholes formula gives the price of any call option. It can be shown that
C(S;K; T )=BS(S;K; T ; �) with

BS(S;K; T ; �) = SQ(d+)¡KQ(d¡) (13)

and

d� :=
log
�
S

K

�
� �2T

2

� T
p (14)

To simplify, we have assumed that the interest rate is 0. If S;K;T are �xed, then it is easy to see
that the function

� 7¡! BS(S;K; T ; �) (15)

is non-decreasing and one to one from R+
� to (Max (S ¡K; 0); S). Therefore, in an a priori non

Black�Scholes world and for a given call option price C 2 (Max (S ¡ K; 0); S) observed on the
market, there is a unique solution �BS(K;T ) (or simply �BS) of the equation

BS (S;K; T ; �) = C (16)

We call �BS the Black�Scholes implied volatility associated to K and T . For di�erent reasons, it is
interesting to invert the Black�Scholes function BS in (15) [8]. For instance, very often, and using
techniques like perturbation theory, sophisticated stochastic models (in a non Black�Scholes world)
give only asymptotic expansions of an option price C in terms of the maturity T , whereas we really
need a formula for the implied volatility [2, 16]. Indeed, call option prices are generally quoted in
term of implied volatilities (and not as prices). This can be achieved in the following manner. In
the Black�Scholes model and under the conditions that T � 1 and K =/ S, it can be proved that
the asymptotic expansion of the �time value� TV of the call price BS(S;K; T ; �), de�ned by

TV(S;K; T ; �) := BS(S;K; T ; �)¡ (S ¡K)+;

is given by

4 p
p e

¡u

2

juj

�
TV
S

�
= v3/2 e

¡1

v

X
k=0

n
(¡1)k
2k

ak

�
u2

8

�
vk+O

¡
v2n+5 e

¡1

v

�
; (17)
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with n2N arbitrarily large,

u := log
�
K
S

�
(18)

v := 2
�2T
u2

ak(z) := (2 k+1)!! fk(z)

fk(z) :=
X
j=0

k
zj

j! (2 j+1)!!
;

and for j 2Z, (2 j+1)!! :=
Q

l=1
j (2 l+1) [10]. Therefore, if we set

x :=
1
v
=

log2
�
K

S

�
2�2T

;

and

y := ¡log
�
TV
S

�
;

then, for any integer n,

y = x+
3
2
log x+ '0+

X
i=1

n
'i
xi
+ O

�
1
xn

�
; (19)

with '0 :=¡log

 
juj e

u

2

4 p
p

!
and 'i :=¡�i

�
¡1

2
a1

�
u2

8

�
; :::;

(¡1)i

2i
ai

�
u2

8

��
for i > 0. Hence we get an

asymptotic expansion for �2T in terms of log
�
TV
S

�
.

At the limit when T�1, the �rst author previously obtained a similar result [10]. Setting this time

CC = S ¡BS(S;K; T ; �)

x =
�2T

8
;

we have

p
p

e
¡x

2
CC
S

=
e¡x

x
p

X
k=0

n
(¡1)k
2k

ck

�
u2

8

�
1

xk
+O

¡
x
¡n¡3

2 e¡x
�
;

where ck de�ned by

ck(z) = (2 k¡ 1)!! gk(z)

gk(z) =
X
j=0

k
zj

j! (2 j ¡ 1)!! :

Therefore, we get

y = x+
1
2
log x+ '0+

X
i=1

n
'i
xi
+ O

�
1
xn

�
; (20)

with y=¡log
�
CC
S

�
, and 'i :=¡�i

�
¡1

2
a1

�
u2

8

�
; :::;

(¡1)i

2i
ci

�
u2

8

��
for i > 0.
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Example 25. We did an experimental implementation of our algorithm in the Mathemagix
system [20]. Each of the above examples comes down to the computation of the functional inverse
of a function y(x) with an asymptotic expansion of the form

y = x+� log x+ '0+
X
i=1

n
'i
xi
+ O

�
1
xn

�
:

For n=3, our algorithm yields:

x = y¡� log(y)¡ '0+ (�2 log(y) + '0�¡ '1) 1y +
¡ 1
2
�3 log(y)2+('0�2¡ ('1+�2)�) log(y) +

1

2
'0
2 � ¡ ('0 � ¡ '1) � ¡ '1 '0 ¡ '2

� 1

y2
+
¡ 1
3
�4 log(y)3 +

¡ ¡1
3
(¡(2 '0 � ¡ �2) � ¡

'0 �
2) � ¡ '1 �

2 ¡ 7

6
�4
�
log(y)2 +

¡ ¡1
3
(¡('02 ¡ '0 � + '1) � ¡ (2 '0 � ¡ �2) '0) � ¡

1

3
((2 '0�¡ 2 '1)�+2 '0�

2)�+('1+�
2)�2¡ 2 '1 '0�¡ '0�3+ '1�

2¡ 2 '2�
�
log(y)¡

(¡('0 � ¡ '1) � ¡ '1 '0 ¡ '2) � +
1

3
('0

2 ¡ '0 � + '1) '0 � ¡ 1

3
(2 '0 � ¡ 2 '1) '0 � ¡

('1¡ '0�) '1¡ 1

2
'0
2�2¡ '1 '02¡ 2 '2 '0¡ '3

� 1

y3
+ O

�
1

y3

�
:
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