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A MODEL OF TWO COMPETITORS IN A CHEMOSTAT WITH AN
EXTERNAL INHIBITOR∗

MOHAMED DELLAL ‡† , MUSTAPHA LAKRIB‡ , AND TEWFIK SARI§

Abstract. A model of two microbial species in a chemostat competing for a single resource in the
presence of an external inhibitor is considered. This model was previously considered only in the case
where the growth rate functions and the absorption rate of inhibitor are Michaelis-Menten or Monod
kinetics. In this paper, we consider the general case of monotonic functions. Through the three
operating parameters of the system represented by the dilution rate and the input concentrations
of the substrate and the inhibitor, we give necessary and sufficient conditions for the existence and
stability of all equilibria. By means of operating diagrams, we describe the asymptotic behavior of
the model with respect to those operating parameters. Some examples are given to illustrate the
mathematical results corresponding to cases where the growth rates are of Monod or Holling types.
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1. Introduction. The chemostat is an important laboratory apparatus used
for the continuous culture of micro-organisms. Competition for single and multiple
resources, evolution of resource acquisition, and competition among micro-organisms
have been investigated in ecology and biology using chemostats [13, 23, 24, 32]. A
detailed mathematical description of competition in the chemostat may be found
in [12, 29].

The basic chemostat model predicts that coexistence of two or more microbial
populations competing for a single non-reproducing nutrient is not possible. Only the
species with the lowest ‘break-even’ concentration survives, this is the species which
consumes less substrate to attain its steady state [15]. This result, known as the
Competitive Exclusion Principle [11], was established under various hypotheses [4, 14,
26, 36]. The reader may consult [7, 22, 27] for a thorough account on the contributions
of diverse authors.

Although this theoretical prediction has been corroborated by the experiences
of Hansen and Hubell [10], the biodiversity found in nature as well as in waste-
water treatment processes and biological reactors are exceptions to this principle.
Several authors [2, 3, 6, 16, 17, 18, 19, 21, 33] studied the inhibition as a factor in the
maintenance of the diversity of microbial ecosystems: Can the production of internal
inhibitors or the introduction of external inhibitors induce the stable coexistence of
competitors in a chemostat-like environment?

In this paper we consider the model introduced by Lenski and Hattingh [21].
In this model, two species compete for a single limiting resource in presence of an
external inhibitor, like a pesticide or an antibiotic, to which one species is sensitive
and the other is resistant. Moreover, the resistant species is able to detoxify the
environment, that is to remove the inhibitor from the environment. For some values
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†Université Ibn Khaldoun, 14000 Tiaret, Algérie (dellal.m48@univ-tiaret.dz).
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of the dilution rate, the sensitive species has the lowest break-even concentration
and wins the competition in absence of the inhibitor. The presence of the inhibitor
allows the coexistence of both species. The complete mathematical analysis of the
model in [21] was provided by Hsu and Waltman [18]. Due to the importance of this
phenomenon which promotes the stable coexistence of two species competing for a
single resource, the results of [18] were discussed in the text book [29] and in the
review paper [20]. The aim of this work is to revisit the results of [18, 20, 21, 29] and
to discuss several important questions that were unanswered in these works.

The approach in [21] was to fix the biological parameters of the model, together
with the dilution rate of the chemostat, and discuss the behavior of the model with
respect to the input concentrations of the limiting nutrient and inhibitor, which are
operating parameters of the model. Therefore these authors established the ‘oper-
ating diagram’ of the model: seven possible outcomes where shown, corresponding
to seven regions of the operating diagram. Without detoxification, the competitive
exclusion principle holds, see [21], Fig. 1(a). With detoxification two regions of stable
coexistence of both species appear, see [21], Fig. 1(b). Using the Routh-Hurwitz
theorem on local stability of the coexistence equilibrium, these authors emphasized
on the fact that the coexistence equilibrium may be unstable. They gave conditions
on the biological parameters for which the coexistence equilibrium becomes unstable.
However they did not depicted the region of the operating parameters in which this
behavior holds.

The approach in [18, 20, 29] was more mathematical. The authors rescaled the
biological and operating parameters of the model, creating a ‘standard’ environment
in which the operating parameters are fixed to the value 1. This rescaling is often used
in the mathematical literature on the chemostat [29]. The authors established global
results and shown that when the coexistence equilibrium is unstable then the model
can have an attracting limit cycle. The theory developed in this standard environment
potentially permits to present the operating diagrams of the model. However the
operating diagram was not presented in [18, 20, 29]. Our main contribution is to
present the operating diagram and to give its properties with respect of the biological
parameters. The parameter space of the model is ten dimensional: seven biological
parameters and three operating parameters. Exploring all of it is not possible. Our
approach to handle this question is to split the question in two intermediary questions.
First we fix the biological parameters and present the operating diagram. Second we
explore how the operating diagram varies when the biological parameters are changed.
The problem is reduced to the determination of the sign of a set of five real valued
functions of the dilution rate.

The operating diagram has the operating parameters as its coordinates and the
various regions defined in it correspond to qualitatively different dynamics. This bi-
furcation diagram which determines the effect of the operating parameters, that are
controlled by the operator and which are the dilution rate and the input concen-
trations, is very useful to understand the model from both the mathematical and
biological points of view, and is often constructed in the mathematical and biological
literature [1, 5, 8, 9, 25, 28, 30, 31, 34, 35].

As it was noticed in [18], the results are probably valid for general monotone
growth function, not only for specific Monod growth functions as in [21]. Actually, it
is more easy and convenient to develop the theory for a general model. In this paper
we extend [18, 20, 29] by considering general growth functions and by describing the
operating diagram. We extend also [21] by describing theoretically the various regions
of the operating diagram. In particular we show that for the biological parameters
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in [21], for all values of the three operating parameters the coexistence equilibrium is
stable whenever it exists and we clarify the question of the destabilisation of the co-
existence equilibrium that was considered in [21] only through numerical exploration.

The organization of this paper is as follows. In Section 2, we present the model
and some properties of its solutions. In Section 3, we discuss the existence and the
local asymptotic stability of equilibria. In Section 4, we discuss global results. In
Section 5, we present the operating diagrams. In Section 6, we consider examples and
we give numerical simulations. A discussion follows in Section 7.

2. Mathematical model. The model of the chemostat with external in-
hibitor [18, 20, 21, 29] we consider here is of the form

(1)


S′ = (S0 − S)D − f(p)f1(S)

x

γ1
− f2(S)

y

γ2
,

x′ = [f(p)f1(S)−D]x,
y′ = [f2(S)−D]y,
p′ = (p0 − p)D − g(p)y,

with S(0) ≥ 0, x(0) > 0, y(0) > 0 and p(0) ≥ 0. S(t) denotes the concentration of the
substrate at time t; x(t), y(t) are the concentrations of the competitors at time t and
p(t) is the concentration of the external inhibitor. S0 > 0 is the input concentration
of the nutrient, D > 0 is the dilution rate of the chemostat and p0 > 0 is the input
concentration of the inhibitor, all of which are assumed to be constant and are under
the control of the experimenter. The parameters γi > 0, i = 1, 2, are the growth yield
coefficients. The function f represents the degree of inhibition of p on the growth rate
of x. The so-called functional responses fi, i = 1, 2, represent the specific growth rates
of the competitors and the function g represents the absorption rate of the external
inhibitor relative to y. The global analysis of the model (1) was considered by Hsu
and Waltman [18] when

(2) f(p) = e−µp, f1(S) =
m1S

K1 + S
, f2(S) =

m2S

K2 + S
, g(p) =

δp

K + p
,

where µ, mi, Ki, i = 1, 2, δ and K are some positive constant parameters. Here,
except the three variable operating (or control) parameters, which are the input of
the inhibitor p0, the dilution rate D and the inflowing substrate S0, all the other
parameters are biological parameters which depend on the organisms, substrate and
inhibitor considered.

In this paper, we consider the general model (1) without restricting ourselves to
the special case of function f , Monod functions of growth rates of the competitors fi
and of absorption rate of inhibitor g given in (2). We suppose only that f , fi, i = 1, 2,
and g in system (1) are C1-functions satisfying the following conditions:

(H1) f(0) = 1, f(p) ≥ 0 and f ′(p) < 0 for all p > 0.
(H2) For i = 1, 2, fi(0) = 0 and f ′i(S) > 0 for all S ≥ 0.
(H3) g(0) = 0 and g′(p) > 0 for all p ≥ 0.

Following [18, 20], without loss of generality, the operating parameters p0, D and
S0 together with the yields γ1 and γ2 can be fixed to 1. This is done by the following
scaling of the dependent variables, and time:

(3) Ŝ =
S

S0
, x̂ =

x

S0γ1
, ŷ =

y

S0γ2
, p̂ =

p

p0
, t̂ = Dt,
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and the following notations

(4) f̂ (p̂) = f
(
p0p̂
)
, ĝ (p̂) =

S0γ2

p0D
g
(
p0p̂
)
, f̂i

(
Ŝ
)

=
1

D
fi

(
S0Ŝ

)
, i = 1, 2.

Note that the functions f̂ , ĝ and f̂i, i = 1, 2, satisfy assumptions (H1), (H2) and (H3).
Then, making the changes (3), (4) and dropping all the hats, model (1) is written in
the simplified non-dimensional form

(5)


S′ = 1− S − f(p)f1(S)x− f2(S)y,
x′ = [f(p)f1(S)− 1]x,
y′ = [f2(S)− 1]y,
p′ = 1− p− g(p)y,

where f , g and fi, i = 1, 2, satisfy assumptions (H1), (H2) and (H3). This is the
system we will analyze here.

The proof of the following result is standard and hence omitted.

Proposition 2.1. For non-negative initial conditions, all solutions of system (5)
are bounded and remain non-negative for all t > 0. Moreover, the compact set

Ω = {(S, x, y, p) ∈ R4 : S ≥ 0, x ≥ 0, y ≥ 0, 0 ≤ p ≤ 1, S + x+ y = 1}

is positively invariant and is a global attractor for system (5).

3. Existence and local stability of equilibria. Hereafter we use the following
conditions and notations: for functions f , fi, i = 1, 2, and g in (5), conditions (H1) to
(H3) hold. When equations f1(S) = 1, f2(S) = 1 and f1(S) = 1/f(1) have solutions,
they are unique and then we define the break-even concentrations as:

(6) λ1 = f−1
1 (1), λ2 = f−1

2 (1), λ+ = f−1
1

(
1

f(1)

)
.

Otherwise, we put λ1 = +∞, λ2 = +∞ and λ+ = +∞. We define the function W by

W (p) =
1− p
g(p)

, for p ∈ (0, 1].

Using (H3), for all p ∈ (0, 1) we have W (p) > 0, W ′(p) < 0 and limp→0W (t) = +∞.
Therefore, when λ2 < 1, equation W (p) = 1 − λ2 admits a unique solution that we
denote p∗:

(7) W (p∗) = 1− λ2.

We have 0 < p∗ < 1, see Fig. 1(b).
If equation f1(S) = 1/f(p∗) has a solution, it is unique and then we set

(8) λ− = f−1
1

(
1

f(p∗)

)
.

Otherwise, we let λ− = +∞. Since f is decreasing we have 0 < f(1) < f(p∗) < 1.
Therefore 1/f(1) > 1/f(p∗) and, since f1 is increasing, the numbers λ1, λ+ and λ−

are related as follows, see Fig. 1(a):

(9) λ1 < λ− < λ+.
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S

(a)
f1

f2

λ1 λ− λ+λ20

1

1
f(p∗)

1
f(1)

p

(b)

0 1

W

p∗

1− λ2

Fig. 1. Illustrative graphs of functions (a): f1 and f2 and definitions of break-even concentra-
tions λ1, λ−, λ+ and λ2; (b): W with the unique positive solution p∗ of equation W (p) = 1 − λ2,
when λ2 < 1.

3.1. Existence of equilibria. The existence of equilibria of system (5) is stated
by the following result:

Proposition 3.1. Assume that (H1), (H2) and (H3) are satisfied. System (5)
has the following equilibria:

• The washout equilibrium E0 = (1, 0, 0, 1), that always exists.
• The equilibrium E1 = (λ+, 1 − λ+, 0, 1) of extinction of species y, where λ+

is given by (6). This equilibrium exists if and only if λ+ < 1.
• The equilibrium E2 = (λ2, 0, 1 − λ2, p

∗) of extinction of species x, where λ2

and p∗ are given by (6) and (7), respectively. This equilibrium exists if and
only if λ2 < 1.

• The coexistence equilibrium Ec = (λ2, xc, yc, pc), where λ2 is given by (6) and
pc, yc and xc are given by

(10) pc = f−1

(
1

f1(λ2)

)
, yc = W (pc), xc = 1− λ2 − yc.

This equilibrium exists if and only if λ2 < 1 and λ− < λ2 < λ+, where λ+

and λ− are given by (6) and (8), respectively.

Proof. The steady states of (5) are the solutions of the set of equations

(11)


0 = 1− S − f(p)f1(S)x− f2(S)y,

0 = [f(p)f1(S)− 1]x,

0 = [f2(S)− 1]y,

0 = 1− p− g(p)y.

Therefore, besides the washout equilibrium E0 = (1, 0, 0, 1) where both populations
are extinct, that always exists, (5) has the following types of equilibria:

• E1 = (S1, x1, 0, p1), where second population is extinct and x1 > 0.
• E2 = (S2, 0, y2, p2), where first population is extinct and y2 > 0.
• Ec = (Sc, xc, yc, pc), where both populations survive: xc > 0, yc > 0.

The components S = S1, x = x1 and p = p1 of the boundary equilibrium E1 are
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the solutions of (11) with x > 0 and y = 0, that is p1 = 1 and

1− S1 = f(p1)f1(S1)x1,(12)

f(p1)f1(S1) = 1.(13)

Therefore, from (13) we have f1(S1) = 1
f(1) , that is S1 = λ+, where λ+ is given by (6).

Then, using (12) we deduce that x1 = 1 − λ+. This equilibrium exists if and only if
x1 > 0, that is λ+ < 1.

The components S = S2, y = y2 and p = p2 of the boundary equilibrium E2 are
the solutions of (11) with x = 0 and y > 0. Hence, f2(S2) = 1, that is S2 = λ2, where
λ2 is given by (6) and

1− S2 = f2(S2)y2,(14)

1− p2 = g(p2)y2.(15)

From (14) we have y2 = 1 − λ2. Then, using (15) we deduce that W (p2) = 1 − λ2,
that is p2 = p∗, where p∗ is given by (7). This equilibrium exists if and only if y2 > 0
and p2 > 0, that is λ2 < 1.

The components of Ec = (Sc, xc, yc, pc), a positive equilibrium of (5), are the
solutions of (11) with x > 0 and y > 0. Hence, f2(Sc) = 1, that is Sc = λ2, where λ2

is given by (6) and

1− Sc = f(pc)f1(Sc)xc + f2(Sc)yc,(16)

f(pc)f1(Sc) = 1,(17)

1− pc = g(pc)yc.(18)

From (17) we have f(pc) = 1
f1(λ2) , from (18) we have yc = W (pc) and from (16) we

have xc = 1 − λ2 − yc. Therefore pc, yc and xc are given by (10). Hence, a positive
equilibrium Ec of system (5), if it exists, is unique. Let us study the condition of
existence of Ec. We first note that

(19) xc + yc = 1− λ2 > 0⇐⇒ λ2 < 1.

Moreover, we have yc > 0 if and only if 0 < pc < 1. Using the fact that f is decreasing
and f(0) = 1 (hypothesis (H1)) we have

(20) yc > 0⇐⇒ 0 < pc < 1⇐⇒ f(1) < f(pc) < 1.

Now, by (6) and (10) we have

1 =
1

f1(λ1)
, f(1) =

1

f1(λ+)
, f(pc) =

1

f1(λ2)
,

so that, by using the fact that f1 is increasing (hypothesis (H2)), we obtain from (20)

yc > 0⇐⇒ f1(λ1) < f1(λ2) < f1(λ+)⇐⇒ λ1 < λ2 < λ+.(21)

On the other hand, by (7), (8) and (10) we have, respectively

W (p∗) = 1− λ2, f(p∗) =
1

f1(λ−)
, W (pc) = yc, f(pc) =

1

f1(λ2)
.
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Hence, using the facts that W and f are decreasing, and f1 is increasing, we have

xc > 0 ⇐⇒ yc < 1− λ2 ⇐⇒ W (pc) < W (p∗)
⇐⇒ pc > p∗ ⇐⇒ f(pc) < f(p∗)
⇐⇒ f1(λ2) > f1(λ−) ⇐⇒ λ2 > λ−.

(22)

Taking into account (9), from (19), (21) and (22), we conclude finally that Ec exists
if and only if λ− < λ2 < min(λ+, 1).

3.2. Local asymptotic stability of equilibria. For the study of the stability
of equilibria it is convenient to use the change of variable

Σ = 1− S − x− y

in system (5) that reveals the cascade structure of the system. Since Σ′ = −Σ, the
system (5) may then be replaced by

(23)


Σ′ = −Σ,
x′ = [f(p)f1(1− Σ− x− y)− 1]x,
y′ = [f2(1− Σ− x− y)− 1]y,
p′ = 1− p− g(p)y.

The Jacobian matrix for the linearization of (23) at an equilibrium point E∗ =
(0, x∗, y∗, p∗) takes the triangular form

J =

[
−1 0
A M

]
,

where M is the square matrix

(24) M =

 m11 m12 m13

m21 m22 0
0 m32 m33

 ,
with

m11 = f(p∗)f1(1− x∗ − y∗)− 1− x∗f(p∗)f ′1(1− x∗ − y∗),

m12 = −x∗f(p∗)f ′1(1− x∗ − y∗), m13 = x∗f ′(p∗)f1(1− x∗ − y∗),

m21 = −y∗f ′2(1− x∗ − y∗), m22 = f2(1− x∗ − y∗)− 1− y∗f ′2(1− x∗ − y∗),

m32 = −g(p∗), m33 = −1− y∗g′(p∗).

Therefore, the eigenvalues of J are -1, together with the eigenvalues of matrix M .
Hence the equilibrium point E∗ is locally exponentially stable (LES) if and only if
the eigenvalues of M are of negative real parts. The local stability of equilibria of
system (5) is given by the following result.

Proposition 3.2. Assume that (H1), (H2) and (H3) are satisfied. The stability
of equilibria of (5) is as follows:

• The equilibrium E0 is LES if and only if λ+ > 1 and λ2 > 1.
• The equilibrium E1, if it exists, has at least three dimensional stable manifolds

and is LES if and only if λ+ < λ2.
• The equilibrium E2, if it exists, has at least three dimensional stable manifolds

and is LES if and only if λ2 < λ−.
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• The equilibrium Ec, if it exists, is LES if and only if

(25) (A+B)(A+B + C)C > BEF,

where A > 0, B > 0, C > 0 E > 0 and F > 0 and are defined by:

(26)
A = f(pc)f

′
1(λ2)xc, B = f ′2(λ2)yc, C = 1 + g′(pc)yc,
E = g(pc), F = −f ′(pc)f1(λ2)xc.

Proof. At washout equilibrium E0, the matrix M defined by (24) is

M0 =

 f(1)f1(1)− 1 0 0
0 f2(1)− 1 0
0 −g(1) −1

 .
The eigenvalues of M0 are: −1, f(1)f1(1) − 1 and f2(1) − 1. Then, the equilibrium
E0 is LES if and only if f(1)f1(1) < 1 and f2(1) < 1, or equivalently, λ+ > 1 and
λ2 > 1.

Suppose that the equilibrium E1 exists, that is λ+ < 1. At E1 the matrix M
defined by (24) is

M1 =

 −(1− λ+)f(1)f ′1(λ+) 0 (1− λ+)f ′(1)f1(λ+)
0 f2(λ+)− 1 0
0 −g(1) −1

 .
The eigenvalues of M1 are: −1, −(1 − λ+)f(1)f ′1(λ+) < 0 and f2(λ+) − 1. Since
E1 has three negative eigenvalues, it has at least three dimensional stable manifolds.
Moreover, E1 is LES if and only if f2(λ+) < 1, or equivalently, λ+ < λ2.

Suppose that the equilibrium E2 exists, that is λ2 < 1. At E2 the matrix M
defined by (24) is

M2 =

 f(p∗)f1(λ2)− 1 0 0
−(1− λ2)f ′2(λ2) −(1− λ2)f ′2(λ2) 0

0 −g(p∗) −1− (1− λ2)g′(p∗)

 .
The eigenvalues of M2 are: f(p∗)f1(λ2) − 1, −(1 − λ2)f ′2(λ2) < 0 and −1 − (1 −
λ2)g′(p∗) < 0. Since E2 has three negative eigenvalues, it has at least three dimen-
sional stable manifolds. Moreover, E2 is LES if and only if f(p∗)f1(λ2) < 1, or
equivalently, λ2 < λ−.

At Ec, the matrix M defined by (24) takes the form

Mc =

 −A −A −F
−B −B 0
0 −E −C

 ,
where A, B, C, E and F are defined by (26). Obviously A > 0, B > 0, C > 0, E > 0
and F > 0. The characteristic polynomial of Mc is given by

λ3 +B1λ
2 +B2λ+B3 = 0,

with B1 = A + B + C, B2 = C(A + B) and B3 = BEF . Since B1 > 0, B2 > 0 and
B3 > 0, by the Routh-Hurwitz criterion, Ec is LES if and only if B1B2 > B3 that is
to say (25) holds.
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We summarize the results on existence and local stability of equilibria of (5),
given by Propositions 3.1 and 3.2, in Table 1 below. We observe that E0 is LES if and
only if E1 and E2 do not exist, and Ec exists if and only if E2 exists and is unstable,
and E1, if it exists, is also unstable. One concludes that there is one and only one
equilibrium which is stable.

Equilibria Existence Local exponential stability
E0 Always λ+ > 1 and λ2 > 1
E1 λ+ < 1 λ+ < λ2

E2 λ2 < 1 λ2 < λ−

Ec λ− < λ2 < min(λ+, 1) (A+B)(A+B + C)C > BEF

Table 1
Existence and local asymptotic stability of equilibria of system (5). Note that there is a typo in

Table 2 of [20]: the condition λ1 > 1 of stability of E0 should be replaced by λ+ > 1.

4. Global asymptotic stability of equilibria. In this section we discuss the
results of [18, 29] on the global asymptotic stability of equilibria of (5) obtained in the
case where the growth functions are given by (2). The results of these authors can
be extended without added difficulty to the general case where it is simply assumed
that f , f1, f2 and g satisfy hypotheses (H1), (H2) and (H3).

Theorem 4.1.
• If λ+ > 1 and λ2 > 1, then the washout equilibrium E0 of system (5) exists

and is globally asymptotically stable.
• If λ+ < 1 and λ+ < λ2, then the boundary equilibrium E1 of system (5) exists

and is globally asymptotically stable with respect to solutions with x(0) > 0.
• If λ2 < 1 and λ2 < λ−, then the boundary equilibrium E2 of system (5) exists

and is globally asymptotically stable with respect to solutions with y(0) > 0.

Proof. The proof of Item 1 is similar to the proof of Proposition 3.1 in [18] or
in [29]. The proof of Item 2 is similar to the proof of Theorem 5.5 in [18] or Theorem 5.1
in [29]. The proof of Item 3 is similar to the proof of Theorem 5.4 in [18] or Theorem 5.2
in [29].

As it is shown in Table 1, when λ− < λ2 < λ+, the positive equilibrium Ec exists.
The result below shows then that the ω-limit set of every solution of system (5) for
which x(0) > 0 and y(0) > 0 remains at a positive distance away from the boundary
of R4

+.

Theorem 4.2. Let the positive equilibrium Ec exist and let (S(t), x(t), y(t), p(t))
be a solution of system (5) with x(0) > 0 and y(0) > 0. Then

lim inf
t→∞

x(t) > 0 and lim inf
t→∞

y(t) > 0.

The ω-limit set of every solution of system (5), with x(0) > 0 and y(0) > 0, lies
interior to the positive cone.

Proof. The proof is similar to the proof of Theorem 6.1 in [18] or Theorem 7.1
in [29].

From a biological point of view, Theorem 4.2 guarantees the coexistence of both
species x and y when Ec exists. However, it does not give the global asymptotic
behavior. To study the global asymptotic behavior of system (5) when Ec exists, we
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need a supplementary condition on the following limiting system, obtained by putting
Σ = 0 in system (23):

(27)

 x′ = [f(p)f1(1− x− y)− 1]x
y′ = [f2(1− x− y)− 1]y
p′ = 1− p− g(p)y

Theorem 4.3. Suppose that system (27) has no limit cycles. Then the positive
equilibrium Ec is globally asymptotically stable with respect to solutions with positive
initial conditions.

Proof. The proof is similar to the proof of Theorem 6.2 in [18] or Theorem 7.2
in [29].

5. Operating diagrams. In this section we give our main result which is the
discussion of the existence and stability of equilibria of (1) with respect of the operat-
ing parameters D, p0 and S0. We assume that f , g and f1, f2 are fixed, and without
loss of generality we can assume that the yields are equal to 1 (γ1 = γ2 = 1). So, we
consider the system

(28)


S′ = (S0 − S)D − f(p)f1(S)x− f2(S)y,
x′ = [f(p)f1(S)−D]x,
y′ = [f2(S)−D]y,
p′ = (p0 − p)D − g(p)y.

5.1. Existence and stability of equilibria with respect of operating pa-
rameters. To emphasize the dependence of the equilibria of (28) with respect to the
operating parameters, we rewrite our previous results, obtained for the non dimen-
sional system (5).

Using the inverse functions f−1
1 : I1 → R+ and f−1

2 : I2 → R+ where

I1 = [0, f1(+∞)), I2 = [0, f2(+∞)),

which are increasing, we define the break-even concentrations as

(29) λ1(D) = f−1
1 (D), λ2(D) = f−1

2 (D), λ+(D, p0) = f−1
1

(
D

f(p0)

)
,

which are the solutions of equations f1(S) = D, f2(S) = D and f1(S) = D/f(p0),
respectively. Note that λ1 is defined on I1, λ2 is defined on I2 and λ+ is defined for
(D, p0) such that p0 ≥ 0 and D/f(p0) ∈ I1.

We define the function W by

W (p,D, p0) =
(p0 − p)D
g(p)

, for p ∈ (0, p0].

Note that W is defined for (p,D, p0) such that p ≥ 0, D ≥ 0 and 0 < p ≤ p0. Note
also that ∂W

∂p < 0. Therefore, when λ2 < S0, equation W (p,D, p0) = S0 − λ2 has a

unique solution denoted by p∗ = p∗(D, p0, S0)

(30) W (p∗, D, p0) = S0 − λ2.

If equation f1(S) = D/f(p∗) has a solution, it is unique and then we set

(31) λ−(D, p0, S0) = f−1
1

(
D

f(p∗)

)
.
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We define

(32) pc(D) = f−1

(
D

f1 (λ2(D))

)
.

Note that pc(D) is defined for D ∈ Ic where

(33) Ic = {D ∈ I1 ∩ I2 : λ1(D) < λ2(D)} .

For simplicity we assume that equation f1(S) = f2(S) has at most one positive solu-
tion S = S > 0, which is the case when f1(S) and f2(S) are Monod functions. The
case of multiple intersections can be treated similarly. We have

• Ic = ∅ if f1(S) < f2(S) for all S > 0.
• Ic =

(
D, f2(+∞)

)
, if f1(S) < f2(S) for 0 < S < S and f1(S) > f2(S) for

S > S, see Fig. 2(a).
• Ic =

(
0, D

)
, if f1(S) > f2(S) for 0 < S < S and f1(S) < f2(S) for S > S,

see Fig. 2(b).
• Ic = (0, f2(+∞)) if f1(S) > f2(S) for all S > 0.

(a)

S

f1, f2
f1

f2

S0

f2(+∞)

D

Ic

(b)

S

f1, f2
f2

f1

S0

D

Ic

Fig. 2. Graphs of f1 (in red) and f2 (in blue) when equation f1(S) = f2(S) has a positive
solution S = S and graphical depiction of Ic. (a): Ic =

(
D, f2(+∞)

)
. (b): Ic =

(
0, D

)
where

D = f1
(
S
)

= f2
(
S
)
.

We define

(34) yc(D, p
0) = W (pc(D), D, p0), xc(D, p

0, S0) = S0 − λ2(D)− yc(D, p0).

Note that yc is defined for (D, p0) ∈ Jc, where

(35) Jc =
{

(D, p0) ∈ Ic × R+ : 0 < pc(D) < p0
}
,

with Ic defined by (33). Note that xc is defined for
(
D, p0, S0

)
∈ Dc where

(36) Dc =
{

(D, p0, S0) ∈ Jc × R+ : S0 > λ2(D) + yc(D, p
0)
}
,

with Jc defined by (35).
To avoid cumbersome notations, and when there is no risk of confusion, we will

omit to mention the operating parameters D, p0 and S0 in λ2, λ+, λ−, p∗, pc, yc
and xc. Straightforward computations, similar to those used in the proofs of Propo-
sitions 3.1 and 3.2 show that the following result holds.
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Proposition 5.1. Assume that (H1), (H2) and (H3) are satisfied. Let λ2, λ+

and λ− be defined by (29) and (31), respectively. Let p∗ be defined by (30). Let pc,
xc and yc be defined by (32) and (34), respectively. System (28) has the following
equilibria:

• The washout equilibrium E0 = (S0, 0, 0, p0).
• The boundary equilibrium E1 = (λ+, S0−λ+, 0, p0) of extinction of species y.
• The boundary equilibrium E2 = (λ2, 0, S

0 − λ2, p
∗) of extinction of species x.

• The positive equilibrium Ec = (λ2, xc, yc, pc) of coexistence of the species.
The conditions of existence and stability of these equilibria are given in the following
table:

Equilibria Existence Local exponential stability
E0 Always λ+ > S0 & λ2 > S0

E1 λ+ < S0 λ+ < λ2

E2 λ2 < S0 λ2 < λ−

Ec λ− < λ2 < min(λ+, S0) (A+B)(A+B + C)C > BEF

where A = A(D, p0, S0), B = B(D, p0), C = C(D, p0), E = E(D), F = F (D, p0, S0)
are defined by

(37)

A(D, p0, S0) = α(D)xc(D, p
0, S0), B(D, p0) = β(D)yc(D, p

0),

C(D, p0) = D + γ(D)yc(D, p
0), E(D) = g(pc(D)),

F (D, p0, S0) = φ(D)xc(D, p
0, S0).

Here α(D), β(D), γ(D) and φ(D) are given by

(38) α = f(pc)f
′
1(λ2), β = f ′2(λ2), γ = g′(pc), φ = −f ′(pc)f1(λ2).

In what follows, our aim is to express the conditions of existence and stability
of the equilibria in Proposition 5.1 with respect of the operating parameters D, p0

and S0. For this purpose, we need the following definitions. We let

(39) F1(D, p0) = f(p0)f1

(
f−1

2 (D)
)
.

Note that F1 is defined on I2 × R+. We have the following result.

Lemma 5.2. The following equivalences hold:

pc(D) < p0 ⇐⇒ D > F1(D, p0)⇐⇒ λ2(D) < λ+(D, p0).

Proof. Using (29), hypothesis (H2) and the definition (39), we have

λ+ < λ2 ⇐⇒ f−1
1

(
D

f(p0)

)
< f−1

2 (D) ⇐⇒ D

f(p0)
< f1

(
f−1

2 (D)
)

⇐⇒ D < f(p0)f1

(
f−1

2 (D)
)

⇐⇒ D < F1(D, p0).

On the other hand, using (29), (32) and hypotheses (H1) and (H2), we have

pc(D) < p0 ⇐⇒ f−1

(
D

f1(λ2)

)
< f−1

(
D

f1(λ+)

)
⇐⇒ D

f1(λ2)
>

D

f1(λ+)

⇐⇒ f1(λ2) < f1(λ+)⇐⇒ λ2 < λ+.

This completes the proof of the lemma.
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We let

(40) F2(D, p0) = f−1
2 (D) +W (pc(D), D, p0).

Note that F2 is defined for (D, p0) ∈ Jc, where Jc is given by (35). Therefore, using
Lemma 5.2, we have

Jc =
{

(D, p0) : D ∈ Ic, D > F1(D, p0)
}
.

If we assume that equation f(p0)f1(S) = f2(S) has at most one positive solution
S = S(p0) > 0, which is the case when f1(S) and f2(S) are Monod functions, then
the function F2 is defined for all (D, p0) ∈ Ic × R+ such that D(p0) < D < f2(+∞),
if f(p0)f1(S) > f2(S) for 0 < S < S

(
p0
)
, or 0 < D < D(p0), if f(p0)f1(S) < f2(S)

for 0 < S < S
(
p0
)
. Here D(p0) = f2

(
S
(
p0
))

. We have the following result.

Lemma 5.3. The following equivalences hold:

pc(D) > p∗(D, p0, S0)⇐⇒ S0 > F2(D, p0)⇐⇒ λ2(D) > λ−(D, p0, S0).

Proof. Using (31) and (32), together with hypotheses (H1) and (H2), we have

(41)
λ2 > λ− ⇐⇒ f1(λ2) > f1(λ−) ⇐⇒ D

f(pc)
>

D

f(p∗)

⇐⇒ f(pc) < f(p∗) ⇐⇒ pc > p∗.

Using the fact that ∂W
∂p < 0 and (30), we have

(42) pc > p∗ ⇐⇒W (pc, D, p
0) < W (p∗, D, p0)⇐⇒W (pc(D), D, p0) < S0 − λ2.

Therefore, from (42), together with λ2 = f−1
2 (D) and the definition (40) of F2, we

deduce that pc > p∗ is equivalent to S0 > F2(D, p0).

We define also the function

(43) F3(D, p0, S0) = (A+B)(A+B + C)C −BEF,

where A, B, C, E and F are defined by (37). Note that F3 is defined for (D, p0, S0) ∈
Dc, where Dc is given by (36). Therefore, using Lemmas 5.2 and 5.3, we have

Dc =
{

(D, p0, S0) : D ∈ Ic, D > F1(D, p0), S0 > F2(D, p0)
}
.

Using these notations, we have the following description of existence and stability
of the equilibria of (28).

Theorem 5.4. Assume that the hypotheses and notations of Proposition 5.1 hold.
The conditions of existence and stability of equilibria of (28) can be expressed with
respect to the operating parameters D, p0 and S0 as follows:

Equilibria Existence Local exponential stability
E0 Always D > max(f(p0)f1(S0), f2(S0))
E1 D < f(p0)f1(S0) D < F1(D, p0)
E2 D < f2(S0) S0 < F2(D, p0)
Ec D > F1(D, p0) & S0 > F2(D, p0) F3(D, p0, S0) > 0

where F1(D, p0), F2(D, p0) and F3(D, p0, S0) are defined by (39), (40) and (43), re-
spectively.
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Proof. Using (29) and hypothesis (H2), the condition λ+ > S0 and λ2 > S0 of
stability of E0 in Proposition 5.1 is equivalent to D > f(p0)f1(S0) and D > f2(S0).
Similarly, the condition λ+ < S0 [resp. λ2 < S0] of existence of E1 [resp. E2] in
Proposition 5.1 is equivalent to D < f(p0)f1(S0) [resp. D < f2(S0)].

We consider now the stability of E1 and E2. Using Lemma 5.2, the condition λ+ <
λ2 of stability of E1 in Proposition 5.1 is equivalent to D < F1(D, p0). On the other
hand, using Lemma 5.3, the condition λ2 < λ− of stability of E2 in Proposition 5.1
is equivalent to S0 < F2(D, p0).

Let us consider now the existence and stability of Ec. Using Lemmas 5.2 and 5.3,
we see that the condition λ− < λ2 < λ+ of existence of Ec in Proposition 5.1 is
equivalent to D > F1(D, p0) and S0 > F2(D, p0). Finally, using the definition (43)
of the function F3, the condition of stability of Ec in Proposition 5.1 is equivalent
to F3(S0, D, p0) > 0.

5.2. Necessary and sufficient conditions for instability of Ec. We give now
the necessary and sufficient conditions on the operating parameters D, p0 and S0 such
that the positive equilibrium Ec is unstable, that is we discuss the sign of F3(D, p0, S0).
We have

(44) F3 = a2x
2
c + a1xc + a0.

The coefficients a2 = a2(D, p0), a1 = a1(D, p0) and a0 = a0(D, p0) of this polynomial
are given by

(45) a2 = α2C, a1 = α(2B + C)C − φBE, a0 = B(B + C)C,

where B, C, E are defined by (37) and α, φ are given by (38). Hence, F3 given
by (44), appears as a second order polynomial in xc whose coefficients are depending
only on D and p0 and not on S0. Let ∆ = ∆(D, p0) be the discriminant of F3:

(46) ∆ = a2
1 − 4a0a2.

The roots of F3,

(47) x1(D, p0) =
−a1 −

√
∆

2a2
and x2(D, p0) =

−a1 +
√

∆

2a2
,

exist and are positive if an only if

(48) a1(D, p0) < 0 and ∆(D, p0) > 0.

We define the following functions

(49) F4(D, p0) = F2(D, p0) + x1(D, p0), F5(D, p0) = F2(D, p0) + x2(D, p0),

where F2(D, p0) is given by (40) and x1(D, p0), x2(D, p0) are given by (47).
We give now necessary and sufficient conditions on the operating parameters D

and p0 such that (48) hold. We have

(50) a1 = b2y
2
c + b1yc + b0,

where the coefficients bi = bi(D) are given by

(51) b2 = αγ(2β + γ), b1 = 2αD(β + γ)− βEφ, b0 = αD2,
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Yzz1 z2y0 y1 y2 y3

∆(Y )

a1(Y )

c0

b0

Fig. 3. The graphs of a1(Y ) and ∆(Y ), showing the relative positions of the roots yi = yi(D),
i = 0 · · · 3, of ∆(Y ) with respect to the roots z1 = z1(D) and z2 = z2(D) of a1(Y ), when a1(z) < 0
and ∆(z) > 0 where z = z(D) is the local maximum of ∆(Y ).

with E, α, β, γ and φ defined by (37) and (38), respectively. We have

(52) ∆ = c4y
4
c + c3y

3
c + c2y

2
c + c1yc + c0,

where the coefficients ci = ci(D) are given by

c4 = α2γ4, c3 = 4α2Dγ3 − 2αβγEφ(2β + γ),

c2 = 6α2D2γ2 + β2E2φ2 − 4αβ(β + γ)DEφ,

c1 = 4α2γD3 − 2αβD2Eφ, c0 = α2D4,

with E, α, β, γ and φ defined by (37) and (38), respectively. Hence, a1 given by (50)
and ∆ given by (52), appear as a second order polynomial and a fourth order poly-
nomial in yc, respectively, whose coefficients are depending only on D and not on p0

nor S0. For the convenience of the notations we denote by

a1(Y ) = b2Y
2 + b1Y + b0, ∆(Y ) = c4Y

4 + c3Y
3 + c2Y

2 + c1Y + c0,

the polynomials (50) and (52). Notice first that, since b2 > 0, we have a1(Y ) < 0 if
and only if z1(D) < Y < z2(D) where z1(D) and z2(D) are the positive real roots
of a1(Y ). This condition holds if and only if b1(D) < 0 and ∆1(D) > 0 where
∆ = ∆1(D) is the discriminant of the polynomial a1:

(53) ∆1 = b21 − 4b0b2.

If this discriminant is positive, the roots z1(D) and z2(D) are given by

(54) z1(D) =
−b1 −

√
∆1

2b2
and z2(D) =

−b1 +
√

∆1

2b2
.

For the study of the sign of ∆(Y ) we use the following facts. Since a1(z1(D)) =
a1(z2(D)) = 0, from ∆ = a2

1 − 4a0a2 we deduce that

∆(z1(D)) < 0 and ∆(z2(D)) < 0.
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Therefore, from ∆(0) = c0 > 0 and ∆(+∞) = +∞ it is deduced that the polynomial
∆(Y ) has at least two roots

y0(D) ∈ (0, z1(D)) and y3(D) ∈ (z2(D),+∞).

The condition (48) is satisfied if and only if ∆(Y ) takes positive values on the interval
(z1(D), z2(D)) on which a1(Y ) < 0, see Fig. 3. If this condition holds then ∆(Y ) has
necessarily three extremal points, that is to say, its polynomial derivative,

∆′(Y ) = 4c4Y
3 + 3c3Y

2 + 2c2Y + c1,

has three real roots. A necessarily and sufficient condition for this is that the dis-
criminant of the polynomial ∆′(Y ) is positive. Let us denote by ∆2 = ∆2(D) this
discriminant to emphasize its dependence on the sole operating parameter D:

(55) ∆2 = −27d2
0d

2
3 + 18d0d1d2d3 − 4d0d

3
2 − 4d3

1d3 + d2
1d

2
2,

where d3 = 4c4, d2 = 3c3, d1 = 2c2 and d0 = c1. If ∆2(D) > 0 then ∆′(Y ) has three
real roots z[(D), z(D) and z](D) such that z[(D) < z(D) < z](D). Thus

(56) z(D) is the middle root of ∆′(Y ).

If a1(z(D)) < 0 and ∆(z(D)) > 0 then the polynomial ∆(Y ) has two supplementary
real roots y1(D) ∈ (z1(D), z(D)) and y2(D) ∈ (z(D), z2(D)), see Fig. 3. Thus y1(D)
and y2(D) are defined by

(57) ∆(y1(D)) = ∆(y2(D)) = 0 and z1(D) < y1(D) < y2(D) < z2(D).

Therefore (48) holds only if D ∈ I3, where I3 is the subset of Ic defined by

(58) I3 = {D ∈ Ic : b1(D) < 0,∆1(D) > 0,∆2(D) > 0, a1(z(D)) < 0,∆(z(D)) > 0},

where Ic is defined by (33), b1 is given by (51), ∆1 is given by (53), ∆2 is given
by (55), a1 is given by (45), ∆ is given by (46) and z(D) is given by (56). If D ∈ I3
then ∆(Y ) > 0 and a1(Y ) < 0 if and only if y1(D) < Y < y2(D). We define the
following functions

(59) F6(D) = pc(D) +
1

D
y1(D)g(pc(D)), F7(D) = pc(D) +

1

D
y2(D)g(pc(D)),

where pc(D) is defined by (32) and y1(D), y2(D) are given by (57). We can determine
the sign of F3, that is the stability of Ec, as stated in the following result.

Theorem 5.5. The positive equilibrium Ec is unstable only if the subset I3 of Ic
given by (58) is non empty. If this condition holds then Ec is unstable if and only if
the three following conditions are satisfied by the operating parameters D, p0 and S0:

1. D ∈ I3,
2. F6(D) < p0 < F7(D) where F6(D) and F7(D) are given by (59),
3. F4(D, p0) < S0 < F5(D, p0) where F4(D, p0) and F5(D, p0) are given by (49).

Proof. If ∆ > 0, the roots of F3 = 0 are x1(D, p0) and x2(D, p0). Their product
is equal to a0

a2
which is positive. Therefore, the roots exist and are positive if and

only if (48) holds. The roots z1(D) and z2(D) of a1(Y ), given by (54), exist and are
positive if and only if b1(D) < 0 and ∆1(D) > 0 which are the two first conditions in
the definition of I3 (58). Now, ∆(Y ) takes positive values between z1(D) and z2(D)
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if and only if the three last conditions in (58) hold. Let y1(D) and y2(D) be the roots
of ∆(Y ) defined by (57), that is such that z1(D) < y1(D) < y2(D) < z2(D). One has
a1 < 0 and ∆ > 0 if and only if

(60) y1(D) < yc < y2(D).

Using (34), we have

yc(D, p
0) = D

p0 − pc(D)

g(pc(D))
.

Therefore, (60) is equivalent to the condition 2 in the theorem. On the other hand
F3 < 0 if and only if xc is between the roots, that is,

(61) x1(D, p0) < xc < x2(D, p0),

where x1(D, p0) and x2(D, p0) are defined by (47). Using (34) and (40) we have
xc = S0−F2(D, p0). Therefore, (61) is equivalent to the condition 3 in the theorem.

5.3. Operating diagram. The effect of the operating conditions on the asymp-
totic behavior of the system can be summarized with the aid of the operating diagram.
The operating diagram has the operating parameters D, S0 and p0 as its coordinates
and the various regions defined in it correspond to qualitatively different dynamics.
It is not easy to represent the regions of existence and stability of the equilibria in the
three dimensional space of the operating parameters D, p0 and S0. For this reason
we will fix the operating parameter D and show the regions of existence and stability
in the operating plane (p0, S0), see Fig. 4 and Fig. 5(b). The boundaries of the
regions in the operating diagram are locations where bifurcations occur. In order to
construct the operating diagram of the system one must compute these boundaries.
These boundaries are defined by formulas (62), (63), (64), (65) and (66) below.

Boundary Equation in (p0, S0), with D fixed

Γ1 Graph of S0 = f−1
1

(
D

f(p0)

)
Γ2 Horizontal line S0 = λ2(D)
Γ3 Vertical line p0 = pc(D) and S0 > λ2(D)

Γ4 Oblique line S0 =
D(p0−pc(D))
g(pc(D)) + λ2(D) and p0 > pc(D)

Γ5 Graphs of S0 = F4(D, p0) or S0 = F5(D, p0)

Table 2
Boundaries of the regions in the operating diagram.

The surface Γ1 defined by

(62) Γ1 :=
{

(D, p0, S0) : D = f(p0)f1(S0)
}

is the border to which E1 exists. The surface Γ2 defined by

(63) Γ2 :=
{

(D, p0, S0) : D = f2(S0)
}

is the border to which E2 exists. The surface Γ3 defined by

(64) Γ3 :=
{

(D, p0, S0) : D = F1(D, p0), D < f(p0)f1(S0)
}
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is the border to which E1 is stable. The surface Γ4 defined by

(65) Γ4 :=
{

(D, p0, S0) : S0 = F2(D, p0), D < f2(S0)
}

is the border to which E2 is stable. The surfaces Γ3 and Γ4 are the border to which
Ec exists. The surface Γ5 defined by

(66) Γ5 :=
{

(D, p0, S0) : F3(D, p0, S0) = 0
}

is the border to which Ec is unstable.
Table 2 gives the descriptions of these boundaries in the operating plane (p0, S0),

where D > 0 is fixed. The curves Γi, i = 1, 2, 3, 4, intersect at point (p0, S0) where
p0 = pc(D) and S0 = λ2(D), see Fig. 4 and Fig. 5(b). We have the following result.

Proposition 5.6. Assume that the tangent of Γ1 at point (pc, λ2) is under Γ4,
see Fig. 4(b). Then b1(D) > 0 for all D, and hence Ec is LES whenever it exists.

Proof. Let D be fixed and let F (p0) = f−1
1

(
D

f(p0)

)
. The curve Γ1 is the graph

of the function S0 = F (p0). Using f1 (λ2) f (pc) = D, we get that the slope F ′(pc) of
the tangent of Γ1 at point (pc, λ2) is given by

F ′(pc) =
1

f ′1

(
f−1

1

(
D

f(pc)

)) −Df ′(pc)
f2(pc)

=
1

f ′1 (λ2)

−f ′(pc)f1 (λ2)

f(pc)
.

Since the slope of the straight-line Γ4 is D/g(pc), the condition F ′(pc) < D/g(pc) is
equivalent to

Df ′1 (λ2) f(pc) + f ′(pc)f1 (λ2) g(pc) > 0.

Straightforward computations show that

b1(D) = f ′2 (λ2)M +Df(pc)f
′
1 (λ2) [f ′2 (λ2) + 2g′(pc)] ,

where M = Df ′1 (λ2) f(pc) + f ′(pc)f1 (λ2) g(pc) > 0. Hence b1(D) > 0 for all D ∈ Ic.
Assume that the condition in Proposition 5.6 holds. Since Γ1 has a vertical

asymptote, it intersects the straight-line Γ4 at least at one second point, different
from (pc, λ2), see Fig. 4(b). For simplicity, we assume that there is only one such
intersection point, which is the case for instance if Γ1 is convex. An example exhibiting
a non convex curve Γ1 will be examined in Section 6.5. A sufficient condition for
convexity of Γ1 (F ′′ ≥ 0) is given in the following result.

Lemma 5.7. Assume that f ′′1 ≤ 0 and (1/f)′′ ≥ 0 then F ′′ ≥ 0.

Proof. From F (p) = f−1
1

(
D
f(p)

)
we deduce that F ′(p) = D

f ′1(F (p))

(
1

f(p)

)′
. Since(

1
f(p)

)′
= −f ′(p)

f2(p) > 0, we have F ′(p) > 0. Therefore

F ′′(p) =
−Df ′′1 (F (p))F ′(p)

[f ′1 (F (p))]2

(
1

f(p)

)′
+

D

f ′1 (F (p))

(
1

f(p)

)′′
.

Since f ′′1 ≤ 0, F ′ > 0,
(

1
f(p)

)′
> 0 and

(
1

f(p)

)′′
≥ 0 we have F ′′ ≥ 0.

Therefore, the curves Γi, i = 1..4, separate the operating space (D, p0, S0) into at
most seven regions, as illustrated by Fig. 4(b), labeled I, II, III, IV, V, VI and VII. Some
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of these regions may be empty as shown on Fig. 4(a,c). Some of them may be not
connected, as shown in Section 6.5, where region VII has two connected components,
see Fig. 13(a).

Fig. 4(a) corresponds to the case without detoxification, that is to say g(p) = 0,
where regions VI and VII are empty. On the other hand, Fig. 4(c) corresponds to the
case where the tangent of Γ1 at point (pc, λ2) is above Γ4, where the region V has
disappeared.

In the case depicted in Fig. 4(c), Ec is not necessarily stable as in the case
depicted in Fig. 4(b). Therefore sub-regions VIII⊂VII and IX⊂VI may occur, on which
Ec is unstable, see Fig. 4(d) and Fig. 5(b). We describe below how these regions
VIII and IX are constructed. The necessary condition on D for which Ec is unstable
is D ∈ I3, as shown in Theorem 5.5. Assume that I3 defined by (58) is non empty.

(a) (b) (c) (d)

I↖II

IIIIV V

p0

S0 Γ1

Γ2

Γ3

I↖II

III
IV

V

VI ↖VII

p0

S0 Γ1

Γ2

Γ3 Γ4

I↖II

III

IV

VI

VII

p0

S0 Γ1

Γ2

Γ3

Γ4

I↖II

III

IV VIII

VI
VII

p0

S0 Γ1

Γ2

Γ3

Γ4

Γ5

F6(D) F7(D)

Fig. 4. Illustrative operating diagrams: (a) corresponds to the case without detoxification; in
case (b), Ec is stable whenever it exists; in case (c) the stability of Ec does not always occur and a
region of instability can appear as shown in case (d).

D

p0

0

(a)

H
US

↖

↘
p0 =F7(D)

p0 =F6(D)

I3 pc(D) F6(D) F7(D)

λ
2
(D

)

↘

↖

S0 =F5(D, p0)

S0 =F4(D, p0)

p0

S0

0

(b)

Γ2

Γ4

Γ3

Γ5

Γ1

VII

I

III

IV VI VIIIIX

II

Fig. 5. Illustrative operating diagram for system (28). (a): The subset of (D, p0) on which
(48) holds. (b): The operating plane (p0, S0) with D fixed. The parameter D is fixed in the subset
I3, that is the regions VIII or IX exist.

For simplicity, we assume that I3 is a sub-interval of Ic, as shown in Fig. 5(a). The
curve H of equation

(67) H =
{

(D, p0) : a1(D, p0) < 0,∆(D, p0) = 0
}
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separates the operating plane (D, p0) in two regions: the bounded region U in which
a1(D, p0) < 0 and ∆(D, p0) > 0, that is to say the condition (48) holds, and the region
S where this condition does not hold, see Fig. 5(a). Notice that H is simply the union
of the graphs of functions p0 = F6(D) and p0 = F7(D), given by (59), with D ∈ I3.
Let (D, p0) ∈ U . Therefore D ∈ I3 and F6(D) < p0 < F7(D). Hence, according to
Theorem 5.5, Ec is unstable if and only if F4(D, p0) < S0 < F5(D, p0).

For D ∈ I3 fixed, equation F3(D, p0, S0) = 0 defines a closed curve Γ5 in the
operating plane (p0, S0), see Fig. 4(d) and Fig. 5(b). Notice that Γ5 is simply the
union of the graphs of functions S0 = F4

(
D, p0

)
and S0 = F5

(
D, p0

)
, given by (49),

with D ∈ I3 and F6(D) ≤ p0 ≤ F7(D). The curve Γ5 can have no intersection with
the curve Γ1, as in Fig. 4(d). It defines then a sub-region VIII of region VII. In this
case we simply denote by the same letter VII, the complement of VIII in the region
VII, see Fig. 4(d). On the other hand, the curve Γ5 can intersect the curve Γ1, as
in Fig. 5(b). It defines then two sub-regions VIII⊂VII and IX⊂VI. For simplicity we
denote by the same letter VII, the complement of VIII in the region VII and by the same
letter VI the complement of IX in the region VI, see Fig. 5(b). With these notations,
Ec is unstable in the bounded sub-region VIII∪IX of existence of Ec, and stable in its
complementary region VI∪VII. The behavior of the system in each of the nine regions
I,..., IX is given by Theorem 5.4. This behavior is summarized in Table 3.

Regions I II III IV V VI VII VIII IX
E0 S U U U U U U U U
E1 S S U U U
E2 S U S U U U U
Ec S S U U

Table 3
Existence and stability of equilibria in the regions of the operating diagrams of Fig. 4, Fig. 5(b),

Fig. 7(b), Fig. 8, Fig. 9(b), Fig. 10(b), Fig. 11(b), Fig. 12(b) and Fig. 13. The letter S (resp. U)
means stable (resp. unstable) and no letter means that the equilibrium does not exist.

Hsu and Waltman [18] conjectured that for the growth functions given by (2), if
Ec and E1 exist and E1 is unstable, which occurs in region VI, then Ec is necessarily
stable. This means that in this case the sub-region IX cannot exist. All the simulations
given in Section 6 show that the region IX never exist for the Monod growth functions
given by (2). However we will show that this region can exist for Holling type 3
growth functions (71), as shown in Section 6.5.

In Fig. 5(a) we have assumed that I3 is a sub-interval of Ic. Actually, if we
want to determine I3 we have to fix the biological parameters of the model, and
then we have to plot the graphs of the five functions appearing in the definition (58)
of I3. Then, we consider the subset on which these functions have the determined
sign, see Fig. 6. Therefore the determination of stability of Ec, with respect to the
biological and operating parameters, is reduced to the determination of the sign of
functions depending only on the dilution rate D. It will be seen in the examples given
in Section 6 that I3 is indeed a sub-interval of the interval Ic = (D1, D2), defined
by (33), of one of the three forms shown in Table 4

The operating diagrams shown in Fig. 4 and Fig. 5 are given only as illustrative
examples, showing that our analysis gives a complete description of the behavior of
the system for a large class of growth functions. Notice that for plotting operating
diagrams we must choose functions f , f1, f2, and g in system (28) and fix the values
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Case Interval I3 Figures
Left I3 = (D1, D3), where D1 < D3 < D2 Fig. 7(a) and Fig. 9(a)

Center I3 = (D3, D4), where D1 < D3 < D4 < D2 Fig. 10(a) and Fig. 12(a)
Right I3 = (D3, D2), where D1 < D3 < D2 Fig. 11(a)

Table 4
Three forms of interval I3.

of the biological parameters. We illustrate this in the following section for various
examples that have been considered in the literature.

6. Examples. In this section, excepted for Section 6.5, we consider the
model (28) with f , f1, f2, and g given by (2). Let us show the usefulness of our
results on the construction of the operating diagram corresponding to various set
of biological parameters encountered in the literature, in particular those considered
in [18, 21]. Notice that the functions f1 and f satisfy the conditions in Lemma 5.7.
Therefore Γ1 intersects Γ4 at most at one point different from (pc(D), λ2(D)).

Parameters m1 m2 K1 K2 δ K µ Figures
Case 1 5 6 0.5 3.5 50 0.1 5 Fig. 6 and Fig. 7
Case 2 5 6 0.5 3.5 0.02 0.1 5 Fig. 8(a)
Case 3 0.7 0.7 5 10 1 10 1 Fig. 8(b)
Case 4 0.7 0.7 5 10 1 0.035 1 Fig. 9
Case 5 0.7 0.7 0.4 10 1 10 1 Fig. 10
Case 6 8 3 2.5 1 5 0.01 3 Fig. 11
Case 7 1 0.01 1 1 0.5 0.007 1 Fig. 12 and Fig. 13

Table 5
Nominal parameter values.

6.1. Parameter values of Hsu and Waltman [18]. The parameter values
used by [18] are given in Table 5, Case 1. The plots of the functions b1(D), ∆1(D),
∆2(D), a1(z(D)) and ∆(z(D)), see Fig. 6, show that I3 = (0, D3) with D3 ≈ 2.0578.
According to Theorem 5.5, if D > D3 then Ec is stable whenever it exists. Notice
that D = 1 ∈ I3. The plot of the curve H defined by (67) is shown in Fig. 7(a).
The curve H separates the plane (D, p0) into two regions U and S. According to
Theorem 5.5, Ec is unstable only if (D, p0) ∈ U . Now, we determine the operating
diagram (p0, S0) forD = 1 ∈ I3. According to Theorem 5.5, for all p0 ∈ (F6(1), F7(1)),
with F6(1) ≈ 0.4034 and F7(1) ≈ 2.108, we have (1, p0) ∈ U and hence Ec is unstable
as soon as (p0, S0) ∈ VIII, see Fig. 7(b). Notice that (S0 = 1, p0 = 1) ∈ VIII which
agrees with the result of [18] in which it was shown that for D = S0 = p0 = 1, Ec is
unstable.

6.2. Sufficient conditions of stability of Ec whenever it exists. As stated
in Proposition 5.6, when the tangent of Γ1 at point (pc, λ2) is under Γ4, Ec is stable
whenever it exists. This case occurs for the parameter values given in Table 5, Case 2,
where the parameters are the same as in Case 1, except that δ is lowered from 50
to 0.02. The operating diagram in the plane (p0, S0) and D = 1 is shown in Fig. 8(a).
The region VIII of instability of Ec does not exist as predicted by Proposition 5.6.
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(a)

b1(D) ∆1(D) ∆2(D) a1(D) ∆(D)

(b) (c)

Fig. 6. The numerical plots of (a): b1(D) (in red) and ∆1(D) (in blue); (b): ∆2(D);
(c): a1(z(D)) (in red) and ∆(z(D)) (in blue). These plots show that the conditions in the defi-
nition (58) of I3 hold for 0 < D < D3 with D3 ≈ 2.0578. The biological parameters are given in
Table 5, Case 1.

D

p0
(a)

F6(1)

F7(1)

HU

S

p0

S0 (b)

F7(1)F6(1)

II

← VI
VII

IV

VIII

I
↑

III

Fig. 7. (a): The subset of (D, p0) on which (48) holds. (b): The operating diagram (p0, S0)
for D = 1 corresponding to the biological parameters given in Table 5, Case 1.

Let us give now another sufficient condition on the biological parameters such
that Ec is stable whenever it exists.

Proposition 6.1. Let µ0 = 2√
K2+4K−K ln

(
m1K2

m2K1

)
and µ1 = 2m2K1

m1K2
. If

(68) K1 < K2 and µ0 ≤ µ ≤ µ1,

then b1(D) > 0 for all D, so that Ec is LES whenever it exists.

Proof. Recall that b1 = b1(D) is given by (51)

b1 = 2αD(β + γ)− βEφ,

where E is defined by (26) and α, β, γ and φ are defined by (38). From g(p) = δp
K+p

and g′(p) = δK
(K+p)2 one has g(p) ≤ g′(p) if and only if (K + p)p ≤ K. Therefore p is
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p0

S0 (a)

↓
I

↓
II

VII

VI

IV

III

V

p0

S0 (b)

←II

VIIVI

IV

III

I

Fig. 8. Ec is LES whenever it exists. (a): The operating diagram (p0, S0) for D = 1 corre-
sponding to the biological parameters in Table 5, Case 2. (b): The operating diagram (p0, S0) for
D = 0.2 corresponding to the biological parameters in Table 5, Case 3.

between the roots of equation p2 +Kp−K = 0. Since p ≥ 0 we have

(69) g(p) ≤ g′(p)⇐⇒ 0 ≤ p ≤
√
K2 + 4K −K

2
.

Straightforward calculations show that

pc(D) =
1

µ
ln

(
m1K2

m2K1 +D(K2 −K1)

)
.

Since K1 < K2, pc is decreasing. Thus, using µ ≥ µ0, one has

pc(D) < pc(0) =
1

µ
ln

(
m1K2

m2K1

)
≤
√
K2 + 4K −K

2
.

Therefore, using (69), one has

(70) g(pc) ≤ g′(pc).

Now using (70), (38) and (26) together with f ′(p) = −µf(p), one has

b1(D) ≥ f (pc(D)) g (pc(D))M, where M = 2Df ′1(λ2(D))− µf1(λ2(D))f ′2(λ2(D)).

Thus, if M > 0 then b1(D) > 0. Straightforward computations show that

f1(λ2(D)) =
m1K2D

m2K1 +D(K2 −K1)
, f ′1(λ2(D)) =

m1K1(m2 −D)2

(m2K1 +D(K2 −K1))2
,

f ′2(λ2(D)) =
(m2 −D)2

m2K2
.

Hence

M =
m1D(D −m2)2

m2(m2K1 +D(K2 −K1))2
N, where N = K1m2(2− µ) + µD(K1 −K2).
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Thus M is positive if and only if N > 0. Since pc(D) > 0 we have

D(K1 −K2) > m2K1 −m1K2,

from which we deduce that

N > K1m2(2− µ) + µ(m2K1 −m1K2) = 2K1m2 − µm1K2.

Hence, from µ ≤ µ1 one has N > 0. Therefore, if (68) holds then b1(D) > 0.

6.3. Parameter values of Lenski and Hattingh [21]. Let us give an appli-
cation of Proposition 6.1, with the parameter values used in [21], given in Table 5,
Case 3. These biological parameters satisfy the conditions (68). In this case, we have
µ0 ≈ 0.76 and µ1 = 1. Thus µ0 ≤ µ ≤ µ1. According to Proposition 6.1, Ec is stable
whenever it exists. Therefore our findings give a justification of the claim of [21],
that is, for D = 0.2, the coexistence equilibrium Ec is stable whenever it exists. The
stability occurs for all values of D, not only for D = 0.2. The operating diagram in
the plane (p0, S0) and D = 0.2 is shown in Fig. 8(b). We obtain the same result
as [21], Fig. 1(b).

In [21], it was also stated that the instability of Ec can be accomplished in two
different ways. First, lowering K1 can destabilize Ec: the authors claimed that in the
limiting case K1 = 0, Ec exists and is unstable when D = 0.2, p0 = 2.5 and S0 = 20.
Second, lowering K while raising µ may destabilize Ec: the authors claimed that in
the limiting case K = 0, if µ = 10, then Ec exists and is unstable when D = 0.2,
p0 = 2.5 and S0 = 20. Let us show how our analysis can clarify this question.

D

p0 (a)

F6(0.2)

F7(0.2)

H

U

S

p0

S0 (b)

F7(0.2)F6(0.2)

← II

VI VII

IV

VIII

I

III

Fig. 9. (a): The subset of (D, p0) on which (48) holds. (b): The operating diagram (p0, S0)
for D = 0.2. The biological parameters are given in Table 5, Case 4.

It is seen from the inequalities µ0 ≤ µ ≤ µ1 in (68) that lowering K1 will raise µ0

and diminish µ1 so that the inequalities µ0 ≤ µ ≤ µ1 can be violated, giving hence
the possibility of instability. On the other hand lowering K will raise µ0, so that the
inequality µ0 ≤ µ can be violated, giving hence the possibility of instability.

Let us consider the parameter values given in Table 5, Case 4, where the pa-
rameters are the same as in Case 3, except that K is lowered from 10 to 0.035. For
these parameter values µ0 ≈ 4.06 and µ1 = 1, thus the inequality µ0 ≤ µ is violated.
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Indeed, we can see that the instability of Ec can occur. The plots of the functions
b1(D), ∆1(D), ∆2(D), a1(z(D)) and ∆(z(D)), similar to those presented in Fig. 6,
show that I3 = (0, D3) with D3 ≈ 0.2155. According to Theorem 5.5, if D > D3

then Ec is stable whenever it exists. The plot of the curve H defined by (67) is
shown in Fig. 9(a). The curve H separates the plane (D, p0) into two regions U
and S. According to Theorem 5.5, Ec is unstable only if (D, p0) ∈ U . Now, we de-
termine the operating diagram (p0, S0) for D = 0.2 ∈ I3. According to Theorem 5.5,
for all p0 ∈ (F6(0.2), F7(0.2)), with F6(0.2) ≈ 3.602 and F7(0.2) ≈ 6.119, we have
(0.2, p0) ∈ U and hence Ec is unstable as soon as (p0, S0) ∈ VIII, see Fig. 9(b).

D

p0
(a)

F6(0.2)

F7(0.2)

H

U

S

p0

S0 (b)

F7(0.2)F6(0.2)

II
↓

←VI

VII

IV
VIII

I
↓ ↓

III

Fig. 10. (a): The subset of (D, p0) on which (48) holds. (b): The operating diagram (p0, S0)
for D = 0.2. The biological parameters are given in Table 5, Case 5.

Let us consider the parameter values given in Table 5, Case 5, where the param-
eters are the same as in Case 3, except that K1 is lowered from 5 to 0.4. For these
parameter values µ0 ≈ 3.51 and µ1 = 0.08, thus the inequalities µ0 ≤ µ ≤ µ1 are
violated. Indeed, we can see that the instability of Ec can occur. The plots of the
functions b1(D), ∆1(D), ∆2(D), a1(z(D)) and ∆(z(D)), similar to those presented
in Fig. 6, show that I3 = (D3, D4) with D3 ≈ 0.1691 and D4 ≈ 0.5236. Accord-
ing to Theorem 5.5, if D < D3 or D > D4 then Ec is stable whenever it exists.
The plot of the curve H defined by (67) is shown in Fig. 10(a). The curve H sep-
arates the plane (D, p0) into two regions U and S. According to Theorem 5.5, Ec
is unstable only if (D, p0) ∈ U . Now, we determine the operating diagram (p0, S0)
for D = 0.2 ∈ I3. According to Theorem 5.5, for all p0 ∈ (F6(0.2), F7(0.2)), with
F6(0.2) ≈ 1.608 and F7(0.2) ≈ 2.564, we have (0.2, p0) ∈ U and hence Ec is unstable
as soon as (p0, S0) ∈ VIII, see Fig. 10(b).

6.4. Parameter values corresponding to case ‘Right’ of Table 4. Let us
consider the parameter values given in Table 5, Case 6. The plots of the functions
b1(D), ∆1(D), ∆2(D), a1(z(D)) and ∆(z(D)), similar to those presented in Fig. 6,
show that I3 = (D3,m2) with D3 ≈ 2.1219. According to Theorem 5.5, if D < D3

then Ec is stable whenever it exists. The plot of the curve H defined by (67) is shown
in Fig. 11(a). The curve H separates the plane (D, p0) into two regions U and S.
According to Theorem 5.5, Ec is unstable only if (D, p0) ∈ U . Now, we determine
the operating diagram (p0, S0) for D = 2.2 ∈ I3. According to Theorem 5.5, for
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D

p0 (a)

F6(2.2)

F7(2.2)

H
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Fig. 11. (a): The subset of (D, p0) on which (48) holds, with a zoom showing the values F6(2.2)
and F7(2.2). (b): The operating diagram (p0, S0) for D = 2.2. The biological parameters are given
in Table 5, Case 6.

all p0 ∈ (F6(2.2), F7(2.2)), with F6(2.2) ≈ 2.0568 and F7(2.2) ≈ 6.6073, we have
(2.2, p0) ∈ U and hence Ec is unstable as soon as (p0, S0) ∈VIII, see Fig. 11(b).

6.5. An example with curve Γ5 intersecting curve Γ1. Let us consider the
following growth functions

(71) f(p) =
1

1 + µp
, f1(S) =

m1S
2

K2
1 + S2

, f2(S) =
m2S

K2 + S
, g(p) =

δp

K + p
,

with parameter values given in Table 5, Case 7. The plots of the functions b1(D),
∆1(D), ∆2(D), a1(z(D)) and ∆(z(D)), similar to those presented in Fig. 6, show that
I3 = (D3, D4) with D3 ≈ 1.43610−4 and D4 ≈ 4.90110−4. According to Theorem 5.5,
if D < D3 or D > D4 then Ec is stable whenever it exists. The plot of the curve H
defined by (67) is shown in Fig. 12(a). The curve H separates the plane (D, p0) into
two regions U and S. According to Theorem 5.5, Ec is unstable only if (D, p0) ∈ U .
Now, we determine the operating diagram (p0, S0) for D = 0.0003 ∈ I3. Notice
that in this example, Γ5 intersects Γ1. Let us denote by VIII and IX the regions
delimited by these curves as shown in Fig. 12(b). According to Theorem 5.5, for all
p0 ∈ (F6(0.0003), F7(0.0003)), with F6(0.0003) ≈ 27.05 and F7(0.0003) ≈ 594.7, we
have (0.0003, p0) ∈ U and hence Ec is unstable as soon as (p0, S0) ∈ VIII ∪ IX, see
Fig. 12(b). Note that the curve Γ1 is not convex and the region VII is not connected.

7. Discussion. In this work we have generalized the model of competition in
the chemostat with an inhibitor [18, 21] by considering generic growth rate functions
of competitors and absorption rate of external inhibitor. Our mathematical analysis
of the model has revealed 9 possible behaviors. We have first shown the existence
of a unique positive equilibrium that may be locally asymptotically stable while all
other equilibria are unstable. In a first step, we studied the existence and stability
of equilibria of the model with respect to the operating parameters D, p0 and S0, by
fixing the biological parameters. Next, we gave the necessary and sufficient conditions
on those operating parameters for which the positive equilibrium Ec is unstable. Since
the effect of the operating conditions on the dynamic characteristics of the system can
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II←

VI

VII←IV

VIII

IX

I
↓

III

Fig. 12. (a): The subset of (D, p0) on which (48) holds. (b): The operating diagram (p0, S0)
for D = 0.0003. The biological parameters are given in Table 5, Case 7.

p0

S0 (a)

F7(0.0003)

II↘

VI

VII

←VII

←IV
←V

←VIII

IX

I
↓

III

p0

S0 (b)

F6(0.0003)

II
↖

VI

VIII←IV

VII

↘IX

I

III

Fig. 13. Supplementary information on the operating diagram shown in Fig. 12. (a): The full
operating diagram. (b): A zoom near the origin. The nine regions I, ..., IX are non empty. The
region VII is not connected. The growth functions are given by (71) and the biological parameters
are given in Table 5, Case 7.

be summarized with the aid of the operating diagram, we considered the one that has
the operating parameters D, S0 and p0 as its coordinates. As it is not easy to represent
the regions of existence and stability of the equilibria in a three dimensional space,
we fixed the operating parameter D and showed the regions of existence and stability
in the operating plane (p0, S0) in which the various outcomes occur.

To maintain the coexistence of species in the chemostat, the ideally parameter
values of S0 and p0 should be chosen in the region VI∪VII, of coexistence but not
in the other regions of washout or exclusion of one species. A region VIII∪IX may
occur, on which Ec is unstable. The simulations given showed that the region IX
never exist for the Monod growth functions which agrees with a Conjecture of Hsu
and Waltman [18]. However we showed that this region can exist for Holling type 3
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growth functions.
Our main contribution in this work is the determination of the operating diagram

and the analysis of its dependence with respect to the biological parameters. As it was
noticed by Smith and Waltman, [29], p. 252, the operating diagram is probably the
most useful answer for the discussion of the behavior of the model with respect of the
parameters. This diagram shows how robust or how extensive is the parameter region
where coexistence occurs, where the coexistence equilibrium is stable and where it is
unstable.
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