Using ROBDDs for troubleshooting - Archive ouverte HAL
Communication Dans Un Congrès Année : 2000

Using ROBDDs for troubleshooting

Thomas Nielsen
  • Fonction : Auteur
Finn Jensen
  • Fonction : Auteur
Uffe Kjaerulf
  • Fonction : Auteur

Résumé

When using Bayesian networks for modelling the behavior of man-made machinery, it usu­ally happens that a large part of the model is deterministic. For such Bayesian networks the deterministic part of the model can be represented as a Boolean function, and a cen­tral part of belief updating reduces to the task of calculating the number of satisfying configurations in a Boolean function. In this paper we explore how advances in the calculation of Boolean functions can be adopted for belief updating, in particular within the context of troubleshooting. We present ex­perimental results indicating a substantial speed-up compared to traditional junction tree propagation.
Fichier non déposé

Dates et versions

hal-01573490 , version 1 (09-08-2017)

Identifiants

  • HAL Id : hal-01573490 , version 1

Citer

Thomas Nielsen, Pierre-Henri Wuillemin, Finn Jensen, Uffe Kjaerulf. Using ROBDDs for troubleshooting. 16th conference on Uncertainty in Artificial Intelligence, Jun 2000, Stanford, CA, United States. pp.426-435. ⟨hal-01573490⟩
62 Consultations
0 Téléchargements

Partager

More