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Abstract. These last years have seen the development of several exten-
sions of modeling platforms to include BDI agents. These extensions have
allowed modelers with little knowledge in programming and artificial in-
telligence to develop their own cognitive agents. However, especially in
large-scale simulations, the problem of the computational time required
by such complex agents is still an open issue. In order to address this dif-
ficulty, we propose a parallel version of the BDI architecture integrated
into the GAMA platform. We show through several case studies that
this new parallel architecture is much more efficient in terms of execu-
tion time, while remaining easy to use even by non-computer scientists.
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1 Introduction

The interest of using cognitive and emotional agents in social simulation has
been showed by many works [3, 23] and more and more models tend to inte-
grate such complex agents. This spreading is partly due to the integration in the
classic agent-based modeling platforms such as Netlogo [24] or GAMA [1, 10]
of dedicated cognitive agent architectures that simplify the definition of cogni-
tive agents through their modeling language. The architecture integrated in the
GAMA platform is particularly rich: it does not only allow to define cognitive
agents, but it links their cognition with an emotional module and a social-relation
engine.

However, even with these architectures, an issue still open is the computing
time they require. Indeed, as the studied systems are often composed of thou-
sands of entities, the computation time of the proposed tools is a true concern.
More-over, most of existing and generic agent-based modeling platforms execute
the simulation in a single thread/core (except for the visualization part), whereas



recent computers integrate 4 cores or more, not to mention the possibility to use
clusters and grids.

In order to address this problem and to benefit from multi-core architectures
during the execution of simulations, we propose in this paper a new version of
the BDI cognitive and emotional architecture integrated in the GAMA platform
[8, 22, 5], which allows to parallelize in a transparent way most of the required
computations.

This article is structured as follows: Section 2 proposes a state of the art on
the existing cognitive architectures integrated in simulation platforms as well
as the different works that concern the parallelization of agents in simulations.
Section 3 presents the parallel version of the cognitive architecture. Section 4
presents experiments carried out with this architecture. Finally, Section 5 pro-
vides a conclusion.

2 Related Works

2.1 Cognitive agent architectures

These last years, many cognitive architectures dedicated to agent-based simu-
lations have been proposed. A lot of them are based on the BDI paradigm [7].
This paradigm proposes a straightforward formalization of the human reasoning
through intuitive concepts (beliefs, desires and intentions).

In order to ease the development of BDI agents, some works have proposed
to integrate such an architecture into a specific framework. The most famous
are the Procedural Reasoning System (PRS) [14], JACK [11] and JADEX [17].
Unfortunately, these frameworks still require a high level in computer science
and Artificial Intelligence to be used.

To face this difficulty, other authors have proposed to directly integrate a BDI
architecture into generic agent-based modeling platforms that are often used for
social simulations. For example, an extension of NetLogo proposes a simplified
BDI architecture for educational purposes [20]. Agents have beliefs, intentions
and ways to answer to intentions. Another integration of the BDI architecture
concerns the GAMA platform. The developed architectures have been created to
be as complete as possible and available to a non expert public. It gives agents
a beliefs base, a desires base, an intentions base and a reasoning engine as well
as an emotional engine. Some works have already showed that the use of this
architecture ease the modeling of human beings [22, 4]. However, if some previous
works such as [23] showed that the architecture enables to simulate the behaviors
of thousands of agents, its limitation of execution in a unique thread (and thus
one core) raises a scalability question. To face this difficulty, we propose a new
version of this architecture that allows to parallelize some of its computations
on different computer cores.

2.2 Parallelization of a simulation

If defining an experiment that runs a set of simulations on several computer cores
(one simulation per core) is a common practice, in particular with dedicated



frameworks such as OpenMOLE [19], the parallelization of a unique simulation
is much more uncommon. A reason is that in agent-based simulations, the agents
often interact with many others, which makes difficult the decomposition of a
simulation. However, some works propose solutions to tackle this difficulty.

Among these works, some proposes ad’hoc workarounds dedicated to a spe-
cific model or to a specific application domain such as [16, 13] and thus cannot
be applied for all types of applications.

Other works propose sets of generic algorithms or toolkits such as MCMAS
[12] that integrates classic algorithms (diffusion, path-finding...) for agent-based
simulation. If this type of toolkits cannot be directly used by modelers that
are not computer scientists, they can be used as basic components to improve
modeling platforms.

At last, some works propose dedicated environments in which modelers have
to respect some specific constraints to define their agents [13, 18, 9]. If these
frameworks allow to obtain high scalability results, their use is far beyond the
reach of most of modelers, in particular when modelers have to define cognitive
agents.

To conclude, if solutions already exit to parallelize a simulation, their lack of
genericity and their difficulty of use explain why only few modelers use them.

The work proposed here propose that propose a way to address this issue by
offering the possibility to modelers to parallelize in a transparent some of the
computations required by the BDI architecture of GAMA.

3 Parallel cognitive and emotional architecture

Our architecture is based on the cognitive architecture integrated in GAMA
(simple bdi) [8, 22, 5], which aims at letting modelers use the BDI paradigm to
define their cognitive agents. The main strengths of this architecture is to be very
versatile (a minimal core with a lot of optional features) and usable even by a
non expert public [22, 4] through the use of the GAML language (the modeling
language of the GAMA platform). An important objective of this work was to
propose a new version of the architecture allowing to parallelize the computation
as easy to use as the current one with the minimum of new keywords. Thus, we
defined the new architecture such as using it rather than the classic one just
requires for the modeler to change the name of the control architecture from
simple bdi to parallel bdi.

Like the classic simple BDI architecture, our architecture provides agents
with 6 bases:

– Belief (what it thinks): the internal knowledge the agent has about the
world.

– Desire (what it wants): the objectives that the agent would like to accom-
plish.

– Intentions (what it is doing): the desire that the agent has currently chosen
to fulfill.



– Uncertainty (what it expects to be true): the uncertain events that the
agent expects.

– Emotions (what it feels): the emotions of the agent. In this work, emotions
are based on the OCC theory [15] which means they are seen as a valued
answer to the cognitive appraisal of a situation.

– Social relations (its relationship with others): the social links the agent has
with other agents. Here, social links are defined thanks to the dimensional
model of interpersonal relation of Svennevig [21]. A social link contains infor-
mations about liking, dominance, solidarity and familiarity towards another
agent.

The reasoning engine of the agents with the architecture is also almost similar
to the one of simple BDI, except that it integrates the notion of parallelization.
Indeed, in GAMA, the agents are scheduled as follow: at each simulation step,
every agents are activated one per one according to a given order, which is
by default, their order of creation, but that can be simply modified. Once a
BDI agent is activated, it executes its complete cycle of reasoning (perceives
the world, chooses and executes plans...). One of the major modifications of our
new architecture is to split this cycle in sub-steps that can be either parallelized
(i.e. distribution of the computation of this sub-step on the different cores of
the computer) or not. Thus, each sub-step can be executed sequentially (while
keeping the activation order defined by the scheduler) or in parallel (all BDI
agents execute the sub-step at the same time).

This reasoning engine is composed of 8 sub-steps (Figure 1).

Step 1. Degradation of predicates: The first step of the reasoning cycle is the
degradation of the knowledge of the agent. The predicates stored in the cognitive
bases are reduced in lifetime. This step is automatically parallelized.

Step 2. Degradation of emotions: The second step of the reasoning cycle is the
degradation of the emotions of the agent. The intensity of agent’s emotions are
reduced by their decay value. Like Step 1, this step is automatically parallelized.

Step 3. Perception: The third step of the reasoning cycle of the agent is the
perception of the environment. The perceptions are described by the modeler
through perceive blocks. Each perceive block is applied and can participate to
update the beliefs of the agent and create social links with other agents. Example
of definition of perceive blocks through the GAML language can be found in [22].
As the modeler has the possibility to define interactions with other agents in a
perceive block that can introduce a parallel access to a variable (with for instance
a simultaneous writing and reading of the variable), we let the modeler choose if
he/she wants to parallelize each block or not. By default, all the perceive blocks
are parallelized, but a modeler can specify that he/she wants a perceive to be not
parallelized by just setting to false the parallel facet of the perceive statement.



Fig. 1. Schema of our reasoning engine

Step 4. Emotional contagion: The emotional contagion processes are defined in-
side a perceive block and allows an agent to update its emotions according to
the emotions of the nearby agents. As this step requires each agent to simul-
taneously modify its emotion bases and check the emotion bases of the nearby
agents, this step cannot be parallelized. As a consequence, the parallel facet of
a perceive block with emotion contagion statements inside should always be set
to false.

Step 5. Inference rules: In this step, the agent applies its inference rules to
manage the belief, desire and emotion bases according to its previous beliefs and
desires (and eventually to other events). This step gives a dynamic to the overall
behavior as the agent can act according to a change in the environment. These
inference rules can also be influenced by emotions or social relations. Example
of definition of rules through the GAML language can be found in [22] Like for
the perceive block, the modeler has the possibility in a rule to define interactions
with other agents. So, we let the modeler choose if he/she wants to parallelize



each rule or not. By default, all the rules are parallelized, but a modeler can
specify that he/she wants a rule to be not parallelized by just setting the false
value to the parallel facet of the rule.

Step 6. emotion computation: The emotion computation module, that is op-
tional, allows to automatically create, with no intervention from the modeler,
emotions based on the agent’s mental state. This creation process is based on
the OCC theory [15] and its logical formalism [2] which proposes to integrate
this theory in a BDI cognitive architecture. The creation process is detailed in
[6]. This step is automatically parallelized.

Step 7. Social relation updating: The social engine is used to dynamically update
the social relations of the agent with other agents according to the emotions and
the cognition. The computation formulations for the update of social relations
is described in details in [6]. This step is automatically parallelized.

Step 8. Choice and application of plans: This step consists in choosing one or
several plans and to execute them. The choice of a plan passes through the
choice of an intention and then of a plan to achieve this intention. The whole
process is influenced by the cognitive bases but also by the emotions and the
social relations of the agent and, through the execution of plans, can influence
these bases. This cognitive engine is described in details in [22]. As the execution
of plans will impact the other agents, this step cannot be parallelized.

This architecture (with its new extension) is already available within the
last version (1.7) of the GAMA platform [10]. As stated in the previous para-
graphs, modelers can easily use it - with just few lines of codes (by choosing
the parallelbdi control architecture and optionally setting the parallel of some
perceive and rule statements to false) - through the GAMA dedicated modeling
language.

4 Case Study

In order to validate the parallel BDI architecture, we test its results on the three
models provided with the BDI architecture:

– Gold Miners: this model concerns gold miners that try to find and extract
gold nuggets (see Figure 2). A Miner agent wanders around to find gold
nuggets. When it perceives some gold nuggets, it stores this information and
begins to extract the closest one then, it brings back the gold nugget to the
base and go to search for another gold nugget.

– Firefighters: this model concerns the actions of firefighters against fires (see
Figure 3). In this model, a firefighter agent patrols, looking for fires. When
it finds one, it tries to extinguish it by dropping water, and when it has no
more water, it goes to the nearest lake to refill its water tank.



– City Escape: this model concerns the evacuation of drivers from a city after
an hazard (see Figure 4). In the studied city, a factory of chemical products
is on fire and some products are spread into the air. If a driver smells the
toxic gas, he/she will think that it is possible that a catastrophe happened
so he/she will go to a shelter. Some drivers will not be afraid by the gas but
when they will see the fire, they will panic and go to the shelters twice faster
than the normal speed. In addition, if a driver sees other drivers fleeing,
he/she will have a probability to flee to a shelter.

Fig. 2. Snapshot of the Gold Miner model: the green circles are the miners, the yellow
triangles the gold nuggets, and the black square the base.

Table 1 gives quantitative information about the 3 models.
The experiment was carried out on a simple i7 windows laptop with 4 cores

and 32go of RAM. For each model, we stopped the simulation after 200 simu-
lation steps and we measured the computation time (without the display part -
the models are executed in batch mode) and an indicator to illustrate the output
difference between the simple BDI architecture and the parallel one. Indeed, as
the parallel architecture introduces modifications about the general scheduler of
GAMA, it is important to have an idea of the impact of this modification on the
simulation output. The indicator was defined as follow for the 3 models:

– Gold Miners: number of remaining gold nuggets after 200 simulation steps



Fig. 3. Snapshot of the Firefighter model: the black triangles are the firefighters, the
red circle the fires, and the blue squares the lakes

– Firefighters: number of remaining fires after 200 simulation steps

– City Escape: number of drivers that have not escaped after 200 simulation
steps

As the models are stochastic, we run 10 times each model (using the same se-
ries of seeds for the simple bdi and parallel bdi architectures) and we computed
the mean values for the computation time and the output indicator.

Table 2 and Table 3 present respectively the results obtained in terms of
output indicators and computation time for the 3 models with the two architec-
tures.

Table 1. Quantitative information concerning the 3 models

Data Gold Miner Fire fighter Escape city

number of cognitive agents 500 200 1000
number of plans per agents 4 2 3
number of perceive per agents 1 2 3
number of rules per agents 2 2 2
use of emotions false false true



Fig. 4. Snapshot of the Escape city model: the blue triangle are the drivers, the magenta
circles the shelters, the green circle the fire perception radius, and the red circle the
gas perception radius

The first result that we can observe is that the difference for the 3 models
in terms of output indicators is very low, which means that the use of our
architecture had a insignificant impact on the simulation results.

In terms of computation time, using the parallel BDI architecture allowed
for the two gold miner model to decrease the computation time by 38%, the fire
fighter model by 43% and the escape city model by 17%.

The fact that the improvement of the computation times of the escape city
model was less important whereas it integrates some features linked to the emo-
tional modules that are parallelized can be explained by the fact that the plans
carried out by the agents are more time-consuming. Indeed, the agent have first
to compute the shortest path between their current location and their target,
and then to move along the polyline roads. It could have been possible to modify
a bit the model to integrate the shortest path computation inside the perception
rather than in a plan to get a better result, but as the objective of the exper-
iment was to show that the use the parallel architecture allows to improve the
results by just changing the control architecture (without modifications of the
model), we did not.

Nevertheless, the results obtained are promising considering the fact that the
experiment was carried on a simple laptop computer. The improvement of the



computation time will have be far more important on a more powerful computer
(with more cores).

Table 2. Output indicator with the 3 models (mean results for 10 simulations)

Model using simple bdi parallel bdi

Gold Miner 1299.6 1303.3
Fire fighter 782.7 783.2
Escape city 964 978.2

Table 3. Computation times (in ms) with the 3 models (mean results for 10 simula-
tions)

Model using simple bdi parallel bdi

Gold Miner 8746 ms 5394 ms
Fire fighter 10455 ms 5862 ms
Escape city 6084 ms 5033 ms

5 Conclusion

In this paper, we have presented a parallelized version of the cognitive architec-
ture integrated in the GAMA platform. As shown by the experiments carried
out on three models, the use of the parallel BDI architecture that just requires
to change one or two words in the code allows to significantly decrease the com-
putation time required even on a simple laptop computer without altering the
simulation results.

We plan in the coming months to carried out more experiments with more
complex models and with a more powerful computer (with more than just 4
cores) in order to better evaluate the impact of the parallel BDI architecture.

In terms of improvements, we plan to work on the parallelization of the
emotion contagion step and of the choice and execution of plan step.
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