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1 Abstract  

In intertidal sediments, circadian oscillations (i.e., tidal and diel rhythms) and /or depth may 

affect prokaryotic activity. However, it is difficult to distinguish the effect of each single force 

on active community changes in these natural and complex intertidal ecosystems. Therefore, 

we developed a tidal mesocosm to control the tidal rhythm and test whether diel fluctuation or 

sediment depth influence active prokaryotes in the top 10 cm of sediment. Day- and night-

time emersions were compared as they are expected to display contrasting conditions through 

microphytobenthic activity in five different sediment layers. A multiple factor analysis 

revealed that bacterial and archaeal 16S rRNA transcript diversity assessed by 

pyrosequencing was similar between day and night emersions. Potentially active benthic 

Bacteria were highly diverse and influenced by chlorophyll a and phosphate concentrations. 

While in oxic and suboxic sediments, Thaumarchaeota Marine Group I (MGI) was the most 

active archaeal phylum, suggesting the importance of the nitrogen cycle in muddy sediments, 

in anoxic sediments, the mysterious archaeal C3 group dominated the community. This work 

highlighted that active prokaryotes organise themselves vertically within sediments 

independently of diel fluctuations suggesting adaptation to physicochemical specific 

conditions associated with sediment depth.  

 

Keywords: Archaea / Bacteria / active community / intertidal mudflat / mesocosm / diel cycle 

/ microphytobenthic biofilm  
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2 Introduction 

Diversity, activity and abundance of bacterial and archaeal communities in coastal mudflats 

vary greatly in space and time because of sharp gradients in salinity, temperature, nutrient 

concentration, oxygen and redox potential [1–4]. Other factors, such as depth [2, 5] and/or 

diel rhythm (i.e., day/night conditions) [6], may influence microbial community composition 

in intertidal zones. In these areas, the vertical distribution of prokaryotic communities 

depends on climatic factors such as storms, precipitation [7], tide, wind or wave action [8–10] 

as well as variations of biotic and others abiotic determinants such as salinity and temperature 

[11], organic carbon availability [12–14], inorganic nutrient content [15], bioirrigation and 

bioturbation [16–18], and microphytobenthic activity [19, 20].  

The high productivity recorded in intertidal mudflats [21] is partly due to the formation of a 

transient microphytobenthic biofilm that can develop at the surface during daily tidal 

exposure periods [22–24]. Studies have shown that microphytobenthos (MPB) impacted the 

prokaryotic community structure and activity by producing large amounts of extracellular 

polymeric substances [25] but also by uptaking large quantities of nutrients during the day 

[19, 26]. Few studies have investigated the fate of the organic matter produced and its impact 

on prokaryotic community composition during night-time high tide [8, 9]. At high tide, 

Thornton et al. [27] observed a drastic uptake of ammonium during the day compared to the 

night, suggesting shifts in the microbial groups involved in the nitrogen cycle. Moreover, a 

modelling approach in a subtidal estuary revealed a strong decrease in nitrification and 

denitrification rates associated with an increase in photosynthesis during the daytime [20], 

consistent with competition between MPB and prokaryotic communities for nutrient uptake 

[19]. All of this highlighted the importance of considering the co-occurrence of 

microphytobenthos and prokaryotes for understanding the ecological drivers of active 

bacterial and archaeal community structure. Together, these studies have revealed that 
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intertidal systems experience drastic changes during the tidal or/and diel cycle and highlight 

the complexity of microbial interactions in a spatially heterogeneous and temporally varying 

habitat.  

By considering a simplified intertidal system (i.e., at low tide), we aimed at testing 

whether microphytobenthic activity, and/or depth represented by the variation in 

environmental conditions shape active prokaryotic assemblages over a 24h period. We 

hypothesized that, at low tide, prokaryotic 16S rRNA transcript diversity may be different 

between day and night conditions as a result of an intense benthic primary production by 

diatoms during the day. The mix of regional and local factors that influence prokaryotic 

community composition in marine ecosystems and their relations are difficult to evaluate with 

in situ surveys [28]. Thus, we designed a tidal mesocosm experiment, with day and night 

exposure, to assess bacterial and archaeal 16S rRNA transcript diversity from five different 

depths of intertidal muddy sediments. 

3 Experimental procedures 

3.1 Sampling and tidal mesocosm set-up 

Muddy sediment samples (mean grain size: 11.7 µm ± 1.63 µm) were collected in April 2013 

on the ridges at low tide in the intertidal mudflat of Marennes-Oléron Bay (France, N 45° 54ʹ 

53ʺ; W 01° 05ʹ 23ʺ). Cores from 0 to 10 cm below sediment surface (bsf) were sliced into five 

layers (0-0.5 cm, 0.5-1 cm, 1-2 cm, 2-5 cm and 5-10 cm). Next, in the laboratory, each layer 

was sieved by hand without seawater addition through 500-µm-pore-sized mesh to remove 

macrofauna (i.e., grazers and bioturbators). The experimental PVC cores (height: 12 cm; 

diameter 12.5 cm) were reconstituted layer by layer and arranged in the main tank according 

to previous work [29], (Figure 5.a). 
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The tidal mesocosms consisted of a main tank and an overflow tank (Figure 5.a). Two 

identical tidal mesocosms were designed to study both day and night low tides (Figure 5.b). 

For the daytime mesocosm (Day, Figure 5.b), the experiment was started at 4 am with a 

simulated high tide; 15 h of light was followed by a dark cycle (light/dark 15:9, corresponding 

to the field light/dark conditions in April 2013) with a low or high tide every 6 h that was 

simulated by gradually rising or lowering the water level. For the night-time mesocosm 

(Night, Figure 5.b), the experiment was started at 4 am with a simulated high tide; 15 h of 

dark was followed by a light cycle (light/dark 15:9) with a low or high tide every 6 h. The 

cores were placed in the dark submitted to tidal cycle in the mesocosm for a two-week period 

before the experiment for nutrient equilibration. Water collected from Marennes-Oléron Bay 

was filtered through a 0.2-µm mesh and used for the overflow and recirculation system. After 

the settling period of two weeks, the cores were inoculated using 500-µm-sieved fresh MPB 

biofilm (chlorophyll a concentration: 118.96 and 87.19 µg g-1 sed DW, in the Day and Night 

experiment respectively) from the sampling site (0-0.5 cm bsf) [30] and fixed diel and tidal 

rhythms were applied. The core sampling was carried out at low tide (1 PM, Figure 5.b) in the 

two mesocosms five days after MPB inoculation at the maximum MPB biofilm growth 

period. Three cores were randomly harvested from each mesocosm and treated as biological 

replicates, and the corresponding 5 layers were collected separately. All abiotic and biotic 

parameters were analysed from the three replicate cores at each depth in the two mesocosms 

as described below except for RNA extraction (two cores were used as biological duplicates). 
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Figure 1. Schematic view of the experimental design. a) One mesocosm consisted of two 
tanks: a main and overflow tank; b) schedule for the Day and Night mesocosms. 
 

3.2 Abiotic and biotic parameters  

The depth temperature profiles were measured with five 3.1-cm-length Hobo sensors (Hobo 

Pro V2, Bourne, Massachusetts, USA) fixed on a homemade stick that was vertically pushed 

into a specific sediment core to stabilize the sensors at 5 depths (0.5 cm, 1 cm, 2 cm, 5 cm and 

10 cm below the sediment surface).  

The pore water pH and salinity were immediately measured on a supernatant after 

sediment centrifugation (15 min, 3 000 x g at 8°C) with a pH probe (Eutech Instruments 

PC150, Landsmeer, The Netherlands) and a conductivity meter (Cond 3110, TetraCon 325, 

WTW, Weilheim, Germany), respectively.  
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 The chlorophyll a concentration (Chl a), used as a proxy of algal biomass, was 

quantified with fluorimetry (640 nm, Turner TD 700, Turner Designs, USA) using 50 mg of 

freeze-dried sediment extracted in the dark at +4°C with 90% acetone (mixed by repeatedly 

turning) and centrifuged (10 min, 3 500 x g, +8°C). The Chl a concentrations were expressed 

as µg µg-1 sediment dry weight (DW) according to Lorenzen [31]. 

3.3 RNA extraction 

RNA was extracted for each depth from two biological duplicate cores of the two mesocosms 

(n= 20) with 5 g of liquid nitrogen-frozen sediment using a Power SoilTM Total RNA Isolation 

Kit (MOBIO, CA, USA) following the manufacturer's recommendations. Isolated RNAs were 

quantified using fluorimetry (NanoDrop, ND-800, Thermo Scientific, USA). The RNA 

samples were tested for the presence of contaminating genomic DNA using PCR (b341F-

518R for Bacteria [32] and 931F-M1100r for Archaea [33]; Online Resource Table S1) and 

then reverse transcribed with random hexamers using SuperScript III (Invitrogen, Life 

Technologies, USA). 

3.4 454 Pyrosequencing and bioinformatic analysis 

Amplification of the V3-V5 region of the 16S rRNA transcripts was performed for all the 

extracted samples (n=20) using the following primer set: for Bacteria 563F and 907R [34] 

and for Archaea 519F [35] and 915R [36] (Online Resource Table S1). Libraries were created 

for all five layers and the two mesocosms (the duplicates were pooled before sequencing, n= 

10). Pyrosequencing was accomplished using the GATC platform (Konstanz, Germany) with 

a Roche 454 GS-FLX system with titanium chemistry. All of the sequences were checked 

against the following quality criteria: (i) no Ns; (ii) quality score ≥27 and >30 for Bacteria 

and Archaea, respectively, according to the PANGEA process [37]; (iii) a minimum sequence 

length of 200 bp; and (iv) no sequencing error in the forward primer. After removing the 

primer sequence, the putative chimeras were detected using UCHIME [38]. The remaining 
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reads were clustered at 97% similarity threshold [39] with UCLUST [40]. The representative 

operational taxonomic units (OTUs) were used to build phylogenetic trees with FASTTREE 

[41] for the main taxonomic groups with reference sequences. These references were 

extracted to the SSUREF SILVA 119 [42] according to the following criteria: length >1200 

bp, quality score >75% and a pintail value >50. The taxonomic annotation was conducted 

with the nearest neighbour (NN) method. This process was implemented in the pipeline 

Phylogenetic Analysis of Next-generation AMplicons (PANAM 

https://github.com/panammeb/) and is described more in detail in a related study [43]. To 

retain and compare the largest possible number of samples, the datasets were resampled down 

to 13,000 and 800 sequences for Bacteria and Archaea, respectively (normalization process). 

The resulting datasets consisted of 25,600 OTUs (at 97% threshold) for Bacteria and 1,065 

OTUs (at 97% threshold) for Archaea. Singletons and plastids were removed for further 

analyses resulting in a dataset containing 9,664 bacterial OTUs and 465 archaeal OTUs 

3.5 Statistical analysis 

All values are presented as the mean (± standard error), and statistical analyses were 

performed with R software (R Core Team, 2013). The most influential environmental 

parameters measured driving both the bacterial and archaeal OTU97-relative-abundance 

dataset were identified using a forward selection procedure [44] with the function forward.sel 

in the package ‘packfor’ [45].  

A multiple factor analysis (MFA) was performed [46] using the package FactoMineR [47] to 

evaluate the distribution of bacterial and archaeal 16S rRNA transcript relative abundance 

(Online Resource Figure S1). The overall analysis involved a principal component analysis 

(PCA) applied to the entire table, in which each column of group i was standardized by the 

inverse of the first eigenvalue of the separate PCA of group i. Thus, the MFA was run using 

normalized bacterial and archaeal relative abundance (through the 16S rRNA transcripts 
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abundance) datasets as 2 different groups of variables. The 16S rRNA transcript distributions 

in both bacterial and archaeal datasets were not impacted by the normalization process 

(Procrustes correlation=0.98, P<0.01) by the removal of either plastids or singletons 

(Procrustes correlation=0.94-0.98, P<0.01). A third group of variables, containing the plastid 

abundance (resulting from sequencing dataset) and significant environmental parameters 

identified by the forward selection, was then added as additional variables to the MFA final 

ordination (Online Resource Table S2).  

Additionally, to explore the mean influence of a given factor (i.e., sediment depths), we 

decomposed the total inertia (Online Resource Figure S1) of the standardized table using 

between- and within-class analyses with the functions dudi.pca, bca and wca in the ‘ade4’ 

package [48]. 

4 Results  

4.1 Experimental conditions at low tide in the daytime mesocosm (Day) and night-time 

mesocosm (Night) 

In the sediment surface, the photosynthetic active radiation was 231 µmol photons m-2 s-1 

(±46 µmol photons m-2 s-1) during the simulated daytime low tide. The ambient temperature 

varied between daytime and night-time due to light warming, and the mean temperature was 

31.2°C (±6.3°C) and 20.2°C (±0.7°C), respectively. The sediment temperature was 25.7°C 

(±0.3°C) during the Day and 19.9°C (±0.1°C) during the Night experiment (Online Resource 

Figure S2). The salinity varied from 32.0 (±0.2) (Day) to 30.5 (±0.3) (Night), and the pH 

exhibited depth variations ranging from 6.8 to 7.6 in both Day and Night (Online Resource 

Figure S2).  



Microb Ecol 
DOI 10.1007/s00248-017-1048-1 
Published online on the 4th August 2017 

10 
 

4.2 Microphytobenthic biofilm 

Microphytobenthic biomass and potential activity was estimated through the quantification of 

chlorophyll a concentration (Online Resource Figure S2) and a record of 16S rRNA plastid 

transcripts, respectively. In the surface sediment (upper 0.5 cm), the chlorophyll a 

concentration was higher in the Day treatment (173.6 ±20.8 µg g-1 sed DW) than in the Night 

treatment (90.1 ±4.2 µg g-1 sed DW). These surficial concentrations represent an increase of 

46% and 3% of chlorophyll a content during Day and Night experiments, respectively, 

compared to the initial concentration of chlorophyll a added in each experiment. Then, the 

chlorophyll a concentration decreased with increasing depth, (i.e., 28 µg g-1 sed DW after 2 

cm below sediment surface (bsf, Online Resource Figure S2). This result could be congruent 

with a lower relative abundance of 16S rRNA transcript plastids-affiliated sequences in the 

Night treatment. During the Day exposure, these plastid-related sequences were abundant 

between 0 and 1 cm bsf, representing 56.7% of relative abundance of 16S rRNA transcript 

plastids-affiliated sequences in comparison to 39.4% during the Night exposure.  

4.3 A specific distribution of potentially active bacterial and archaeal community 

structures revealed by a multiple factor analysis  

A forward selection of 17 environmental variables highlighted the factors explaining a 

significant part of differences in bacterial and archaeal transcript diversity. The bacterial 16S 

rRNA transcript distribution was better explained by chlorophyll a and phosphate 

concentrations while archaeal 16S rRNA transcript distribution was better explained by depth 

and pH (Online Resource Table S2). Then, a multiple factor analysis (MFA) was used to 

investigate the distribution of both bacterial and archaeal 16S rRNA transcripts (Figure 6 and 

Online Resource Figure S2). The first dimension of the ordination discriminated the 5 

sediment layers from the surface to deep layers (Figure 6.a). A between-class analysis 

coupled to the MFA revealed that than 66% of the total MFA inertia was due to sediment 
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depth rather than Day/Night exposure, indicating that the diversity of both bacterial and 

archaeal 16S rRNA transcripts was largely structured along a vertical gradient in the 

sediments (Figure 6). This diversity was almost identical during the Day and Night treatments 

(5% total MFA inertia explained by the Day/Night factor; Figure 6).  

The bacterial taxa that contributed the most to the first dimension were δ-

Proteobacteria (4.14% contribution of the variable to the first dimension), Deferribacteres 

(3.80%), environmental group (i.e., BHI80-139, Candidate division OD1, Candidate division 

OP3, Candidate division TM7, Candidate division WS3, EM19, GOUTA4, Hyd24-12, JL-

ETNP-Z39, LD1-PA38, NPL-UPA2, TA06 and TM6) (3.64%), Chloroflexi (3.56%) and 

Armatimonadetes (3.13%) (Online Resource Figure S3).  

The archaeal taxa that contributed the most to the first dimension of the MFA were 

archaea group C3 (6.88% contribution of the variable to the first dimension), Euryarchaeota 

Rice Cluster V (6.63%), Euryarchaeota LDS group (5.92%), Euryarchaeota Thermoplasmata 

(5.82%), and Crenarchaeota Marine Benthic Group B (5.76%) (Online Resource Figure S3).  
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4.4 Bacterial 16S rRNA transcript diversity  

Coverage ranged from 71.8 to 88.4%, with maximum coverage recorded at the surface. Both 

the coverage values (Online Resource Table S3) and rarefaction curves (Online Resource 

Figure S4.a) indicated that we assessed a large part of the active bacterial community. Chao1 

index indicated that richness was higher in lower sediment layers (i.e., from 1-10 cm below 

the sediment surface) than in the upper one (i.e., from 0-1 cm bsf) during the Day exposure 

(Online Resource Table S3). During the Night exposure, richness was higher (from 11 625 to 

13 709 estimated OTUs) from 1 to 5 cm bsf (Online Resource Table S3).  

After the removal of singletons and plastid-related sequences, the bacterial dataset 

consisted of 9,663 OTUs (represented by 87,805 sequences). Bacterial sequences were related 

to 42 phyla affiliated with Proteobacteria, Planctomycetes, Firmicutes and Acidobacteria 

(65.63%, 5.36%, 4.16%, 3.08% of the sequences, respectively, Figure 7).  

The Proteobacteria transcript abundance ranged from 54.04 to 77.22% of the 

sequences. Together, the γ-Proteobacteria and the δ-Proteobacteria dominated the 

proteobacterial assemblage (from 70.94 to 82.17% of the proteobacterial-affiliated 

sequences). The γ-Proteobacteria represented 38.90% of the proteobacterial-affiliated 

sequences and were mainly retrieved in the sediment surface, from 0 to 2 cm bsf, with the 

exception of the Night treatment between 5 and 10 cm bsf. The δ-Proteobacteria represented 

36.86% of the total proteobacterial sequences and were mainly retrieved in the deeper horizon 

(from 2 to 10 cm bsf). The α-Proteobacteria sequences were less abundant, accounting for 

13.76 to 22.26% of the proteobacterial sequences, and their abundances were maximal from 1 

to 5 cm bsf. The β- and ε-Proteobacteria, were represented by less than 5% of the total 

proteobacterial sequences (Figure 7). 

Planctomycetes abundance ranged from 3.40 to 8.55% of the transcript relative 

abundance in each sample, except for the Day treatment’s surficial sediments (0-0.5 cm bsf), 
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in which they represented only 1.64%. Planctomycetes consisted in Phycisphaerae (43.86%) 

and Planctomycetacia (18.07%). A large portion of the Planctomycetes-affiliated sequences 

fell into environmental groups such as the vadinBA30 marine sediment group. Interestingly, 

no anammox-like Planctomycetes (Brocadiales) were recorded in our dataset. 

 

Figure 3. Distribution of bacterial 16S rRNA transcripts. The relative abundance of the 
16S rRNA transcripts and the affiliation of the total bacterial operational taxonomic units 
(OTUs 97%) at the phylum level (except for Proteobacteria, class level) between the two Day 
and Night treatments among the five layers below the sediment surface (bsf). Environmental 
group contained BHI80-139, Candidate division OD1, Candidate division OP3, Candidate 
division TM7, Candidate division WS3, EM19, GOUTA4, Hyd24-12, JL-ETNP-Z39, LD1-
PA38, NPL-UPA2, TA06 and TM6. Note that plastids originated from microalgae were 
removed from the dataset. 
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4.5 Archaeal 16S rRNA transcript diversity 

For the archaeal 16S rRNA transcripts dataset, the rarefaction curves indicated that the 

sequencing depth captured almost all of the diversity present in the natural community 

(Online Resource Figure S4.b). Chao1 index showed that during both the Night and Day 

exposures, sediment layers from 1 to 2 cm below the surface, richness was higher (Online 

Resource Table S2). Archaeal sequences were affiliated with Thaumarchaeota, 

Crenarchaeota, Bathyarchaeota (all part of the TACK superphylum [49]) and Euryarchaeota 

(Figure 8).  

Between 0 and 5 cm bsf, Thaumarchaeota dominated the potentially active archaeal 

assemblage (from 53 to 83% of the transcript abundance). Thaumarchaeota were mainly 

represented by Marine Group I (MGI), ranging from 4.96 to 83.20% of the total transcript 

number, in the deeper and the surface layers, respectively. To a lesser extent, Halobacteriales 

were retrieved, ranging from 3.01 to 23.61% of the total transcript number, and the poorly 

known Rice Cluster V was represented from 0.79 to 9.44% of the total transcript abundance, 

with maximal occurrence in the surficial horizon (between 0 and 5 cm bsf). 

Between 5 and 10 cm bsf, a contrasting picture was observed, with a decrease in the 

abundance of the thaumarchaeal transcripts (less than 12.2% of the total sequences) in favour 

of the archaeal group C3 (from 73.6 to 77.8%), also called MCG15 [50].   
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Figure 4. Distribution of archaeal 16S rRNA transcripts. The relative abundance of the 
16S rRNA transcripts and the affiliation of the total archaeal operational taxonomic units 
(OTUs 97%) at the class level between the two Day and Night treatments among the five 
layers below the sediment surface (bsf). 

5 Discussion 

Previous research has reported that temperature and salinity impact the microbial 

communities in marine systems [51] and global surveys have attempted to explore the overall 

microbial diversity and distribution in oceans [52–54]. In this study, we have developed an 

original tidal mesocosm experiment to explore the effect of diel rhythms and/or sediment 

depth on the relative abundance of both bacterial and archaeal 16S rRNA transcripts 

originating from five sediment depths of an intertidal mudflat incubated at two different 

conditions. This work highlighted a greater impact of sediment depth rather than diel cycle on 
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potentially active prokaryotes in intertidal sediments colonized by a microphytobenthic 

biofilm. While experimental studies such as mesocosms do not replicate environmental 

conditions exactly, they consisted in valuable systems to simplify complex environments. By 

controlling specific environmental variables, mesocosms experiments allowed investigating 

local-scale community dynamics [28] but also elucidating microbial response to the given test 

conditions. In the present work, the similarity between Day and Night in terms of pH or 

prokaryotic abundance may indicate that there was no tank-induced variation and that the 

system was valuable for investigating the impact of specific factors.  

One important issue of the procedure used for this mesocosm experiment was that the 

cores used in this study were not kept intact from the field as macrofauna was removed by 

sieving the sediment by depth and the cores were then reassembled. This uncommon 

reassembling procedure inspired by Michaud et al. [29] allows a faster recovery of nutrient 

vertical profiles. While it could affect the diversity of bacterial and archaeal 16S rRNA 

transcripts, the core reassembly procedure may impact both Day and Night cores by the same 

way and thus do not interfere in the interpretation of the results.  

The results indicated that microphytobenthic (MPB) abundances decreased with depth 

according to light penetration (data not shown) and oxygen content (representing from 39 to 

60% of the bacterial transcript relative abundance between 0 and 1 cm bsf and representing 

less than 20% of bacterial transcript relative abundance from 1 to 10 cm bsf). The best blast 

match of these plastid transcripts sequences suggests that the microphytobenthic communities 

mainly belong to the diatom order Naviculales (nblast best hits: AF514848, AF514855, 

AF514847; Poulin et al. [55]). Interestingly, during the Night exposure, the plastids were 

primarily retrieved from 0.5 to 1 cm bsf, suggesting that the diatoms might not migrate to the 

sediment surface. This phenomenon may have resulted in the absence of the vertical 



Microb Ecol 
DOI 10.1007/s00248-017-1048-1 
Published online on the 4th August 2017 

18 
 

migration of MPB in the mesocosm system during night, which is congruent with a peak in 

cell division in the aphotic zone of the sediment [26]. 

This study highlighted that bacterial and archaeal 16S rRNA transcript diversity used 

as a proxy of potentially active bacterial and archaeal community layout is not modified by 

the diel cycle. The use of this proxy should be interpreted with caution considering the 

environmental parameters and specific taxa due to some inconsistent relationships between 

16S rRNA and activity [56]. However, previous work reported the value of examining 

communities at the 16S rRNA transcripts [57, 58].  The multiple factor analysis (MFA) 

indicated that the diel rhythm had a weak effect on both potentially active Archaea and 

Bacteria (5% total inertia, Figure 6.c), and that the prokaryotic communities were mainly 

shaped by sediment depth (66% of total inertia of the MFA, Figure 6.b). These issues are 

crucial because it means that a same pool of microorganisms incubated in two mesocosms and 

sampled at two different conditions did not follow a neutral random distribution but can 

exhibit a similar active organization with vertical-driven assemblages. A limited number of 

archaeal and bacterial phyla, including the Proteobacteria, Thaumarchaeota Marine Group I, 

Euryarchaeota Rice Cluster V, or Group C3, explained a large part of the variance and thus, 

represented the key phyla in the vertical assemblage distribution. This vertical configuration 

could be the reflection of microorganism adaptation and cooperation facing to their 

environment. The forward selection of the most influential environmental parameters (Online 

Resource Table S2) revealed that potentially active Bacteria were mainly influenced by the 

chlorophyll a and phosphate concentrations. Interestingly, the phosphate concentrations was 

already found to be an important factor influencing enzymatic activities and abundance of 

prokaryotes in the same intertidal mudflat [59]. In the current study, phosphate concentrations 

were correlated with bacterial taxa mainly retrieved in deeper layers between 2 and 10 cm bsf 

and this could be related to a phosphate release by some proteobacterial taxa [60].  Data 
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obtained in the present work suggested that archaeal 16S rRNA transcript relative abundances 

were mainly related to the pH in the sediments. However, the lack of cultured representative 

for many bacterial and archaeal environmental groups limits the physiology characterization 

of their adaptive abilities.  

Proteobacteria largely dominated the potentially active bacterial assemblage, with 

most of the 16S rRNA transcript sequences affiliated with δ-, γ- and α-Proteobacteria. The 

retrieval of δ-Proteobacteria has been largely reported in coastal and estuarine sediments [52, 

61], and may also be potentially active in intertidal mudflats. Moreover, the retrieval of OTUs 

affiliated with Desulfobacteraceae (from 0.82% to 8.02%) and Desulfobulbaceae (from 

0.72% to 7.04%), which are known to be involved in the sulfur cycle [62], supports the idea 

that this biogeochemical cycle is important in intertidal sediments. Indeed, some are 

commonly retrieved in sedimentary ecosystems [63], whereas others, such as Desulfobulbus, 

could oxidize sulfide through a filamentous cable [64]. Sequences affiliated with the 

unclassified Desulfuromonadales were also retrieved in the present work, and this 

environmental group has been previously reported in contaminated sediments and has in some 

cases been strongly correlated with heavy metals such as Fe, Cu and Cr [61]. Among the γ-

Proteobacteria, most of the sequences were related to the Dasania genus, even in the lower 

anoxic sediment samples (between 5 and 10 cm bsf), although this genus is known to contain 

obligatory aerobic Bacteria [65]. Thus, we hypothesized that this lineage might have 

developed tolerance mechanisms to anoxia or might contain phylotypes that are able to grow 

in anaerobic conditions.  

Our study also indicates the importance of potentially active Planctomycetes [66]. 

These Bacteria inhabit aquatic and terrestrial ecosystems but also inhabit ultra-dry soils [67], 

marine stromatolites [68], acid peat bogs [69] and hot springs [70]. In recent decades, this 

lineage has become of specific interest for microbial ecologists because these taxa have been 
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determined to be important players in the nitrogen cycle through anaerobic ammonia 

oxidation [71–75]. However, anammox-like Brocadiales were not found in our dataset and 

qPCR based analyses on hszA gene did not provide evidence of anammox process in this 

work (data not shown) which are congruent with previous work showing that all 

Planctomyctes were not implicated in this process [75].  

Our study also suggested the presence of potentially active Firmicutes. Related 

transcript sequences were affiliated with gut commensal groups such as Ruminococcaceae 

and Lachnospiraceae. However, in a large study, Zinger et al. [52] also reported this type of 

Bacteria in coastal sediments and hypothesized a terrestrial origin. This terrestrial-related 

group may be dispersed by episodic events such as river flooding, storms or discharge from 

the catchment area before sampling for the experiment occurred.  

Considering potentially active archaeal assemblages, a clear segregation was observed  

between 0 and 5 cm bsf where Thaumarchaeota 16S rRNA transcript numbers dominated 

(6.9-26.4% transcripts), while from 5 to 10 cm bsf the archaeal group C3 dominated (73.6-

77.8% transcripts). In this study, each sample was extracted in duplicates and then pooled 

before sequencing. While replicates should give robustness at the findings, all the issues of 

this study are congruent as Day and Night experiments were very similar and confirmed that 

the diversity described is reliable. As an important evidence this strong shift in archaeal 16S 

rRNA transcript diversity was observed in the two independent Day and Night experiments.  

The Thaumarchaeota Marine Group I is involved in the nitrification process in diverse 

ecosystems such as deep waters [76–78], estuarine and coastal waters [57, 79, 80], marine 

sediments [81, 82], lakes [83, 84], and soils [85, 86]. The abundance of Thaumarchaeota 

transcripts in the sediment of an intertidal zone strengthened the idea that the nitrogen cycle is 

of main influence in this environment [87, 88]. This finding was congruent with the increase 

in nitrate, which is the final product of nitrification, from 0-5 cm bsf. Moreover, previous 
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studies conducted in microcosm experiments in a French mudflat [89] indicated a dominance 

of potentially active Bathyarchaeota or Miscellaneous Crenarchaeotic Group (MCG) [90] and 

contrasted with another study conducted in a peatland in which an archaeal active assemblage 

was dominated by methanogens [91]. In our study, the archaeal group C3 dominated from 5 

to 10 cm bsf (73.6-77.8% transcripts). Several recent studies have reported its presence in 

hydrothermal vents [92, 93], methane seeps, cold seeps [94, 95], estuarine sediments [89] and 

lakes [84]. Although this group has been retrieved in diverse environments, it has rarely been 

recorded as abundant or active in any ecosystem. Despite the ubiquity of the archaeal group 

C3 in various sediments, little is known about its functional role in ecosystems.  

6 Conclusion  

Coastal sediments exhibit some of the highest levels of microbial diversity in the marine 

realm because they are located at the interface of terrestrial, aerial and aquatic systems and are 

nutrient-rich environments with a large proportion of anoxic/oxic niches. In intertidal 

systems, the inhabiting prokaryotes can be subjected to extreme changes in environmental 

conditions, leading to strong modifications of their metabolism. In particular, over a 24-h 

period, both the diel and tidal rhythms influence the photosynthesis process enacted by 

benthic micro-algae (i.e., microphytobenthos), thus driving the availability of oxygen and 

photosynthesis-derived products. In this context, using a tidal mesocosm, we demonstrated 

that this diel cycle did not impact the bacterial and archaeal 16S rRNA transcript diversity. 

Active Bacteria and Archaea were diverse, suggesting the capacity of this system to promote 

diverse ecosystem functions. Our work indicates that Bacteria and Archaea organize 

themselves in specific active assemblages vertically along sediment depth independently of 

diel fluctuations. These specific active assemblages were recorded with predominance of taxa 

such as Thaumarchaeota MGI or δ-Proteobacteria Desulfobulbus involved in nitrogen and 
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sulfur cycles, respectively. We thus hypothesize that the nitrogen and sulfur cycles may 

influence the presence of these specific active assemblages in a stringent zone where organic 

matter is less labile in order to maintain competitiveness. This work also highlighted the 

importance of considering less characterized groups, such as the archaeal C3 group that may 

be important factors in ecosystem functioning.  
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8 Figure legends 1 

Figure 5. Schematic view of the experimental design. a) One mesocosm consisted of two 2 

tanks: a main and overflow tank; b) schedule for the Day and Night mesocosms. 3 

Figure 6. Individual map from the multiple factor analysis (MFA) and inertia due to 4 

each factor. a) Each sample name represents the barycentre of the two positions according to 5 

the dataset: Bacteria (green) and Archaea (purple). The samples from Day experiment are 6 

circles and Night experiment samples are squares). Sediment depths (D1=0-0.5 cm; D2=0.5-1 7 

cm; D3=1-2 cm; D4=2-5 cm; D5=5-10 cm) are highlighted using ordihull from the ‘vegan’ 8 

package [96]. Pie charts (b and c) show the inertia of the MFA due to each factor:  b) 9 

Sediment depth and c) Day/Night experiment.  10 

Figure 7. Distribution of bacterial 16S rRNA transcripts. The relative abundance of the 11 

16S rRNA transcripts and the affiliation of the total bacterial operational taxonomic units 12 

(OTUs 97%) at the phylum level (except for Proteobacteria, class level) between the two Day 13 

and Night treatments among the five layers below the sediment surface (bsf). Environmental 14 

group contained BHI80-139, Candidate division OD1, Candidate division OP3, Candidate 15 

division TM7, Candidate division WS3, EM19, GOUTA4, Hyd24-12, JL-ETNP-Z39, LD1-16 

PA38, NPL-UPA2, TA06 and TM6. Note that plastids originated from microalgae were 17 

removed from the dataset. 18 

 Figure 8. Distribution of archaeal 16S rRNA transcripts. The relative abundance of the 19 

16S rRNA transcripts and the affiliation of the total archaeal operational taxonomic units 20 

(OTUs 97%) at the class level between the two Day and Night treatments among the five 21 

layers below the sediment surface (bsf).  22 
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