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In this article we study the validity of the Whitney C 1 extension property for horizontal curves in sub-Riemannian manifolds that satisfy a first-order Taylor expansion compatibility condition. We first consider the equiregular case, where we show that the extension property holds true whenever a suitable non-singularity property holds for the endpoint map on the Carnot groups obtained by nilpotent approximation. We then discuss the case of sub-Riemannian manifolds with singular points and we show that all step-2 manifolds satisfy the C 1 extension property. We conclude by showing that the C 1 extension property implies a Lusin-like approximation theorem for horizontal curves on sub-Riemannian manifolds.

Introduction

The success of sub-Riemannian geometry in geometric measure theory and nonlinear control is due to its simplicity and flexibility as a modeling tool and to the richness of the phenomena that it exhibits and allows to study. Other branches of mathematics, such as hypoelliptic operator theory and rough path theory use sub-Riemannian geometry as a natural underlying structure [START_REF]Geometry, analysis and dynamics on sub-Riemannian manifolds[END_REF].

A sub-Riemannian structure on a manifold M is characterized by a distribution ∆ ⊂ T M endowed with a point-dependent norm which can be used for measuring the length of horizontal curves, i.e., absolutely continuous curves which are tangent to ∆. Horizontal curves play a fundamental role in sub-Riemannian geometry, since the sub-Riemannian distance is defined as the minimal length of an horizontal curve connecting two points.

A natural metric property that it makes sense to test on a sub-Riemannian structure is the extendability of regular horizontal curves. The Euclidean counterpart of this property is the well-known Whitney extension theorem for a map γ from a closed subset K of R into R d , d ∈ N. In this case, the extendability holds under the sole assumption that the variation of the jets of γ on K is compatible with Taylor's expansions.

We study in this paper the counterpart of the Whitney extension theorem for C 1 horizontal (C 1 H in the following) curves in sub-Riemannian manifolds. A useful intermediate ground where this problem can be set is provided by Carnot groups. Whitney extension theorems for maps between Carnot groups have been the object of research in the past: in particular the case of real-valued C 1 functions on the Heisenberg group has been considered in [START_REF] Franchi | Rectifiability and perimeter in the Heisenberg group[END_REF] and extended to the general case of real-valued C m functions on Carnot groups in [START_REF] Vodopyanov | Whitney-type theorems on the extension of functions on Carnot groups[END_REF]. The problem which we consider here is different, since the domain of the map which we seek to extend is contained in R and the sub-Riemannian structure is taken on the codomain. The latter formulation of the problem has been proposed for Carnot groups by F. Serra Cassano in [START_REF] Cassano | Some topics of geometric measure theory in carnot groups[END_REF].

The question of extendability of C 1 H curves in Carnot groups has been answered positively in the case of the Heisenberg group by S. Zimmerman in [START_REF] Zimmerman | The Whitney extension theorem for C 1 , horizontal curves in the Heisenberg group[END_REF]. For general Carnot groups, it has been proved in [START_REF] Juillet | Pliability, or the Whitney extension theorem for curves in Carnot groups[END_REF] that the C 1 H extension property holds if and only if the group is pliable, that is, for every horizontal vector v the endpoint map C 0 u → E(v + u) is locally open at 0, where C 0 is the space of continuous functions u from [0, 1] to the horizontal distribution of the Carnot group such that u(0) = 0 and E(w) is the endpoint at time 1 of the trajectory starting at the identity and tangent to w. This characterization in terms of pliability, together with some tools from geometric control theory, are used in [START_REF] Juillet | Pliability, or the Whitney extension theorem for curves in Carnot groups[END_REF] to prove that step-2 Carnot groups satisfy the C 1 H extension property. Several examples of non-pliable Carnot groups are also presented.

A closely related subject is the one of Lusin-like approximations in Carnot groups, namely the property that an absolutely continuous horizontal curve coincides, out of a set of arbitrarily small measure, with a C 1 H curve. The validity of such a Lusin approximation theorem in the Heisenberg group has been proved in [START_REF] Speight | Lusin approximation and horizontal curves in Carnot groups[END_REF][START_REF] Zimmerman | The Whitney extension theorem for C 1 , horizontal curves in the Heisenberg group[END_REF] and extended to the case of step-2 Carnot groups in [START_REF] Le Donne | Lusin approximation for horizontal curves in step 2 Carnot groups[END_REF].

In [START_REF] Juillet | Pliability, or the Whitney extension theorem for curves in Carnot groups[END_REF] it is shown that if a Carnot group is pliable then it satisfies the Lusin approximation property.

In this paper we enlarge the analysis from Carnot groups to general sub-Riemannian manifolds (not necessarily equiregular). The first step of this program is to provide a suitable definition of the C 1 H extension property in sub-Riemannian manifolds. This is done by showing that C 1 H curves admit an intrinsic first-order Taylor expansion with uniform reminder, evaluated with respect to the sub-Riemannian distance. This can be seen as a form of uniform Pansu-differentiability for C 1 H curves (see also the results in [START_REF] Vodopyanov | Whitney-type theorems on the extension of functions on Carnot groups[END_REF], partially recalled in Section 5). The key for investigating this property is the use of nilpotent approximations, which characterize the infinitesimal metric structure at a point of the sub-Riemannian manifold. In the equiregular case, nilpotent approximations have a Carnot group structure and one can take advantage of the metric estimates given by the celebrated Ball-Box theorem [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]. The non-equiregular case can be tackled by desingularization.

The second step of our analysis consists in providing sufficient conditions for the C 1 H extension property in sub-Riemannian manifolds to hold true. In the equiregular case, the conditions are expressed in terms of the pliability properties of the nilpotent approximations. More precisely, we prove that the C 1 H extension property holds if every Carnot group corresponding to a nilpotent approximation of the sub-Riemannian manifold is strongly pliable, that is, for every horizontal vector v, not only the endpoint map C 0 u → E(v + u) is locally open at 0, but also there exists a sequence of points u n converging to 0 in C 0 such that E(v + u n ) = E(v) and u → E(v + u) is a submersion at u n for every n ∈ N. Strong pliability introduces a guarantee of structural stability in the inversibility of the endpoint map, allowing to deduce extendability properties on the sub-Riemannian manifold from those of the nilpotent approximations. As a consequence of this condition, we deduce that step-2 sub-Riemannian manifolds satisfy the C 1 H extension property. More generally, second order conditions for the local openness of the endpoint map can be used to express sufficient conditions for strong pliability in terms of the Goh and the generalized Legendre conditions.

Beyond its own metric interest, the C 1 H extension property can be used to characterize rectifiability in sub-Riemannian manifolds: we show that, if the C 1 H extension property holds true, then rectifiability by Lipschitz curves is equivalent to rectifiability by C 1 H curves. This equivalence is based on a generalization of Lusin approximation theorem for sub-Riemannian manifolds that satisfy the C 1 H extension property.

Article walkthrough

In Section 2 we recall some basic definitions and properties in sub-Riemannian geometry. In particular, we discuss two important tools used in the paper, namely the nilpotent approximation of a sub-Riemannian structure and the distance estimates given by the Ball-Box theorem. We also recollect some basic facts about the chronological exponential notation and we use the variation of constant formula to prove a useful distance estimate (Lemma 2.8).

Section 3 is dedicated to the study of the C 1 H -Whitney condition. Taking inspiration from the uniform Pansu-differentiability of C 1 H curves (Proposition 3.1), we propose a definition of the C 1 H -Whitney condition (Definition 3.2) which is proved to be independent of the choice of frame on equiregular manifolds (Proposition 3.4). In order to extend this result to general sub-Riemannian manifolds, we introduce in Section 3.2 forward and backward C 1 H -Whitney conditions. These asymmetric conditions turn out to be equivalent to the original C 1 H -Whitney condition on equiregular manifolds (Proposition 3.10). Forward and backward C 1 H -Whitney conditions can be recast in terms of the nilpotent approximations of the sub-Riemannian structure (Propositions 3.8 and 3.9). This proves useful in Section 3.3, where it is proved that the C 1 H extension property is inherited by the projection of an equiregular lift (Corollary 3.13).

In Section 4, we propose a sufficient condition for the C 1 H extension property to hold in terms of strong pliability (Definition 4.1). Strong pliability is always satisfied at regular values of the endpoint map and can be investigated through second order conditions at critical points (Section 4.1.2). In Section 4.2, we use uniform estimates for the nilpotent approximations to prove that strong pliability implies the C 1 H extension property for equiregular sub-Riemannian manifolds (Theorem 4.11). As a consequence of this result, together with the previous desingularization analysis, we are able to prove that all step-2 sub-Riemannian manifolds have the C 1 H extension property (Corollary 4.13). As a conclusion, we give in Section 5 an application of the C 1 H extension property, proving that it implies the Lusin approximation of horizontal curves (Proposition 5.3), which in turns can be used to characterize 1-rectifiability (Corollary 5.4).

Sub-Riemannian Geometry

In this section we introduce some classical notions from the fields of sub-Riemannian geometry and control theory that we use in the following sections. For more details, we refer to the publications cited below, in particular the books [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF], [START_REF] Jean | Control of nonholonomic systems: from sub-Riemannian geometry to motion planning[END_REF] and [START_REF] Agrachev | Introduction to Riemannian and Sub-Riemannian geometry[END_REF].

Sub-Riemannian manifolds

We give the definition of a sub-Riemannian manifold as it can be found in [START_REF] Agrachev | Introduction to Riemannian and Sub-Riemannian geometry[END_REF][START_REF] Boscain | Lipschitz classification of almost-Riemannian distances on compact oriented surfaces[END_REF].

Definition 2.1. Let M be a smooth connected manifold. A sub-Riemannian structure on M is a pair (U, f ) where i. U is a Euclidean bundle with base M and Euclidean fiber U q , i.e., for every q ∈ M , U q is a vector space endowed with a scalar product (• | •) q smooth with respect to q. In particular, the dimension of U q is constant with respect to q ∈ M .

ii. f : U → T M is a smooth map that is a morphism of vector bundles, i.e., f is linear on fibers and the diagram

U f / / π U ! ! T M π M is commutative (with π U : U → M and π : T M → M the canonical projections).
iii. The set of horizontal vector fields ∆ = {f (σ) | σ : M → U smooth section} is a Lie bracketgenerating family of vector fields.

A sub-Riemannian manifold is then a triple (M, U, f ) where M is a smooth manifold endowed with a sub-Riemannian structure (U, f ). The distribution of this manifold is the family of subspaces (∆ q ) q∈M where ∆ q = f (U q ) ⊂ T q M, and dim ∆ q is called the rank of the sub-Riemannian structure at q.

With an abuse of notation we will sometimes denote the sub-Riemannian manifold (M, U, f ) by (M, ∆, g), with g a quadratic form on ∆ obtained by projection of the Euclidean structure, as explained in the next definition.

Example 2.2. Recall that the Grushin plane [START_REF] Grušin | A certain class of hypoelliptic operators[END_REF] is a rank-varying sub-Riemannian structure on R 2 having as moving orthonormal frame

X 1 = ∂ x , X 2 = x∂ y .
In terms of Definition 2.1, such a sub-Riemannian structure is identified with the triple (R 2 , U, f ) where U R 2 × R 2 is the standard 2-dimensional Euclidean fiber over R 2 , and

f : U -→ T R 2 R 2 × R 2 ((x, y), (u, v)) -→ ((x, y), (u, vx)).
Definition 2.3. An absolutely continuous curve γ : I → M is said to be horizontal if there exists u : I → U measurable and essentially bounded such that γ = π U (u) and γ(t) = f (γ(t), u(t)) for almost every t ∈ I. If, moreover, there exists such a function u which is continuous, then γ is said to be a

C 1 H curve. For v ∈ ∆ q , set g(v, v) = inf{(u | u) q | f (q, u) = (q, v), (q, u) ∈ U }.
We then define the length of the horizontal curve γ as

l(γ) = I g( γ(t), γ(t)) 1/2 dt.
With this length we are able to define the Carnot-Caratheodory distance between two points p, q

∈ M as d SR (p, q) = inf {l(γ) | γ : (a, b) → M horizontal, γ(a) = p, γ(b) = q} .
Definition 2.4. Let (M, U, f ) be a sub-Riemannian manifold and Ω be an open subset of M . We call frame of the distribution on Ω a family of horizontal vector fields (X 1 , . . . , X m ) such that there exists a smooth Euclidean frame (e 1 , . . . , e m ) of the Euclidean bundle on π -1 U (Ω) that satisfies

X j = f * e j , 1 ≤ j ≤ m.
As a direct consequence of this definition, we have that for any two frames (X 1 , . . . , X m ) and (Y 1 , . . . , Y m ) on Ω, there exists a smooth map c from Ω to the orthogonal group O(m) such that

X i (q) = m j=1 c ij (q)Y j (q), 1 ≤ i ≤ m, q ∈ Ω.
Definition 2.5. Let ( M , U , f ) and (M, U, f ) be two sub-Riemannian manifolds. We say that ( M , U , f ) is a lift of (M, U, f ) if there exists φ : U → U a fiberwise isometry and ψ : M → M a submersion such that the diagram

U f / / φ T M ψ * U f / / T M is commutative.
A consequence of the isometry condition is that for d SR and d SR the respective sub-Riemannian distances of ( M , U , f ) and (M, U, f ), we have

d SR (ψ(p), ψ(q)) ≤ d SR (p, q), ∀p, q ∈ M . (1) 
Moreover, any frame (X 1 , . . . , X m ) of (M, U, f ) admits a lift ( X 1 , . . . , X m ) (i.e., ψ * X i = X i for all 1 ≤ i ≤ m) that is a frame of ( M , U , f ).

Example 2.6. Consider the standard Heisenberg group structure on R 3 , endowed with canonical coordinates (x, y, z) and frame (X 1 , X 2 ) such that

X 1 = ∂ x - y 2 ∂ z X 2 = ∂ y + x 2 ∂ z .
Its expression in terms of sub-Riemannian manifold is the following. We set U R 3 × R 2 to be the standard 2-dimensional Euclidean fiber over R 3 , and T R 3 R 3 × R 3 . By setting

f : U -→ T R 3 ((x, y, z), (u, v)) -→ ((x, y, z), (u, v, (vx -uy)/2))
we have that the diagram

R 3 × R 2 f / / π U $ $ T R 3 π R 3 is commutative. The submersion ψ : R 3 -→ R 2 (x, y, z) -→ (x, z + xy/2), induces the differential map ψ * : T R 3 -→ T R 2 ((x, y, z), (u, v, w)) -→ ((x, z + xy/2), (u, uy/2 + vx/2 + w)).
As a consequence,

ψ * • f ((x, y, z), (u, v)) = ((x, z + xy/2), (u, vx)).
Denoting by φ the fiberwise isometry

φ : U -→ U R 2 × R 2 ((x, y, z), (u, v)) -→ ((x, z + xy/2), (u, v))
and by f the smooth bundle morphism of the Grushin plane

f : U -→ T R 2 ((x, y), (u, v)) -→ ((x, y), (u, vx)) (see Example 2.2), one easily checks that ψ * • f = f • φ. Hence the Heisenberg group (R 3 , U , f ) is a lift of the Grushin plane (R 2 , U, f ).

Nilpotent approximation

Set ∆ 1 = ∆ and ∆ k+1 = ∆ k + [∆ k , ∆] for every integer k ≥ 1. At any point p ∈ M , the Lie bracket generating condition ensures that there exists an integer r ≥ 1, that we call step of the sub-Riemannian structure at p, such that

∆ 1 p ⊆ ∆ 2 p ⊆ . . . ∆ r-1 p ∆ r p = T p M. (2) 
The finite sequence of integers (dim ∆ 1 p , . . . , dim ∆ r p ) = (n 1 , . . . , n r ) is called growth vector at p. If the growth vector is constant on a neighborhood of p, p is said to be regular, and singular otherwise. The manifold itself is said to be equiregular if each of its points is regular and we say that it is singular if it contains singular points.

We call desingularization of (M, ∆, g) a lift ( M , ∆, g) of (M, ∆, g) that is equiregular. As shown in [Jea14, Lemma 2.5], at any given point p ∈ M , there exists a desingularization on some open neighborhood of p that has the same step as ∆ at p.

The relation between the flag (2) and the distance d SR is characterized by the so-called weights at p, that is the sequence of integers w = (w 1 , . . . , w d ) such that w j = s if n s < j ≤ n s+1 (with n 0 = 0). Written in full, that is w = (1, . . . , 1 n 1 times , 2, . . . , 2

(n 2 -n 1 ) times , . . . , r, . . . , r

(nr-n r-1 ) times

).

A (smooth) system of coordinates (x 1 , . . . , x d ) : Ω → R d is said to be a system of privileged coordinates at p if Ω is a neighborhood of p and

sup {s ∈ R | x j (q) = O(d SR (p, q) s )} = w j , 1 ≤ j ≤ d.
This definition implies that privileged coordinates belong to the class of linearly adapted coordinates at p, i.e., coordinates (x 1 , . . . , x d ) that satisfy

dx i (∆ w i p ) = 0, dx i (∆ w i -1 p ) = 0, 1 ≤ i ≤ d,
with ∆ 0 p = {0}. Existence of privileged coordinates has been proved in [AS87, [START_REF] Bianchini | Graded approximations and controllability along a trajectory[END_REF][START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]. A continuously varying system of privileged coordinates on an open Ω ⊂ M is a continuous map Φ : (p, q) -→ Φ p (q) ∈ R d defined on a neighborhood of the set {(p, p) | p ∈ Ω} in M × M such that for each p ∈ Ω, the mapping Φ p is a system of privileged coordinates at p.

The system of coordinates Φ can be used to define a pseudo-norm and a dilation, as follows: the pseudo-norm at p ∈ Ω is the map

• p : R d → R defined by (x 1 , . . . , x d ) p = d i=1 |x i | 1/w i , (3) 
with (w i ) 1≤i≤d the weights at p. Let λ > 0 and d λ : R d → R d be defined by

(d λ (y)) i = λ w i y i , 1 ≤ i ≤ d.
For p ∈ Ω, let δ p λ be the quasi-homogeneous dilation centered at p,

δ p λ : Ω -→ R d q -→ d λ • Φ p (q).
Then by construction, δ p λ (q) p = λ Φ p (q) p . For every horizontal vector field X and every p ∈ M , we call nilpotent approximation of X at p the uniform limit X on compact sets of R d of the vector field λδ p λ * X as λ → 0 + (see for instance [ABB16, Proposition 10.48]). Given a frame (X 1 , . . . , X m ) of the distribution, the vector bundle ( X 1 , . . . , X m ) endows R d with a structure of homogeneous space that depends on the point p but neither on the frame nor the system of privileged coordinates. This object is referred to as nilpotent approximation of (M, ∆, g) at p, and is denoted by (R d , ( X 1 , . . . , X m )) when referring to a specific choice of frame. In the equiregular case, the nilpotent approximation is not only a homogeneous space but actually has a Carnot group structure ([Bel96]).

Uniform distance estimates

Privileged coordinates and nilpotent approximations play a fundamental role in distance estimates which compare the pseudo norm (3) with the sub-Riemannian distance. The result below will be applied repeatedly in the rest of the paper.

Theorem 2.7 ([Jea14, Theorem 2.3]). Let p ∈ M be a regular point. There exist an open neighborhood Ω of p, a continuously varying system of privileged coordinates Φ on Ω, and two positive constants ε, C, such that for every pair (p, q) ∈ Ω × Ω with d SR (p, q) ≤ ε,

1 C Φ p (q) p ≤ d SR (p, q) ≤ C Φ p (q) p .
An application of this theorem is the following technical lemma (Lemma 2.8) that will be useful in later results.

In order to prove the lemma, we introduce a useful notation for the flow of time-dependent vector fields, the so-called chronological exponential [START_REF] Agrachev | Exponential representation of flows and a chronological enumeration[END_REF][START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF]. Let R×M (t, q) → X t (q) be a complete time-dependent vector field, measurable and locally bounded with respect to t and smooth with respect to q. For a, b ∈ R, a ≤ b, we denote by

-→ exp b a X t dt : M -→ M the map from M onto itself such that the curve γ : [a, b] → M defined by γ(t) = -→ exp t a X τ dτ (q 0 ) is absolutely continuous, satisfies γ(a) = q 0 and γ(t) = X t (γ(t)) for almost every t. For a ≥ b we set -→ exp b a X τ dτ = -→ exp a b X τ dτ -1 .
Let us recall the variation of constant formula. (For a reference, see Equation (2.28) in [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF]; notice that here we use the standard notational rule for the composition of maps, which explains the difference between the two expressions.) If X τ , Y τ are two time-dependent vector fields then

-→ exp t 0 (X τ + Y τ ) dτ = -→ exp t 0 -→ exp t τ X σ dσ * Y τ dτ • -→ exp t 0 X τ dτ, (4) 
where P * X is used to denote the pushforward of the vector field X along the diffeomorphism P . (In order to justify the writing in (4), all the vector fields should be complete. In the following, variations formula are used for local reasonnings around a point, so that completeness can be guaranteed by multiplying all vector fields by a suitable cut-off function.) In particular if X is a time-independent vector field, Equation (4) takes the form

-→ exp t 0 (X + Y τ ) dτ = -→ exp t 0 e (τ -t)adX Y τ dτ • e tX , (5) 
where for each smooth vector field V on M we denote by adV the endomorphism of the space of smooth vector fields on M defined by

adV (W ) = [V, W ].
Then e σadX Y τ admits the series expansion

e σadX Y τ = Y τ + N -1 k=1 σ k k! [X, . . . , [X, Y τ ]• • •] + R N (τ, σ), N ∈ N, (6) 
and there exists C > 0 such that for all compact K contained in a given coordinate neighborhood of M , all integer j ≥ 0,

R N (τ, σ) j,K ≤ C N ! e Cσ X j+1,K σ N X N j+N,K Y τ j+N,K , (7) 
where • j,K denotes the semi-norm on the space of smooth vector fields

f j,K = sup ∂ α f ∂x α (x) | x ∈ K, α ∈ N d , |α| ≤ j . (See [AS04, Equation 2.24].) As a consequence, if τ → Y τ j+N,K is bounded in L ∞ ([0, τ ]), then for σ near 0, R N (τ, σ) j,K = O(σ N ).
In the following, for a given frame (X 1 , . . . , X m ) and a given u ∈ R m , we denote by X u the horizontal vector field m i=1 u i X i .

Lemma 2.8. Let (M, ∆, g) be an equiregular sub-Riemannian manifold of dimension d, rank m and step r. Let (X 1 , . . . , X m ) be a frame of ∆ defined on an open subset Ω of M . Pick p ∈ Ω, ū ∈ R m , and φ : [0, +∞) → [0, +∞), continuous at 0 and such that φ(0) = 0.

Then there exist T > 0,

V p ⊂ Ω, V ū ⊂ R m neighborhoods of p, ū respectively, a function ω : R + → R + with ω(t) = o(t) at 0 + , such that if t ∈ [0, T ], p ∈ V p, u, v : [0, T ] → V ū continuous at 0 and |u -u(0)| ≤ φ, |v -v(0)| ≤ φ, u(0) = v(0), then d SR -→ exp t 0 X u(s) ds(p), -→ exp t 0 X v(s) ds(p) ≤ ω(t).
Proof. Without loss of generality we can assume u to be constant and the general result follows by triangular inequality. We apply Theorem 2.7 to endow a compact neighborhood Ω ⊂ Ω of p with a continuously varying system of privileged coordinates Φ.

We fix T > 0, V p ⊂ Ω and V ū ⊂ R m neighborhoods of p and ū, respectively, such that -→ exp

t 0 X v(s) ds(p) is in Ω for every t ∈ [0, T ], p ∈ V p, v : [0, T ] → V ū continuous at 0. Let p ∈ V p, u ∈ V ū and v : [0, T ] → V ū, continuous at 0, be such that |u -v| ≤ φ. For all t ∈ [0, T ] let γ(t) = e tXu (p) and ξ(t) = -→ exp t 0 X v(s) ds(p).
Step 1: rewriting ξ as a perturbation of γ. Let us set X = X u and

Z t = X v(t) -X u , so that ξ(t) = X(ξ(t)) + Z t (ξ(t)).
By the variation of constants formula,

ξ(t) = -→ exp t 0 (X + Z s ) ds(p) = -→ exp t 0
e (s-t)adX Z s ds e tX (p) .

Let W t

s = e (s-t)adX Z s and denote its integral curve by

η t (τ ) = -→ exp τ 0 W t s ds(γ(t)), ∀τ ∈ (0, t).
Hence the problem consists in proving that the distance d SR (ξ(t),

η t (0)) is a o(t).
Let us first establish a broader bound on d SR (ξ(t), η t (τ )). For every τ ∈ (0, t), by applying the variation of constants formula at ξ(τ ) we get

ξ(t) = -→ exp t τ (X + Z s ) ds(ξ(τ )) = -→ exp t τ e (s-t)adX Z s ds e (t-τ )X (ξ(τ )) = -→ exp t τ W t
s ds e (t-τ )X (ξ(τ )) .

On the other hand,

ξ(t) = η t (t) = -→ exp t τ W t s ds (η t (τ )) ,
and therefore η t (τ ) = e (t-τ )X (ξ(τ )) for all τ ∈ [0, t]. In particular there exists C > 0 such that

d SR (ξ(t), η t (τ )) ≤ C(t -τ ). ( 8 
) (See Figure 1.)
Step 2: bounding the pseudo-norm centered at ξ(t) of γ(t).

By possibly reducing T , we can assume that η t (τ ) ∈ Ω for every 0 ≤ τ ≤ t ≤ T . We then use the privileged coordinates Φ :

Ω × Ω → R d at ξ(t) to compute the pseudo-norm Φ ξ(t) (η t (τ )) ξ(t) . γ(t) p ξ(t) X + Z s X ξ(τ ) W t s η t (τ ) X
Figure 1: Representation of the curve η t , where η t (τ ) can be seen both as the evaluation at time τ of an integral curve of the non-horizontal vector field W t s and as the endpoint of the concatenation of an integral curve of X + Z s over [0, τ ] and an integral curve of X of duration t -τ .

Denote by (n 1 , . . . , n r ) the growth vector of the sub-Riemannian structure, by (w 1 , . . . , w d ) the corresponding weights, and by x = (x 1 , . . . , x d ) the coordinates Φ ξ(t) . We want to evaluate for all 1 ≤ i ≤ d the absolute value of

x i (γ(t)) = - t 0 W t s (η t (s)) i ds.
Taking N = r in the expansion (6) we have

W t s = Z s + r-1 k=1 (s -t) k k! [X, . . . , [X, Z s ]• • •] + R r (s, s -t). (9) 
The remainder R r can be bounded using (7). For each coordinate (R r (s,

s -t)) i , 1 ≤ i ≤ d, we have that (R r (s, s -t)) i 0,Ω ≤ C r! e C(s-t) X 1,Ω (s -t) r X r r,Ω Z s r,Ω .
Since |v -u| ≤ φ, the compactness of Ω and V ū implies the existence of C uniform such that

|(R r (s, s -t)) i | ≤ C(s -t) r φ(s).
We now use non-holonomic order arguments (see [Jea14, Section 2.1]) to bound the other terms in the expansion in (9). Let V k s = (adX) k-1 Z s for k ≥ 1. The vector fields X and Z s being horizontal, V k s ∈ ∆ k . As a consequence, the vector V k s has a non-holonomic order greater than or equal to -k at any p ∈ Ω . Coordinate-wise, at ξ(t),

ord ξ(t) (∂ x i ) = -w i , so that (V k s ) i then has non-holonomic order ord ξ(t) ((V k s ) i ) ≥ max(w i -k, 0).
Since V k s depends linearly on v -u, there exists C k > 0 such that for q ∈ Ω sufficiently close to ξ(t),

(V k s ) i (q) ≤ C k φ(s) d SR (ξ(t), q) max(w i -k,0) . Using estimate (8), (V k s ) i (η t (s)) ≤ C k φ(s)t max(w i -k,0) . Thus t 0 |(Z s ) i (η t (s))| ds ≤ C 1 t max(w i -1,0) t 0 φ(s) ds = t w i ψ 1 (t),
and

t 0 (t -s) k-1 V k s i (η t (s)) ds ≤ C k t max(w i -k,0) t 0 (t -s) k-1 φ(s) ds = t w i ψ k (t),
where for all positive integer k we denote by ψ k the positive bounded function

ψ k : [0, T ] t → C k t -k t 0 (t -s) k-1 φ(s)
ds, which is continuous and such that ψ k (0) = 0 (by continuity at 0 of φ). Thus, for all 1

≤ i ≤ d, |x i (γ(t))| ≤ t w i Ψ i (t),
with Ψ i : [0, T ] → R + a bounded function continuous at 0 such that Ψ i (0) = 0. Hence we have the uniform bound

Φ ξ(t) (γ(t)) ξ(t) ≤ d i=1 t(Ψ i (t)) 1/w i = ψ(t) t, (10) 
with ψ : [0, T ] → R + a function continuous at 0 such that ψ(0) = 0.

Step 3: Uniform estimates. Let ε, C > 0 be the constants associated with the neighborhood Ω in Theorem 2.7. Take

T > 0 such that if 0 ≤ t ≤ T , d SR (γ(t), ξ(t)) ≤ ε.
Therefore, by Theorem 2.7,

d SR (γ(t), ξ(t)) ≤ C Φ ξ(t) (γ(t)) ξ(t) ,
and, plugging in (10), we get

d SR (γ(t), ξ(t)) ≤ Cψ(t) t.
Thus, letting ω(t) = Cψ(t)t, we have the uniform bound

d SR e tXu (p), -→ exp t 0 X v(s) ds(p) ≤ ω(t).

C 1 H -Whitney condition on sub-Riemannian manifolds

We begin this section by proposing a definition of C 1 H -Whitney condition for curves in sub-Riemannian structures that requires the choice of a frame of the sub-Riemannian structure. We then show that such a definition is intrinsic and we explore a few consequences.

Recall that for a given frame (X 1 , . . . , X m ) and a given u ∈ R m , we denote by X u the horizontal vector field m i=1 u i X i .

Whitney frame-wise condition

We denote by (M, ∆, g) a sub-Riemannian manifold of dimension d. Let (X 1 , . . . , X m ) be a frame of ∆ defined on an open subset Ω of M . We say that (f, L) satisfies property P X on K if the following is true.

P X : K is a compact in R, f : K → Ω and L : K → T M are continuous. Moreover, there exist u : K → R m continuous and ω : R + → R + such that L(t) = X u(t) (f (t)) for all t ∈ K, ω(s) = o(s) at 0 + , and d SR f (t), e (t-s)X u(s) f (s) ≤ ω(|t -s|)
for all t, s ∈ K. This definition is motivated by the following proposition.

Proposition 3.1. Let (M, ∆, g) be a sub-Riemannian manifold and (X 1 , . . . , X m ) be a frame of ∆ defined on an open subset

Ω of M . Let f : R → Ω be a C 1 H curve. Then ( f | K , ḟ | K ) satisfies P X on K for any compact subset K of R. Proof. Let u ∈ C(R, R m ) be such that X u(τ ) (f (τ )) = ḟ (τ ) for every τ ∈ R. Then f (t) = -→ exp t s X u(τ ) dτ (f (s))
for every s, t ∈ R.

Let K be a compact subset of R and K a connected compact set of R containing K. For every s ∈ [0, +∞), set φ(s) = sup t∈K |u(t + s) -u(t)|. Notice that lim s→0 + φ(s) = 0 by uniform continuity of u on compact subsets of R.

Let us first consider the equiregular case. Let s ∈ K. We set v = u(s) ∈ R m and we apply Lemma 2.8 at f (s) with φ as above. We get that there exist a neighborhood V s ⊂ R of s and a function ω s : R + → R + such that ω s (t) = o(t) at 0 + and

d SR f (t), e (t-t )X u(t ) f (t ) ≤ ω s (|t -t |) (11) for all t, t ∈ V s ∩K. Taking a finite cover V s 1 , . . . , V s N of K we have that ω(t) = max 1≤i≤N ω s i (t) = o(t) at 0 + and we deduce that ( f | K , ḟ | K ) satisfies P X on K.
Assume now that the manifold is singular. For every s ∈ K there exists a neighborhood Ω s of f (s) contained in Ω and a desingularization ψ : Ω s → Ω s such that Ω s is an open set in an equiregular sub-Riemannian manifold M . Let ( X 1 , . . . , X m ) be the lifted frame of (X 1 , . . . , X m ) on Ω s .

Then we fix f (s) ∈ ψ -1 (f (s)) and we set for all t in a neighborhood of s

f (t) = -→ exp t s X u(τ ) dτ ( f (s)).
By construction, ψ( f ) = f . We apply the equiregular reasoning on f at s, and we get the existence of ω s : R

+ → R + such that ω s (t) = o(t) at 0 + and d SR f (t), e (t-t ) X u(t ) f (t ) ≤ ω s (|t -t |)
for all t and t close enough to s. By projecting this inequality (see Inequality (1)), we get

d SR f (t), e (t-t )X u(t ) f (t ) ≤ ω s (|t -t |).
We conclude with the same compactness argument as in the equiregular case.

We then define the C 1 H -Whitney condition and the C 1 H extension property as follows.

Definition 3.2 (C 1 H -Whitney condition). Let K be a closed subset of R, f : K → M continuous, and

L : K → T M continuous. We say that the C 1 H -Whitney condition holds for (f, L) on K if for every t ∈ K, there exist a compact neighborhood K of t in K, an open set Ω ⊂ M and a local frame X of ∆ on Ω such that ( f | K , L| K ) satisfies P X on K . Definition 3.3 (C 1
H extension property). We say that a sub-Riemannian manifold M has the C 1 H extension property if for all closed subset K of R, all pair (f, L) : K → M × T M continuous satisfying the C 1 H -Whitney condition, there exists a C 1 H curve γ : R → M such that

γ |K = f, γ|K = L.
In the case where (M, ∆, g) is equiregular, we are able to show that the property of satisfying P X is intrinsic to the curve and does not depend on the choice of the frame. Proposition 3.4. Assume (M, ∆, g) to be an equiregular sub-Riemannian manifold. Let (X 1 , . . . , X m ) and (Y 1 , . . . , Y m ) be two frames of ∆ defined on an open subset Ω of M . Let K ⊂ R be compact and (f, L) : K → Ω × T M be continuous. Then (f, L) satisfies P X on K if and only if it satisfies P Y on K.

Proof. Let us assume that (f, L) satisfies P X on K. In particular, there exists ω X : R + → R + , such that ω X (t) = o(t) at 0 + and, for all t, s ∈ K,

d SR f (s), e (s-t)X u(t) f (t) ≤ ω X (|s -t|), with u : K → R m continuous such that L(t) = X u(t) (f (t)) for every t ∈ K. Let us prove that (f, L) satisfies P Y .
Let v : K → R m be a continuous map such that Y v(t) (f (t)) = L(t) for every t ∈ K. Since (X 1 , . . . , X m ) and (Y 1 , . . . , Y m ) are both frames of ∆, there exist smooth functions (c ij ) 1≤i,j≤m such that for all q ∈ Ω,

Y j (q) = m i=1 c ij (q)X i (q). Then m j=1 v j (t)Y j (q) = m i=1   m j=1 v j (t)c ij (q)   X i (q), t ∈ K, q ∈ M.
As a consequence of Lemma 2.8, for all t ∈ K there exist

T t > 0, V f (t) ⊂ Ω, V u(t) ⊂ R m neigh- borhoods of f (t), u(t) respectively, there exists ω t : R + → R + with ω t (s) = o(s) at 0 + , such that if p ∈ V f (t) , u ∈ V u(t) and v ∈ R m satisfy X u (p) = Y v (p) then d SR e sXu p, e sYv p ≤ ω t (s), s ∈ [0, T t ].
By compactness of f (K), there exists a finite cover

V f (t 1 ) , . . . , V f (t N ) of f (K). Then ω(t) = max 1≤i≤N ω t i (s) = o(s) at 0 + and we deduce that d SR e (s-t)X u(t) f (t), e (s-t)Y v(t) f (t) ≤ ω(|s -t|)
for all s, t ∈ K close enough. Then, for s, t ∈ K close enough,

d SR f (s), e (s-t)Y v(t) f (t) ≤ d SR f (s), e (s-t)X u(t) f (t) + d SR e (s-t)X u(t) f (t), e (s-t)Y v(t) f (t) ≤ ω X (|s -t|) + ω(|s -t|).
Thus (f, L) satisfies P Y on K.

Remark 3.5. The proof also shows that the definition of P X does not depend on the choice of the continuous function u such that L(t) = X u(t) (f (t)) for every t ∈ K.

Forward and backward Whitney condition

To extend the study of the C 1 H -Whitney condition to singular sub-Riemannian manifolds, we first have to break the symmetry in the definition of P X by comparing only flows going forward or backward in time (that is, by requiring either s < t or s > t in the statement of P X ). This new definition has two virtues. First, the asymmetric definition turns out to be equivalent to the symmetric one and it is easier to lift on a desingularized manifold. Second, the asymmetric definition lends itself well to the use of dilations, which will be useful in Section 4.

Consider an equiregular sub-Riemannian manifold (M, ∆, g) of dimension d, rank m and step r. Let (X 1 , . . . , X m ) be a frame of ∆ defined on an open subset Ω of M .

We say that (f, L) satisfies the property P X -forward, denoted by P F X , or P X -backward, denoted by P B X , on K if the following is true.

P F X : K is a compact subset of R, f : K → Ω is continuous, and L : K → T M is such that L(t) = X u(t) (f (t)
) for all t ∈ K for some u : K → R m continuous. Moreover there exists ω : R + → R + , such that ω(t) = o(t) at 0 + and

d SR f (t), e (t-s)X u(s) f (s) ≤ ω(t -s) ∀t > s ∈ K. P B X : K is a compact subset of R, f : K → Ω is continuous, and L : K → T M is such that L(t) = X u(t) (f (t)
) for all t ∈ K for some u : K → R m continuous. Moreover there exists ω : R + → R + , such that ω(t) = o(t) at 0 + and

d SR f (t), e (t-s)X u(s) f (s) ≤ ω(s -t) ∀t < s ∈ K.
Again, we emphasize that the difference between P B X and P F X is in the requirement that either t > s (for P F X ) or s < t (for P B X ). In analogy with Definition 3.2, we introduce the following notion.

Definition 3.6 (Backward and forward C 1 H -Whitney condition). Let K be a closed subset of R, f : K → M continuous, and L : K → T M continuous be such that L(t) ∈ ∆ f (t) for all t ∈ K. We say that the backward (respectively, forward) C 1 H -Whitney condition holds for (f, L) on K if for every t ∈ K there exist a compact neighborhood K of t in K, an open set Ω ⊂ M and a local frame X of ∆ on Ω such that ( f | K , L| K ) satisfies P B X (respectively, P F X ).

The reasoning in Section 3.1 still holds when we consider P X -backward and P X -forward. Hence the following result.

Proposition 3.7. Assume (M, ∆, g) to be an equiregular sub-Riemannian manifold. Let (X 1 , . . . , X m ) and (Y 1 , . . . , Y m ) be two frames of ∆ defined on an open subset Ω of M . Let K ⊂ R be compact and (f, L) : K → Ω × T M be continuous. Then (f, L) satisfies P F X (respectively, P B X ) on K if and only if it satisfies P F Y (respectively, P B Y ) on K.

Proposition 3.8 below reformulates the forward C 1 H -Whitney condition using dilations in privileged coordinates.

Proposition 3.8. Let (M, ∆, g) be an equiregular sub-Riemannian manifold. Let K ⊂ R be compact set, Ω be an open subset of M and (f, L) : K → Ω×T M be continuous. Let u : K → R m be continuous such that L(t) = X u(t) (f (t)) for every t ∈ K. Assume that there exists a continuously varying system of privileged coordinates Φ : Ω × Ω → R d as in Theorem 2.7. Then the pair (f, L) satisfies P F X if and only if for all l ∈ K, for all sequences (a n ) n∈N , (b n ) n∈N in K such that a n < b n and a n , b n → l ∈ K, we have lim

n→∞ δ f (bn) 1 bn-an (f (a n )) = e -X u(l) (0).
Proof. Let l ∈ K, (a n ) n∈N , (b n ) n∈N in K be such that a n < b n and a n , b n → l ∈ K. By assumption there exists two positive constants ε, C, such that for every pair (p, q) ∈ Ω × Ω with d SR (p, q) ≤ ε, it holds 1

C Φ p (q) p ≤ d SR (p, q) ≤ C Φ p (q) p .
Then, for n large enough,

1 C Φ f (bn) e (bn-an)X u(an) f (a n ) f (bn) ≤ d SR f (b n ), e (bn-an)X u(an) f (a n ) ≤ C Φ f (bn) e (bn-an)X u(an) f (a n ) f (bn) . (12) 
By introducing a dilation in the pseudo norm, we get Φ f (bn) e (bn-an)X u(an) f (a n ) 1/tn e tnX u(an) f (a n )

f (bn) = (b n -a n ) d 1 bn-an • Φ f (bn) e (bn-an)X u(an) f (a n ) f (bn) = (b n -a n ) δ f (bn) 1 bn-an e (bn-an)X u(an) f (a n ) f (bn) . Denoting t n = b n -a n , we get δ f (bn) 1/tn e tnX u(an) (f (a n )) = e tnδ f (bn) 1/tn * X u(an) δ f (bn) 1/tn (f (a n )) . Hence δ f (bn) 1/tn (f (a n )) = e -tnδ f (bn) 1/tn * X u(an) δ f (bn) 1/tn e tnX u(an) (f (a n )) . (13) 
f (bn) = 0.
It follows from (13) and the local uniform convergence of e -tnδ

f (bn) 1/tn * X u(an) towards e -X u(l) that lim n→∞ δ f (bn) 1/tn (f (a n )) = e -X u(l) (0).
Conversely, assume now that for all l ∈ K, for all sequences (a n

) n∈N , (b n ) n∈N in K such that a n < b n and a n , b n → l ∈ K, we have lim n→∞ δ f (bn) 1 bn-an (f (a n )) = e -X u(l) (0).
To prove that (f, L) satisfies P F X , we prove that Assume that there exist η > 0, (a n ) n∈N and (b n ) n∈N in K such that, for all n ∈ N, 0 < b n -a n < 1/n and e (bn-an)δ

f (bn) 1/(bn-an) * X u(an) δ f (bn) 1/(bn-an) (f (a n )) f (bn) > η.
Up to extraction, the sequences (a n ) n∈N and (b n ) n∈N converge to some l ∈ K, so that δ f (bn)

1 bn-an (f (a n )) → e -X u(l) (0).

Moreover e

(bn-an)δ

f (bn) 1/(bn-an) * X u(a) → e X u(l)
locally uniformly on R d . Thus e (bn-an)δ

f (bn) 1/(bn-an) * X u(an) δ f (bn) 1/(bn-an) (f (a n )) -→ 0 in R d , concluding the contradiction argument.
With an analogous proof we obtain the similar backward result.

Proposition 3.9. Let (M, ∆, g) be an equiregular sub-Riemannian manifold. Let K ⊂ R be compact and (f, L) : K → Ω × T M be continuous. Let u : K → R m be continuous such that L(t) = X u(t) (f (t)) for every t ∈ K. Assume that there exists a continuously varying system of privileged coordinates Φ : Ω × Ω → R d as in Theorem 2.7. Then the pair (f, L) satisfies P B X on a compact K ⊂ R if and only if for all l ∈ K, for all sequences (a n ) n∈N , (b n ) n∈N in K such that a n < b n and a n , b n → l ∈ K, we have that lim

n→∞ δ f (an) 1 bn-an (f (b n )) = e X u(l) (0).
We are now ready to prove that forward and backward C 1 H -Whitney conditions are equivalent.

Proposition 3.10. Assume (M, ∆, g) to be an equiregular sub-Riemannian manifold. Let (X 1 , . . . , X m ) be a frame of ∆ defined on an open subset Ω of M . Let K ⊂ R be compact and (f, L) : K → Ω × T M be continuous. The pair (f, L) satisfies P F X on K if and only if (f, L) satisfies P B X on K. Both are equivalent to (f, L) satisfying P X on K.

Proof. By symmetry of the definitions, we only prove that P F X ⇒ P B X using Proposition 3.9. The converse would use Proposition 3.8.

By applying Theorem 2.7 at f (l), we select a compact neighborhood Ω of f (l), a continuously varying system of privileged coordinates Φ on Ω and two constants ε and C such that for all (p, q) ∈ Ω × Ω with d SR (p, q) ≤ ε,

1 C Φ p (q) p ≤ d SR (p, q) ≤ C Φ p (q) p .
Let (a n ) n∈N and (b n ) n∈N be two sequences in K such that a n < b n and lim

a n = lim b n = l ∈ K. Let us denote by t n = b n -a n . Fix u : K → R m continuous such that L(t) = X u(t) (f (t)) for every t ∈ K.
By assumption 1 tn d SR e tnX u(an) f (a n ), f (b n ) → 0. Applying Proposition 3.9, let us prove that

δ f (an) 1/tn (f (b n )) -----→ n→+∞ e X u(l) (0). Since d SR e tnX u(an) f (a n ), f (b n ) → 0, there exists sequence (v n ) n∈N of controls, v n : [0, 1] → R m , such that |v n | ≤ 2d SR f (b n ), e tnX u(an) f (a n )
almost everywhere on [0, 1] and

f (b n ) = -→ exp 1 0 X vn(s) ds e tnX u(an) f (a n ) . Then δ f (an) 1/tn (f (b n )) = -→ exp 1 0 δ f (an) 1/tn * X vn(s) ds δ f (an) 1/tn e tnX u(an) f (a n ) . (14) 
Now, notice that

δ f (an) 1/tn * X vn(s) = m i=1 v i n (s) t n t n δ f (an) 1/tn * X i and that t n δ f (an) 1/tn * X i n∈N locally uniformly converges towards X i on R d , while the L ∞ -norm of vn tn is upper bounded by 2 t n d SR f (b n ), e tnX u(an) f (a n ) ,
which converges toward 0 almost everywhere on [0, 1]. Hence, by continuity of the endpoint map with respect to the control, -→ exp Again by local uniform convergence of t n δ f (an) 1/tn * X i towards X i for all 1 ≤ i ≤ m and by the convergence of (u(a n )) n∈N towards u(l), δ

f (an) 1/tn e tnX u(an) f (a n ) → e X u(l) (0), so that (14) implies δ f (an) 1/tn (f (b n )) -----→ n→+∞ e X u(l) (0).

Whitney condition on singular sub-Riemannian manifolds

The aim of this section is to extend what we know about the C 1 H -Whitney condition to the case of sub-Riemannian manifolds with singular points. This extension stands on the following result.

Proposition 3.11. Let ( M , ∆, g) be an equiregular lift of (M, ∆, g) on the open set Ω. Let (X 1 , . . . , X m ) be a frame of (M, ∆, g) on Ω and ( X 1 , . . . , X m ) be a frame of ( M , ∆, g) on Ω, the lift of (X 1 , . . . , X m ).

Let K ⊂ R be compact and (f, L) : K → Ω × T M be continuous. If (f, L) satisfies P X on K, then there exists a continuous lift ( f , L) : K → Ω × T M of (f, L) that satisfies P X on K.

Proof. Let (f, L) : K → Ω × T M be continuous and satisfying P X on K. We construct a lift ( f , L) : K → Ω × T M of (f, L) by lifting a suitable absolutely continuous extension of f . Let u : R → R m be defined as follows. We set u| K to be continuous and such that X u(t) = L(t) for all t ∈ K. For every (a, b)

⊂ K c such that a, b ∈ K, let d(a, b) = d SR e (b-a)X u(a) f (a), f (b) and let M = 2 sup d(a, b) b -a | (a, b) ⊂ K c , a, b ∈ K < ∞. Let (a, b) ⊂ K c , a, b ∈ K. Since b -d(a,b)
M > a, we can define u on R in the following way:

• if t ∈ a, b -d(a,b) M , we set u(t) = b -a b -a -d(a, b)/M u(a), • on b -d(a,b) M , b we take u measurable such that -→ exp b b-d(a,b)/M X u(s) ds e (b-a)X u(a) f (a) = f (b).
By definition of M , we can further assume that

|u(t)| ≤ M for all t ∈ b - d(a, b) M , b .
On the non-compact components of K c , we set u to be such that X u(t) = L(b) if the component is of the form (-∞, b), and X u(t) = L(a) if the component is of the form (a, ∞). Let us prove that for any t 0 , t ∈ K, we have

-→ exp t t 0 X u(s) ds (f (t 0 )) = f (t). ( 15 
)
For all t 0 ∈ K, there exists an open neighborhood O of f (t 0 ), Φ : Ō → R d a smooth system of coordinates and an open interval

I ⊂ R such that t 0 ∈ I, f (K ∩ I) ⊂ O and for all t ∈ I, -→ exp t t 0 X u(s) ds (f (t 0 )) ∈ O. Let f * (t) = Φ -→ exp t t 0 X u(s) ds (f (t 0 )) .
In order to prove (15), let us show that Φ(f (t)) = f * (t) for all t ∈ K ∩ I.

We denote by • the Euclidean norm with respect to the coordinates Φ. By continuity of Φ, there exists C > 0 such that

X i ≤ C, ∀q ∈ O, ∀1 ≤ i ≤ m and f (t) -e (t-s)X u(s) f (s) ≤ Cd SR f (t), e (t-s)X u(s) f (s) ≤ Cω(|t -s|), ∀t, s ∈ K ∩ I.
Hence for all t, s ∈ I ∩ K,

f (t) -f (s) ≤ f (t) -e (t-s)X u(s) f (s) + e (t-s)X u(s) f (s) -f (s) ≤ C (ω(|t -s|) + u ∞ |t -s|) ≤ C |t -s|, that is, Φ(f ) is C -Lipschitz continuous on K ∩ I.
Then Φ(f ) admits a C -Lipschitz continuous extension f on I.

To show (15), we then show that f * and f coincide on K ∩ I. Both are absolutely continuous and satisfy f * (t 0 ) = f (t 0 ). Furthermore, the derivatives of f * and f are almost everywhere equal on K, and for all (a, b)

∈ K c , a, b ∈ K, b a f * (s) ds = Φ(f (b)) -Φ(f (a)) = f (b) -f (a), since, by construction of u, -→ exp b a X u(s) ds (f (a)) = -→ exp b b-d(a,b)/M X u(s) ds e (b-a)X u(a) (f (a)) = f (b).
Hence for all t ∈ K ∩ I,

f * (t) = t t 0 f * (s) ds = t t 0 f (s) ds = f (t).
Let t 0 ∈ K and let f (t 0 ) be such that ψ f (t 0 ) = f (t 0 ), where ψ is as in Definition 2.5. We define the curve γ : R → M such that for all t ∈ R,

γ(t) = -→ exp t t 0 X u(s) ds f (t 0 ) .
Then for all t ∈ K, we set f (t) = γ(t) and L(t) = γ(t) = X u(t) (γ(t)). We claim that ( f , L) is a lift of (f, L). By construction of u and γ,

ψ(γ(t)) = -→ exp t t 0 ψ * X u(s) ds ψ( f (t 0 )) = -→ exp t t 0 X u(s) ds (f (t 0 )) = f (t)
for all t ∈ K and, since γ(t) = X u(t) , we have ψ * L(t) = X u(t) = L(t).

Let us now prove that such a lift satisfies the Whitney condition. To alleviate notations in the following, we set g = f and Y i = X i , 1 ≤ i ≤ m. Moreover, up to restricting Ω, we assume that there exists a continuously varying system of privileged coordinates Φ : (p, q) -→ Φ p (q) ∈ R d , on Ω. As a consequence of Proposition 3.10 it is enough to show that for all l ∈ K, for all sequences

(a n ) n∈N , (b n ) n∈N in K such that a n < b n and a n , b n → l ∈ K, we have lim n→∞ δ g(an) 1 bn-an (g(b n )) = e Y u(l) (0). ( 16 
)
For any interval (a, b) in R, by construction

g(b) = -→ exp b a Y u(s) ds(g(a)),
thus, by reparametrizing, 

δ g(a) 1 b-a (g(b)) = -→ exp b a δ g(a) 1 b-a * Y u(s) ds(0) = -→ exp 1 0 (b -a)δ g(a) 1 b-a * Y u(a+t(b-a)) dt(0). For any sequences (a n ) n∈N , (b n ) n∈N in K such that a n < b n and a n , b n → l ∈ K, (b n -a n )δ g(bn) 1 bn-an * Y i → Y i locally uniformly on R d , for all 1 ≤ i ≤ m. Hence to prove (16), we now show that for v n (t) = u(a n + t(b n -a n )), t ∈ [0, 1], v n L 1 ((0,1),R m ) --------→ n→+∞ u(l). For all n ∈ N, let K n = (b n -a n ) -1 (K -a n ) ∩ [0, 1]. By uniform continuity of u| K on compact subsets of K, ( v n | Kn ) n∈N uniformly converges to u(l). Regarding ( v n | K c n ) n∈N ,
(s) -u(l)| ds ≤ b -a - d(a, b) M u(a) b -a b -a -d(a, b)/M -u(l) + d(a, b) M (M + |u(l)|), ≤ (b -a) |u(a) -u(l)| + ω(b -a) 1 + 2|u(l)| M , (17) 
where we used P X for the inequality

d (a, b) ≤ ω (b -a).
Since K is a closed subset of R, K c is a countable union of open intervals, notably for all n ∈ N there exist I(n) ⊂ N and two countable (or finite) families of reals (

c k n ) k∈I(n) and (d k n ) k∈I(n) such that K c ∩ (a n , b n ) = k∈I(n) (c k n , d k n ).
Then

K c n ∩ (0, 1) = k∈I(n) c k n -a n b n -a n , d k n -a n b n -a n ,
and for all n ∈ N,

k ∈ I(n), (c k n , d k n ) is a connected component of K c , hence a bound of type (17) holds. Thus d k n -an bn-an c k n -an bn-an |v n (t) -u(l)| dt = 1 b n -a n d k n c k n |u(s) -u(l)| ds ≤ (c k n -d k n ) b n -a n u(c k n ) -u(l) + ω(d k n -c k n ) (b n -a n ) 1 + 2|u(l)| M ,
and

K c n |v n (t) -u(l)| dt = k∈I(n) d k n -an bn-an c k n -an bn-an |v n (t) -u(l)| dt ≤ v n | Kn -u(l) ∞ + 1 + 2|u(l)| M k∈I(n) ω d k n -c k n b n -a n .
As shown previously,

v n | Kn -u(l) ∞ → 0. Regarding k∈I(n) ω(d k n -c k n ) bn-an , recall that ω(t) = tφ(t) with φ(t) → 0 as t → 0 + . Then 1 b n -a n k∈I(n) ω(d k n -c k n ) < 1 b n -a n k∈I(n) (d k n -c k n )φ(d k n -c k n ) < sup [0,bn-an]
φ.

In other terms,

k∈I(n) ω(d k n -c k n ) b n -a n -----→ n→+∞ 0,
and

1 0 |v n (t) -u(l)| dt = Kn∩(0,1) |v n (t) -u(l)| dt + K c n ∩(0,1) |v n (t) -u(l)| dt -----→ n→+∞ 0.
Corollary 3.12. Let (X 1 , . . . , X m ) and (Y 1 , . . . , Y m ) be two frames of the singular sub-Riemannian structure (M, ∆, g) on the open subset Ω ⊂ M . Let K ⊂ R be compact and (f, L) : K → Ω × T M be continuous. Then, as in the equiregular case, (f, L) satisfies P X if and only if (f, L) on K satisfies P Y on K.

Proof. Let c : Ω → O(m) be a smooth map onto the orthogonal group such that

Y i = m j=1 c ij X j , 1 ≤ i ≤ m.
(See Definition 2.4.) Without loss of generality, there exists an equiregular lift ( M , X 1 , . . . , X m ) of the sub-Riemannian structure (M, X 1 , . . . , X m ) on Ω. We denote by ψ : M → M the associated submersion. Then let us define for all q ∈ Ω Y

i (q) = m j=1 c ij (ψ(q)) X j (q), 1 ≤ i ≤ m.
Then ( Y 1 , . . . , Y m ) is a smooth frame for the sub-Riemannian manifold ( M , ∆, g), and

ψ * Y i (ψ(q)) = m j=1 c ij (ψ(q))ψ * X j (ψ(q)) = Y i , 1 ≤ i ≤ m.
Let (f, L) be a curve in Ω satisfying P X on K. By applying Proposition 3.11, it can be lifted to a curve ( f , L) satisfying P X on K. Since the structure is regular on Ω, we have that ( f , L) satisfies P Y on K by Proposition 3.4. We conclude by noticing that (f, L) must then satisfy P Y on K. This is a direct consequence of the relation

d SR f (t), e (t-s) Yu f (s) ≥ d SR ψ f (t) , ψ e (t-s) Yu f (s) = d SR f (t), e (t-s)Yu f (s) ,
which holds for every u ∈ R m , as consequence of (1).

As a consequence, Definitions 3.2 and 3.3 for C 1 H -Whitney condition and extension property are independent of the choice of the frame, and we have the following immediate corollary. Corollary 3.13. Let (M, ∆, g) be a possibly singular sub-Riemannian manifold and let ( M , ∆, g) be an equiregular lift of (M, ∆, g). If ( M , ∆, g) has the C 1 H extension property, then so does (M, ∆, g).

A sufficient condition for the C 1 H extension property 4.1 Strong pliability

Definition 4.1 (Strong pliability). Let (q, u) ∈ M ×R m and let G = (R d , ( X 1 , . . . , X m )) be a nilpotent approximation of (M, ∆, g) at q. Define the space

C 0 = {v ∈ C 0 ([0, 1], R m ) | v(0) = 0}
and the map

F u : C 0 -→ G × R m v -→ -→ exp 1 0 X u+v(s) ds(0 G ), v (1) . 
The pair (q, u) is said to be strongly pliable if for all η > 0 there exists v ∈ C 0 such that v ∞ < η, F u (v) = F u (0) and F u is a submersion at v.

A pair (q, u) ∈ M ×R m is strongly pliable in particular when F u is submersion at 0. This definition relates to what has been called pliability of the vector X u in [START_REF] Juillet | Pliability, or the Whitney extension theorem for curves in Carnot groups[END_REF], i.e., the property that F u is locally open at 0. Naturally, if (q, u) is strongly pliable then X u is pliable. Recall also that if (q, u) is pliable then the curve [0, 1] t → e tXu cannot be rigid in the sense of [START_REF] Bryant | Rigidity of integral curves of rank 2 distributions[END_REF].

Regular points of the endpoint map

For every v ∈ C 0 , set F (v) = -→ exp 1 0 X u+v(s) ds(0 G ) and j(v) = v(1) so that F u (v) = (F (v), j(v)). We have D v j = j by linearity, so that D v F u = (D v F, j). With P t = -→ exp t 0 X u+v(s) ds, 0 ≤ t ≤ 1, we have D v F (w) = 1 0 P 1 * P -1
s * X w(s) ds(0 G ). We use this characterization to evaluate the corank of

F u at v. Let (λ, µ) ∈ R d+m * . If (λ, µ) ∈ ImD v F u⊥ then λ • 1 0 P 1 * P -1 s * X w(s) ds(0 G ) + µ • w(1) = 0 ∀w ∈ C 0 .
Let us rewrite

λ • 1 0 P 1 * P -1 s * X w(s) ds(0 G ) = m i=1 1 0 w i (s)ψ i (s) ds = w, ψ L 2 ((0,1),R m ) with ψ i (s) = λ • P 1 * P -1 s * X i .
Then for all w ∈ ψ ⊥ , the codimension 0 or 1 subspace of C 0 orthogonal to ψ, we have that (λ, µ)

• D v F u (w) = µ • w(1) = 0.
Having µ • w(1) = 0 for all w ∈ ψ ⊥ implies that µ = 0, since w(1) | w ∈ ψ ⊥ = R m . Hence elements of ImD v F u⊥ are of the form (λ, 0) with λ ∈ ImD v F ⊥ , and regular values of F u need only be regular values of F .

To study the regularity points of F , we introduce a more classical endpoint map, that is, the extension of

F to L ∞ ([0, 1], R m ): G : L ∞ ([0, 1], R m ) -→ G v -→ -→ exp 1 0 X u+v(s) ds(0 G ). Lemma 4.2. The pair (q, u) is strongly pliable if and only if for all η > 0 there exists v ∈ L ∞ ([0, 1], R m ) such that v L ∞ < η, G(v) = G(0) and G is a submersion at v.
Proof. If (q, u) is strongly pliable, then for all η > 0 there exists v ∈ C 0 such that v ∞ < η, F (v) = F (0) and F is a submersion at v. Since G is an extension of F , the same conclusion follows by replacing F by G.

Let now η > 0 and pick

v ∈ L ∞ ([0, 1], R m ) such that v L ∞ < η, G(v) = G(0) and G is a submersion at v, i.e., D v G : L ∞ ([0, 1], R m ) → R d is
surjective. By the remarks above, we are left to prove that there exists w ∈ C 0 such that w ∞ ≤ 2η and F (w) = F (0) and F is a submersion at w.

We have that

G ∈ C 1 (L ∞ ([0, 1], R m ), R d ) where L ∞ ([0, 1], R m
) is endowed with the L 2 -topology (see for instance [Tré05, Proposition 5.1.2], [Tré00, Section 3]). Moreover, C 0 is dense in L ∞ ([0, 1], R m ) for the L 2 topology. The conclusion then follows from Lemma 5.5 in the Appendix, taking V = L ∞ ([0, 1], R m ) endowed with the L 2 -topology, W = C 0 , F = G, and F n = F , v n = G(0) for every n ∈ N.

Corollary 4.3. If 0 is a regular value of G then the pair (q, u) is strongly pliable. Remark 4.4. An equivalent formulation of Corollary 4.3, extending [JS17, Section 6] is that if (q, u) is not strongly pliable, then [0, 1] t → e t Xu (0 G ) is an abnormal curve. We recall that a curve

[0, T ] t -→ -→ exp t 0 X v(s) ds(0 G ) is abnormal if the map L ∞ ([0, T ], R m ) -→ G w -→ -→ exp T 0 X w(s) ds(0 G ) is singular at v.
Remark 4.5. For every sub-Riemannian manifold (M, ∆, g), for all q ∈ M , the pair (q, 0) is strongly pliable. Indeed, the regularity of 0 for G in the case u = 0 is a consequence of Chow's theorem (see for instance [START_REF] Agrachev | Introduction to Riemannian and Sub-Riemannian geometry[END_REF]). The proof straightforwardly extends to pairs (q, u) such that X u (q) = 0.

Second order conditions

When 0 is a singular point for G, we can still give conditions ensuring strong pliability of (q, u) in terms of classical optimality and rigidity conditions (see for instance [START_REF] Agrachev | Abnormal sub-Riemannian geodesics: Morse index and rigidity[END_REF]). The result of this discussion is summarized in Figure 2.

Let us recall some classical conditions for G to have regular values v ∈ L ∞ ([0, 1], R m ) arbitrarily close to 0 such that G(v) = G(0). Namely, it is sufficient for [0, 1] t → e tXu not to be the projection of a Goh or a weak Legendre singular extremal (see [START_REF] Agrachev | Abnormal sub-Riemannian geodesics: Morse index and rigidity[END_REF], [AS04, Section 20.4], [ABB16, Section 12.3]). These conditions summarize as follows.

Proposition 4.6. For λ ∈ ImD 0 F ⊥ ⊂ T * e Xu (0 G ) G, λ = 0, and for all t ∈ [0, 1], let

λ t = e (1-t) Xu * λ. ( 18 
)
(In particular λ 1 = λ.) Let B G (λ, t) and B L (λ, t) be two bilinear forms on R m defined by

B G (λ, t; v 1 , v 2 ) = λ t • X v 1 , X v 2 , ∀v 1 , v 2 ∈ R m , and B L (λ, t; v 1 , v 2 ) = λ t • X u , X v 1 , X v 2 , ∀v 1 , v 2 ∈ R m .
If for all λ ∈ ImD 0 F ⊥ , λ = 0, there exist some t

∈ [0, 1], v 1 , v 2 ∈ R m such that either B G (λ, t; v 1 , v 2 ) = 0 (G) or B L (λ, t; v 1 , v 1 ) < 0 (L)
then (q, u) is strongly pliable. 

G(v) = G(0). Moreover, for λ ∈ ImD 0 G ⊥ , λ = 0, if there exist some t ∈ [0, 1], v 1 , v 2 ∈ R m such that either B G (λ, t; v 1 , v 2 ) = 0 or B L (λ, t; v 1 , v 1 ) < 0 then ind -λ Hess 0 G = +∞ ([AS04, Section 20.4]).
By smoothness of G with respect to the L 2 topology and L 2 -density of C 0 in L ∞ ([0, 1], R m ), we have ImD 0 G ⊥ = ImD 0 F ⊥ . The conclusion then follows from Lemma 4.2. In Figure 2, we represent the inclusion diagram of horizontal curves having properties related to strong pliability. By Goh, we intend curves that are the projection of some λ t (as in ( 18)) such that [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF]). An example of non-Goh curves are soft abnormals, introduced in [ABL17, Definition 1].

Pliable

λ 1 ∈ ImD 0 F ⊥ , λ 1 = 0, and for all t ∈ [0, 1], v 1 , v 2 ∈ R m , B G (λ 1 , t; v 1 , v 2 ) = 0. A Goh curve is strong (respectively, weak) Legendre if for all t ∈ [0, 1], v ∈ R m , B L (λ 1 , t; v, v) > 0 (respectively, B L (λ 1 , t; v, v) ≥ 0) (see
Let us present some consequences of Proposition 4.6. The following result is based on the fact that a non-Goh curve is strongly pliable. Proposition 4.7. Let q ∈ M and G = (R d , ( X 1 , . . . , X m )) be the nilpotent approximation of (M, ∆, g) at q. Let ∆ be the distribution generated by X 1 , . . . , X m . Let u ∈ R m be such that

+∞ k=0 (ad X u ) k ∆ 2 0 = T 0 G. ( 19 
)
Then (q, u) ∈ M × R m is strongly pliable.

Proof. The proof works by proving that, under condition (19), the curve t → e t Xu (0) is not Goh. The conclusion then follows from Proposition 4.6. Assume by contradiction that λ t is a lift of the integral curve of X u such that λ 1 ∈ ImD 0 F ⊥ , λ 1 = 0, B G (λ, t; v 1 , v 2 ) = 0 for all t ∈ [0, 1] and all v 1 , v 2 ∈ R m . Thus by differentiating t → B G (λ, t; v 1 , v 2 ) k times and passing to the limit as t → 1 -, we get

λ • (ad X u ) k [ X v 1 , X v 2 ] = 0 ∀k ∈ N, ∀v 1 , v 2 ∈ R m . If (19) is satisfied, then λ ∈ +∞ k=0 ((ad X u ) k ∆ 2 ) ⊥ 0 = T 0 G ⊥ = {0}, hence the statement.
We show below how Proposition 4.7 can be used to assess strong pliability for step-2 distributions and more generally to medium-fat distributions (see [START_REF] Rifford | Sub-Riemannian geometry and optimal transport[END_REF]). This result extends [JS17, Theorem 6.4] where it was proved, as an application of [BS90, Corollary 1.2], that for a step-2 Carnot group G every vector X u , u ∈ R m , is pliable.

Corollary 4.8. Let (M, ∆, g) be a sub-Riemannian manifold and assume that ∆ is medium-fat, i.e., for every q ∈ M and every u ∈ R m such that X u (q) = 0,

∆ 2 q + X u , ∆ 2 q = T q M. ( 20 
)
Then every pair (q, u) ∈ M × R m is strongly pliable.

Proof. The case where X u (q) = 0 follows from Remark 4.5. Let now q ∈ M and u ∈ R m be such that X u (q) = 0. Let Φ be a system of privileged coordinates at q. Recall that for all positive integer k > 0

∆ k 0 = Φ * ∆ k q and that X u , X i , X j (0) ∈ Φ * [X u , [X i , X j ]] (q) + ∆ 2 0 , for every 1 ≤ i, j ≤ m. (21) 
Assumption (20) then implies that ∆ 2 0 + X u , ∆ 2 0 = T 0 G. The conclusion follows from Proposition 4.7.

Another consequence of Proposition 4.6 (in particular, of the property that a curve that is not weak Legendre is strongly pliable) is the following. Corollary 4.9. Let (M, ∆, g) be a step-3 sub-Riemannian manifold. Let q ∈ M and u ∈ R m be such that the convex positive cone

C u = conv W (q) + [[X u , V ], V ](q) | V ∈ ∆, W ∈ ∆ 2 (22)
is equal to T q M . Then (q, u) is strongly pliable.

Notice that P η ([a, b]) ⊂ P η ([a, b]) if 0 < η ≤ η and define η([a, b]) = |b -a| + inf {η > 0 | P η ([a, b]) = ∅} . We claim that inf {η > 0 | P η ([a, b]) = ∅} < +∞, that is, there exists w ∈ C 0 ([a, b], R m ) such that w(a) = u(a), w(b) = u(b) and f (b) = -→ exp b a X w(s) ds f (a).
This can be deduced, for instance, from Lemma 5.5 in the Appendix taking as V the space of piecewise continuous controls on [a, b] endowed with the L 2 topology,

W = {w ∈ C 0 ([a, b], R m ) | w(a) = u(a), w(b) = u(b)}, F(v) = -→ exp b a X v(s) ds f (a)
, and F n = F| W , z n = f (b) for every n ∈ N. The existence of v ∈ V such that F is a submersion at v is a standard consequence of the Lie bracketgenerating condition (see, e.g., [START_REF] Sussmann | Some properties of vector field systems that are not altered by small perturbations[END_REF]).

Denoting by (-∞, b) and (ā, +∞) the two unbounded components of R \ K, we set f to be such that

f (t) = exp t -b X u( b) f ( b) if t < b, exp (t -ā) X u(ā) (f (ā)) if t > ā.
We complete the extension ( f , ū) of (f, u) on R by taking for each (a, b)

⊂ K c with a, b ∈ K some v ∈ P η([a,b]) ([a, b]) and setting ū(t) = u(a) + v(t), f (t) = -→ exp t a X u(a)+v(s) ds f (a), ∀t ∈ [a, b].
By construction, f : R → M is an extension of f and, for every t ∈ R such that u is continuous at t, the derivative ḟ (t) exists and is equal to X u(t) (f (t)). We are left to prove that u is continuous on R. Notice that by construction u| K and u| K c are continuous. We then focus on the continuity of u at points of ∂K.

Take τ ∞ ∈ ∂K and a sequence (τ n ) n ⊂ R \ K such that τ n → τ ∞ . For every n, let (a n , b n ) ⊂ K c be such that a n , b n ∈ K and τ n ∈ (a n , b n ). If there exists a constant subsequence ((a n k , b n k )) k∈N of ((a n , b n )) n∈N then lim k→∞ u(τ n k ) = u(τ ∞ ) by the continuity of u| [an k ,bn k ] . Assume then, without loss of generality, that lim

a n = lim b n = τ ∞ . Since |u(τ n ) -u(a n )| ≤ η([a n , b n ]) and u(a n ) → u(τ ∞ ),
the proof of the theorem is concluded by Lemma 4.12 below.

Lemma 4.12. Let (a n ) n and (b n ) n be two sequences in ∂K such that

(a n , b n ) ⊂ R \ K. If lim a n = lim b n = τ ∞ ∈ R then η([a n , b n ]) → 0.
Proof. To prove the lemma, we show that if lim

a n = lim b n < ∞ then inf {η > 0 | P η ([a n , b n ]) = ∅} → 0, as n → ∞.
Equivalently, given η > 0, we prove that there exists N (η) such that if n > N (η) then there exists

v n ∈ C 0 ([a n , b n ], R d ) such that                  v n (a n ) = 0, v n (b n ) = u(b n ) -u(a n ), v n ∞ < η, f (b n ) = -→ exp bn an X u(an)+vn(s) ds (f (a n )) . (24) 
By applying Theorem 2.7 at f (τ ∞ ), we pick a neighborhood Ω of f (τ ∞ ) and a continuously varying system of privileged coordinates

Φ : Ω × Ω -→ R d (x, y) -→ Φ x (y).
For x ∈ Ω and λ > 0, we associate with Φ the quasi-homogeneous dilation δ x λ . There exists a neighborhood V of 0 in

C 0 = {w ∈ C 0 ([0, 1], R m ) | w(0) = 0} such that -→ exp t 0 (b n -a n )X u(an)+w(s) ds (f (a n )) ∈ Ω
for all t ∈ [0, 1], w ∈ V and n large enough. Hence, setting t n = b n -a n , we define the endpoint map

F n : V -→ R d × R m w -→ δ f (bn) 1/tn -→ exp 1 0 t n X u(an)+w(s) ds (f (a n )) , u(a n ) + w(1) . If F n (w) = (0, u(b n )) and w ∞ < η then [a n , b n ] s → w s-an bn-an satisfies (24) (recall that δ f (bn) 1/tn (f (b n )) = 0
). Then we are left to prove that there exists N (η) such that if n > N (η), there exists

w n ∈ V such that w n ∞ < η and F n (w n ) = (0, u(b n )) .
Distributing the dilation we get

F n (w) = -→ exp 1 0 t n δ f (bn) 1/tn * X u(an)+w(s) ds δ f (bn) 1/tn (f (a n )) , u(a n ) + w(1) .
The Whitney condition ensures that δ f (bn)

1/tn (f (a n )) → e -X u(τ∞) (0) (see Propositions 3.8 and 3.10), and t n δ f (bn) 1/tn * X u(an)+w(s) is bounded and locally uniformly converges towards X u(τ∞)+w(s) . Hence F n locally uniformly converges towards

F ∞ : V -→ R d × R m w -→ -→ exp 1 0 X u(τ∞)+w(s) ds e -X u(τ∞) (0) , u(τ ∞ ) + w(1) .
Let G = (R d , ( X 1 , . . . , X m )) be the Carnot group structure of the nilpotent approximation of (M, ∆, g) at f (τ ∞ ). Denote by * its group operation, and recall that horizontal vector fields on G are leftinvariant with respect to * . Then

F ∞ (w) = e -X u(τ∞) (0) * -→ exp 1 0 X u(τ∞)+w(s) ds(0), u(τ ∞ ) + w(1) . With ψ(g, u) = e -X u(τ∞) (0) * g, u(τ ∞ ) + u , which is a diffeomorphism from R d × R m onto itself, we have that F ∞ = ψ • F u(τ∞) ,
where F u(τ∞) stands for the map introduced in Definition 4.1. Therefore, by the strong pliability hypothesis, there exists w η in V such that w η < η/2, F ∞ (w η ) = F ∞ (0), and F ∞ is a submersion at w η .

Notice that

F ∞ (0) = ψ • F u(τ∞) (0) = ψ e X u(τ∞) (0), 0 = e -X u(τ∞) (0) * e X u(τ∞) (0), u(τ ∞ ) = (0, u(τ ∞ )),
again by applying the * -left-invariance of X u(τ∞) . It follows from Lemma 5.5 in the Appendix, with V = W = V, F = F ∞ and z n = (0, u(b n )) for n ∈ N, that given η > 0, there exists N (η) > 0 such that for all n > N (η) the equation F n (w n ) = (0, u(b n )) has a solution w n with w n ∞ < η. This concludes the proof of the lemma. Proof. If the manifold (M, ∆, g) is equiregular, all pairs (q, u) ∈ M × R m are strongly pliable (see section 4.1.1, Corollary 4.8), hence the result by Theorem 4.11.

If the manifold (M, ∆, g) is not equiregular, it can be locally lifted to a step-2 equiregular manifold (see e.g. [Jea14, Section 2.4]). By Corollary 3.13, since equiregular step-2 sub-Riemannian manifolds have the C 1 H extension property, so does (M, ∆, g).

Lusin approximation of horizontal curves

Let (M, ∆, g) be a sub-Riemannian manifold, and let (X 1 , . . . , X m ) be a frame of the distribution. As a consequence of [Vod06, Theorem 2], we have the following Rademacher-type theorem.

Theorem 5.1. Let (M, ∆, g) be an equiregular sub-Riemannian manifold and (X 1 , . . . , X m ) be a frame of the distribution. Let γ : [a, b] → M be an absolutely continuous horizontal curve on M . Let Φ be a continuously varying system of privileged coordinates. For almost every t ∈ [a, b] there exists u ∈ R m , such that lim h→0 1 h d SR Φ γ(t) (γ(t + h)), e h Xu (0) = 0, where d SR is the Carnot-Caratheodory distance for the sub-Riemannian structure on R d having ( X 1 , . . . , X d ) as a frame, with G = (R d , ( X 1 , . . . , X d )) the nilpotent approximation of (M, ∆, g) at γ(t).

We will use the following corollary. Applying [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]Theorem 7.32] at γ(t), there exist ε > 0, C > 0 such that, as soon as max(d SR (γ(t), q), d SR (γ(t), q )) ≤ ε, we have d SR (q, q ) ≤ d SR Φ γ(t) (q), Φ γ(t) (q ) + C d SR 0, Φ γ(t) (q ) d SR Φ γ(t) (q), Φ γ(t) (q )

1/r ( 26 
)
where r is the step of (M, ∆, g).

For |h| sufficiently small, Φ -1 γ(t) e h X u(t) (0) is well defined and the triangular inequality yields d SR γ(t + h), e hX u(t) γ(t) ≤d SR γ(t + h), Φ -1 γ(t) e h X u(t) (0) + d SR e hX u(t) γ(t), Φ -1 γ(t) e h X u(t) (0) .

As a consequence of (26), since d SR 0, e h X u(t) (0) ≤ |h||u(t)|, in order to prove (25) it is sufficient to have both lim h→0 1 h d SR Φ γ(t) (γ(t + h)), e h X u(t) (0) = 0 and lim h→0 1 h d SR Φ γ(t) e hX u(t) γ(t) , e h X u(t) (0) = 0.

The first limit coincides with our assumption on t, and the second one is a consequence of two distance estimates for h small enough. First, from [Bel96, Propsition 7.26, Equation (50)],

1 C d SR Φ γ(t) e hX u(t) γ(t) , e h X u(t) (0) ≤ Φ γ(t) e hX u(t) γ(t) -e h X u(t) (0)

γ(t)
+ e h X u(t) (0)

1-1/r γ(t)

Φ γ(t) e hX u(t) γ(t) -e h X u(t) (0) where X i is the lift of X i for every 1 ≤ i ≤ m. Using (1), we deduce (25).

Following the classical scheme of proof for Lusin approximation theorems (see [LDS16, Spe16, JS17] for the case of Carnot groups), we give a version for general sub-Riemannian manifolds.

In the following we denote by L the Lebesgue measure on R. of full measure such that, for any t ∈ A, the curve γ admits an horizontal derivative at t, denoted by X u(t) (γ(t)) using the local frame (X 1 , . . . , X m ). Moreover, the family of functions over A, (f h ) h∈(0,1) , defined by f h (t) = 1 h d SR γ(t + h), e hX u(t) γ(t)

pointwise converges to 0 as h → 0. Applying the classical Lusin Theorem to the map u : A → R m , there exists a compact set K ⊂ A such that u is uniformly continuous on K and L(A \ K) < ε/2. Furthermore, by Egorov's Theorem, we have the uniform convergence of (f h ) h towards 0 on a compact subset K ⊂ K such that L(K \ K ) < ε/2. This implies that there exist ω : R + → R + and K such that ω(t) = o(t) at 0 + , L([a, b] \ K ) < ε, and d SR γ(t), e (t-s)X u(s) γ(s) ≤ ω(|t -s|), ∀t, s ∈ K .

The above result finds its application in the study of 1-countably rectifiable sets (see [START_REF] Le Donne | Lusin approximation for horizontal curves in step 2 Carnot groups[END_REF]). A set E ⊂ M is said to be 1-countably rectifiable if there exists a countable family of Lipschitz curves f k : R → M such that H 1 (E \ ∪ k f k (R)) = 0, where H 1 denotes the 1-dimensional Hausdorff measure.

Corollary 5.4. Let (M, ∆, g) be a sub-Riemannian manifold having the C 1 H extension property and let E be a 1-countably rectifiable subset of M . Then there exists a countable family of C 1 H curves f k : R → M such that H 1 (E \ ∪ k f k (R)) = 0.

  d SR f (b), e (b-a)X u(a) f (a) = 0.Thanks to estimate (12), we are left to prove that lim

X

  vn(s) ds locally uniformly converges towards the identity. On the other hand, δ f (an) 1/tn e tnX u(an) f (a n ) = e tnδ f (an) 1/tn * X u(an) (0).

  as a first step, let us compare u to u(l) on an interval (a, b) ⊂ K c , a, b ∈ K. For t ∈ (a, b -d(a, b)/M ), we have set u(t) = b-a b-a-d(a,b)/M u(a), and for t ∈ [b -d(a, b)/M, b), we have imposed |u(t)| ≤ M . Then b a |u

Proof.

  It follows from Lemmas 20.7 and 20.8 of [AS04] that, as soon as ind -λ Hess 0 G ≥ k ∀λ ∈ ImD 0 G ⊥ , λ = 0, with k the corank of G at 0, G has regular values v ∈ L ∞ ([0, 1], R m ) arbitrarily close to 0 such that

Figure 2 :

 2 Figure 2: Inclusion diagram of different classes of horizontal curves.

Corollary 4. 13 .

 13 All step-2 sub-Riemannian manifolds have the C 1 H extension property.

Corollary 5. 2 .

 2 Let (M, ∆, g) be a sub-Riemannian manifold. Let [a, b] ⊂ R and γ : [a, b] → M be an absolutely continuous horizontal curve. Then for almost every t ∈ [a, b] there exists u ∈ R m such that lim h→0 1 h d SR γ(t + h), e hXu γ(t) = 0. (25) Proof. Let us first consider the equiregular case. Let t ∈ [a, b] be such that there exists u(t) ∈ R m such that lim h→0 1 h d SR Φ γ(t) (γ(t + h)), e h X u(t) (0) = 0.

Proposition 5. 3 (

 3 Lusin approximation of an horizontal curve). Let (M, ∆, g) be a sub-Riemannian manifold having the C 1 H extension property and let γ : [a, b] → M absolutely continuous be an horizontal curve. Then for any ε > 0 there exists K ⊂ [a, b] compact with L([a, b] \ K) < ε and a curve γ 1 : [a, b] → M of class C 1 H such that γ and γ 1 coincide on K. Proof. Let ε > 0. We want to prove that there exists a compact set K ⊂ [a, b] with L([a, b] \ K) < ε such that the C 1 H -Whitney condition holds for (γ, γ) on K. The proposition then follows from the C 1 H extension property. By Corollary 5.2, there exists A ⊂ [a, b]

  Since u and f are continuous on K and a n , b n → l ∈ K, t n δ X u(an) locally uniformly converges towards X u(l) . This is a consequence of the local uniform convergence of λδ 1/λ * X u towards X u as λ → 0 (see[START_REF] Agrachev | Introduction to Riemannian and Sub-Riemannian geometry[END_REF] Proposition 10.48]). Thus e

				f (bn)
				1/tn *
			-tnδ	f (bn) 1/tn *	X u(an) locally uniformly converges towards
	e -X u(l) .		
	If (f, L) satisfies P F X then Equation (12) implies that
	lim n→∞	δ	f (bn)

  SR Φ γ(t) e hX u(t) γ(t) , e h X u(t) (0) ≤ C|u(t)||h| |u(t)| 1/r |h| 1/r + |u(t)| 1/r 2 |h| 1/r 2 ,hence the result in the equiregular case.If the manifold is not equiregular, as in the proofs of Propositions 3.1 and Corollary 4.13, we exploit the existence of local lifts of the sub-Riemannian structure that are equiregular. Consider an horizontal lift γ of γ. By the first part of the proof, we deduce that for almost every t ∈ [a, b] there exists u ∈ R m such that lim

			1/r
			.
			γ(t)
	Second, from [Jea14, Theorem 2.3, Equation (2.14)],		
	Φ γ(t) e hX u(t) γ(t) -e h X u(t) (0)	γ(t)	≤ C|u(t)| 1+1/r |h| 1+1/r .
	Combining the two,		
	d		

h→0 1 h d SR γ(t + h), e h Xu γ(t) = 0,
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Proof. Let G = (R d , ( X 1 , . . . , X m )) be the nilpotent approximation of (M, ∆, g) at q and ∆ be the distribution generated by X 1 , . . . , X m . Then G is of step 3 and

is equal to T 0 G (see (21)). Following Proposition 4.6, we assume by contradiction that there exists λ ∈ ImD 0 F ⊥ \ {0} such

for every V ∈ ∆. It then follows from the equality C u = T 0 G that λ • Z ≥ 0 for every Z ∈ T 0 G. This leads to a contradiction since λ = 0.

Example 4.10. Let (x 1 , x 2 , x 3 , y 1 , y 2 , w) be the canonical coordinates on R 6 and define

and we notice that

By [BLU07, Theorem 4.2.10], the Lie algebra generated by {X 1 , X 2 , X 3 } is a Carnot algebra. Take u ∈ R 3 and let us prove the strong pliability of (0, u). If u = 0, this is a consequence of Remark 4.5. If either u 1 or u 2 is non-zero, the strong pliability of (0, u) is a consequence of Proposition 4.7 since

Finally, if u 1 = 0, u 2 = 0 and

and the strong pliability of (0, u) follows from Corollary 4.9.

Strong pliability implies the C 1 H extension property

Theorem 4.11. Let (M, ∆, g) be an equiregular sub-Riemannian manifold. If every pair (q, u) ∈ M × R m is strongly pliable then the C 1 H extension property holds for (M, ∆, g). Proof. Let (f, L) satisfy the Whitney condition on a closed set K. Without loss of generality, K is compact, there exists a global frame (X 1 , . . . , X m ) of ∆ on M , and we can rewrite L = X u with u : K → R m continuous. Let us define f on K c , which is a countable and disjoint union of open intervals.

Let (a, b) ⊂ K c be such that a, b ∈ K. For any η > 0, we define the set

Appendix

Let us present here a useful technical result based on standard topological degree considerations.

Lemma 5.5. Let V be a normed space and W an affine and dense subspace of V . Fix v ∈ V and let F ∈ C 1 (V, R d ) be a submersion at v. Consider a sequence of functions F n : W → R d with the property that F n locally uniformly converges to F| W . Let, moreover, z n be a sequence in R d converging to F(v). Then there exists a sequence w n in W converging to v in V and such that, for n large enough,

Proof. By assumption there exist φ 1 , . . . , φ d ∈ V such that the map

Let v n be a sequence in W converging to v in V . Denote by W L the linear space {w-w | w, w ∈ W } and consider, for each i = 1, . . . , d, a sequence ϕ n i in W L converging to φ i in V . Then the sequence of maps

Let r > 0 be small enough so that the restriction of F to the ball B r (0) of center the origin and radius r is a diffeomorphism between B r (0) and F(B r (0)). Then G n | Br(0) uniformly converges to F| Br(0) . Hence, for any K compactly contained in F(B r (0)) and for n large enough, the topological degree d(G n , B r (0), z) is equal to 1 or -1 for every z ∈ K. In particular, choosing K = F(B ρr (0)) with ρ ∈ (0, 1/2) and replacing r by 2ρr in the above argument, we have that for n large enough, there exists x n ∈ B 2ρr (0) such that

In order to recover the convergence to v of the sequence v n + x n 1 φ n 1 + • • • + x n d φ n d it suffices to notice that if z n is in F(B ρr (0)), then x n can be chosen of norm smaller than 2ρr. The conclusion then follows from the convergence of v n to v and the uniform boundedness of {φ n j | j = 1, . . . , d, n ∈ N}.