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Abstract

Convergence of domain decomposition methods rely heavily on the ef-
ficiency of the coarse space used in the second level. The GenEO coarse
space has been shown to lead to a robust two-level Schwarz precondi-
tioner which scales well over multiple cores [19, 2]. The robustness is due
to its good approximation properties for problems with highly heteroge-
neous material parameters. It is available in the finite element packages
FreeFem++ [9], Feel++ [17], Dune [1] and is implemented as a standalone
library in HPDDM [10] and as such is available as well as a PETSc precon-
ditioner. But the coarse component of the preconditioner can ultimately
become a bottleneck if the number of subdomains is very large and ex-
act solves are used. It is therefore interesting to consider the effect of
inexact coarse solves. In this paper, robustness of GenEO methods is an-
alyzed with respect to inexact coarse solves. Interestingly, the GenEO-2
method introduced in [7] has to be modified in order to be able to prove
its robustness in this context.

Abstract

Convergence of domain decomposition methods rely heavily on the ef-
ficiency of the coarse space used in the second level. The GenEO coarse
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space has been shown to lead to a robust two-level Schwarz precondi-
tioner which scales well over multiple cores [19, 2]. The robustness is due
to its good approximation properties for problems with highly heteroge-
neous material parameters. It is available in the finite element packages
FreeFem++ [9], Feel++ [17], Dune [1] and is implemented as a standalone
library in HPDDM [10] and as such is available as well as a PETSc precon-
ditioner. But the coarse component of the preconditioner can ultimately
become a bottleneck if the number of subdomains is very large and ex-
act solves are used. It is therefore interesting to consider the effect of
inexact coarse solves. In this paper, robustness of GenEO methods is an-
alyzed with respect to inexact coarse solves. Interestingly, the GenEO-2
method introduced in [7] has to be modified in order to be able to prove
its robustness in this context.

1 Introduction

Convergence of domain decomposition methods rely heavily on the efficiency
of the coarse space used in the second level, see [15, 22, 16] and references
therein. These methods are based on two ingredients: a coarse space (CS) and
a correction formula (see e.g. [21]). The GenEO coarse space introduced in [19]
has been shown to lead to a robust two-level Schwarz preconditioner which
scales well over multiple cores. The robustness is due to its good approximation
properties for problems with highly heterogeneous material parameters. This
approach is closely related to [4]. We refer to the introduction of [19] for more
details on the differences and similarities between both approaches. Here we
will mainly work with a slight modification of the GenEO CS introduced in [2]
for the additive Schwarz method (see e.g. [22]) and the GenEO-2 CS introduced
in [7] for the P.L. Lions algorithm [11]. These variants are easier to implement
and in practice have similar performances although they may lead to a larger
CS. More details are given in Annex 5 where we explain how to adapt the
framework of [2] to the GenEO CS of [19].

We focus in this paper on a modification of the coarse component of the
correction formula. Indeed, the coarse component of the preconditioner can
ultimately become a bottleneck if the number of subdomains is very large and
exact solves are used. It is therefore interesting to consider the effect of inexact
coarse solves on the robustness. We show that the additive Schwarz method is
naturally robust. Interestingly, the GenEO-2 method introduced in [7] has to
be modified in order to be able to prove its robustness in this context. In the
context of domain decomposition methods, the robustness of the BDDC w.r.t.
inexact coarse solves has been studied in [23, 24] and in [13]. We focus here on
GenEO methods. Compared to works on multilevel methods such as [25, 3]
which are concerned with Schwarz multilevel methods where the coarse space
is obtained by a coarse grid discretisation of the elliptic problem, we explicitly
state robustness results of the two level method with respect to inexact coarse
solves when the coarse space is obtained by the solution of local generalized
eigenvalue problems. Moreover, we are not concerned only with Schwarz meth-
ods but also with P.L. Lions algorithm.

The general framework of our work is the following. Let M´1 be a one
level preconditioner further enhanced by a second level correction based on a
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rectangular matrix Z whose columns are a basis of a coarse space V0. The coarse
space correction is

ZpZT AZq´1ZT , (1)

and the coarse operator is defined by

E :“ ZT AZ . (2)

Let M´1 denote a one-level preconditioner, the hybrid two-level method is de-
fined by:

M´1
2 :“ Z E´1 ZT ` pI ´ Z E´1 ZTAqM´1pI ´AZ E´1 ZT q ,

see the balancing domain decomposition method by J. Mandel [12]. This formula
also appeared in an unpublished work by Schnabel [18], see [5] for more details
on the connections between these works.

We consider Geneo methods, where the coarse space V0 spanned by the
columns of Z is built from solving generalized eigenvalue problems (GEVP) in
the subdomains. Recall that these GEVP solves are purely parallel tasks with no
communication involved. This part of the preconditioner setup is not penalizing
parallelism. Actually, in strong scaling experiments where the number of degrees
of freedom of subdomains is smaller and smaller, the elapsed time taken by
these tasks will decrease. Thus, this task scales strongly. On the other hand,
as the size of matrix ZT AZ typically increases linearly with the number of
subdomains, the solving of the corresponding linear systems for instance with
a LU factorization becomes a bottleneck in two-level domain decomposition
methods. It is therefore interesting to estimate the robustness of the modified
two-level method when in (2) the operator E is approximated by some operator
Ẽ:

Ẽ » E ,

since it paves the way to inexact coarse solves or to three or more level methods.
Operator Ẽ may be obtained in many ways: approximate LU factorizations (e.g.
ILU(k), ILU-ε or single precision factorization), Sparse Approximate Inverse,
Krylov subspace recycling methods, multigrid methods and of course domain
decomposition methods. In the latter case, we would have a multilevel method.
Note that our results are expressed in terms of the spectral properties of EẼ´1

so that an approximation method for which such results exist is preferable.
More precisely, formula (2) is modified and the preconditioner we study is

defined by:

M̃´1
2 :“ Z Ẽ´1 ZT ` pI ´ Z Ẽ´1 ZTAqM´1pI ´AZ Ẽ´1 ZT q .

and throughout the paper we make

Assumption 1.1 The operator Ẽ is symmetric positive definite.

2 Basic definitions

The problem to be solved is defined via a variational formulation on a domain
Ω Ă Rd for d P N:

Find u P V such that : aΩpu, vq “ lpvq , @v P V ,
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where V is a Hilbert space of functions from Ω with real values. The problem
we consider is given through a symmetric positive definite bilinear form aΩ that
is defined in terms of an integral over any open set ω Ă Ω. Typical examples
are the heterogeneous diffusion equation (K is a diffusion tensor)

aωpu, vq :“

ż

ω

K∇u ¨∇v dx ,

or the elasticity system (C is the fourth-order stiffness tensor and εpuq is the
strain tensor of a displacement field u):

aωpu, vq :“

ż

ω

C : εpuq : εpvq dx .

The problem is discretized by a finite element method. Let N denote the set
of degrees of freedom and pφkqkPN be a finite element basis on a mesh Th.
Let A P R#Nˆ#N be the associated finite element matrix, Akl :“ aΩpφl, φkq,
k, l P N . For some given right hand side F P R#N , we have to solve a linear
system in U of the form

AU “ F .

Domain Ω is decomposed into N (overlapping or non overlapping) subdomains
pΩiq1ďiďN so that all subdomains are a union of cells of the mesh Th. This
decomposition induces a natural decomposition of the set of indices N into N
subsets of indices pNiq1ďiďN :

Ni :“ tk P N | measpsupppφkq X Ωiq ą 0u , 1 ď i ď N. (3)

For all 1 ď i ď N , let Ri be the restriction matrix from R#N to the subset R#Ni

and Di be a diagonal matrix of size #Ni ˆ#Ni, so that we have a partition of
unity at the algebraic level,

N
ÿ

i“1

RTi DiRi “ I , (4)

where I P R#Nˆ#N is the identity matrix.

We also define for all subdomains 1 ď j ď N , rAj , the #Nj ˆ#Nj matrix
defined by

VT
j
rAjUj :“ aΩj

¨

˝

ÿ

lPNj

Ujlφl,
ÿ

lPNj

Vjlφl

˛

‚ , Uj , Vj P RNj . (5)

When the bilinear form a results from the variational solve of a Laplace prob-
lem, the previous matrix corresponds to the discretization of local Neumann
boundary value problems. For this reason we will call it “Neumann” matrix
even in a more general setting.

We also make use of two numbers k0 and k1 related to the domain decom-
position. Let

k0 :“ max
1ďiďN

#
 

j | RjAR
T
i ‰ 0

(

(6)
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be the maximum multiplicity of the interaction between subdomains plus one.
Let k1 be the maximal multiplicity of subdomains intersection, i.e. the largest
integer m such that there exists m different subdomains whose intersection has
a non zero measure.

Let P̃0 be defined as:

P̃0 :“ ZẼ´1ZTA , (7)

the operator P̃0 is thus an approximation to the A-orthogonal projection on V0

P0 :“ ZE´1ZTA

which corresponds to an exact coarse solve.
Note that although P̃0 is not a projection it has the same kernel and range

as P0:

Lemma 2.1 We have

kerP0 “ ker P̃0 “ V AK0 and ImP0 “ Im P̃0 “ V0 ,

where V AK0 is the vector space A-orthogonal to V0, that is when R#N is endowed
with the scalar product induced by A: px , yqA :“ px , Ayq.

Proof First note that the kernel of P̃0 contains kerZTA. On the other hand,
we have:

P̃0 x “ ZẼ´1ZTAx “ 0 ñ pZẼ´1ZTAx,Axq “ pẼ´1ZTAx,ZTAxq “ 0 .

Since Ẽ is SPD, it means that ZTAx “ 0, that is x P kerZTA. We have thus
ker P̃0 “ kerZTA. Note that

ZTAx “ 0 ô @y pAx , Zyq “ 0 ô x P V AK0 .

As for the image of P̃0, since the last operation in its definition is the multipli-
cation by the matrix Z we have ImP0 Ă V0. Conversely, let y P V0, there exists
β such that y “ Zβ. It is easy to check that y “ P̃0pZ pZAZq

´1Ẽ βq. Thus,
Im P̃0 “ V0.
The same arguments hold if Ẽ is replaced by E. Thus, P̃0 and P0 have the same
kernel and image.

3 Inexact Coarse Solves for GenEO

The GenEO coarse space was introduced in [19] and its slight modification is
defined as follows, see [2]:

Definition 3.1 (Generalized Eigenvalue Problem for GenEO) For each
subdomain 1 ď j ď N , we introduce the generalized eigenvalue problem

Find pVjk, τjkq P R#Nj zt0u ˆ R such that

DjRj AR
T
j DjVjk “ τjk rA

jVjk .
(8)

Let τ ą 0 be a user-defined threshold, we define V τgeneo Ă R#N as the vector

space spanned by the family of vectors pRTj DjVjkqτjkąτ ,1ďjďN corresponding to
eigenvalues larger than τ .
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Let π̃j be the projection from R#Nj on SpantVjk| τjk ą τu parallel to SpantVjk| τjk ď
τu.

In this section, Z denotes a rectangular matrix whose columns are a basis
of the coarse space V τgeneo defined in Definition (3.1). The dimension of Z is
#N ˆ#N0. The GenEO preconditioner with inexact coarse solve reads:

M´1
GenEOACS :“ Z Ẽ´1 ZT ` pI ´ P̃0q p

N
ÿ

i“1

RTi pRiAR
T
i q
´1Riq pI ´ P̃

T
0 q . (9)

The study the spectrum of M´1
GenEOACSA is based on the Fictitious Space

lemma which is recalled here, see [14] for the original paper and [6] for a modern
presentation.

Lemma 3.1 (Fictitious Space Lemma, Nepomnyaschikh 1991) Let H and
HD be two Hilbert spaces, with the scalar products denoted by p¨, ¨q and p¨, ¨qD.
Let the symmetric positive bilinear forms a : HˆH Ñ R and b : HDˆHD Ñ R,
generated by the s.p.d. operators A : H Ñ H and B : HD Ñ HD, respectively
(i.e. pAu, vq “ apu, vq for all u, v P H and pBuD, vDqD “ bpuD, vDq for all
uD, vD P HD). Suppose that there exists a linear operator R : HD Ñ H that
satisfies the following three assumptions:

(i) R is surjective.

(ii) Continuity of R: there exists a positive constant cR such that

apRuD,RuDq ď cR ¨ bpuD, uDq @uD P HD . (10)

(iii) Stable decomposition: there exists a positive constant cT such that for all
u P H there exists uD P HD with RuD “ u and

cT ¨ bpuD, uDq ď apRuD,RuDq “ apu, uq . (11)

We introduce the adjoint operator R˚ : H Ñ HD by pRuD, uq “ puD, R˚uqD
for all uD P HD and u P H.
Then, we have the following spectral estimate

cT ¨ apu, uq ď a
`

RB´1R˚Au, u
˘

ď cR ¨ apu, uq , @u P H (12)

which proves that the eigenvalues of operator RB´1R˚A are bounded from below
by cT and from above by cR.

Loosely speaking, the first assumption corresponds to equation (2.3), page 36
of [22] where the global Hilbert space is assumed to satisfy a decomposition
into subspaces. The second assumption is related to Assumptions 2.3 and 2.4,
page 40 of [22]. The third assumption corresponds to the Stable decomposition
Assumption 2.2 page 40 of [22].

In order to apply this lemma to the preconditioned operator M´1
GenEOACS A,

we introduce Hilbert spaces H and HD as follows:

H :“ R#N
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endowed with the bilinear form apU,Uq :“ pAU,Uq and

HD :“ R#N0 ˆΠN
i“1R#Ni

endowed with the following bilinear form

b̃ : HD ˆHD ÝÑ R
p pU0 , pUiq1ďiďN q, pV0 , pViq1ďiďN q q ÞÝÑ pẼU0, V0q ` pRiAR

T
i Ui, Viq .

(13)
We denote by B̃ : HD Ñ HD the operator such that pB̃uD, vDqD “ b̃puD, vDq
for all uD, vD P HD.
Let rR : HD ÝÑ H be defined by

rRpUq :“ ZU0 ` pI ´ P̃0q

N
ÿ

i“1

RTi Ui , (14)

where U :“ pU0 , pUiq1ďiďN q. Recall that if we had used an exact coarse space
solve, we would have introduced:

RpUq :“ ZU0 ` pI ´ P0q

N
ÿ

i“1

RTi Ui . (15)

Note that we have

rRpUq “ RpUq ` pP0 ´ P̃0q

N
ÿ

i“1

RTi Ui .

It can be checked that M´1
GenEOACS “

rR rB´1
rRT , see (9). In order to apply the

fictitious space Lemma 3.1, three assumptions have to be checked.

‚ rR is onto.
Let U P H, we have U “ P̃0U` pI ´ P̃0qU. By Lemma 2.1, P̃0U P V0 so that
there exists U0 P R#N0 such that P̃0U “ ZU0. Owing to (4), we have

U “ ZU0 ` pI ´ P̃0q

N
ÿ

i“1

RTi DiRiU “ rRpU0, pDiRiUq1ďiďN qq

‚ Continuity of rR
We have to estimate a constant cR such that for all U “ pU0 , pUiq1ďiďN q P H,
we have:

ap rRpUq, rRpUqq ď cR b̃pU , Uq .

Let δ be some positive number. Using that the image of P0´ P̃0 is a-orthogonal
to the image of I ´ P0, Cauchy-Schwarz inequality and the a-orthogonality of
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the projection I ´ P0, we have:

ap rRpUq, rRpUqq “ }RpUq ` pP0 ´ P̃0q
řN
i“1R

T
i Ui}

2
A

“ }RpUq}2A ` 2 apZU0 ` pI ´ P0q
řN
i“1R

T
i Ui , pP0 ´ P̃0q

řN
i“1R

T
i Uiq

`}pP0 ´ P̃0q
řN
i“1R

T
i Ui}

2
A

“ }RpUq}2A ` 2 apZU0 , pP0 ´ P̃0q
řN
i“1R

T
i Uiq

`}pP0 ´ P̃0q
řN
i“1R

T
i Ui}

2
A

ď }RpUq}2A ` δ}ZU0}
2
A `

1
δ }pP0 ´ P̃0q

řN
i“1R

T
i Ui}

2
A

`}pP0 ´ P̃0q
řN
i“1R

T
i Ui}

2
A

ď }ZU0}
2
A ` }

řN
i“1R

T
i Ui}

2
A ` δ}ZU0}

2
A

`p1` 1
δ q }pP0 ´ P̃0q

řN
i“1R

T
i Ui}

2
A

ď p1` δq}ZU0}
2
A ` p1` }P0 ´ P̃0}

2
Ap1`

1
δ qq}

řN
i“1R

T
i Ui}

2
A

ď p1` δqλmaxpEẼ
´1qpẼU0,U0q ` p1` }P0 ´ P̃0}

2
Ap1`

1
δ qq k0

řN
i“1 }R

T
i Ui}

2
A

ď max
´

p1` δqλmaxpEẼ
´1q, r1` }P0 ´ P̃0}

2
Ap1`

1
δ qs k0

¯

b̃pU , Uq .

It is possible to minimize over δ the factor in front of b̃pU , Uq using the

Lemma 3.2 Let c, d, α and β be positive constant, we have

min
δą0

maxpc` αδ, d` βδ´1q “
d` c`

a

pd´ cq2 ` 4αβ

2
.

Proof The optimal value for δ corresponds to the equality c` αδ “ d` βδ´1.

Let
εA :“ }P0 ´ P̃0}A “ }Z

T p pZT AZq´1 ´ Ẽ´1qZTA}A, (16)

the formula of Lemma 3.2 yields

cR :“
k0p1` ε

2
Aq ` λmaxpEẼ

´1q `

b

pk0p1` ε2Aq ´ λmaxpEẼ
´1qq2 ` 4λmaxpEẼ´1qk0pε2A ` 1q

2
.

(17)
Actually, εA can be expressed in term of the minimal eigenvalue of EẼ´1.

Lemma 3.3 Other formula for εA:

εA “ sup
U0PR#N0

pEpE´1 ´ Ẽ´1qEU0,U0q

pEU0,U0q
“ maxp|1´λminpEẼ

´1q| , |1´λmaxpEẼ
´1q|q .

Proof Since P0 ´ P̃0 is A-symmetric, its norm is also given by

εA “ sup
U

|ppP0 ´ P̃0qU , UqA|

}U}2A
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We can go further by using the fact that P0 is a A-orthogonal and that P0 and
P̃0 have the same kernels and images:

εA “ sup
U

|ppP0 ´ P̃0qpP0 U` pI ´ P0qUq , P0 U` pI ´ P0qUqA|

}P0U}2A ` }pI ´ P0qU}2A

“ sup
U

|ppP0 ´ P̃0qP0 U , P0 UqA|

}P0U}2A ` }pI ´ P0qU}2A
“ sup

U

|ppP0 ´ P̃0qP0 U , P0 UqA|

}P0U}2A

“ sup
UPV0

|ppP0 ´ P̃0qU , UqA|

}U}2A
“ sup

U0PR#N0

|pEpE´1 ´ Ẽ´1qEU0,U0q|

pEU0,U0q

“ sup
U0PR#N0

|1´
pẼ´1EU0, EU0q

pEU0,U0q
| .

This means that formula (17) for cR can be expressed explicitely in terms of k0

and of the minimal and maximal eigenvalue of Ẽ´1E.

‚ Stable decomposition
Let U P H be decomposed as follows:

U “ P0U` pI ´ P0qU “ P0U` pI ´ P0q
řN
j“1R

T
j DjRjU

“ P0U` pI ´ P0q
řN
j“1R

T
j DjpI ´ π̃jqRjU` pI ´ P0q

N
ÿ

j“1

RTj Dj π̃j RjU

loooooooooooooooomoooooooooooooooon

“0

“ P0U` pP̃0 ´ P0q

N
ÿ

j“1

RTj DjpI ´ π̃jqRjU

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

:“FU PV0

`pI ´ P̃0q
řN
j“1R

T
j DjpI ´ π̃jqRjU .

Let U0 P R#N0 be such that ZU0 “ FU, we choose the following decomposi-
tion:

U “ rRpU0, pDjpI ´ π̃jqRjUq1ďjďN q .

The stable decomposition consists in estimating a constant cT ą 0 such that:

cT rpẼU0,U0q`

N
ÿ

j“1

pRjAR
T
j DjpI´π̃jqRjU, DjpI´π̃jqRjUqs ď apU,Uq . (18)

Since the second term in the left hand side is the same as in the exact coarse
solve method, we have (see [2], page 177, Lemma 7.15):

N
ÿ

j“1

pRjAR
T
j DjpI ´ π̃jqRjU, DjpI ´ π̃jqRjUq ď k1 τ apU,Uq . (19)

We now focus on the first term of the left hand side of (18). Let δ be some
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positive number, using again (19), the following auxiliary result holds:

}FU}2A ď p1` δq}P0U, P0U}
2
A

`p1` 1
δ q}pP0 ´ P̃0q

řN
j“1R

T
j DjpI ´ π̃jqRjU}

2
A

ď p1` δqpAU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A }

řN
j“1R

T
j DjpI ´ π̃jqRjU}

2
A

ď p1` δqpAU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A k0

řN
j“1 }R

T
j DjpI ´ π̃jqRjU}

2
A

ď

´

1` δ ` p1` 1
δ q}pP0 ´ P̃0q}

2
Ak0k1 τ

¯

apU,Uq

The best possible value for δ is

δ :“ εA
a

k0 k1 τ .

Hence, we have:

pZT AZU0 , U0q “ }FU}2A ď p1` εA
a

k0 k1 τq
2apU,Uq . (20)

Thus, we have:

pẼU0 , U0q “ pẼ E´1{2E1{2U0 , E
´1{2E1{2U0q “ pE

´1{2Ẽ E´1{2E1{2U0 , E
1{2U0q

ď λmaxpE
´1{2Ẽ E´1{2q pE1{2U0 , E

1{2U0q

“ λmaxpE
´1ẼqpZT AZU0 , U0q

ď λmaxpE
´1Ẽqp1` εA

?
k0 k1 τq

2apU,Uq .

This last estimate along with (19) prove that in (18), it is possible to take

cT “
λminpEẼ

´1q

p1` εA
?
k0 k1 τq2 ` k1τ

. (21)

Overall, with cT given by (21) and cR by (17), we have proved the following
spectral estimate:

cT ď λpM´1
GenEOACS Aq ď cR . (22)

Constants cT and cR are stable with respect to εA and the spectrum of EẼ´1

so that (22) proves the stability of preconditioner M´1
GenEOACS w.r.t. inexact

solves.

4 Inexact Coarse Solves for GenEO2

The GenEO-2 coarse space construction was introduced in [8, 7] , see [2] also
§ 7.7, page 186. It is motivated by domain decomposition methods for which
the local solves are not necessarily Dirichlet solves e.g. discretization of Robin
boundary value problems, see [20]. We have not been able to prove the robust-
ness of the GenEO-2 coarse space with respect to inexact coarse solves when
used in the original GenEO-2 preconditioner (40), see remark 4.3. For this rea-
son, we study here a slight modification of the preconditioner, eq. (28), for which
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we prove robustness. The more intricate analysis of GenEO2 compared to the
one of GenEO is related to the differences between the Schwarz and P.L. Lions
algorithms themselves. Indeed, in the Schwarz method, Assumption (ii) of the
fictitious space lemma 3.1 comes almost for free even for a one level method
whereas Assumption (iii) (stable decomposition) can only be fulfilled with a
two level method. In P.L. Lions algorithm neither of the two assumptions are
satisfied by the one level method. This is reflected in the fact that the proofs
for GenEO2 are more intricate than for GenEO.

For all subdomains 1 ď i ď N , let Bi be a matrix of size #Niˆ#Ni, which
comes typically from the discretization of boundary value local problems using
optimized transmission conditions or Neumann boundary conditions. Recall
that by construction matrix DiRiAR

T
i Di is symmetric positive-semi definite

and we make the extra following assumption:

Assumption 4.1 For all subdomains 1 ď i ď N , matrix Bi is symmetric
positive semi-definite and either of the two conditions holds

• Bi is definite,

• Bi “ rAi and DiRiAR
T
i Di is definite.

We first consider the case where Bi is definite. The other case will be treated
in Remark 4.4. We recall the coarse space defined in [8, 7, 2]. Let γ and τ be
two user defined thresholds. We introduce two generalized eigenvalue problems
which by Assumption 4.1 are regular.

Definition 4.1 (Generalized Eigenvalue Problem for the lower bound)
For each subdomain 1 ď j ď N , we introduce the generalized eigenvalue problem

Find pVjk, λjkq P R#Nj zt0u ˆ R such that
rAjVjk “ λjkBjVjk .

(23)

Let τ ą 0 be a user-defined threshold and π̃j be the projection from R#Nj on
Vjτ “ SpantVjk|λjk ă τu parallel to SpantVjk|λjk ě τu. We define V τj,geneo Ă

R#N as the vector space spanned by the family of vectors pRTj DjVjkqλjkăτ

corresponding to eigenvalues smaller than τ . Let V τgeneo be the vector space
spanned by the collection over all subdomains of vector spaces pV τj,geneoq1ďjďN .

Definition 4.2 (Generalized Eigenvalue Problem for the upper bound)
For each subdomain 1 ď i ď N , we introduce the generalized eigenvalue problem

Find pUik, µikq P R#Nizt0u ˆ R such that

DiRiAR
T
i DiUik “ µikBi Uik .

(24)

Let γ ą 0 be a user-defined threshold, we define V γi,geneo Ă R#N as the vector

space spanned by the family of vectors pRTi DiUikqµikąγ corresponding to eigen-
values larger than γ. Let V γgeneo be the vector space spanned by the collection
over all subdomains of vector spaces pV γj,geneoq1ďjďN .

11



Now, let ξi denote the Bi-orthogonal projection from R#Ni on

Vi γ :“ Span tUik | γ ă µiku

parallel to
Wi γ :“ Span tUik | γ ě µiku .

The coarse space V0 built from the above generalized eigenvalues is defined as
the following sum:

V0 :“ V τgeneo ` V
γ
geneo .

It is spanned by the columns of a full rank rectangular matrix Z “ RT0 with
#N0 columns. Projection P0 and its approximation P̃0 are defined by the same
formula as above, see (7).

We have the following

Lemma 4.1 For 1 ď j ď N , let us introduce the Bj-orthogonal projection pj
from R#Nj on

Vj,τγ :“ Vj,τ ‘ Vj,γ .

Then for all Uj P R#Nj , we have:

τ pBjpI ´ pjqUj , pI ´ pjqUjq ď pÃjUj ,Ujq .

Moreover, for all U P R#N , we have:

τ
N
ÿ

j“1

pBjpI ´ pjqRjU, pI ´ pjqRjUq ď k1 apU,Uq .

Proof Let Uj P R#Nj , we have:

pBjpI ´ π̃jqUj , pI ´ π̃jqUjq “ pBjpI ´ pj ` ppj ´ π̃jqqUj , pI ´ pj ` ppj ´ π̃jqqUjq

“ }pI ´ pjqUj}
2
Bj
` }ppj ´ π̃jqUj}

2
Bj

`2 pBjpI ´ pjqUj , ppj ´ π̃jqUjq
loooooooooooooooooomoooooooooooooooooon

“0 since π̃jUj P Vj ,τĂVj,τγ

ě }pI ´ pjqUj}
2
Bj
“ pBjpI ´ pjqUj , pI ´ pjqUjq .

Since we have by Lemma 7.6, page 167 in [2] :

τ pBjpI ´ π̃jqUj , pI ´ π̃jqUjq ď pÃjUj ,Ujq ,

the conclusion follows by summation over all subdomains.

The definition of the stable preconditioner is based on a pseudo inverse of
Bi that we introduce now. Let bWi denote the restriction of bi to Wi γ ˆWi γ

where Wi γ is endowed with the Euclidean scalar product:

bWi
:Wi γ ˆWi γ ÝÑ R
pUi , Viq ÞÑ bipUi , Viq . (25)

By Riesz representation theorem, there exists a unique isomorphism BWi
:

Wi γ ÝÑWi γ into itself so that for all Ui , Vi PWi γ , we have:

bWi
pUi , Viq “ pBWi

Ui , Viq .

12



The inverse of BWi
will be denoted by B:i and is given by the following formula

B:i “ pI ´ ξiqB
´1
i . (26)

In order to check this formula, we have to show that BWipI´ξiqB
´1
i y “ y for all

y PWi γ . Let z PWi γ , using the fact that I ´ ξi is the bi-orthogonal projection
on Wi γ , we have:

pBWipI ´ ξiqB
´1
i y, zq “ bippI ´ ξiqB

´1
i y, zq “ bipB

´1
i y, zq “ py, zq . (27)

Since this equality holds for any z PWi γ , this proves that BWi
pI´ξiqB

´1
i y “ y.

We study now the preconditioner given by:

Definition 4.3 (Preconditioner M´1
GenEO2ACS) Let qi denote the orthogonal

projection (for the Euclidean scalar product) from R#Ni onto Wi γ . We define
the preconditioner M´1

GenEO2ACS as follows:

M´1
GenEO2ACS :“ Z Ẽ´1 ZT

` pI ´ P̃0q

˜

N
ÿ

i“1

RTi Di qiB
:

i qiDi Ri

¸

pI ´ P̃T0 q . (28)

Remark 4.1 In order to write an explicit form for the projection qi, we denote
by Zi γ a rectangular matrix whose columns are a basis for Vi γ . Let Ui P

R#Ni be a vector we want to project. The projection qiUi is the solution to
the constrained minimization problem:

min
WiPWi γ

1

2
}Wi ´Ui}

2 “ min
Wi|pBiZi γqTWi“0

1

2
}Wi ´Ui}

2

Using the Lagrange multiplier technique, we introduce λ P RdimpVi γq and the
optimality conditions read:

pqiUi ´Uiq `BiZi γλ “ 0
pBiZi γq

T qiUi “ 0 .

The vector λ must satisfy

´pBiZi γq
TUi ` pBiZi γq

TBiZi γλ “ 0 .

Finally, an explicit formula for the projection qi is:

qi “ I ´BiZi γppBiZi γq
TBiZi γq

´1ZTi γB
T
i .

Thus applying qi amounts to solving concurrently in each subdomain a small
linear system of size the number of local eigenvectors contributing to the coarse
space.

Remark 4.2 Note that qiB
:

i is actually equal to B:i but its presence shows the
symmetry of the preconditioner.

13



We can now define the abstract framework for the preconditioner. Let HD

be defined by
HD :“ R#N0 ˆΠN

i“1Wi γ

endowed with the following bilinear form arising from local SPD matrices pBiq1ďiďN

b̃ : HD ˆHD ÝÑ R
pU ,Vq ÞÝÑ bpU ,Vq :“ pẼU0, V0q `

řN
i“1pBi Ui, Viq

(29)

We denote by B̃ : HD Ñ HD the operator such that pB̃uD, vDqD “ b̃puD, vDq
for all uD, vD P HD.
Let rR : HD ÝÑ H be defined using operator P̃0 (see eq. (7)):

rRpUq :“ ZU0 ` pI ´ P̃0q

N
ÿ

i“1

RTi DiUi . (30)

Recall that if we had used an exact coarse space solve, we would have introduced:

RpUq :“ ZU0 ` pI ´ P0q

N
ÿ

i“1

RTi DiUi . (31)

Note that we have

rRpUq “ RpUq ` pP0 ´ P̃0q

N
ÿ

i“1

RTi DiUi .

It can be checked that the resulting preconditioner with inexact coarse solve
M´1
GenEO2ACS (Eq. (28)) satisfies M´1

GenEO2ACS “
rR rB´1

rRT . Indeed, we have:

rRTV “ pZTV, pqiDiRipI ´ P̃
T
0 qVq1ďiďN q

Auxiliary results on GEVP Beware, in this paragraph, A and B have
nothing to do with the global problem to be solved:

Lemma 4.2 Let A be a symmetric positive semi definite matrix and B be a
symmetric positive definite matrix. We consider the generalized eigenvalue prob-
lem:

AU “ λBU .

The generalized eigenvectors and eigenvalues are denoted by pUk, λkqkě1. Let τ
be a positive number. We define

Vτ :“ SpantUk |λk ă τ u .

Let W be any linear subspace. We denote by p the B-orthogonal projection on
Vτ

Ř

W .
Then, for all U we have the following estimate:

τ pB pI ´ pqU , pI ´ pqUq ď pApI ´ pqU, pI ´ pqUq . (32)

Similarly, let γ be a positive number. We define

Vγ :“ SpantUk |λk ą γ u .

14



Let W be any linear subspace. We denote by q the B-orthogonal projection on
Vγ

Ř

W .
Then, for all U we have the following estimate:

pApI ´ qqU, pI ´ qqUq ď γ pB pI ´ qqU , pI ´ qqUq . (33)

Proof We have using Vτ Ă Vτ
Ř

W :

τ ď min
UPV BK

τ

pAU,Uq

pBU,Uq
ď min

UPpVτ
Ř

W qBK

pAU,Uq

pBU,Uq
.

For all U, the vector pI ´ pqU is B-orthogonal to Vτ
Ř

W and this ends the
proof of (32). The proof of (33) follows similarily from

γ ě max
UPV BK

γ

pAU,Uq

pBU,Uq
.

In order to apply the fictitious space Lemma 3.1 to the study of the precon-
ditioner (28), three assumptions have to be checked.

‚ rR is onto.
Let U P H, we have

U “ P̃0U` pI ´ P̃0qU

“ P̃0U` pI ´ P̃0q
řN
i“1R

T
i DiRiU

“ P̃0U` pI ´ P̃0q
řN
i“1R

T
i DiξiRiU` pI ´ P̃0q

řN
i“1R

T
i DipI ´ ξiqRiU

“ P̃0U` pP0 ´ P̃0q

N
ÿ

i“1

RTi DiξiRiU

looooooooooooooooooooomooooooooooooooooooooon

:“FU

`pI ´ P0q

N
ÿ

i“1

RTi DiξiRiU

looooooooooooooomooooooooooooooon

“0

`pI ´ P̃0q
řN
i“1R

T
i DipI ´ ξiqRiU .

Let us consider the last equality. Since FU is the sum of two terms that belong
to V0 there exists U0 such that ZU0 “ FU. The third term is zero since
řN
i“1R

T
i DiξiRiU P V0. Note also that pI ´ ξiqRiU PWi γ . Therefore, we have

U “ rRpU0, ppI ´ ξiqRiUq1ďiďN qq .

‚ Continuity of rR

We have to estimate a constant cR such that for all U “ pU0 , pUiq1ďiďN q P

HD we have:

ap rRpUq, rRpUqq ď cR b̃pU , Uq

“ cRrpẼU0,U0q `
řN
i“1pBiUi,Uiqs .
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Note that using pI ´ ξiqUi “ Ui (recall that Ui PWiγ), we have:

R̃pUq “ ZU0 ` pI ´ P̃0q
řN
i“1R

T
i Di Ui

“ ZU0 ` pP0 ´ P̃0q
řN
i“1R

T
i Di Ui ` pI ´ P0q

řN
i“1R

T
i Di Ui

“ ZU0 ` pP0 ´ P̃0q

N
ÿ

i“1

RTi Di pI ´ ξiqUi

looooooooooooooooooooooooomooooooooooooooooooooooooon

PV0

`pI ´ P0q
řN
i“1R

T
i Di pI ´ ξiqUi

We have thus the following estimate using the A-orthogonality of I ´ P0:

ap rRpUq, rRpUqq “ }ZU0 ` pP0 ´ P̃0q
řN
i“1R

T
i Di pI ´ ξiqUi

`pI ´ P0q
řN
i“1R

T
i Di pI ´ ξiqUi}

2
A

“ }ZU0 ` pP0 ´ P̃0q
řN
i“1R

T
i Di pI ´ ξiqUi}

2
A

`}pI ´ P0q
řN
i“1R

T
i Di pI ´ ξiqUi}

2
A

ď p1` δq}ZU0}
2
A ` p1`

1
δ q}pP0 ´ P̃0q

řN
i“1R

T
i Di pI ´ ξiqUi}

2
A

`}
řN
i“1R

T
i Di pI ´ ξiqUi}

2
A

ď p1` δqpEU0 , U0q ` k0

řN
i“1 }R

T
i Di pI ´ ξiqUi}

2
A

`p1` 1
δ q}pP0 ´ P̃0q}

2
Ak0

řN
i“1 }R

T
i Di pI ´ ξiqUi}

2
A

ď p1` δqλmaxpEẼ
´1qpẼU0 , U0q

`k0 γp1` p1`
1
δ q}pP0 ´ P̃0q}

2
Aq

řN
i“1 pBi pI ´ ξiqUi , pI ´ ξiqUiq

ď maxpp1` δqλmaxpEẼ
´1q , k0 γ p1` p1`

1
δ q ε

2
Aq b̃pU ,Uq .

Based on Lemma 3.2, we can optimize the value of δ and take

cR :“
k0 γ p1` ε

2
Aq ` λmaxpEẼ

´1q `

b

pk0 γ p1` ε2Aq ´ λmaxpEẼ
´1qq2 ` 4λmaxpEẼ´1qk0γpε2A ` 1q

2
.

(34)
‚ Stable decomposition
The stable decomposition estimate is based on using projections pj defined

in Lemma 4.1. Let U P H be decomposed as follows:

U “ P0U` pI ´ P0q
řN
j“1R

T
j DjpI ´ pjqRjU` pI ´ P0q

N
ÿ

j“1

RTj DjpjRjU

looooooooooooooomooooooooooooooon

“0

“ P0U` pP̃0 ´ P0q

N
ÿ

j“1

RTj DjpI ´ pjqRjU

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

:“FU PV0

`pI ´ P̃0q
řN
j“1R

T
j DjpI ´ pjqRjU .

We define U0 be such that ZU0 “ FU. We have that pI ´ pjqRjU is Bj-
orthogonal to Vγ j

Ř

Vτ j and thus to Vγ j . This means that pI´ pjqRjU PWγ j

and that we can choose the following decomposition:

U “ rRpU0, ppI ´ pjqRjUq1ďjďN q .
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The stability of the decomposition consists in estimating a constant cT ą 0 such
that :

cT rpẼU0,U0q `

N
ÿ

j“1

pBjpI ´ pjqRjU, pI ´ pjqRjUqs ď apU,Uq . (35)

Using Lemma 4.1, we have

τ
N
ÿ

j“1

pBjpI ´ pjqRjU, pI ´ pjqRjUq ď k1 apU,Uq . (36)

We now focus on the first term of the left hand side of (35). Let δ be some
positive number, the following auxiliary result will be useful:

}FU}2A ď p1` δq}P0U, P0U}
2
A

`p1` 1
δ q}pP0 ´ P̃0q

řN
j“1R

T
j DjpI ´ pjqRjU}

2
A

ď p1` δqpAU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A}

řN
j“1R

T
j DjpI ´ pjqRjU}

2
A

ď p1` δqapU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A k0

řN
j“1 }R

T
j DjpI ´ pjqRjU}

2
A

ď p1` δqapU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A k0γ

řN
j“1pBjpI ´ pjqRj U, pI ´ pjqRj Uq

ď pp1` δq ` p1` 1
δ q}pP0 ´ P̃0q}

2
A k0γ τ

´1k1q apU,Uq

where we have used Lemma 4.2 (33) (applied with A replaced by Dj Rj AR
T
j Dj

and B by Bj) for the one before last estimate and Lemma 4.1 for the last esti-
mate.

The optimal value for δ yields:

}FU}2A ď p1` εA
a

k0 k1γ τ´1q2apU,Uq . (37)

We have

pẼU0,U0q ď λmaxpE
´1ẼqpEU0,U0q “ λmaxpE

´1ẼqpAZU0, ZU0q

“ λmaxpE
´1Ẽq}FU}2A .

so that with (37), this yields:

pẼU0 , U0q ď λmaxpE
´1Ẽq p1` εA

a

k0 k1 γ τ´1q2 apU,Uq .

Finally, in (35) we can take :

cT :“
1

λmaxpE´1Ẽq p1` εA
a

k0 k1 γ τ´1q2 ` k1 τ´1
. (38)

Overall, with cT given by (38) and cR by (34), we have proved the following
spectral estimate:

cT ď λpM´1
GenEO2ACS Aq ď cR . (39)
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Constants cT and cR are stable with respect to εA and the spectrum of EẼ´1 so
that (39) proves the stability of preconditioner M´1

GenEO2ACS (28) w.r.t. inexact
solves.

Remark 4.3 Had we taken the GenEO-2 algorithm introduced in [7] and mod-
ified only the coarse space solves:

ĂM´1
GenEO,2 “ Z Ẽ´1 ZT ` pI ´ P̃0q p

N
ÿ

i“1

RTi DiB
´1
i Di Riq pI ´ P̃

T
0 q , (40)

the estimate for the upper bound of the preconditioned system would be for ar-
bitray δ ą 0

λmax ď maxp1` δ , k0γ ` p1`
1

δ
qε2Ak0 max

1ďiďN
λmaxpB

´1
i DiRiAR

T
i Diq

2q

and would depend on the product of εA with the largest eigenvalue of the local
operators B´1

i DiRiAR
T
i Di. This last term can be very large and we were not

able to guarantee robustness with respect to approximte coarse solves.

Remark 4.4 If for some subdomain i, 1 ď i ď N , Bi “ Ãi and Ãi is symmetric
positive semi-definite and DiRiAR

T
i Di is SPD, the eigenvalue problem (23) will

not contribute to the coarse space. More precisely, the contribution of the sub-
domain to the coarse space involves (24) and will be RTi Di kerpÃiq

À

V γi,geneo.

Also in Definition 4.3, B:i is the pseudo inverse of Bi where Wiγ is the image

of Bi which is orthogonal to kerpÃiq.

5 Annex

We explain here how to adapt the GenEO coarse space as defined in [2] so that
it will behave as the one defined in [19]. In one sentence, it consists simply in
computing the local components of the coarse space on the subdomain extended
by one layer (or more).

More precisely, we start from a domain decomposition pΩiq1ďiďN and inher-
ited indices decomposition pNiq1ďiďN as defined in the present article. Let us
denote with a tilde˜all the quantities related to the subdomains Ωĩ obtained by
extending by one (or more) layers of cells subdomains Ωi, see fig. 5. Similarly
to [2], we define

Nĩ :“ tk P N | measpSupppφkq X Ωĩq ą 0u .

Since Ωi Ă Ωĩ , we have
Ni Ă Nĩ .

Also from the partition of unity on the original decomposition, we can define a
partition of unity on pNĩq1ďiďN inherited from the one on pNiq1ďiďN by defining
diagonal matrices pDĩq1ďiďN in the following manner:

pDĩqkk :“

"

pDiqkk if k P Ni
0 if k P NĩzNi

.
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Figure 1: A subdomain and its extension by one layer

We have clearly a partition of unity:

I “
N
ÿ

i“1

RT
ĩ
DĩRĩ .

Also since for all subdomains 1 ď i ď N , the entries of Dĩ are zero on the added
layers, we have the following equality:

DiRi “ RiR
T
ĩ
DĩRĩ .

The coarse space is built by first introducing the Neumann matrices ANeu
ĩ

on
subdomains Ωĩ for 1 ď i ď N , as in [19], so that we have:

N
ÿ

i“1

pANeu
ĩ

RĩU , RĩUq ď
rk1pAU , Uq ,

where rk1 is the maximum multiplicity of the intersections of subdomains Ωĩ.
Let Vĩk be the eigenvectors of the following generalized eigenvalue problem:

DĩRĩAR
T
ĩ
Dĩ Vĩk “ λikA

Neu
ĩ

Vĩk .

Note that for λĩk not equal to 1, the eigenvectors are harmonic for the interior
degrees of freedom since for these points the left and right matrices have identical
entries for the corresponding lines. Thus, for λĩk ‰ 1, we might as well zero
the lines corresponding the interior degrees of freedom and keep only the entries
of the degrees of freedom in the overlap. This GEVP is thus also of the type
GenEO.

For a user-defined parameter τ , let us define the coarse space as follows:

V0 :“ SpantRT
ĩ
Dĩ Vĩk | 1 ď i ď N, λik ą τu ,

and a rectangular matrix Z P R#Nˆ#N0 whose columns are a basis of V0 where
N0 is a set of indices whose cardinal is the dimension of the vector space V0.
We also define local projections pπĩq1ďiďN on SpantVĩk | λik ą τu parallel to
SpantVĩk | λik ď τu.

We have then a stable decomposition. Indeed, let U P R#N ,

U “

N
ÿ

i“1

RTi DiRiU “

N
ÿ

i“1

RTi RiR
T
ĩ
DĩpRĩU´ πĩRĩUq `

N
ÿ

i“1

RTi RiR
T
ĩ
DĩπĩRĩU .
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The last term is clearly in V0 so that there exists U0 P RN0 such that

ZU0 “

N
ÿ

i“1

RTi RiR
T
ĩ
DĩπĩRĩU “

N
ÿ

i“1

RT
ĩ
DĩπĩRĩU P V0 .

Let us define
Ui :“ RiR

T
ĩ
DĩpRĩU´ πĩRĩUq.

This decomposition is stable since

N
ÿ

i“1

pARTi Ui , R
T
i Uiq “

N
ÿ

i“1

pARTi RiR
T
ĩ
DĩpRĩU´ πĩRĩUq , R

T
i RiR

T
ĩ
DĩpRĩU´ πĩRĩUqq

“

N
ÿ

i“1

pART
ĩ
DĩpRĩU´ πĩRĩUq , R

T
ĩ
DĩpRĩU´ πĩRĩUqq

ď τ
N
ÿ

i“1

pANeu
ĩ

RĩU , RĩUq ď τ rk1 pAU , Uq .

Note also that Assumption 2.1 of [19] is automatically satisfied in the finite
element framework chosen here whereas Assumptions 3.12 and 3.13 are not
needed here since our construction is simpler.
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[13] Jan Mandel, Bedřich Soused́ık, and Clark R. Dohrmann. On Multilevel
BDDC, pages 287–294. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[14] Sergey V. Nepomnyaschikh. Mesh theorems of traces, normalizations of
function traces and their inversions. Sov. J. Numer. Anal. Math. Modeling,
6:1–25, 1991.

[15] Roy A. Nicolaides. Deflation of conjugate gradients with applications to
boundary value problems. SIAM J. Numer. Anal., 24(2):355–365, 1987.

[16] Clemens Pechstein and Clark R. Dohrmann. A unified framework for adap-
tive BDDC. Electron. Trans. Numer. Anal., 46:273–336, 2017.

[17] C. Prud’homme. A Domain Specific Embedded Language in c++ for auto-
matic differentiation, projection, integration and variational formulations.
Scientific Programming, 14(2):81–110, 2006.

[18] R. B. Schnabel. Quasi-Newton Methods using Multiple Secant Equations.
Tech. rep. Computer Science Technical Reports 247-83, Paper 244, Col-
orado University-Computer Science, 1983.

[19] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens
Pechstein, and Robert Scheichl. Abstract robust coarse spaces for systems
of PDEs via generalized eigenproblems in the overlaps. Numer. Math.,
126(4):741–770, 2014.

[20] Amik St-Cyr, Martin J. Gander, and Stephen J. Thomas. Optimized
Multiplicative, Additive, and Restricted Additive Schwarz Precondition-
ing. SIAM J. Sci. Comput., 29(6):2402–2425 (electronic), 2007.

[21] J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga. Comparison of two-
level preconditioners derived from deflation, domain decomposition and
multigrid methods. Journal of Scientific Computing, 39(3):340–370, 2009.

21



[22] Andrea Toselli and Olof Widlund. Domain Decomposition Methods - Algo-
rithms and Theory, volume 34 of Springer Series in Computational Math-
ematics. Springer, 2005.

[23] Xuemin Tu. Three-level BDDC in three dimensions. SIAM J. Sci. Comput.,
29(4):1759–1780, 2007.

[24] Xuemin Tu. A three-level BDDC algorithm for a saddle point problem.
Numer. Math., 119(1):189–217, 2011.

[25] Xuejun Zhang. Multilevel Schwarz methods. Numer. Math., 63(4):521–539,
1992.

22


	Introduction
	Basic definitions
	Inexact Coarse Solves for GenEO
	Inexact Coarse Solves for GenEO2
	Auxiliary results on GEVP

	Annex

