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Abstract

Convergence of domain decomposition methods rely heavily on the ef-
ficiency of the coarse space used in the second level. The GenEO coarse
space has been shown to lead to a robust two-level Schwarz precondi-
tioner which scales well over multiple cores [20} 2]. The robustness is due
to its good approximation properties for problems with highly heteroge-
neous material parameters. It is available in the finite element packages
FreeFem++ [9], Feel++ [I§], Dune [I] and is implemented as a standalone
library in HPDDM [I1] as well as a PETSc preconditioner [I0]. But the
coarse component of the preconditioner can ultimately become a bottle-
neck if the number of subdomains is very large and exact solves are used.
It is therefore interesting to consider the effect of inexact coarse solves.
In this paper, robustness of GenEO methods is analyzed with respect
to inexact coarse solves. Interestingly, the GenEO-2 method introduced
in [7] has to be modified in order to be able to prove its robustness in this
context.



1 Introduction

Convergence of domain decomposition methods rely heavily on the efficiency
of the coarse space used in the second level, see [10, 23 7] and references
therein. These methods are based on two ingredients: a coarse space (CS) and
a correction formula (see e.g. [22]). The GenEO coarse space introduced in [20]
has been shown to lead to a robust two-level Schwarz preconditioner which
scales well over multiple cores. The robustness is due to its good approximation
properties for problems with highly heterogeneous material parameters. This
approach is closely related to [4]. We refer to the introduction of [20] for more
details on the differences and similarities between both approaches. Here we
will mainly work with a slight modification of the GenEO CS introduced in [2]
for the additive Schwarz method (see e.g. [23]) and the GenEO-2 CS introduced
in [7] for the P.L. Lions algorithm [I2]. These variants are easier to implement
and in practice have similar performances although they may lead to a larger
CS. More details are given in Annex [5] where we explain how to adapt the
framework of [2] to the GenEO CS of [20].

We focus in this paper on a modification of the coarse component of the
correction formula. Indeed, the coarse component of the preconditioner can
ultimately become a bottleneck if the number of subdomains is very large and
exact solves are used. It is therefore interesting to consider the effect of inexact
coarse solves on the robustness. We show that the additive Schwarz method is
naturally robust. Interestingly, the GenEO-2 method introduced in [7] has to
be modified in order to be able to prove its robustness in this context. In the
context of domain decomposition methods, the robustness of the BDDC w.r.t.
inexact coarse solves has been studied in [24] 25] and in [I4]. We focus here
on GenEO methods. Compared to works on multilevel methods such as [26] 3]
which are concerned with Schwarz multilevel methods where the coarse space
is obtained by a coarse grid discretisation of the elliptic problem, we explicitly
state robustness results of the two level method with respect to inexact coarse
solves when the coarse space is obtained by the solution of local generalized
eigenvalue problems. Moreover, we are not concerned only with Schwarz meth-
ods but also with P.L. Lions algorithm.

The general framework of our work is the following. Let M ! be a one
level preconditioner further enhanced by a second level correction based on a
rectangular matrix Z whose columns are a basis of a coarse space V. The coarse

space correction is
AVAN. VAR A (1)

and the coarse operator is defined by
E=7"AZ. (2)

Let M~! denote a one-level preconditioner, the hybrid two-level method is de-
fined by:

My =ZE ' ZV + (I - ZE ' ZPAM (1 - AZE' Z7),

see the balancing domain decomposition method by J. Mandel [I3]. This formula
also appeared in an unpublished work by Schnabel [19], see [5] for more details
on the connections between these two works.



We consider Geneo methods, where the coarse space V|, spanned by the
columns of Z is built from solving generalized eigenvalue problems (GEVP) in
the subdomains. Recall that these GEVP solves are purely parallel tasks with no
communication involved. This part of the preconditioner setup is not penalizing
parallelism. Actually, in strong scaling experiments where the number of degrees
of freedom of subdomains is smaller and smaller, the elapsed time taken by
these tasks will decrease. Thus, this task scales strongly. On the other hand,
as the size of matrix Z7 A Z typically increases linearly with the number of
subdomains, the solving of the corresponding linear systems for instance with
a LU factorization becomes a bottleneck in two-level domain decomposition
methods. It is therefore interesting to estimate the robustness of the modified

two-level method when in the operator F is approximated by some operator
E:

EFE~F

)

since it paves the way to inexact coarse solves or to three or more level methods.
Operator F may be obtained in many ways: approximate LU factorizations (e.g.
ILU(k), ILU-¢ or single precision factorization), Sparse Approximate Inverse,
Krylov subspace recycling methods, multigrid methods and of course domain
decomposition methods. In the latter case, we would have a multilevel method.
Note that our results are expressed in terms of the spectral properties of EE™!
so that an approximation method for which such results exist is preferable.

More precisely, formula (2) is modified and the preconditioner we study is
defined by:

MylY:=ZE Y27 + (I - ZE*ZTAMY (1 - AZE~* Z7).
and throughout the paper we make

Assumption 1.1 The operator E is symmetric positive definite.

2 Basic definitions

The problem to be solved is defined via a variational formulation on a domain
QcR? for de N:

Find u € V such that : aq(u,v) =1(v), YveV,

where V' is a Hilbert space of functions from (2 with real values. The problem
we consider is given through a symmetric positive definite bilinear form aq that
is defined in terms of an integral over any open set w < Q. Typical examples
are the heterogeneous diffusion equation (K is a diffusion tensor)

ay(u,v) := f KVu-Vvdz,

or the elasticity system (C' is the fourth-order stiffness tensor and e(u) is the
strain tensor of a displacement field u):

ao(u, v) = L C:e(w): e(v)dz.



The problem is discretized by a finite element method. Let A/ denote the set
of degrees of freedom and (¢r)renr be a finite element basis on a mesh Tj.
Let A € R¥N*#N he the associated finite element matrix, Ay := aq(Pi, dr),
k,l € N. For some given right hand side F € R#*N | we have to solve a linear
system in U of the form

AU =F.

Domain € is decomposed into N (overlapping or non overlapping) subdomains
(2)1<i<n so that all subdomains are a union of cells of the mesh 7;,. This
decomposition induces a natural decomposition of the set of indices A into N
subsets of indices (V;)1<i<n:

N :={keN | meas(supp(¢y) n ;) >0}, 1 <i < N. (3)

For all 1 <i < N, let R; be the restriction matrix from R#V to the subset R#V:
and D; be a diagonal matrix of size #N; x #N;, so that we have a partition of
unity at the algebraic level,

N
Y RIDiR; =1, (4)

i=1

where I € R#N>*#N ig the identity matrix.

We also define for all subdomains 1 < 57 < N, AJ, the #N; x #N; matrix
defined by

VIAU; == ag, | Y Uuer, D) Vi |, Uj, V;eRM (5)
lEN]‘ lENj

When the bilinear form a results from the variational solve of a Laplace prob-
lem, the previous matrix corresponds to the discretization of local Neumann
boundary value problems. For this reason we will call it “Neumann” matrix
even in a more general setting.
We also make use of two numbers kg and k; related to the domain decom-
position. Let
ko := maxN#{j | RjAR] # 0} (6)

1<i<

be the maximum multiplicity of the interaction between subdomains plus one.
Let k1 be the maximal multiplicity of subdomains intersection, i.e. the largest
integer m such that there exists m different subdomains whose intersection has
a non zero measure.

Let P, be defined as:

Py = —1774,
] ZE'ZTA

(7)

the operator Py is thus an approximation to the A-orthogonal projection on Vj

Py = 2E7' 27 A|

which corresponds to an exact coarse solve.
Note that although P, is not a projection it has the same kernel and range
as Py:



Lemma 2.1 We have
ker Py = ker Py = Vi and ImPy=ImP =Vp,

where VOAJ- is the vector space A-orthogonal to Vi, that is when R#¥N is endowed
with the scalar product induced by A: (x, y)a := (x, Ay).

Proof First note that the kernel of Py contains ker ZZA. On the other hand,
we have:

Pox=ZE ' ZTAz = 0= (ZE~ 27 Az, Az) = (E~1Z7 Az, Z7 Az) = 0.

Since F is SPD, it means that ZT Az = 0, that is € ker ZT A. We have thus
ker Py = ker ZT A. Note that

ZTAz =0 e Vy (Az, Zy) =0 < z e Vi,

As for the image of P,, since the last operation in its definition is the multipli-
cation by the matrix Z we have Im Py < Vj. Conversely, let y € Vj, there exists
8 such that y = ZB. It is easy to check that y = Py(Z (ZAZ)~'E 3). Thus,
Im Py = V.

The same arguments hold if Eis replaced by FE. Thus, Py and Py have the same
kernel and image. u

3 Inexact Coarse Solves for GenEO

The GenEO coarse space was introduced in [20] and its slight modification is
defined as follows, see [2]:

Definition 3.1 (Generalized Eigenvalue Problem for GenEO) For each
subdomain 1 < 3 < N, we introduce the generalized eigenvalue problem

Find (Vjg, Tjx) € RFNi\{0} x R such that (8)
DjRj A]%;‘F.D]\/j]C = TjkAjij .

Let 7 > 0 be a user-defined threshold, we define V., < R#N as the vector
space spanned by the family of vectors (RjTDjij)TjPT 1<j<N corresponding to
ergenvalues larger than 7.

Let ; be the projection from R#Ni on Span{V | 7, > 7} parallel to Span{V j;| 7jz <
T}
In this section, Z denotes a rectangular matrix whose columns are a basis
of the coarse space V., defined in Definition (3.1). The dimension of Z is
#N x #Ny. The GenEO preconditioner with inexact coarse solve reads:

N
Mg poacs = ZE Z" +(I—PRy) (Y Rl (RiAR]) ™ Ri)(I-Pf). (9)

i=1

The study the spectrum of A{G_;nEOACSA is based on the Fictitious Space
lemma which is recalled here, see [15] for the original paper and [6] for a modern
presentation.



Lemma 3.1 (Fictitious Space Lemma, Nepomnyaschikh 1991) Let H and
Hp be two Hilbert spaces, with the scalar products denoted by (-,-) and (-,-)p.
Let the symmetric positive bilinear formsa : HxH — R andb : HpxHp — R,
generated by the s.p.d. operators A : H — H and B : Hp — Hp, respectively
(i.e. (Au,v) = a(u,v) for all u,v € H and (Bup,vp)p = blup,vp) for all
up,vp € Hp). Suppose that there exists a linear operator R : Hp — H that
satisfies the following three assumptions:

(i) R is surjective.
(i) Continuity of R: there exists a positive constant cg such that

a(RuD,RuD) <CR~b(uD,uD) Yup € Hp . (10)

(iii) Stable decomposition: there exists a positive constant ¢y such that for all
u € H there exists up € Hp with Rup = u and

cr - blup,up) < a(Rup, Rup) = a(u,u). (11)

We introduce the adjoint operator R* : H — Hp by (Rup, u) = (up, R*u)p
for allup € Hp and ue H.
Then, we have the following spectral estimate

cr - a(u,u) < a (RBT'R*Au, u) < cg-a(u,u), YueH (12)

which proves that the eigenvalues of operator RB~YR* A are bounded from below
by cr and from above by cg.

Loosely speaking, the first assumption corresponds to equation (2.3), page 36
of [23] where the global Hilbert space is assumed to satisfy a decomposition
into subspaces. The second assumption is related to Assumptions 2.3 and 2.4,
page 40 of [23]. The third assumption corresponds to the Stable decomposition
Assumption 2.2 page 40 of [23].

In order to apply this lemma to the preconditioned operator M, eln soacs A
we introduce Hilbert spaces H and Hp as follows:

H:=R#¥N
endowed with the bilinear form a(U,U) := (AU, U) and
Hp := R#No x TIN R#N:
endowed with the following bilinear form

b:HpxHp — R
((Uo, (Uj)i<ien), (Vo, (Vi)i<isn)) +—— (EUg, Vo) + (R; ART U, V,).
) N (1)
We denote by B : Hp — Hp the operator such that (Bup,vp)p = b(up,vp)
for a1~1 Up,vp € HD.
Let R : Hp — H be defined by

RU) := ZUg + (I — By) i RT

)
i=1

U, (14)



where U := (Up, (U;)1<i<n)- Recall that if we had used an exact coarse space
solve, we would have introduced:

N
RWU) := ZUo + (I - Py) Y, RI'U;. (15)

i=1

Note that we have

N
R(U) = RWU) + (Py— Po) ), RTU;.

i=1
It can be checked that ME;QHEOACS =RB! ﬁT, see @ In order to apply the
fictitious space Lemma [3.1] three assumptions have to be checked.

e R is onto. ~ ~ ~
Let U € H, we have U = PyU + (I — ) U. By Lemma[2.1, P,U € V; so that
there exists Uy € R#Mo such that PyU = ZU,,. Owing to (4]), we have

N
U= ZU+ (I - Ry) Y R DiR;U = R(Up, (D;R;U)1<i<n))

i=1

e Continuity of R
We have to estimate a constant cg such that for all i = (Ug, (U;)1<i<n) € H,
we have:

a(R(U), R(U)) < crbU, U).

Let & be some positive number. Using that the image of Py — Py is a-orthogonal
to the image of I — Py, Cauchy-Schwarz inequality and the a-orthogonality of
the projection I — Py, we have:

a(RU),RWU)) = |RU)+ (P~ Po) il RTUJ%

IRWU)I% +2a(Z U + (I — Po) X%, RTU;, (Py — Py) S| RTU)
+|(Po — Bo) 2N, RTU %

= |[RW)A +2a(Z Uy, (Py— Py) SN, RTUY)
+[(Po— Po) XN, RTU,|%

'S N
< AR@OIA + 6012 Tolh + 5 (P — Po) X532, BRI Uil
D N
+(Po = Po) X2y BT UG[%
N
< 200l + [ X5, BRI Ul + 612 Ul
r N
+H(1+ ) [(Po = Po) X2y BT U3
D N
< (1492005 + L+ [P — RolA (1 + 5) X2, BRI U:

< (14 ) Amaa EETY)(EUg, Uo) + (1 + [Py — Pyl (L+ ) ko XL, | RT UG
< max (14 6) Amaa (BEY), [+ [Py = Pol3(1+ 2] ko ) B, U).

It is possible to minimize over & the factor in front of b(U , U) using the



Lemma 3.2 Let ¢,d,« and 8 be positive constant, we have

d+c++/(d—¢c)? + 4af
5 .

min max(c + ad,d + B671) =

6>0

Proof The optimal value for § corresponds to the equality ¢ + ad = d + B5~L.
|
Let ~ -
ear=|Po—Polla =27((27 AZ)"' = ET1)ZT Al a, (16)
the formula of Lemma [3.2] yields

Fo(1+ )+ Amas (BE™) 44/ (ko(1 + €4) = Amaa(BE1))? + Adaa (BE- ko (e + 1)

CR = B

()

Actually, e4 can be expressed in term of the minimal eigenvalue of EE~!.
Lemma 3.3 Other formula for ea:

(E(E~' — E~1)EU,, Uy)
€4 = Sup

UoeR#No (EU,, Uy)
Proof Since Py — Py is A-symmetric, its norm is also given by
[(Py — Py)U, U) 4
1014

We can go further by using the fact that Fy is a A-orthogonal and that Py and
Py have the same kernels and images:

[(Po = Po)(PoU+ (I = Py)U), R U+ (I — Ry)U) 4|

= max(|1=Apmin(EE™Y)], [1=Amaz (EEY)]).

€4 = SUp
U

€4 = sup
U ) IPU[% + (I - Po)U[% )
_ (P —P) P U, R U)a| [(Po—P)R U, A U)4|
= sup 5 5— = sup 5
1B U5 + (I = Po)U% U [P U5
_ |((FPo — P) U, U)al |(E(E~' — E"")EU,, Uy)|
= sup 5 = sup
UeVp HU~HA UoeR#No (EU,, Uy)
(E_lEUO,EUO)
= sup |1-—
UoeR#No (EUg, Uy)

|
This means that formula ([17) for cg can be expressed explicitely in terms of ko
and of the minimal and maxmlal eigenvalue of E~1E.

e Stable decomposition
Let U € H be decomposed as follows:

U = RU+(I-P)U=PRU+(—-PR)Y RI'D;R;U
N
= RU+ I -P)Y), RYD;(I—#))R;U+ (I — ) Y| R} D;&; R;U
j=1
=0
N
= RU+(Py—PR) )R] #)R;U+(I — Po) Y RTD;(I — 7;)R,U.
j=1
F{J eVy



Let Uy € R#¥M be such that ZUy = FU, we choose the following decomposi-
tion: N
U = R(Uo, (D;(I — 7;)R;U)1<j<n) -

The stable decomposition consists in estimating a constant ¢y > 0 such that:

N
cr [(EUg, Ug)+ Y (RAR] D;(I—#;)R;U, D;(I-7;)R;U)] < a(U,U). (18)
j=1
Since the second term in the left hand side is the same as in the exact coarse
solve method, we have (see [2], page 177, Lemma 7.15):

N
S (RjARTD;(I - 7;)R;U, D;(I — ) R;U) < ki 7a(U,U).  (19)

j=1

We now focus on the first term of the left hand side of . Let 6 be some
positive number, using again , the following auxiliary result holds:

IFU% < (1+6)|RU, RU[%
5 N ~
+(1+ (P — Po) X, RT D;(I — ;) R; U3

< (1+6)(AU,U)
U+ DIPo = Po)l3 1| X555 B D (I = 75) Ry U3
< (1+6)(AU,U)
L+ 3P0 = Pl ko X, |IRT D(I - 7)) R;UIR
< (1484 U+ IR = P)lAkokr 7) a(U, U)

The best possible value for 0 is

0:=eakokiT.

Hence, we have:

(ZT AZUq, Uy) = |FU|% < (1 + ean/ko k1 7)%a(U,U). (20)
Thus, we have:
(EUp, Uyp) F E-V2EY?U,, ETV2EY?2U,) = (E-Y2E ETY2EY?U,, EV2U,)

(

)\magc(EilmE E71/2) (EI/QUO , EI/QUO)

/\max(Eill?)(ZT AZUO ) UO)

Amaz(E7YE)(1 + eavko k1 7)%a(U, U) .

This last estimate along with prove that in , it is possible to take

/\min EEI_l

cr = ( ) . (21)

(14 eavkoki17)?2 + ki1

Overall, with ¢y given by and cgr by , we have proved the following
spectral estimate:

NN

cr S MM poacs A) < cr.- (22)

Constants ¢ and cg are stable with respect to €4 and the spectrum of EE~1
so that proves the stability of preconditioner MG_;nEOACS w.r.t. inexact
solves.



4 Inexact Coarse Solves for GenEO2

The GenEO-2 coarse space construction was introduced in [8, [7] , see [2] also
§ 7.7, page 186. It is motivated by domain decomposition methods for which
the local solves are not necessarily Dirichlet solves e.g. discretization of Robin
boundary value problems, see [21I]. We have not been able to prove the robust-
ness of the GenEO-2 coarse space with respect to inexact coarse solves when
used in the original GenEO-2 preconditioner , see remark For this rea-
son, we study here a slight modification of the preconditioner, eq. , for which
we prove robustness. The more intricate analysis of GenEO2 compared to the
one of GenEO is related to the differences between the Schwarz and P.L. Lions
algorithms themselves. Indeed, in the Schwarz method, Assumption (ii) of the
fictitious space lemma [3.1] comes almost for free even for a one level method
whereas Assumption (iii) (stable decomposition) can only be fulfilled with a
two level method. In P.L. Lions algorithm neither of the two assumptions are
satisfied by the one level method. This is reflected in the fact that the proofs
for GenEO2 are more intricate than for GenEO.

For all subdomains 1 <7 < N, let B; be a matrix of size #N; x #N;, which
comes typically from the discretization of boundary value local problems using
optimized transmission conditions or Neumann boundary conditions. Recall
that by construction matrix D; R;ART D; is symmetric positive-semi definite
and we make the extra following assumption:

Assumption 4.1 For all subdomains 1 < i < N, matriz B; is symmetric
positive semi-definite and either of the two conditions holds

e B; is definite,
o B, = A and D; RiARZ.TDi is definite.

We first consider the case where B; is definite. The other case will be treated
in Remark We recall the coarse space defined in [8, [7, 2]. Let v and 7 be
two user defined thresholds. We introduce two generalized eigenvalue problems
which by Assumption [4.1| are regular.

Definition 4.1 (Generalized Eigenvalue Problem for the lower bound)
For each subdomain 1 < j < N, we introduce the generalized eigenvalue problem
Find (Vjg, \ji.) € R#*Ni\{0} x R such that (23)

Ajij = )\jkBjij .
Let 7 > 0 be a user-defined threshold and 7; be the projection from R#Ni on
Vir = Span{Vi|\jx < T} parallel to Span{V jx|\ji. = 7}. We define V] ..., ©

R#N as the vector space spanned by the family of vectors (Rijij)Ajk<T

corresponding to eigenvalues smaller than 7. Let V., be the vector space
spanned by the collection over all subdomains of vector spaces (ijgeneo)lgjggv.

Definition 4.2 (Generalized Eigenvalue Problem for the upper bound)
For each subdomain 1 <1 < N, we introduce the generalized eigenvalue problem

Find (Ui, wir) € RFNN\{0} x R such that

(24)
D;R;ARTD;U;j, = 1. B; Uy, .

10



Let v > 0 be a user-defined threshold, we define c R#*¥N as the vector
space spanned by the family of vectors (RZTDz'Uik)/mw/ corresponding to eigen-

values larger than . Let V., ., be the vector space spanned by the collection

. y _
over all subdomains of vector spaces (V! .pco)1<j<N-

y
Vi,geneo

Now, let & denote the B;-orthogonal projection from R#VNi on
Viy i= Span{Uj [ v < pir}

parallel to
Wiy := Span{Uix |7 = pix} -
The coarse space V{ built from the above generalized eigenvalues is defined as

the following sum:
Vo = Vg‘lt—zneo + Vglneo .

It is spanned by the columns of a full rank rectangular matrix Z = Rl with
#MNp columns. Projection Py and its approximation Py are defined by the same
formula as above, see .

We have the following

Lemma 4.1 For 1 < j < N, let us introduce the Bj-orthogonal projection p;
from R#¥Ni on

Vigy = Vir @ Vjy.
Then for all U € R#Ni | we have:

7 (B;(I —p;)U;, (I —p;)U;) < (4;U;,U;).

Moreover, for all U € R#*N | we have:
N
T Y. (B;(I = pj)R;U, (I - p;)R;U) < k1 a(U,U).
j=1

Proof Let Uj € R#Ni | we have:

(Bj(I —7;)Uy, (I —7;)U;) = (Bij(I —pj+ (pj —73))Us, (I —p; + (pj — 75))Uj)
= T =p)Usl, + I(p; — 7;)U;13,
+2(B;(I = p;)Uy, (p; — 7;)Uy)

N

=0 since 7;U; € V; ,CVj

(I —p)) Ul = (B;(I —p)U;, (I —p;)U;).

Since we have by Lemma 7.6, page 167 in [2] :

V

7 (Bj(I —7;)Uy, (I = 7,)U;) < (4;U;,U;),
the conclusion follows by summation over all subdomains. |

The definition of the stable preconditioner is based on a pseudo inverse of
B; that we introduce now. Let by, denote the restriction of b; to W;, x Wy,
where W, is endowed with the Euclidean scalar product:

bWi :Wi'y X Wi'y — R

11



By Riesz representation theorem, there exists a unique isomorphism By, :
Wi, — W, into itself so that for all U;, V; € W;,, we have:

bWi (Ulv Vi) = (BWz U, Vi) :
The inverse of By, will be denoted by B;r and is given by the following formula
Bl =(I-¢&)B". (26)

In order to check this formula, we have to show that By, (I —&)B; 'y = y for all
y € Wi,. Let z € W;, using the fact that I —¢&; is the b;-orthogonal projection

on W; ., we have:

(BWz(Ifgl)Bz_lyaz) = bl((Ifgt)Bz_lyaZ) = bZ(Bz_ly7Z) = (y,Z) . (27)

Since this equality holds for any z € W, this proves that By, (I —&;)B; Ly = .

We study now the preconditioner given by:

Definition 4.3 (Preconditioner M. .o,.0s) Let g; denote the orthogonal
projection (for the Fuclidean scalar product) from R#Ni onto Wi. We define
the preconditioner MéelnEo2Acs as follows:

Mg posacs = ZE ' ZT
N
+(I-Py) <ER¢TDiqz‘BZQiDiRi> (I-F). (28)
im1

Remark 4.1 In order to write an explicit form for the projection q;, we denote
by Z; a rectangular matriz whose columns are a basis for V;,. Let U; €
R#Ni be a vector we want to project. The projection ¢;U; is the solution to
the constrained minimization problem:

1
SIWi =0y

1
. ZIW, — U 2 _ .
WI,-I;/I[}M 2H ! il Wi|(Biglf)lTwi=o 2H !

Using the Lagrange multiplier technique, we introduce A € R¥*™Viv) and the
optimality conditions read:

(BiZi4)Tq;U; = 0.

The vector A must satisfy
—(BiZ; )" U; + (BiZi )" B;Zi ) = 0.
Finally, an explicit formula for the projection q; is:
@ =1—BiZi,((BiZi»)" B Zi) ' ZL Bl

Thus applying q; amounts to solving concurrently in each subdomain a small
linear system of size the number of local eigenvectors contributing to the coarse
space.
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Remark 4.2 Note that g; B; 1s actually equal to B;r but its presence shows the
symmetry of the preconditioner.

We can now define the abstract framework for the preconditioner. Let Hp
be defined by
Hp :=R*¥No iV W,

endowed with the following bilinear form arising from local SPD matrices (B;)1<i<n

55

b:HpxHp — R

U,V) — bU,V):=(EU,, Vo) + XN (B U;, V,) (29)

We denote by B : Hp — Hp the operator such that (BuD,vD)D = B(uD7vD)
for aE uD,vDeHD. ~
Let R : Hp — H be defined using operator P, (see eq. (7)):

N
RU) = Z U+ (I - B) Y. R DU;. (30)

i=1
Recall that if we had used an exact coarse space solve, we would have introduced:

N
RWU) := ZUg + (I - By) Y. R D;U;. (31)
=1
Note that we have

RU) = R(U) + (Py — Pp) i RTD,U; .

i=1

It can be checked that the resulting preconditioner with inexact coarse solve
Mgl sosacs (Ea. (28)) satisfies M5! pooacs = R B~ RT. Indeed, we have:

RTV = (Z"V,(¢:D;Ri(I — P )V)1<i<n)
Auxiliary results on GEVP Beware, in this paragraph, A and B have
nothing to do with the global problem to be solved:

Lemma 4.2 Let A be a symmetric positive semi definite matriz and B be a
symmetric positive definite matriz. We consider the generalized eigenvalue prob-
lem:

AU = ABU.

The generalized eigenvectors and eigenvalues are denoted by (Ug, Ap)k=1. Let T
be a positive number. We define

Vi = Span{Ug |\ < T}.

Let W be any linear subspace. We denote by p the B-orthogonal projection on
V.+W.
Then, for all U we have the following estimate:

T(B(I-p)U, (I -pU) <(A({ -p)U,( —p)U). (32)

13



Similarly, let v be a positive number. We define
Vo := Span{Uy |\, > v }.

Let W be any linear subspace. We denote by q the B-orthogonal projection on
V,+W.
Then, for all U we have the following estimate:

(Al - q)U,(I —qU) <y (B(I - q)U, (I -q)U). (33)
Proof We have using V, c V, + W:

< (AU, U) < . (AU, U)
T min min -
vevE: (BU,U)  uev, +w)s: (BU,U)

For all U, the vector (I — p)U is B-orthogonal to V. 4+ W and this ends the
proof of . The proof of follows similarily from

(AU, U)
Z ma
UevBL (BU,U) "

|
In order to apply the fictitious space Lemma [3.1] to the study of the precon-
ditioner , three assumptions have to be checked.

e R is onto.
Let U € H, we have

U = RU+(I-PR)U
- RU+I-PB) XY, RTD,RU
PyU+ (I - B) ziN:l RTDi&RU + (I — Py) YN, RTDy(I — &)R;U
N
= BU+ (P, —P) 2 R D& R;U + (I — Py) > R/ D;&;R;U

i=1 i=1

=FU =0
+(I = PBy) XN RTDi(I — &)R;U.

Let us consider the last equality. Since F'U is the sum of two terms that belong
to Vg there exists Uy such that ZUy = FU. The third term is zero since
Zij\il RiTDl-fiRiU € V. Note also that (I — &;)R;U € W;.,. Therefore, we have

U = R(Up, (I = &) Ri0)1<i<n)) -
e Continuity of R

We have to estimate a constant cg such that for all i = (Up, (U;)1<i<n) €
Hp we have:

a(RU),RU)) < erbU,U)

= crl(EUo, Uo) + 57, (BiU:, U]

14



Note that using (I — &;)U; = U; (recall that U, € W), we have:
RMU) = ZUy+ (I —-Py)YY, RT D, U;

= ZUg+ (Py—P) Y, RT D, U, + (I — P)) YN RT D, U;

= ZUg+ (P — Py) ZRT (I = &)U +(I — R) XL, RT D; (I - &)U

i=1

eV

We have thus the following estimate using the A-orthogonality of I — Py:

a(R(U), R(U)) 12U + (P — By) Sv RT Di (I - &)U

+(I = Po) XLy RT Di (I - &)U4[4

= |ZUo+ (Po— By) X, RT D; (I — &)U, |3

+|(I = Po) X3, RT D; (I - &)U |4

(1+8)|ZU0l4 + (1 + H|(Po — Bo) XN, RT D, (T — &)U,
1SN, RT Dy (T — &)U

(1+0)(EUo, Up) + ko X, | RT Di (T - &)U, 3

+(1+ D[P — Po)|3ko X, | R Di (I - &)U %

(1+ 8)Amaz(EE™)(E Uy, Up)

thov(L+ 1+ D[P — )2 I, (Bi (I - &)U, (I —&)U;)

< max((1+06) Ao (EE™Y), koy (1 + (1 + 1) €4) bU,U) .

N

N

N

Based on Lemma [3.2] we can optimize the value of § and take

Foy (L4 €3) + Amas(BEY) 4/ (ko v (1 4+ €) = Ao (BE~1))? + Adnae(EE-D)hoy (e + 1)
CR = 9 .
(34)
e Stable decomposition
The stable decomposition estimate is based on using projections p; defined

in Lemma [£.1] Let U € H be decomposed as follows:

N
U = P()U + (I — P()) Z;\;l RJTDJ(I —pj)RjU + (I — P()) Z RjTDjijjU
j=1
=0
N
= PU+ (P —R) Z i —p))R;U+(I — Py) 3;_ RTD;(I - pj)R,U.
:=FUEeV,

We define Uy be such that ZUy = FU. We have that (I — p;)R;U is Bj-
orthogonal to V5, ; 4+ V; ; and thus to V, ;. This means that (I —p;)R;U € W, ;
and that we can choose the following decomposition:

U = R(Uo, (I - pj)R;U)1<j<n) -

15



The stability of the decomposition consists in estimating a constant ¢z > 0 such
that :

N
cr [(EUo, Uo) + Z (I —pj)R;U, (I —p;)R;U)] <a(U,U).  (35)
Using Lemma we have
Z (I —p;j)R;U, (I —p;)R;U) < k1 a(U,U). (36)

We now focus on the first term of the left hand side of . Let 6 be some
positive number, the following auxiliary result will be useful:

IFU|%Z < (1+496)|PU, RU[%
+(1+ D[P — Po) X RTD;(I - pj)R;U|%

N

(1+6)(AU, U)
+(1+ D(Po = Po) A1 X3, R D, (I - py)R; U
(1+4)a(U,U)
+(1+ %)II(Po — Po)IA ko 333 | RT D3 (I — pj)R; U4
(U
3)

N

N

(14 6)a(U,U)
+(1+ ||(P0 — Po)|% koy X3, (B;(I — pj) R; U, (I — p;) R; U)
< ((140)+ (1 + $)I(Po — Po)|% koy 7 k1) (U, U)

where we have used Lemma (applied with A replaced by D; R; ART D;
and B by B;) for the one before last estimate and Lemma [4.1] for the last esti-
mate.

The optimal value for § yields:

IFU|4 < (1 + ear/kokiy71)%a(U, V). (37)
We have

(EUp,Up) < Amae(E71E)(EUg, Ug) = Aoz (E~'E)(A ZU,, ZUp)
= )‘ma( 1E)HFUHA

so that with , this yields:

(EUg, Ug) € Mae(E7YE) (1 + ean/ko k1 vy 712 (U, U).
Finally, in we can take :
1
CT = = . (38)

)\maw(E_lE) (1 + €A/ ko k1 77_1)2 + k1 71

Overall, with ¢y given by and cr by , we have proved the following
spectral estimate:

er S MMgl,posacs A) < cr - (39)
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Constants ¢ and cg are stable with respect to €4 and the spectrum of EE'so
that proves the stability of preconditioner Mgeln BEO2ACS w.r.t. inexact
solves.

Remark 4.3 Had we taken the GenEO-2 algorithm introduced in [7] and mod-
ified only the coarse space solves:

N
Mglpos=2E 2" + (I - P) (Y, RI DiB' Dy Ri)(I - Ff),  (40)
i=1
the estimate for the upper bound of the preconditioned system would be for ar-
bitray 6 > 0

1
Anaz <max(l + 8, koy + (14 <)% ko max Amaz (Bt D; R; AR D;)?)

(5 1<i<

and would depend on the product of ea with the largest eigenvalue of the local
operators B;l D; R; ARiTDi. This last term can be very large and we were not
able to guarantee robustness with respect to approximte coarse solves.

Remark 4.4 If for some subdomaini, 1 <i< N, B; = A; and A; is symmetric
positive semi-definite and D;R; AR} D; is SPD, the eigenvalue problem will
not contribute to the coarse space. More precisely, the contribution of the sub-
domain to the coarse space involves and will be RT D; ker(A;) D Vi senco-

Also in Deﬁm’tion Bg is the pseudo inverse of B; where Wi, is the image
of B; which is orthogonal to ker(A;).

Acknowledgements We thank the referee for his comments which lead us to
add Annex [l
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Figure 1: A subdomain and its extension by one layer

5 Annex

We explain here how to adapt the GenEO coarse space as defined in [2] so that
it will behave as the one defined in [20].

We start from a domain decomposition (£2;)1<;<n and inherited indices de-
composition (NV;)i1<i<n as defined in the present article. Let us denote with a
tilde "all the quantities related to the subdomains §2; obtained by extending by
one (or more) layers of cells subdomains €2;, see fig. |5l Similarly to [2], we define

N; = {k e N | meas(Supp(¢r) n ;) > 0}.

Since Q; < Q; , we have

Nic ;.

Also from the partition of unity on the original decomposition, we can define a
partition of unity on (N;)1<;<n inherited from the one on (NV;)1<i<n by defining
diagonal matrices (Dj;)1<i<n in the following manner:

(D~) o (Dz)kk if k E./\fi
JRET00 if ke MN\W;
We have clearly a partition of unity:
N
T
I=) RID;R;.
i=1

Also since for all subdomains 1 < i < N, the entries of D; are zero on the added
layers, we have the following equality:

D;R; = R;R] D;R; .

The coarse space is built by first introducing the Neumann matrices Aév e on
subdomains §; for 1 <i < N, as in [20], so that we have:

=

(AN"R;U, R;U) < k1 (AU, U),
i=1

where k~1 is the maximum multiplicity of the intersections of subdomains €2;.
Let V5, be the eigenvectors of the following generalized eigenvalue problem:

D; R; AR D; Vi = i AN V.
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Note that for A;; not equal to 1, the eigenvectors are harmonic for the interior
degrees of freedom since for these points the left and right matrices have identical
entries for the corresponding lines. Thus, for A;; # 1, we might as well zero
the lines corresponding the interior degrees of freedom and keep only the entries
of the degrees of freedom in the overlap. This GEVP is thus also of the type
GenEO.

For a user-defined parameter 7, let us define the coarse space as follows:
Vo := Span{R} D; V; | 1<i < N, \ip > 7},

and a rectangular matrix Z € R#¥N*#No whose columns are a basis of V where
Ny is a set of indices whose cardinal is the dimension of the vector space V.
We also define local projections (m;)1<i<n on Span{V;, | Ay > 7} parallel to
Span{Vz. | i < T}

We have then a stable decomposition. Indeed, let U € R#V |

N N N
U= > R/D;R;U = ) RIR;RI D;(R;U — m;R;U) + Y R R;RY D;m; ;U .

i=1 i=1

The last term is clearly in V[ so that there exists Ug € RN such that

N
ZUq = Z R} RiRI D;m;R;U = > RI D;mR;U € V.

i=1 i=1

Let us define
U, := R;R! D;(R;U — m;R;U).

This decomposition is stable since

N N
D (ARTU;, RIU) = Y (ARTRiR D;(R;U — m;R;U) , R RR{ D;(R;U — m;R;U))
i=1 1=1
N
Z ART D;(R;U — mR;U), RY D;(R;U — m;R;U))
=) N

Z (AN“R.U, R;U) < 7k, (AU, U).

Note also that Assumption 2.1 of [20] is automatically satisfied in the finite
element framework chosen here whereas Assumptions 3.12 and 3.13 are not
needed here since our construction is simpler.

19



References

[1]

[10]
[11]

Markus Blatt, Ansgar Burchardt, Andreas Dedner, Christian Engwer, Jor-
rit Fahlke, Bernd Flemisch, Christoph Gersbacher, Carsten Gréser, Felix
Gruber, Christoph Grininger, et al. The distributed and unified numer-
ics environment, version 2.4. Archive of Numerical Software, 4(100):13-29,
2016.

Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An Introduction to
Domain Decomposition Methods: algorithms, theory and parallel implemen-
tation. SIAM, 2015.

Maksymilian Dryja, Marcus V. Sarkis, and Olof B. Widlund. Multilevel
Schwarz methods for elliptic problems with discontinuous coefficients in
three dimensions. Numer. Math., 72(3):313-348, 1996.

Yalchin Efendiev, Juan Galvis, Raytcho Lazarov, and Joerg Willems. Ro-
bust domain decomposition preconditioners for abstract symmetric positive
definite bilinear forms. ESAIM Math. Model. Numer. Anal., 46(5):1175-
1199, 2012.

R. M. Gower, D. Goldfarb, and P. Richtarik. Stochastic block bfgs: Squeez-
ing more curvature out of data. Technical report, Arxiv, 2016.

M. Griebel and P. Oswald. On the abstract theory of additive and multi-
plicative Schwarz algorithms. Numer. Math., 70(2):163-180, 1995.

R. Haferssas, P. Jolivet, and F. Nataf. An Additive Schwarz Method Type
Theory for Lions’s Algorithm and a Symmetrized Optimized Restricted
Additive Schwarz Method. SIAM J. Sci. Comput., 39(4):A1345-A1365,
2017.

Ryadh Haferssas, Pierre Jolivet, and Frédéric Nataf. A robust coarse space
for optimized Schwarz methods: SORAS-GenEO-2. C. R. Math. Acad. Sci.
Paris, 353(10):959-963, 2015.

F. Hecht. New development in Freefem++. J. Numer. Math., 20(3-4):251—
265, 2012.

F. Houssen and F. Nataf. geneo4PETSc, 2017.

Pierre Jolivet and Frédéric Nataf. Hpddm: High-Performance Uni-
fied framework for Domain Decomposition methods, MPI-C++ library.
https://github.com/hpddm/hpddm, 2014.

Pierre-Louis Lions. On the Schwarz alternating method. III: a variant for
nonoverlapping subdomains. In Tony F. Chan, Roland Glowinski, Jacques
Périaux, and Olof Widlund, editors, Third International Symposium on
Domain Decomposition Methods for Partial Differential Equations , held
in Houston, Texas, March 20-22, 1989, Philadelphia, PA, 1990. STAM.

Jan Mandel. Balancing domain decomposition. Comm. on Applied Numer-
ical Methods, 9:233-241, 1992.

20



[14]

[17]

[18]

[19]

[20]

Jan Mandel, Bedfich Sousedik, and Clark R. Dohrmann. On Multilevel
BDDC, pages 287-294. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

Sergey V. Nepomnyaschikh. Mesh theorems of traces, normalizations of
function traces and their inversions. Sov. J. Numer. Anal. Math. Modeling,
6:1-25, 1991.

Roy A. Nicolaides. Deflation of conjugate gradients with applications to
boundary value problems. SIAM J. Numer. Anal., 24(2):355-365, 1987.

Clemens Pechstein and Clark R. Dohrmann. A unified framework for adap-
tive BDDC. Electron. Trans. Numer. Anal., 46:273-336, 2017.

C. Prud’homme. A Domain Specific Embedded Language in c++ for auto-
matic differentiation, projection, integration and variational formulations.
Scientific Programming, 14(2):81-110, 2006.

R. B. Schnabel. Quasi-Newton Methods using Multiple Secant Equations.
Tech. rep. Computer Science Technical Reports 247-83, Paper 244, Col-
orado University-Computer Science, 1983.

Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens
Pechstein, and Robert Scheichl. Abstract robust coarse spaces for systems
of PDEs via generalized eigenproblems in the overlaps. Numer. Maith.,
126(4):741-770, 2014.

Amik St-Cyr, Martin J. Gander, and Stephen J. Thomas. Optimized
Multiplicative, Additive, and Restricted Additive Schwarz Precondition-
ing. SIAM J. Sci. Comput., 29(6):2402-2425 (electronic), 2007.

J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga. Comparison of two-
level preconditioners derived from deflation, domain decomposition and
multigrid methods. Journal of Scientific Computing, 39(3):340-370, 2009.

Andrea Toselli and Olof Widlund. Domain Decomposition Methods - Algo-
rithms and Theory, volume 34 of Springer Series in Computational Math-
ematics. Springer, 2005.

Xuemin Tu. Three-level BDDC in three dimensions. SIAM J. Sci. Comput.,
29(4):1759-1780, 2007.

Xuemin Tu. A three-level BDDC algorithm for a saddle point problem.
Numer. Math., 119(1):189-217, 2011.

Xuejun Zhang. Multilevel Schwarz methods. Numer. Math., 63(4):521-539,
1992.

21



	Introduction
	Basic definitions
	Inexact Coarse Solves for GenEO
	Inexact Coarse Solves for GenEO2
	Auxiliary results on GEVP
	Acknowledgements


	Annex

