N
N

N

HAL

open science

Mathematical Analysis of Robustness of Two-Level
Domain Decomposition Methods with respect to Inexact
Coarse Solves

F. Nataf

» To cite this version:

F. Nataf. Mathematical Analysis of Robustness of Two-Level Domain Decomposition Methods with

respect to Inexact Coarse Solves. 2017. hal-01573197v2

HAL Id: hal-01573197
https://hal.science/hal-01573197v2

Preprint submitted on 8 Nov 2017 (v2), last revised 31 Jul 2020 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01573197v2
https://hal.archives-ouvertes.fr

Mathematical Analysis of Robustness of
Two-Level Domain Decomposition Methods with
respect to Approximate Coarse Solves

F. Nataf'

1Laboratoire J.L. Lions, UPMC, CNRS, Equipe LJL-INRIA Alpines,
nataf@jll.math.upmec.fr, Paris, France

November 8, 2017

Contents

(1__Introduction| 2

5 Basic definih 3

|3  Approximate Coarse Solves for (GenEQO)| 5

|4  Approximate Coarse Solves for (GenEO?2| 9
[Auxiliary results on GEVDP] . . . . . . . . ... ... ... 12

[6_Conclusion| 16

Abstract

Convergence of domain decomposition methods rely heavily on the ef-
ficiency of the coarse space used in the second level. The GenEO coarse
space has been shown to lead to a fully robust two-level Schwarz precon-
ditioner which scales well over multiple cores [27, 19] as has been proved
rigorously in [27]. The robustness is due to its good approximation prop-
erties for problems with highly heterogeneous material parameters. It
is available in the finite element packages FreeFem++ [B], Feel++ [12]
and recently in Dune [I] and is implemented as a standalone library in
HPDDM [6]. But the coarse component of the preconditioner can ulti-
mately become a bottleneck if the number of subdomains is very large and
exact solves are used. It is therefore interesting to consider the effect of
approximate coarse solves. In this paper, robustness of GenEO methods
is analyzed with respect to approximate coarse solves. Interestingly, the
GenEO-2 method introduced in [3] has to be modified in order to be able
to prove its robustness in this context.
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1 Introduction

Convergence of domain decomposition methods rely heavily on the efficiency of
the coarse space used in the second level, see [9, [I5, 1] and references therein.
The GenEO coarse space has been shown to lead to a fully robust two-level
Schwarz preconditioner which scales well over multiple cores [27, 19] as has
been proved rigorously in [27]. The robustness is due to its good approximation
properties for problems with highly heterogeneous material parameters. It is
available in the finite element packages FreeFem++ [5], Feel4++ [12] and re-
cently in Dune [I] and is implemented as a standalone library in HPDDM [6].
But the coarse component of the preconditioner can ultimately become a bot-
tleneck if the number of subdomains is very large and exact solves are used. It
is therefore interesting to consider the effect of approximate coarse solves. In
this paper, robustness of GenEO methods is analyzed with respect to approxi-
mate coarse solves. Interestingly, the GenEO-2 method introduced in [3] has to
be modified in order to be able to prove its robustness in this context. In the
context of domain decomposition methods, the robustness of the BDDC w.r.t.
approximate coarse solves has been studied in [I6] [I7] and in [8]. We focus here
on GenEO methods.

The general framework of our work is the following. Let M ! be a precon-
ditioner enhanced by a second level correction based on a rectangular matrix Z
whose columns are a basis of a coarse space V. The coarse space correction is

VAV VAR A (1)
and the coarse operator is defined by
E=7TAZ. (2)
Let M~ denote a one-level preconditioner, the two-level method is defined by:
My =ZE ' 2V + (Iy - ZE ZT A\ MY (I, - AZE' ZT),

see the balancing domain decomposition method by J. Mandel [7] and also the
BFGS algorithm as described in e.g. [10].

We consider Geneo methods, where the coarse space V spanned by the
columns of Z is built from solving generalized eigenvalue problems in the sub-
domains. Since it is a purely parallel task with no communication involved,
this part of the computation is not penalizing parallelism. Actually, in strong
scaling experiments where the number of degrees of freedom of subdomains is
smaller and smaller the scaling of this task is perfect. On the other hand, as
the size of matrix Z7 A Z typically increases linearly with the number of subdo-
mains, the solving of the corresponding linear systems for instance with a LU
factorization becomes a bottleneck in two-level domain decomposition methods.
It is therefore interesting to estimate the robustness of the modified two-level
method when in the operator F is approximated by some operator E:



since it paves the way to approximate coarse solves and three or more level
methods. More precisely, formula is modified and the preconditioner we
study is defined by:

Myl =ZE Y27 + (I;— ZE ZTAM Y1, — AZE~1 Z7).

2 Basic definitions

The problem to be solved is defined via a variational formulation on a domain
Q cR? for de N:

Find u € V such that : aq(u,v) =1(v), YveV,

where V' is a Hilbert space of functions from €2 with real values. The problem
we consider is given through a symmetric positive definite bilinear form aq that
is defined in terms of an integral over any open set w < 2. Typical examples
are the Darcy equation (K is a diffusion tensor)

ay(u,v) := J KVu-Vvdz,

or the elasticity system (C' is the fourth-order stiffness tensor and e(u) is the
strain tensor of a displacement field u):

ay(u, v) = j C:e(u):e(v)de.

The problem is discretized by a finite element method. Let A/ denote the set
of degrees of freedom and (¢)kens be a finite element basis on a mesh Ty.
Let A € R¥N*#N he the associated finite element matrix, Ay := aq(o1, dr),
k,l € N. For some given right hand side F € R#¥N we have to solve a linear
system in U of the form

AU =F.

Domain {2 is decomposed into N (overlapping or non overlapping) subdomains
(2)1<i<n so that all subdomains are a union of cells of the mesh 7;,. This
decomposition induces a natural decomposition of the set of indices N into N
subsets of indices (N;)1<i<n:

N :={k e N'| meas(supp(¢r) n ;) >0}, 1 <i<N. (3)

For all 1 <i < N, let R; be the restriction matrix from R#V to the subset R#Vi
and D; be a diagonal matrix of size #N; x #N;, so that we have a partition of
unity at the algebraic level,

N
S RID:R; = 14, (4)
=1

where I; € RFN*#N g the identity matrix.



We also define for all subdomains 1 < j < N, A7, the #N; x #N; matrix
defined by

VIAU; =aq, | Y Unér. Y, Vaer |, U;, V;eRM (5)
lENj le/\/j

When the bilinear form a results from the variational solve of a Laplace prob-
lem, the previous matrix corresponds to the discretization of local Neumann
boundary value problems. For this reason we will call it “Neumann” matrix
even in a more general setting.
We also make use of two numbers kg and k; related to the domain decom-
position. Let
ko := max #{j | RjART # 0} (6)

1<i<N
be the maximum multiplicity of the interaction between subdomains plus one.
Let k1 be the maximal multiplicity of subdomains intersection, i.e. the largest
integer m such that there exists m different subdomains whose intersection has
a non zero measure.

Let P, be defined as:

(7)

the operator Py is thus an approximation to the A-orthogonal projection on Vj

]150 =ZE 177 A,

Py:=ZE"'ZTA
| |

which corresponds to an exact coarse solve.
Note that although P, is not a projection it has the same kernel and range
as Py:

Lemma 2.1 We have

ker Py = ker Py = VAt and ImPy=Im Py =V,
where VOAl 18 the vector space A-orthogonal to Vy, that is when R#N s endowed
with the scalar product induced by A: (xz, y)a := (z, Ay).

Proof First note that the kernel of Py contains ker ZZ A. On the other hand,
we have:

Pyx=ZE ' ZTAx = 0= (ZE7'ZT Az, Az) = (B~ ZT Az, ZT Az) = 0.

Since E is SPD, it means that ZT Az = 0, that is x € ker ZT A. We have thus
ker Py = ker ZT A. Note that

ZTAz =0 Vy (Az, Zy) =0 < z e Vi,

As for the image of P,, since the last operation in its definition is the multipli-
cation by the matrix Z we have Im Py < Vj. Conversely, let y € Vj, there exists
B such that y = ZB. It is easy to check that y = Py(Z (ZAZ)"'E ). Thus,
Im Py = V.

The same arguments hold if E is replaced by E. Thus, Py and P, have the same
kernel and image. |



3 Approximate Coarse Solves for GenEO
The GenEO coarse space was introduced in [13] and is defined as follows:

Definition 3.1 (Generalized Eigenvalue Problem for GenEQO) For each
subdomain 1 < 7 < N, we introduce the generalized eigenvalue problem

Find (Vji, pji) € R#*Ni\{0} x R such that ®)
D R AR D; ij = ,U,JkAJij .
Let 1 > 0 be a user-defined threshold, we define Vi, ., c R#N as the vector
space spanned by the family of vectors (Rj D;Vji)u>n1<j<n corresponding
to eigenvalues larger than p.

Let 7; be the projection from R#Ni on Span{V | ujx > p} parallel to Span{V ;x| pjx <

i}
In this section, Z denotes a rectangular matrix whose columns are a basis

of the coarse space V¥ .. defined in Definition (3.1)). The dimension of 7 is

geneo

#N x #MNg. The GenEO preconditioner with approximage coarse solve reads:

N
Mgzupoacs = ZE™ 27 + (Lo — Po) (Y RT (Ri ART) ™ Ry) (Ia — B) . (9)
i=1

The study the spectrum of MC;;HEOACSA is based on the Fictitious Space
lemma, see [2] for more details. For this purpose, we introduce

Hp := R#*No 5 TIN R#Ni
be endowed with the following bilinear form

B:HD X HD — R
((Uo, (Uii<isn), (Vo (Vii<isn)) = (EUg, Vo) + (R ART Uy, V)
(i0)
and R : Hp — H is defined by

N
R(U) := ZUq + (Ig — Py) Z (11)

Recall that had we had used an exact coarse space solve, we would have intro-

duced:
N

RU) := ZUq + (I; — Pp) Z (12)

Note that we have

N
RU) = RU) + (P — Py) Y. RT'U;.

i=1

It can_be chekced that the resulting preconditioner with approximate coarse
solve R B~!' RT is actually equal to M(;elnEOACSW see @D In order to apply the
fictitious space Lemma, three assumptions have to be checked.



e R is onto.
Let U e H, we have U = PyU + (I — ) U. By Lemma 2.1} PyU € 14 so that
there exists Uy € R#No such that PyU = ZU,. Thus we have

N
U=2Uq+ (I;— R) 2 RI'D;R;U = R(Uy, (D;R;U)1<i<n))
i-1

e Continuity of R
We have to estimate a constant cg such that for all i = (Ug, (U;)1<i<n) € H,
we have: N N ~
a(R(U),R(U)) < crbUU,U).
Let & be some positive number and Using that the image of Py — Py is a-
orthogonal to the image of I; — Py, Cauchy-Schwarz inequality and the a-
orthogonality of the projection I; — Py, we have:

a(R(U), RWU)) IRWU) + (Py = Po) XLy RTUL|3

IRWU)|A +2a(Z U + (Is — Po) S0, RTU;, (Py — Py) S| RTU)
(P — Po) 3w, RTU 4

= |RW)A +2a(Z Uy, (P — Py) XN, RTU)

+|(Py — Bo) 2N, RTU %

~ N

< IRU)IA + 012 Uo|% + 5 1(Po — Po) X;2, RTUL%

+(Py — Bo) XL, RTU %

N
< 20|54 + [ 22, RTU% + 612 00|15
= N
+(1+3) [(Po— Po) X2, RTU %
= N

< (14+0)|ZU00)%4 + (14 |Po— P31+ )| Xit: RFU %

< (14 6)Amae( BET)(EUo, Up) + (1 + [Py — Pl (1 + §)) ko X0y |RT U
< max (14 6) Ao (BE), [14 [Py = Pol3(1+ 2] ko ) b, U).

It is possible to minimize over ¢ the factor in front of ZN)(U , U) using the

Lemma 3.1 Let ¢,d,« and 8 be positive constant, we have

_d+c+4/(d—c)? +4aB
- 5 .

min max(c + ad,d + 6 )
6>0
Proof The optimal value for & corresponds to the equality ¢ + ad = d + B61.
|
Let R R
ea=|Po—Polla =2"((Z2" AZ)"' = E1)ZT Al a, (13)

the formula of Lemma [3.1] yields

Fo(1+ ) + Amae(EE™) + 3/ (ko1 +€4) = M (EE1))? + Adnaa(EE~)ko(¢4 + 1)
5 .

CR =
(14)



Actually, e4 can be expressed in term of the minimal eigenvalue of EE .

Lemma 3.2 Other formula for ex:

-1 _ -1 ~ N
(E(E E7")EUo, Uo) = max(|1=Amin(EE™Y)], [1=Amas (EE~Y)]) .

€4 = Ssup
UoeR#No (EUo, Up)

Proof Since Py — P, is A-symmetric, its norm is also given by

(P — Po)U, U)4|
[UJ%

€4 = sup
U

We can go further by using the fact that Fy is a A-orthogonal and that Py and
P, have the same kernels and images:

|(Po— Po)(PoU+ (Ig — Py) U), Py U + (Ig — Py)U) 4|

€4 = sup

U ) [PUI% + (e — Po)UI%
~ sup I((Po —P)R U, R U)a| _ sup |(Po — Po)Po U, Py U) 4|
u [RUIG+[(a—-P)UL U PO
_ [(Fo —R)U, U)a| _ (E(E"" — E~')EU,, Uo)|
= sup 5 = sup
Uelp 0% UoeR#No (EUo, Uy)
(EilEU(),EU())
= sup |1 — |
UoeR#No (EUo, Up)

|
This means that formula for cg can be expressed explicitely in terms of ko
and of the minimal and maximal eigenvalue of E~1E.

e Stable decomposition
Let U € H be decomposed as follows:

U = RU+(I4—P)U=RU+ ;- P)Y, RTD,R;U
N

= RU+(I;— P) X RTD;(Iy — 7)R;U + (I — Po) Z T'D;7; R;U

-

;0
N
= PU+ (B -P) Z 7)) R U +(Ig — Po) Y0y RTD;(Iy — 7;)R;U .
=FUeV,

Let Uy € R#¥M be such that ZUy = FU, we choose the following decomposi-
tion: N
U = R(Uo, (D;(la — 7;) R;U)1<j<n) -

The stable decomposition consists in estimating a constant ¢y > 0 such that:

N

7 [(EUo, Ug) + Y. (R;AR] D;(Ia — 7;)R;U, D;(I, — ;) R;U)] < a(U, U).
j=1

(15)



Since the second term in the left hand side is the same as in the exact coarse
solve method, we have (see [2], page 177, Lemma 7.15):

N
Z (R;ARTD;(I4 — 7;)R;U, D;(I4 — 7;)R;U) < ki 7a(U, U). (16)

We now focus on the first term of the left hand side of . Let § be some
positive number, using again 7 the following auxiliary result holds:

IFUI < (1+9)|RU, RUJ%
+(1+ (P — Po) X}, RTD;(1 — 7;)R; U3
< (1+46)(AU, V)
1L+ DIP = Po)la | 275, R Djla — 7)R; U
< (1+6)(AU, V)
(14 DIP = Po)llA ko 5, | R Ds(1a — 75) Ry U
< (1404 1+ IR = P)lAkokr 7) a(U,U)

The best possible value for § is

0 :=ea/kok1T.

Hence, we have:

(2T AZUy, Up) = |[FU|% < (1 + eav/ko k1 7)%a(U, U). (17)
Thus, we have:

(EUy, Uy) (E E-Y?EV?U,, E~V2EY?Uy) = (E~V2E E~V2EY?U, , EY?U,)
)\maa:(E 1/2EE 1/2) (E1/2U0 , EI/QUO)
Amaa (E 1E)(ZT AZUq, Up)

max(E E)(1+€A\/k0k17—) ( )

This last estimate along with prove that in , it is possible to take

NN

on — /\m”L(EEﬁil)
T (1 +eavkoki7)2 + kim

Overall, with ¢y given by and cgr by , we have proved the following
spectral estimate:

(18)

cr S AMMglpoacs A) < cr.- (19)

Constants ¢ and cp are stable with respect to €4 and the spectrum of EE'so
that proves the stability of preconditioner M, eln roAcs W.r.t. approximate
solves.



4 Approximate Coarse Solves for GenEQO2

The GenEO-2 coarse space construction was introduced in [4, 3] , see [2] also
§ 7.7, page 186. It is motivated by domain decomposition methods for which
the local solves are not necessarily Dirichlet solves e.g. discretization of Robin
boundary value problems, see [I4]. We were not able to prove the robustness of
the GenEO-2 coarse space with respect to approximate coarse solves when used
in the original GenEO-2 preconditioner , see remark For this reason,
we study here a slight modification of the preconditioner, eq. , for which we
prove robustness.

For all subdomains 1 < ¢ < N, let B; be a matrix of size #N; x #N;, which
comes typically from the discretization of boundary value local problems using
optimized transmission conditions or Neumann boundary conditions. Recall
that by construction matrix D; R; AR D; is symmetric positive-semi definite
and we make the extra following assumption:

Assumption 4.1 For all subdomains 1 < i < N, matrix B; is symmetric
positive semi-definite and either of the two conditions holds

e B; is definite,
e B; = A and D; R;ART D; is definite.

In order to ease the redaction, we first consider the case where B; is definite. The
other case will be treated in Remark We recall the coarse space defined
in [4 Bl 2]. Let v and 7 be two user defined thresholds. We introduce two
generalized eigenvalue problems which by Assumption are regular.

Definition 4.1 (Generalized Eigenvalue Problem for the lower bound)
For each subdomain 1 < j < N, we introduce the generalized etgenvalue problem

Find (Vjg, \ji.) € R#*Ni\{0} x R such that (20)
AV, = X\jBj Vi .

Let 7 > 0 be a user-defined threshold and 7; be the projection from R#Ni on
Vir = Span{V x| \ji. < T} parallel to Span{Vi|\jx = 7}. We define V], c

,geneo

R#N as the vector space spanned by the family of vectors (RjTDjij),\jk<T

corresponding to eigenvalues smaller than 7. Let VT, be the vector space
spanned by the collection over all subdomains of vector spaces (V] opeo)1<j<N-

Definition 4.2 (Generalized Eigenvalue Problem for the upper bound)
For each subdomain 1 < i < N, we introduce the generalized eigenvalue problem

Find (U, pir) € R#Ni\{O} x R such that
(21)
D;R;ARTD, U, = pixB; Uy .

Let v > 0 be a user-defined threshold, we define V;l, ..., < R#N qs the vector
space spanned by the family of vectors (RZTDiUik)uik>'y corresponding to eigen-
values larger than . Let V.., be the vector space spanned by the collection

: y A
over all subdomains of vector spaces (V! .,,co)1<i<N-



Now, let & denote the B;-orthogonal projection from R#*Vi on
Vi := Span {Uji | v < pir}

parallel to
Wi~ i= Span{U |y = pir} -

By Lemma 7.6, page 167 in [2] , we have:

Lemma 4.1 (Intermediate Lemma for GenEO-2) For all subdomains 1 <
i < N and U; € RV, we have:

7 ((Ig — 7)U) T B, (I — 7,)U; < UTA'U;, (22)
and
(RTDy(I; — &)U, ART D;(1i—&)U;) < v (Bi(la—&)Us, (Ia—&)Us) . (23)

Let b; be the bilinear form related to B; (i.e. b;(U;, V;) := (B;U;, V;)), we note
that &; is actually a b;-orthogonal projection.

The coarse space Vj built from the above generalized eigenvalues:

— T 2
Vb T Vgeneo @ Vtgeneo :

is spanned by the columns of a full rank rectangular matrix Z = R} with
#Nj columns. Projection Py and its approximation Py are defined by the same
formula as above, see .

In addition to Lemma [4.1] we have the following

Lemma 4.2 For 1 < j < N, let us introduce the Bj-orthogonal projection p;
from R#¥Ni on

Vigy = Vir @Vjy.
Then for all U € R#Ni | we have:

7(Bj(la — p;)U;, (Ia — pj)U;) < (A;U,U;) .

Moreover, for all U € R#*N | we have:
N
T Z (Bj (Id — pj)RjU, (Id — pj)RjU) < k1 CL(U, U) .
j=1

Proof Let Uj e R#Ni | we have:

(Bj(la — 7)Uy, (Ia — 7;)U;) = (Bj(Ia—pj + (pj — 7;))Uy, (la — p; + (pj — 75))Uj)
= |(a—p)Ujlg, + (0 — 7)U;13,
+2(Bj(la — pj) Uy, (pj — 7;)Uy)

=0 since 7,;U; € V; -V

|(Za — p)) U113, = (Bj(1a — p))Uj, (Ia — p;)U;).

\%

Since we have :
7(Bj(la — 7)U;, (I — 7;)U;) < (4,U;,Uy),

10



the conclusion follows by summation over all subdomains. |

The definition of the stable preconditioner is based on a pseudo inverse of
B; that we introduce now. Let by, denote the restriction of b; to W;, x W,
where W, is endowed with the Euclidean scalar product:

bW71 ZWi,y X Wi,y — R
(Ui, Vi) = bi(U;, Vi) (24)

By Riesz representation theorem, there exists a unique isomorphism Byy, :
Wi — W, into itself so that for all U;, V; € W, we have:

bWi (Ulv Vi) = (BWz Ui, Vi) :
The inverse of By, will be denoted by BJ and is given by the following formula
Bl = (I - &)B; . (25)

In order to check this formula, we have to show that By, (Is — &)B; 'y = y
for all y € W;,. Let z € W;,, using the fact that I — & is the b;-orthogonal
projection on W, we have:

(Bw,(Ia — &)B; 'y, 2) = bi((Ia — &)B; 'y, 2) = bi(B; 'y, 2) = (y,2).  (26)

Since this equality holds for any z € W; ,, this proves that By, (Is—&)B; 'y = y.

We study now the preconditioner given by:

Definition 4.3 (Preconditioner M7 ,.5.405) Let qi denote the orthogonal
projection from R#*Ni onto W;.,. We define the preconditioner Mg}, posacs 48
follows:

-1 L —1 7T
MGenEOQACS =ZEZ

N
+ (I — Py) (Z R} D; q; B ¢; D; Ri> (Ia—Fg).  (27)

i=1

, s actually equal to B;r but its presence shows the
symmetry of the preconditioner.

Remark 4.1 Note that g; B!

We can now define the abstract framework for the preconditioner. Let Hp
be defined by
Hp := R*No s TN W,

endowed with the following bilinear form arising from local SPD matrices (B;)1<i<n

55

b:Hp x Hp — R

- 28
UY) — BUY) = (U Vo) + X, (B, V) )
and R : Hp —> H is defined using operator Py (see eq. ):
R N
RU) := ZUy + (I — Py) Z RTD,U;. (29)
i=1

11



Recall that had we had used an exact coarse space solve, we would have intro-
duced:

N
RWU) := ZUg + (Is— Ry) Y. R D;U;. (30)
i=1
Note that we have

N
RU) = RU) + (P — By) Y, RID:U; .

It can be checked that the resultlng precondltloner with approxunate coarse
solve MGl o ooncs := RB™VRT is actually MG}, posacs defined in (27). In-
deed, we have:

RV = (Z"V,(4:DiRi(Is — P{)V)i<i<n)
Auxiliary results on GEVP Beware, in this paragraph, A and B have
nothing to do with the global problem to be solved:

Lemma 4.3 Let A be a symmetric positive semi definite matriz and B be a
symmetric positive definite matriz. We consider the generalized eigenvalue prob-
lem:

AU = \BU.

The generalized eigenvectors and eigenvalues are denoted by (Ug, A k1. Let T
be a positive number. We define

Vi = Span{Ug |\ < T}.

Let W be any linear subspace. We denote by p the B-orthogonal projection on
V. +W.
Then, for all U we have the following estimate:

T(B(la=p)U, (Is —p)U) < (A(la —p)U,(la—p)U). (31)
Similarly, let v be a positive number. We define
V, i= Span{Uy |\, > v}.

Let W be any linear subspace. We denote by q the B-orthogonal projection on
V,4+W.
Then, for all U we have the following estimate:

(A(la — @)U, (Is = )U) <7 (B(Ia — q)U, (Ia — q)U). (32)
Proof We have using V;, c V, + W:

(au,u) _ . (AU, U)

< mi =)
TS yeviL (BU,U) " vevr fwyss (BU, U)

For all U, the vector (I; — p)U is B-orthogonal to V;, 4+ W and this ends the
proof of . The proof of follows similarily from

(AU, U)

> Cihethed 3
77 gever (BU,U)

12



In order to apply the fictitious space Lemma to the study of the precondi-
tioner , three assumptions have to be checked.

e R is onto.
Let U € H, we have

U = AU+ (a—P)U
= P0U+(IdfP0)ZZ LRTD;R;U
= RU+ (la—DRy) zl \RI'D; EZRU+(Id—PO) S RIDi(I— &)R
(

= RU+ (R -h) Z R Di&RU + (I — Fy) Z R} D&, R;U

i=1 i=1

-

:=FU =0
+(Ig— Py) 3%, RT'Dy(Iy — &)R;U.

Let us consider the last equality. Since F'U is the sum two terms that belong
to Vg there exists Uy such that ZUy = FU. The third term is zero since
Zf\[:l RI'D;&R;U € Vi Note also that (I —&)R;U € W; . Therefore, we have

U = R(Uy, ((Is — &) RiU)1<i<n)) -
e Continuity of R

We have to estimate a constant c¢g such that for all i = (Ug, (U;)1<i<n) €
Hp we have:

a(RU),RU)) < crbU,U)
— ¢r[(EU,, Up) + XN (BU, Uy
Note that using (Ig — &;)U; = U; (recall that U, € W, ), we have:
RU) = ZUy+ (Ia—Py) YN, RT D, U,
= ZUg+ (Po—P) YN RTD;U; + (I; — P) YN, RT D, U,

N
= ZUg+ (Py— Py) Y. R Di (Is — &) Ui +(Ia — Po) X1y RT Di (Iy — &)U

i=1
- _
~

€ V(]
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We have thus the following estimate using the A-orthogonality of I; — Py:

~

a(RU), R(U)) 12U + (P — o) 31y RY Di (I — &)U,

+(Ia— Po) XY RT Dy (I — &) Ui |4

= |20+ (P - ]5%) SN RT D (1o — &)U
+|(Ia — Po) X3;2, RT Di (Ia — &) U3

(1+ %HZUOHZ + L+ HI(P— Po) X, RT Dy (I — &)U |4
+1 XL, BT D (Ig — &) U3

(1+8)(E Uy, Up) + ko 2%1 |RT Di (I — &) U313
+(1+ I (Po = Po)lZiko Xy IR Di (1o — &) Uil1%

(1+ 5)/\mm(EE ) (E U, Up)
+hoy(1+ (1+ $)(Po — Po)[3) SV (Bi(la— &)U;, (In— &)U))

< max((1+6) Amaz(BE™Y), Koy (1+ (1 + 1) €4) b(U, U).

N

N

N

Based on Lemma we can optimize the value of § and take

Fov (14 ) + A (BE™) 4+ 4/ (ko7 (1 4) = Aas (FE1))? + s (BE- ko (¢4 + 1)
CR = 9 .
(33)
e Stable decomposition
The stable decomposition estimate is based on using projections p; defined

in Lemma [.2] Let U € H be decomposed as follows:

N
U = POU+ (Id—P()) Z;\Ll R?Dj([d—pj)RjU+ (Id—Po) 2 R;TDJPJR]U

j=1
=0
N
= PU+ (P - R) 2 —pj)R;U+(Iy— Po) ). RTD;j(I4— pj)R;U.
=FU€eV,

We define Uy be such that ZU, = FU. We have that (I — p;)R;U is Bj-
orthogonal to V, ; 4 V- ; and thus to V,, ;. This means that (I—p;)R;U € W, ;
and that we can choose the following decomposition:

U =R(Uo, ((la — pj) RjU)1<j<n) -
The stability of the decomposition consists in estimating a constant ¢z > 0 such

that :

cr [(EUo, Up) + —pi)R;U, (la = pj) R;U)] < a(U,U).  (34)

||'M2

Using Lemma [4.2] we have

Z (Ia —p;)R;U, (Ig — pj)R;U) < k1 a(U, U). (35)
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We now focus on the first term of the left hand side of . Let § be some
positive number, the following auxiliary result will be useful:

IFUIR < (1+)|RU, RU[%
+(1+ PP = Po) 232, RTD;(1a — pj) R; U4
< (1+6)(AU,U)
+(1+ 3Py — P3| Zj2, BT D;(Ia — pj)R; U4
< (1+46)a(U,U)
+(1 %)”(PO_PO)”A kon y |RT Dj(1a = pj)R; U5
< (1+6)a(U,U)
+(1+ )||(P0—Po)||,4k072j 1(Bj(la —p;) R; U, (Ig — pj) R; U)

< ((1+5)+(1+ S)H(PO_PO)H2AI€()’Y7—71]€1)CL(U7U)

where we have used Lemma . (applied with A replaced by D; R; A R D;
and B by Bj;) for the one be ore last estimate and Lemma“ 4.2| for the last estl—
mate.

The optimal value for § yields:

IFU|4 < (1 + ear/kokiy71)%a(U, V). (36)
We have

(EU0,Up) < Amaa(ET'E)(EUg, Ug) = Aax(E7'E)(A ZU,, ZU)
= )\mar(EilE)HFUH?A

so that with , this yields:

(EUq, Up) < Amaa(ET'E) (1 + €av/ko k1 y71)? a(U, U) .
Finally, in we can take :

Cr = = 1 . (37)

Amaz (B7IYE) (L + ean/kokiym )2 + kg 771

Overall, with ¢p given by and cg by , we have proved the following
spectral estimate:

er < )\(MaenEO2ACS A) <cr. (38)

Constants ¢y and cg are stable with respect to €4 and the spectrum of EE-1
so that proves the stability of preconditioner MG_:nEO2ACS w.r.t. ap-
proximate solves.

Remark 4.2 Had we taken the GenEO-2 algorithm introduced in [3] and mod-
ified only the coarse space solves:

N
Mglpos=2E" 2" + (Is— Po) (), R Di B' Di Ry) (Ia— Ff),  (39)

i=1
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the estimate for the upper bound of the preconditioned system would be for ar-
bitray 6 > 0

1 _
)\mam < max(l + 5, ]Co")/ + (1 + g)(fiko 1212225\] HBl 1 Dz R7 ARZTD7”§)

and would depend on the product of €ea with the largest eigenvalue of the local
operators B;l D; R; ARlTDi. This last term can be very large and we were not
able to guarantee robustness with respect to approximte coarse solves.

Remark 4.3 If for some subdomain i, 1 <i < N, B; = A; and A; is symmet-
ric positive semi-definite and D;R; ART D; is SPD, the eigenvalue problem
will not contribute to the coarse space. More precisely, the contribution of the
subdomain to the coarse space will be RI D; ker(/L-) @D Vij’gmeo, Also in Defini-

tion B;r is the pseudo inverse of B; where Wy, is the image of B; which is

orthogonal to ker(A;) and &; is the orthogonal projection on ker(A;) parallel to
Wiy

5 Conclusion

We have proved the robustness of GenEO methods with respect to approximate
coarse solves. It paves the way to three or more level methods in a multigrid
fashion.
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