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Abstract

Convergence of domain decomposition methods rely heavily on the ef-
ficiency of the coarse space used in the second level. The GenEO coarse
space has been shown to lead to a fully robust two-level Schwarz precon-
ditioner which scales well over multiple cores [27, 19] as has been proved
rigorously in [27]. The robustness is due to its good approximation prop-
erties for problems with highly heterogeneous material parameters. It
is available in the finite element packages FreeFem++ [5], Feel++ [11]
and recently in Dune [1] and is implemented as a standalone library in
HPDDM [6]. But the coarse component of the preconditioner can ulti-
mately become a bottleneck if the number of subdomains is very large and
exact solves are used. It is therefore interesting to consider the effect of
approximate coarse solves. In this paper, robustness of GenEO methods
is analyzed with respect to approximate coarse solves. Interestingly, the
GenEO-2 method introduced in [3] has to be modified in order to be able
to prove its robustness in this context.
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1 Introduction

Convergence of domain decomposition methods rely heavily on the efficiency of
the coarse space used in the second level, see [9, 14] and references therein. The
GenEO coarse space has been shown to lead to a fully robust two-level Schwarz
preconditioner which scales well over multiple cores [27, 19] as has been proved
rigorously in [27]. The robustness is due to its good approximation properties
for problems with highly heterogeneous material parameters. It is available in
the finite element packages FreeFem++ [5], Feel++ [11] and recently in Dune [1]
and is implemented as a standalone library in HPDDM [6]. But the coarse com-
ponent of the preconditioner can ultimately become a bottleneck if the number
of subdomains is very large and exact solves are used. It is therefore interesting
to consider the effect of approximate coarse solves. In this paper, robustness
of GenEO methods is analyzed with respect to approximate coarse solves. In-
terestingly, the GenEO-2 method introduced in [3] has to be modified in order
to be able to prove its robustness in this context. In the context of domain
decomposition methods, the robustness of the BDDC w.r.t. approximate coarse
solves has been studied in [15, 16] and in [8]. We focus here on GenEO methods.

The general framework of our work is the following. Let M´1 be a precon-
ditioner enhanced by a second level correction based on a rectangular matrix Z
whose columns are a basis of a coarse space V0. The coarse space correction is

ZpZT AZq´1ZT , (1)

and the coarse operator is defined by

E :“ ZT AZ . (2)

Let M´1 denote a one-level preconditioner, the two-level method is defined by:

M´1
2 :“ Z E´1 ZT ` pId ´ Z E

´1 ZTAqM´1pId ´AZ E
´1 ZT q ,

see the balancing domain decomposition method by J. Mandel [7] and also the
BFGS algorithm as described in e.g. [10].

We consider Geneo methods, where the coarse space V0 spanned by the
columns of Z is built from solving generalized eigenvalue problems. Since it is
a purely parallel task with no communication involved, this part of the com-
putation is not penalizing parallelism. Actually, in strong scaling experiments
where the number of degrees of freedom of subdomains is smaller and smaller
the scaling of this task is perfect. On the other hand, as the size of matrix
ZT AZ typically increases linearly with the number of subdomains, the solving
of the corresponding linear systems for instance with a LU factorization be-
comes a bottleneck in two-level domain decomposition methods. It is therefore
interesting to estimate the robustness of the modified two-level method when in
(2) the operator E is approximated by some operator Ẽ:

Ẽ » E ,

since it paves the way to approximate coarse solves and three or more level
methods. More precisely, formula (2) is modified and the preconditioner we
study is defined by:

M̃´1
2 :“ Z Ẽ´1 ZT ` pId ´ Z Ẽ

´1 ZTAqM´1pId ´AZ Ẽ
´1 ZT q .
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2 Basic definitions

The problem to be solved is defined via a variational formulation on a domain
Ω Ă Rd for d P N:

Find u P V such that : aΩpu, vq “ lpvq , @v P V ,

where V is a Hilbert space of functions from Ω with real values. The problem
we consider is given through a symmetric positive definite bilinear form aΩ that
is defined in terms of an integral over any open set ω Ă Ω. Typical examples
are the Darcy equation (K is a diffusion tensor)

aωpu, vq :“

ż

ω

K∇u ¨∇v dx ,

or the elasticity system (C is the fourth-order stiffness tensor and εpuq is the
strain tensor of a displacement field u):

aωpu, vq :“

ż

ω

C : εpuq : εpvq dx .

The problem is discretized by a finite element method. Let N denote the set
of degrees of freedom and pφkqkPN be a finite element basis on a mesh Th.
Let A P R#Nˆ#N be the associated finite element matrix, Akl :“ aΩpφl, φkq,
k, l P N . For some given right hand side F P R#N , we have to solve a linear
system in U of the form

AU “ F .

Domain Ω is decomposed into N (overlapping or non overlapping) subdomains
pΩiq1ďiďN so that all subdomains are a union of cells of the mesh Th. This
decomposition induces a natural decomposition of the set of indices N into N
subsets of indices pNiq1ďiďN :

Ni :“ tk P N | measpsupppφkq X Ωiq ą 0u , 1 ď i ď N. (3)

For all 1 ď i ď N , let Ri be the restriction matrix from R#N to the subset R#Ni

and Di be a diagonal matrix of size #Ni ˆ#Ni, so that we have a partition of
unity at the algebraic level,

N
ÿ

i“1

RTi DiRi “ Id , (4)

where Id P R#Nˆ#N is the identity matrix.

We also define for all subdomains 1 ď j ď N , rAj , the #Nj ˆ#Nj matrix
defined by

VT
j
rAjUj :“ aΩj

¨

˝

ÿ

lPNj

Ujlφl,
ÿ

lPNj

Vjlφl

˛

‚ , Uj , Vj P RNj . (5)

When the bilinear form a results from the variational solve of a Laplace prob-
lem, the previous matrix corresponds to the discretization of local Neumann
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boundary value problems. For this reason we will call it “Neumann” matrix
even in a more general setting.

We also make use of two numbers k0 and k1 related to the domain decom-
position. Let

k0 :“ max
1ďiďN

#
 

j | RjAR
T
i ‰ 0

(

(6)

be the maximum multiplicity of the interaction between subdomains plus one.
Let k1 be the maximal multiplicity of subdomains intersection, i.e. the largest
integer m such that there exists m different subdomains whose intersection has
a non zero measure.

Let P̃0 be defined as:

P̃0 :“ RT0 Ẽ
´1R0A , (7)

the operator P̃0 is thus an approximation to the A-orthogonal projection on V0

P0 :“ RT0 E
´1R0A

which corresponds to an exact coarse solve.
Note that although P̃0 is not a projection it has the same kernel and range

as P0:

Lemma 2.1 We have

kerP0 “ ker P̃0 “ V AK0 and ImP0 “ Im P̃0 “ V0 ,

where V AK0 is the vector space A-orthogonal to V0, that is when R#N is endowed
with the scalar product induced by A: px , yqA :“ px , Ayq.

Proof First note that the kernel of P̃0 contains kerR0A. On the other hand,
we have:

P̃0 x “ RT0 Ẽ
´1R0Ax “ 0 ñ pRT0 Ẽ

´1R0Ax,Axq “ pẼ
´1R0Ax,R0Axq “ 0 .

Since Ẽ is SPD, it means that R0Ax “ 0, that is x P kerR0A. We have thus
ker P̃0 “ kerR0A. Note that

R0Ax “ 0 ô @y pAx , RT0 yq “ 0 ô x P V AK0 .

As for the image of P̃0, since the last operation in its definition is the multipli-
cation by the matrix Z we have ImP0 Ă V0. Conversely, let y P V0, there exists
β such that y “ Zβ. It is easy to check that y “ P̃0pZ

T pZAZq´1Ẽβq. Thus,
Im P̃0 “ V0.
The same arguments hold if Ẽ is replaced by E. Thus, P̃0 and P0 have the same
kernel and image.

3 Approximate Coarse Solves for GenEO

The GenEO coarse space was introduced in [12] and is defined as follows:
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Definition 3.1 (Generalized Eigenvalue Problem for GenEO) For each
subdomain 1 ď j ď N , we introduce the generalized eigenvalue problem

Find pVjk, µjkq P R#Nj zt0u ˆ R such that

DjRj AR
T
j DjVjk “ µjk rA

jVjk .
(8)

Let µ ą 0 be a user-defined threshold, we define Zµgeneo Ă R#N as the vector

space spanned by the family of vectors pRTj DjVjkqµjkąµ ,1ďjďN corresponding
to eigenvalues larger than µ.

Let π̃j be the projection from R#Nj on SpantVjk|µjk ą µu parallel to SpantVjk|µjk ď
µu.

In this section, RT0 denotes a rectangular matrix whose columns are a basis
of the coarse space Zµgeneo defined in Definition (3.1). The dimension of RT0 is
#N ˆ#N0. The GenEO preconditioner with approximage coarse solve reads:

M´1
GenEOACS :“ RT0 Ẽ

´1R0`pId´ P̃0q p

N
ÿ

i“1

RTi pRiAR
T
i q
´1Riq pId´ P̃

T
0 q . (9)

The study the spectrum of M´1
GenEOACSA is based on the Fictitious Space

lemma, see [2] for more details. For this purpose, we introduce

HD :“ R#N0 ˆΠN
i“1R#Ni

be endowed with the following bilinear form

b̃ : HD ˆHD ÝÑ R
p pU0 , pUiq1ďiďN q, pV0 , pViq1ďiďN q q ÞÝÑ pẼU0, V0q ` pRiAR

T
i Ui, Viq

(10)

and rR : HD ÝÑ H is defined by

rRpUq :“ RT0 U0 ` pId ´ P̃0q

N
ÿ

i“1

RTi Ui . (11)

Recall that had we had used an exact coarse space solve, we would have intro-
duced:

RpUq :“ RT0 U0 ` pId ´ P0q

N
ÿ

i“1

RTi Ui . (12)

Note that we have

rRpUq “ RpUq ` pP0 ´ P̃0q

N
ÿ

i“1

RTi Ui .

It can be chekced that the resulting preconditioner with approximate coarse
solve rR rB´1

rR˚ is actually equal to M´1
GenEOACS , see (9). In order to apply the

fictitious space Lemma, three assumptions have to be checked.

‚ rR is onto.
Let U P H, we have U “ P̃0U` pId ´ P̃0qU. By Lemma 2.1, P̃0U P V0 so that
there exists U0 P R#N0 such that P̃0U “ RT0 U0. Thus we have

U “ RT0 U0 ` pId ´ P̃0q

N
ÿ

i“1

RTi DiRiU “ rRpU0, pDiRiUq1ďiďN qq
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‚ Continuity of rR
We have to estimate a constant cR such that for all U “ pU0 , pUiq1ďiďN q P H,
we have:

ap rRpUq, rRpUqq ď cR b̃pU , Uq .
Let δ be some positive number and Using that the image of P0 ´ P̃0 is a-
orthogonal to the image of Id ´ P0, Cauchy-Schwarz inequality and the a-
orthogonality of the projection Id ´ P0, we have:

ap rRpUq, rRpUqq “ }RpUq ` pP0 ´ P̃0q
řN
i“1R

T
i Ui}

2
A

“ }RpUq}2A ` 2 apRT0 U0 ` pId ´ P0q
řN
i“1R

T
i Ui , pP0 ´ P̃0q

řN
i“1R

T
i Uiq

`}pP0 ´ P̃0q
řN
i“1R

T
i Ui}

2
A

“ }RpUq}2A ` 2 apRT0 U0 , pP0 ´ P̃0q
řN
i“1R

T
i Uiq

`}pP0 ´ P̃0q
řN
i“1R

T
i Ui}

2
A

ď }RpUq}2A ` δ}RT0 U0}
2
A `

1
δ }pP0 ´ P̃0q

řN
i“1R

T
i Ui}

2
A

`}pP0 ´ P̃0q
řN
i“1R

T
i Ui}

2
A

ď }RT0 U0}
2
A ` }

řN
i“1R

T
i Ui}

2
A ` δ}R

T
0 U0}

2
A

`p1` 1
δ q }pP0 ´ P̃0q

řN
i“1R

T
i Ui}

2
A

ď p1` δq}RT0 U0}
2
A ` p1` }P0 ´ P̃0}

2
Ap1`

1
δ qq}

řN
i“1R

T
i Ui}

2
A

ď p1` δqλmaxpEẼ
´1q}ẼU0}

2 ` p1` }P0 ´ P̃0}
2
Ap1`

1
δ qq k0

řN
i“1 }R

T
i Ui}

2
A

ď max
´

p1` δqλmaxpEẼ
´1q, r1` }P0 ´ P̃0}

2
Ap1`

1
δ qs k0

¯

b̃pU , Uq .

It is possible to minimize over δ the factor in front of b̃pU , Uq using the

Lemma 3.1 Let c, d, α and β be positive constant, we have

min
δą0

maxpc` αδ, d` βδ´1q “
d` c`

a

pd´ cq2 ` 4αβ

2
.

Proof The optimal value for δ corresponds to the equality c` αδ “ d` βδ´1.

Let
εA :“ }P0 ´ P̃0}A “ }R0p pR0AR

T
0 q
´1 ´ Ẽ´1qR0A}A, (13)

the formula of Lemma 3.1 yields

cR :“
k0p1` ε

2
Aq ` λmaxpEẼ

´1q `

b

pk0p1` ε2Aq ´ λmaxpEẼ
´1qq2 ` 4λmaxpEẼ´1qk0pε2A ` 1q

2
.

(14)
Actually, εA can be expressed in term of the minimal eigenvalue of EẼ´1.

Lemma 3.2 Other formula for εA:

εA “ sup
U0PR#N0

pEpE´1 ´ Ẽ´1qEU0,U0q

pEU0,U0q
“ maxp|1´λminpEẼ

´1q| , |1´λmaxpEẼ
´1q|q .
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Proof Since P0 ´ P̃0 is A-symmetric, its norm is also given by

εA “ sup
U

|ppP0 ´ P̃0qU , UqA|

}U}2A

We can go further by using the fact that P0 is a A-orthogonal and that P0 and
P̃0 have the same kernels and images:

εA “ sup
U

|ppP0 ´ P̃0qpP0 U` pId ´ P0qUq , P0 U` pId ´ P0qUqA|

}P0U}2A ` }pId ´ P0qU}2A

“ sup
U

|ppP0 ´ P̃0qP0 U , P0 UqA|

}P0U}2A ` }pId ´ P0qU}2A
“ sup

U

|ppP0 ´ P̃0qP0 U , P0 UqA|

}P0U}2A

“ sup
UPV0

|ppP0 ´ P̃0qU , UqA|

}U}2A
“ sup

U0PR#N0

|pEpE´1 ´ Ẽ´1qEU0,U0q|

pEU0,U0q

“ sup
U0PR#N0

|1´
pẼ´1EU0, EU0q

pEU0,U0q
| .

This means that formula (14) for cR can be expressed explicitely in terms of k0

and of the minimal and maximal eigenvalue of Ẽ´1E.

‚ Stable decomposition
Let U P H be decomposed as follows:

U “ P0U` pId ´ P0qU “ P0U` pId ´ P0q
řN
j“1R

T
j DjRjU

“ P0U` pId ´ P0q
řN
j“1R

T
j DjpId ´ π̃jqRjU` pId ´ P0q

N
ÿ

j“1

RTj Dj π̃j RjU

loooooooooooooooomoooooooooooooooon

“0

“ P0U` pP̃0 ´ P0q

N
ÿ

j“1

RTj DjpId ´ π̃jqRjU

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

:“FU PV0

`pId ´ P̃0q
řN
j“1R

T
j DjpId ´ π̃jqRjU .

Let U0 P R#N0 be such that RT0 U0 “ FU, we choose the following decomposi-
tion:

U “ rRpU0, pDjpId ´ π̃jqRjUq1ďjďN q .

The stable decomposition consists in estimating a constant cT ą 0 such that:

cT rpẼU0,U0q `

N
ÿ

j“1

pRjAR
T
j DjpId ´ π̃jqRjU, DjpId ´ π̃jqRjUqs ď apU,Uq .

(15)
Since the second term in the left hand side is the same as in the exact coarse
solve method, we have (see [2], page 177, Lemma 7.15):

N
ÿ

j“1

pRjAR
T
j DjpId ´ π̃jqRjU, DjpId ´ π̃jqRjUq ď k1 τ apU,Uq . (16)
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We now focus on the first term of the left hand side of (15). Let δ be some
positive number, using again (16), the following auxiliary result holds:

}FU}2A ď p1` δq}P0U, P0U}
2
A

`p1` 1
δ q}pP0 ´ P̃0q

řN
j“1R

T
j DjpId ´ π̃jqRjU}

2
A

ď p1` δqpAU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A }

řN
j“1R

T
j DjpId ´ π̃jqRjU}

2
A

ď p1` δqpAU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A k0

řN
j“1 }R

T
j DjpId ´ π̃jqRjU}

2
A

ď

´

1` δ ` p1` 1
δ q}pP0 ´ P̃0q}

2
Ak0k1 τ

¯

apU,Uq

The best possible value for δ is

δ :“ εA
a

k0 k1 τ .

Hence, we have:

pR0AR
T
0 U0 , U0q “ }FU}2A ď p1` εA

a

k0 k1 τq
2apU,Uq . (17)

Thus, we have:

pẼU0 , U0q “ pẼ E´1{2E1{2U0 , E
´1{2E1{2U0q “ pE

´1{2Ẽ E´1{2E1{2U0 , E
1{2U0q

ď λmaxpE
´1{2Ẽ E´1{2q pE1{2U0 , E

1{2U0q

“ λmaxpE
´1ẼqpR0AR

T
0 U0 , U0q

ď λmaxpE
´1Ẽqp1` εA

?
k0 k1 τq

2apU,Uq .

This last estimate along with (16) prove that in (15), it is possible to take

cT “
λminpEẼ

´1q

p1` εA
?
k0 k1 τq2 ` k1τ

. (18)

Overall, with cT given by (18) and cR by (14), we have proved the following
spectral estimate:

cT ď λpM´1
GenEOACS Aq ď cR . (19)

Constants cT and cR are stable with respect to εA and the spectrum of EẼ´1 so
that (19) proves the stability of preconditioner M´1

GenEOACS w.r.t. approximate
solves.

4 Approximate Coarse Solves for GenEO2

The GenEO-2 coarse space construction was introduced in [4, 3] , see [2] also
§ 7.7, page 186. It is motivated by domain decomposition methods for which
the local solves are not necessarily Dirichlet solves e.g. discretization of Robin
boundary value problems, see [13]. We were not able to prove the robustness of
the GenEO-2 coarse space with respect to approximate coarse solves when used
in the original GenEO-2 preconditioner (36), see remark 4.1. For this reason,
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we study here a slight modification of the preconditioner, eq. (24), for which we
prove robustness.

For all subdomains 1 ď i ď N , let Bi be a matrix of size #Niˆ#Ni, which
comes typically from the discretization of boundary value local problems using
optimized transmission conditions or Neumann boundary conditions. Recall
that by construction matrix DiRiAR

T
i Di is symmetric positive-semi definite

and we make the extra following assumption:

Assumption 4.1 For all subdomains 1 ď i ď N , matrix Bi is symmetric
positive semi-definite and either of the two conditions holds

• Bi is definite,

• Bi “ rAi and DiRiAR
T
i Di is definite.

In order to ease the redaction, we first consider the case where Bi is definite. The
other case will be treated in Remark 4.2. We recall the coarse space defined
in [4, 3, 2]. Let γ and τ be two user defined thresholds. We introduce two
generalized eigenvalue problems which by Assumption 4.1 are regular.

Definition 4.1 (Generalized Eigenvalue Problem for the lower bound)
For each subdomain 1 ď j ď N , we introduce the generalized eigenvalue problem

Find pVjk, λjkq P R#Nj zt0u ˆ R such that
rAjVjk “ λjkBjVjk .

(20)

Let τ ą 0 be a user-defined threshold, we define Zτj,geneo Ă R#N as the vec-

tor space spanned by the family of vectors pRTj DjVjkqλjkăτ corresponding to

eigenvalues smaller than τ . Let π̃j be the projection from R#Nj on Vjτ “
SpantVjk|λjk ă τu parallel to SpantVjk|λjk ě τu. Let Zτgeneo be the vector
space spanned by the collection over all subdomains of vector spaces pZτj,geneoq1ďjďN .

Definition 4.2 (Generalized Eigenvalue Problem for the upper bound)
For each subdomain 1 ď i ď N , we introduce the generalized eigenvalue problem

Find pUik, µikq P R#Nizt0u ˆ R such that

DiRiAR
T
i DiUik “ µikBi Uik .

(21)

Let γ ą 0 be a user-defined threshold, we define Zγi,geneo Ă R#N as the vector

space spanned by the family of vectors pRTi DiUikqµikąγ corresponding to eigen-
values larger than γ. Let Zγgeneo be the vector space spanned by the collection
over all subdomains of vector spaces pZγj,geneoq1ďjďN .

Now, let ξi denote the Bi-orthogonal projection from R#Ni on

Vi γ :“ Span tUik | γ ă µiku

parallel to
Wi γ :“ Span tUik | γ ě µiku .

By Lemma 7.6, page 167 in [2] , we have:

9



Lemma 4.1 (Intermediate Lemma for GenEO-2) For all subdomains 1 ď
i ď N and Ui P RNi , we have:

τ ppId ´ π̃iqUiq
TBjpId ´ π̃iqUi ď UT

i
rAiUi , (22)

and
`

RTi DipId ´ ξiqUi

˘T
ARTi DipId´ξiqUiq ď γ pBipId´ξiqUi, pId´ξiqUiq . (23)

Note that ξi is actually a Bi-orthogonal projection so that for all subdomains
1 ď i ď N , Bi induces an isomorphism from Wi γ into itself whose inverse will

be denoted by B:i .

The coarse space V0 built from the above generalized eigenvalues:

V0 :“ Zτgeneo
à

Zγgeneo .

is spanned by the columns of a full rank rectangular matrix Z “ RT0 with
#N0 columns. Projection P0 and its approximation P̃0 are defined by the same
formula as above, see (7).

In addition to Lemma 4.1, we have the following

Lemma 4.2 For 1 ď j ď N , let us introduce the Bj-orthogonal projection pj
from R#Nj on

Vj,τγ :“ Vj,τ ‘ Vj,γ .

and let Uj P R#Nj .
Then, we have:

τ pBjpId ´ pjqUj , pId ´ pjqUjq ď pÃjUj ,Ujq .

Moreover, for all U P R#N , we have:

τ
N
ÿ

j“1

pBjpId ´ pjqRjU, pId ´ pjqRjUq ď k1 apU,Uq .

Proof Let Uj P R#Nj , we have:

pBjpId ´ π̃jqUj , pId ´ π̃jqUjq “ pBjpId ´ pj ` ppj ´ π̃jqqUj , pId ´ pj ` ppj ´ π̃jqqUjq

“ }pId ´ pjqUj}
2
Bj
` }ppj ´ π̃jqUj}

2
Bj

`2 pBjpId ´ pjqUj , ppj ´ π̃jqUjq
loooooooooooooooooomoooooooooooooooooon

“0 since π̃jUj P Vj ,τĂVj,τγ

ě }pId ´ pjqUj}
2
Bj
“ pBjpId ´ pjqUj , pId ´ pjqUjq .

Since we have (22):

τ pBjpId ´ π̃jqUj , pId ´ π̃jqUjq ď pÃjUj ,Ujq ,

the conclusion follows by summation over all subdomains.

We,study here the following preconditioner:

M´1
GenEO2ACS “ RT0 Ẽ

´1R0`pId´P̃0q

˜

N
ÿ

i“1

RTi DiB
:

i pId ´ ξiqDi Ri

¸

pId´P̃
T
0 q .

(24)
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We can now define the abstract framework for the preconditioner. Let HD

be defined by
HD :“ R#N0 ˆΠN

i“1Wi γ

endowed with the following bilinear form arising from local SPD matrices pBiq1ďiďN

b̃ : HD ˆHD ÝÑ R
pU ,Vq ÞÝÑ bpU ,Vq :“ pẼU0, V0q ` pBi Ui, Viq

(25)

and rR : HD ÝÑ H is defined using operator P̃0 (see eq. (7)):

rRpUq :“ RT0 U0 ` pId ´ P̃0q

N
ÿ

i“1

RTi DiUi . (26)

Recall that had we had used an exact coarse space solve, we would have intro-
duced:

RpUq :“ RT0 U0 ` pId ´ P0q

N
ÿ

i“1

RTi DiUi . (27)

Note that we have

rRpUq “ RpUq ` pP0 ´ P̃0q

N
ÿ

i“1

RTi DiUi .

It can be checked that the resulting preconditioner with approximate coarse
solve M´1

GenEO2ACS :“ rR rB´1
rR˚ is actually M´1

GenEO2ACS defined in (24).

Auxiliary results on GEVP Beware, in this paragraph, A and B have
nothing to do with the global problem to be solved:

Lemma 4.3 Let A be a symmetric positive semi definite matrix and B be a
symmetric positive definite matrix. We consider the generalized eigenvalue prob-
lem:

AU “ λBU .

The generalized eigenvectors and eigenvalues are denoted by pUk, λkqkě1. Let τ
be a positive number. We define

Vτ :“ SpantUk |λk ă τ u .

Let W be any linear subspace. We denote by p the B-orthogonal projection on
Vτ

Ř

W .
Then, for all U we have the following estimate:

τ pB pId ´ pqU , pId ´ pqUq ď pApId ´ pqU, pId ´ pqUq . (28)

Similarly, let γ be a positive number. We define

Vγ :“ SpantUk |λk ą γ u .

Let W be any linear subspace. We denote by q the B-orthogonal projection on
Vγ

Ř

W .
Then, for all U we have the following estimate:

pApId ´ qqU, pId ´ qqUq ď γ pB pId ´ qqU , pId ´ qqUq . (29)

11



Proof We have using Vτ Ă Vτ
Ř

W :

τ ď min
UPV BK

τ

pAU,Uq

pBU,Uq
ď min

UPpVτ
Ř

W qBK

pAU,Uq

pBU,Uq
.

For all U, the vector pId ´ pqU is B-orthogonal to Vτ
Ř

W and this ends the
proof of (28). The proof of (29) follows similarily from

γ ě max
UPV BK

γ

pAU,Uq

pBU,Uq
.

In order to apply the fictitious space Lemma to the study of the precondi-
tioner (24), three assumptions have to be checked.

‚ rR is onto.
Let U P H, we have

U “ P̃0U` pId ´ P̃0qU

“ P̃0U` pId ´ P̃0q
řN
i“1R

T
i DiRiU

“ P̃0U` pId ´ P̃0q
řN
i“1R

T
i DiξiRiU` pId ´ P̃0q

řN
i“1R

T
i DipId ´ ξiqRiU

“ P̃0U` pP0 ´ P̃0q

N
ÿ

i“1

RTi DiξiRiU

looooooooooooooooooooomooooooooooooooooooooon

:“FU

`pId ´ P0q

N
ÿ

i“1

RTi DiξiRiU

loooooooooooooooomoooooooooooooooon

“0

`pId ´ P̃0q
řN
i“1R

T
i DipId ´ ξiqRiU .

Let us consider the last equality. Since FU is the sum two terms that belong
to V0 there exists U0 such that RT0 U0 “ FU. The third term is zero since
řN
i“1R

T
i DiξiRiU P V0. Note also that pId´ ξiqRiU PWi γ . Therefore, we have

U “ rRpU0, ppId ´ ξiqRiUq1ďiďN qq .

‚ Continuity of rR

We have to estimate a constant cR such that for all U “ pU0 , pUiq1ďiďN q P

HD we have:

ap rRpUq, rRpUqq ď cR b̃pU , Uq

“ cRrpẼU0,U0q `
řN
i“1pBiUi,Uiqs .

Note that using pId ´ ξiqUi “ Ui (recall that ui PWiγ), we have:

R̃pUq “ RT0 U0 ` pId ´ P̃0q
řN
i“1R

T
i Di Ui

“ RT0 U0 ` pP0 ´ P̃0q
řN
i“1R

T
i Di Ui ` pId ´ P0q

řN
i“1R

T
i Di Ui

“ RT0 U0 ` pP0 ´ P̃0q

N
ÿ

i“1

RTi Di pId ´ ξiqUi

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

PV0

`pId ´ P0q
řN
i“1R

T
i Di pId ´ ξiqUi

12



We have thus the following estimate using the A-orthogonality of Id ´ P0:

ap rRpUq, rRpUqq “ }RT0 U0 ` pP0 ´ P̃0q
řN
i“1R

T
i Di pId ´ ξiqUi

`pId ´ P0q
řN
i“1R

T
i Di pId ´ ξiqUi}

2
A

“ }RT0 U0 ` pP0 ´ P̃0q
řN
i“1R

T
i Di pId ´ ξiqUi}

2
A

`}pId ´ P0q
řN
i“1R

T
i Di pId ´ ξiqUi}

2
A

ď p1` δq}RT0 U0}
2
A ` p1`

1
δ q}pP0 ´ P̃0q

řN
i“1R

T
i Di pId ´ ξiqUi}

2
A

`}
řN
i“1R

T
i Di pId ´ ξiqUi}

2
A

ď p1` δqpEU0 , U0q ` k0

řN
i“1 }R

T
i Di pId ´ ξiqUi}

2
A

`p1` 1
δ q}pP0 ´ P̃0q}

2
Ak0

řN
i“1 }R

T
i Di pId ´ ξiqUi}

2
A

ď p1` δqλmaxpEẼ
´1qpẼU0 , U0q

`k0 γp1` p1`
1
δ q}pP0 ´ P̃0q}

2
Aq

řN
i“1 pBi pId ´ ξiqUi , pId ´ ξiqUiq

ď maxpp1` δqλmaxpEẼ
´1q , k0 γ p1` p1`

1
δ q ε

2
Aq b̃pU ,Uq .

Based on Lemma 3.1, we can optimize the value of δ and take

cR :“
k0 γ p1` ε

2
Aq ` λmaxpEẼ

´1q `

b

pk0 γ p1` ε2Aq ´ λmaxpEẼ
´1qq2 ` 4λmaxpEẼ´1qk0γpε2A ` 1q

2
.

(30)
‚ Stable decomposition
The stable decomposition estimate is based on using projections pj defined

in Lemma 4.2. Let U P H be decomposed as follows:

U “ P0U` pId ´ P0q
řN
j“1R

T
j DjpId ´ pjqRjU` pId ´ P0q

N
ÿ

j“1

RTj DjpjRjU

loooooooooooooooomoooooooooooooooon

“0

“ P0U` pP̃0 ´ P0q

N
ÿ

j“1

RTj DjpId ´ pjqRjU

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

:“FU PV0

`pId ´ P̃0q
řN
j“1R

T
j DjpId ´ pjqRjU .

We define U0 be such that RT0 U0 “ FU. We have that pId ´ pjqRjU is Bj-
orthogonal to Vγ j

Ř

Vτ j and thus to Vγ j . This means that pId´pjqRjU PWγ j

and that we can choose the following decomposition:

U “ rRpU0, ppId ´ pjqRjUq1ďjďN q .

The stability of the decomposition consists in estimating a constant cT ą 0 such
that :

cT rpẼU0,U0q `

N
ÿ

j“1

pBjpId ´ pjqRjU, pId ´ pjqRjUqs ď apU,Uq . (31)

Using Lemma 4.2, we have

τ
N
ÿ

j“1

pBjpId ´ pjqRjU, pId ´ pjqRjUq ď k1 apU,Uq . (32)
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We now focus on the first term of the left hand side of (31). Let δ be some
positive number, the following auxiliary result will be useful:

}FU}2A ď p1` δq}P0U, P0U}
2
A

`p1` 1
δ q}pP0 ´ P̃0q

řN
j“1R

T
j DjpId ´ pjqRjU}

2
A

ď p1` δqpAU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A}

řN
j“1R

T
j DjpId ´ pjqRjU}

2
A

ď p1` δqapU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A k0

řN
j“1 }R

T
j DjpId ´ pjqRjU}

2
A

ď p1` δqapU,Uq

`p1` 1
δ q}pP0 ´ P̃0q}

2
A k0γ

řN
j“1pBjpId ´ pjqRj U, pId ´ pjqRj Uq

ď pp1` δq ` p1` 1
δ q}pP0 ´ P̃0q}

2
A k0γ τ

´1k1q apU,Uq

where we have used Lemma 4.3 (29) (applied with A replaced by Dj Rj AR
T
j Dj

and B by Bj) for the one before last estimate and Lemma 4.2 for the last esti-
mate.

The optimal value for δ yields:

}FU}2A ď p1` εA
a

k0 k1γ τ´1q2apU,Uq . (33)

We have

pẼU0,U0q ď λmaxpE
´1ẼqpEU0,U0q “ λmaxpE

´1ẼqpART0 U0, R
T
0 U0q

“ λmaxpE
´1Ẽq}FU}2A .

so that with (33), this yields:

pẼU0 , U0q ď λmaxpE
´1Ẽq p1` εA

a

k0 k1 γ τ´1q2 apU,Uq .

Finally, in (31) we can take :

cT :“
1

λmaxpE´1Ẽq p1` εA
a

k0 k1 γ τ´1q2 ` k1 τ´1
. (34)

Overall, with cT given by (34) and cR by (30), we have proved the following
spectral estimate:

cT ď λpM´1
GenEO2ACS Aq ď cR . (35)

Constants cT and cR are stable with respect to εA and the spectrum of EẼ´1

so that (35) proves the stability of preconditioner M´1
GenEO2ACS (24) w.r.t. ap-

proximate solves.

Remark 4.1 Had we taken the GenEO-2 algorithm introduced in [3] and mod-
ified only the coarse space solves:

ĂM´1
GenEO,2 “ RT0 Ẽ

´1R0 ` pId ´ P̃0q p

N
ÿ

i“1

RTi DiB
´1
i Di Riq pId ´ P̃

T
0 q , (36)
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the estimate for the upper bound of the preconditioned system would be for ar-
bitray δ ą 0

λmax ď maxp1` δ , k0γ ` p1`
1

δ
qε2Ak0 max

1ďiďN
}B´1

i DiRiAR
T
i Di}

2
2q

and would depend on the product of εA with the largest eigenvalue of the local
operators B´1

i DiRiAR
T
i Di. This last term can be very large and we were not

able to guarantee robustness with respect to approximte coarse solves.

Remark 4.2 If for some 1 ď i ď N , Bi “ Ãi and Ãi is symmetric positive
semi-definite and DiRiAR

T
i Di is SPD, the coarse space we define will not de-

pend on the eigenvalue problem (20). More precisely, the contribution of the

subdomain to the coarse space will be RTi Di kerpÃiq
À

Zγi,geneo, B
:

i the inverse
of the restriction of Bi from Wiγ into itself where Wiγ is the orthogonal to

kerpÃiq and ξi is the orthogonal projection on kerpÃiq parallel to Wiγ .

5 Conclusion

We have proved the robustness of GenEO methods with respect to approximate
coarse solves. It paves the way to three or more level methods in a multigrid
fashion.
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[8] Jan Mandel, Bedřich Soused́ık, and Clark R. Dohrmann. On Multilevel
BDDC, pages 287–294. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[9] Roy A. Nicolaides. Deflation of conjugate gradients with applications to
boundary value problems. SIAM J. Numer. Anal., 24(2):355–365, 1987.

[10] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer
Series in Operations Research and Financial Engineering. Springer, New
York, second edition, 2006.

[11] C. Prud’homme. A Domain Specific Embedded Language in c++ for auto-
matic differentiation, projection, integration and variational formulations.
Scientific Programming, 14(2):81–110, 2006.

[12] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens
Pechstein, and Robert Scheichl. Abstract robust coarse spaces for systems
of PDEs via generalized eigenproblems in the overlaps. Numer. Math.,
126(4):741–770, 2014.

[13] Amik St-Cyr, Martin J. Gander, and Stephen J. Thomas. Optimized
Multiplicative, Additive, and Restricted Additive Schwarz Precondition-
ing. SIAM J. Sci. Comput., 29(6):2402–2425 (electronic), 2007.

[14] Andrea Toselli and Olof Widlund. Domain Decomposition Methods - Algo-
rithms and Theory, volume 34 of Springer Series in Computational Math-
ematics. Springer, 2005.

[15] Xuemin Tu. Three-level BDDC in three dimensions. SIAM J. Sci. Comput.,
29(4):1759–1780, 2007.

[16] Xuemin Tu. A three-level BDDC algorithm for a saddle point problem.
Numer. Math., 119(1):189–217, 2011.

16


	Introduction
	Basic definitions
	Approximate Coarse Solves for GenEO
	Approximate Coarse Solves for GenEO2
	Auxiliary results on GEVP

	Conclusion

