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Abstract

A cage G, defined as the 1-skeleton of a convex polytope, holds a compact set K

disjoint from G, if K cannot be moved away without intersecting G. The main results
of this paper establish the minimal length of cages holding various compact convex sets.
First, planar graphs and Steiner trees are investigated. Then the notion of “almost fixing
points” for planar convex bodies is introduced and studied. The last two sections treat
cages holding 2-dimensional, respectively 3-dimensional, compact convex sets.

AMS Classification: 52A15, 52A40, 52B10.
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1 Introduction

A cage is the 1-dimensional skeleton of a convex polytope in R
3. A cage G is said to hold a

compact set K disjoint from G if no rigid motion can bring K in a position far away without
meeting G on its way. Already in 1959, Coxeter [5] raised the problem of finding a cage of
minimal total length holding the ball of radius 1 in R

3. In the following years, Besicovitch and
Aberth solved Coxeter’s problem. In the present paper, we extend the investigation to other
compact convex sets replacing the ball.

The space R3 is endowed with its euclidean norm ‖x‖ =
√

〈x, x〉, where 〈 , 〉 is the usual scalar
product. For distinct x, y ∈ R

3, let xy be the line through x, y and xy the line-segment from x
to y. The open segment xy \ {x, y} is denoted by ]xy[. Given a line xy oriented from x to y,
(xy)+ denotes the open half-plane on the left of xy.
As usual, for M ⊂ R

d with d ≥ 2, bdM denotes its boundary, relbdM denotes its relative
boundary, and diamM = supx,y∈M ‖x − y‖ ∈ R ∪ {+∞}. Its convex hull convM is the inter-
section of all convex subsets of Rd containing M , and its affine hull affM is the intersection of
all affine subspaces of Rd containing M .
For any closed convex subset M of R3, let πM : R3 → M denote the (metric) projection, i.e.
πM(x) is the unique point of M such that ‖x − πM(x)‖ = infy∈M ‖x − y‖. It is known (and
easy to prove) that 〈x− πM(x), y − πM(x)〉 ≤ 0 for all y ∈ M and that πM is 1-Lipschitz.
Here, a 2- or 3-dimensional compact convex set in R

3 is called a convex body. Let K be the space
of all convex bodies in R

3. For K ∈ K, we denote by widK the smallest distance between two
parallel (dimK − 1)−dimensional affine subspaces H,H ′ of affK such that K ⊂ conv(H ∪H ′).
The d-dimensional unit ball (centred at 0) is denoted by Bd, and relbdBd = Sd−1 (d ≥ 2). The
d-dimensional regular simplex of edge length 1 is denoted by Td (d ≥ 2). The d-dimensional
cube of unit edge length is denoted by Cd (d ≥ 2).
We shall denote by λ the 1-dimensional Hausdorff measure (length).
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For n ≥ 2 and x1, x2, . . . , xn ∈ R
2, we put x1x2 . . . xn = conv{x1, x2, . . . , xn} and |x1x2 . . . xn| =

λbdx1x2 . . . xn. In particular |xy| = ‖x− y‖.
Given x1, . . . , xn ∈ R

3, the perimeter function is p(x1, . . . , xn) =
∑n

i=1 |xixi+1| (with xn+1 = x1).
If x1, . . . , xn are coplanar and in convex position, i.e. x1 . . . xn is a non degenerate convex n-gon
with consecutive vertices x1, . . . , xn, then p(x1, . . . , xn) = |x1 . . . xn|, but p(x1, x2) = 2|x1x2|.
Let G(K) be the space of all cages in R

3 holding the compact set K and set

L(K) = inf
G∈G(K)

λG.

We are looking for L(K) for various sets K. Apart from general results, we estimate L(K)
for the most common convex bodies. For the unit balls we find L(B2) = 6, while L(B3) =
8π
3
+2

√
3 is known, see Proposition 5.1. For the regular simplices of unit edge length, we obtain

L(T2) =
3+

√
3

2
and L(T3) = 3. For the cubes of unit edge length, we establish L(C2) = 3

√
2

and L(C3) ≤ 4 + 3
√
2. We conjecture that L(C3) = 4 + 3

√
2.

The structure of the article is as follows. In Section 2 we relate the length of a cage with the
perimeter and the length of the Steiner tree joining the projections of the vertices of the cage
on some plane; this will yield lower bounds for L(K) for several sets K. Section 3 deals with
the notion of almost fixing points, yielding upper bounds for L(K). Planar convex bodies are
studied in Section 4 and nonplanar ones in Section 5.

We end this introductory section with the following result.

Theorem 1. The function L is upper semi-continuous, but not continuous.

Proof. Let K be a compact convex set, and ε > 0. Assume without loss of generality that
0 ∈ intK. By definition, K admits a cage G holding K of length less than L(K) + ε. As K
and G are disjoint, there exist ν < 1 < µ such that µK and νG are disjoint too. Clearly, νG
holds νK. Thus, each convex compact set K ′ satisfying νK ⊂ K ′ ⊂ µK is held by νG. Hence,
for each K ′ in a suitable neighbourhood of K, L(K ′) ≤ λ(νG) ≤ λG ≤ L(K) + ε, and thus L
is upper semicontinuous.
That L is not continuous it can be seen as follows. Take the square S = C2 = abcd. For
0 < η < 1, let x ∈ ab satisfy |xa| = η and choose Sη = xbcd. Then Sη → S if η → 0, but we
have L(Sη) = 3 for all η, as shows Theorem 7 (i) in the sequel, while L(S) = 3

√
2, as shows

Theorem 8 (ii). �

2 Planar graphs and Steiner trees

By a geometric graph, we mean a pair (G, η), where G is a graph with vertex set V (G) and
edge set E(G), and η is an embedding of G in a plane Π, which acts as follows. For any vertex
v ∈ V (G), η(v) is a point in Π; for any edge (v, w) ∈ E(G), η((v, w)) is the line-segment
η(v)η(w) ⊂ Π, reduced to {η(v)} if η(v) = η(w). The set ∪e∈E(G)η(e) will be denoted by η(G).
Observe that we may have η(v) ∈ η((u, w)) for distinct v, u, w ∈ V (G), and η((u, v))∩η((u′, v′))
may be non-void, even a line-segment, for distinct u, v, u′, v′ ∈ V (G). A vertex v ∈ V (G) is
called external if η(v) ∈ bdconvη(G), and an edge e ∈ E(G) is called external if η(e) ⊂
bdconvη(G).
If
1) η(G) is not a line-segment,

2) for any point x ∈ Π, card
(
η|v(G)

)−1
({x}) ≤ 2,
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3) for any side s = ab of the convex polygon convη(G), there is at least one path (v1, . . . , vn)
in G such that η(v1) = a, η(vn) = b, and η((v1, . . . , vn)) = ab,
then (G, η) is called convex.
We denote by Ps one of the paths (v1, . . . , vn) satisfying condition 3). Notice that condition 3)
implies that the union of η(e) for all external edges e equals bd convη(G).
Now, for every side s of convη(G), delete from G the edges of Ps, to obtain a graph ∇G.
We call a geometric graph (G, η) strongly connected if G has at least three edges and the graph
G \ {e1, e2} is connected, for any pair of external edges e1, e2 ∈ E(G).

Lemma 2.1. If the geometric graph (G, η) is convex and strongly connected, then ∇G is
connected.

Proof. Let v ∈ V (G) be external, let C be the connected component of v in ∇G, and assume
that C 6= G.
Case 1. All external vertices belong to C.
Choose w ∈ V (G) \ C. Delete any two external edges; the resulting graph contains a path
from w to some external vertex, which therefore does not belong to C, contrary to the present
assumption.

Case 2. Some external vertex u does not belong to C.
In this case, at least two external edges e1, e2 do not belong to C. Since (G, η) is strongly
connected, G \ {e1, e2} is connected, which yields u ∈ C, and a contradiction is obtained again.

�

For the geometric graph (G, η), we define its length µ(G, η) as follows.

µ(G, η) = λη
(
∇G

)
+ λbdconvη(G).

Consider n points v1, . . . , vn ∈ R
3. Let S(v1, . . . , vn) denote the length of the shortest rectifiable

set containing all n points, called their Steiner tree.
Moreover, let

f(v1, . . . , vn) = p(v1, . . . , vn) + S(v1, . . . , vn), (1)

where p is the perimeter function. Remember that f(v1, . . . , vn) = |v1 . . . vn| + S(v1, . . . , vn) if
n ≥ 3 and v1, . . . , vn are coplanar and in convex position in the plane, but f(v1, v2) = 3|v1v2|.
The function f will play a central role in this article.
An immediate consequence of Lemma 2.1 is the following.

Corollary 2.2. Let (G, η) be a convex strongly connected geometric graph, with external ver-
tices v1, . . . , vn such that η(v1), . . . , η(vn) lie in this order on bd convη(G). Then

µ(G, η) ≥ f
(
η(v1), . . . , η(vn)

)
.

Indeed,

µ(G, η) = λη
(
∇G

)
+ λbd convη(G) ≥ S

(
η(v1), . . . , η(vn)

)
+ p

(
η(v1), . . . , η(vn)

)

= f
(
η(v1), . . . , η(vn)

)
.

We shall use the following obvious fact.

Lemma 2.3. If ϕ : R3 → R
3 is 1-Lipschitz, then

p
(
ϕ(v1), . . . , ϕ(vn)

)
≤ p(v1, . . . , vn),

S
(
ϕ(v1), . . . , ϕ(vn)

)
≤ S(v1, . . . , vn), and therefore

f
(
ϕ(v1), . . . , ϕ(vn)

)
≤ f(v1, . . . , vn).
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Theorem 2. Let G be a cage and P some plane in R
3. If v1, . . . vn are the external vertices of

(G, πP ) such that πP (v1), . . . , πP (vn) lie in this order on bd convη(G), then

λG ≥ f
(
πP (v1), . . . , πP (vn)

)
.

Proof. As a graph, the 1-dimensional skeleton of a polytope is 3-connected (i.e., every pair of
vertices can be joined by three paths in the graph having only their endpoints in common),
and therefore 3-edge connected (i.e., the graph minus any pair of edges is graph-theoretically
connected). Then the geometric graph (G, πP ) is strongly connected. Also, it is easily verified
that (G, πP ) is convex. We have G = ∇G∪

(
∪s Ps

)
and λG = λ∇G+

∑
s λPs. By successively

using Lemma 2.3 and Corollary 2.2, we obtain

λG ≥ λπP

(
∇G

)
+
∑

s

λπP (Ps) ≥ µ(G, πP ) ≥ f
(
πP (v1), . . . , πP (vn)

)
. �

Given a, b, c ∈ R
2, let t(a, b, c) be the Fermat-Torricelli point, i.e. the unique point s ∈ R

2 such
that S(a, b, c) = |as| + |bs| + |cs|. If one of the three angles of the triangle abc is greater than
2π
3
, then t(a, b, c) is one of the points a, b, or c.

Now fix a, b ∈ R
2 and k > |ab|, and consider the locus

O(a, b, k) = {x ∈ R
2 ; S(a, b, x) = k}.

Hx(a, b)

b

c

a

x

s

O(a, b, k)

b

c

a

x
d d′

Figure 1: The locus O(a, b, k). Left: k ≥ 2√
3
|ab|, right: k < 2√

3
|ab|.

Proposition 2.4. (i) For any a, b ∈ R
2 and k > |ab|, the locus O(a, b, k) is a convex C1 curve.

(ii) For all x ∈ R
2 there exists a half-plane Hx(a, b) containing x on its boundary such that, for

all d ∈ Hx(a, b) we have S(a, b, d) ≥ S(a, b, x).

Proof. (i) Let c ∈ R
2 be such that abc is an equilateral triangle, labelled clockwise. Let C be the

circle circumscribed to abc. Recall that (ab)+ denotes the open half-plane on the left of the line
ab oriented from a to b, i.e. here not containing c. We describe O+(a, b, k) = O(a, b, k)∩ (ab)+.
Let x ∈ O+(a, b, k). If x ∈ (ca)+, then ∠xab > 2π

3
, hence the Steiner tree connecting a, b, x is

the union of the segments xa and ab, and O+(a, b, k)∩ (ca)+ is an arc of circle of radius k−|ab|
centred in a. If x ∈ (ac)+ ∩ (cb)+ \ convC, then the Fermat-Torricelli point s = t(a, b, x) is on
C, and the Ptolemy theorem shows that |sa|+ |sb| = |sc|, whence O+(a, b, k)∩ (ac)+ ∩ (cb)+ is
an arc of circle of centre c and radius k if k ≥ 2√

3
|ab|. The curve O+(a, b, k) is differentiable at

its point on ac.
If k < 2√

3
|ab|, then O+(a, b, k) crosses C at some points d, d′. If x ∈ (ac)+∩ (cb)+∩convC, then

the Steiner tree connecting a, b, x is the union of the segments ax and xb, hence O+(a, b, k) ∩

4



(ac)+∩(cb)+∩convC is an arc of ellipse of foci a and b. At d, d′ too, O+(a, b, k) is differentiable.
Indeed, on the one hand, the normal to the ellipse at d must bissect the angle ∠adb, on the
other hand, denoting by ω the centre of C, we have ∠adc = 1

2
∠aωc = π

3
= ∠cdb. It follows

that both normals to the ellipse and to the cercle of centre c coincide at d.
Now, the convex curve O+(a, b, k) is fully described via the symmetry with respect to the
bisector of ab, and further O(a, b, k) via the symmetry with respect to ab.

(ii) Put k = S(a, b, x), let Dx be the tangent of O(a, b, k) at x, and choose for Hx(a, b) the
half-plane bounded by Dx and not containing ab. �

Remark. One can prove that, for all integers n ≥ 3, all a1, . . . , an ∈ R
2, and all k >

S(a1, . . . , an), the locus {x ∈ R
2 ; S(a1, . . . , an, x) = k} is a concatenation of convex C1

curves, themselves concatenations of arcs of circles and/or ellipses, with possible angular points
b1, . . . , br. These points bj are those for which the Steiner tree of a1, . . . , an, bj is not unique,
and where this Steiner tree combinatorially changes.

Corollary 2.5. If v1, . . . , vn ∈ R
2 and a, b, c ∈ v1 . . . vn, then S(a, b, c) ≤ S(v1, . . . , vn) and

f(a, b, c) ≤ f(v1, . . . , vn).

Proof. Since c (resp. b, a) is in the convex hull of v1, . . . , vn, every half-plane bounded by a
straight line passing through c (resp. b, a) contains at least one point vi (resp. vj, vk). Choose
c′ = vi in the half-plane Hc(a, b) given by Proposition 2.4 (ii). Similarly, choose b′ = vj in the
half-plane Hb(a, c

′), then choose a′ = vk in the half-plane Ha(b
′, c′). Then we have

S(a, b, c) ≤ S(a, b, c′) ≤ S(a, b′, c′) ≤ S(a′, b′, c′) = S(vk, vj , vi) ≤ S(v1, . . . , vn).

Since |abc| ≤ |v1 . . . vn|, the inequality for f follows. �

✔
✔
✔
✔
✔
✔
✔
✔✔

❚
❚
❚
❚
❚
❚
❚
❚❚

❚
❚
❚
❚❚

✔
✔
✔
✔✔

❉
❉
❉
❉
❉
❉
❉❉

❉
❉
❉
❉
❉
❉
❉❉

❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉❉

★★★★★★ PP
PP

PP
PP

PP
PP

ra1=a r b=a2

r c=a3

r

a4

rd r

t

Figure 2: In bold, a Steiner tree connecting a1, . . . , a4.

Remark. One could expect that, for a1, . . . , am ∈ v1 . . . vn, we have S(a1, . . . , am) ≤ S(v1, . . . ,
vn) as soon as m < n. This is however false, already for m = 4.
Indeed, given an equilateral triangle T2 = abc of unit edge length, choose n points v1, . . . , vn,
some of them close to a, some close to b, and others close to c, such that abc is in their
convex hull. Then S(v1, . . . , vn) is close to S(a, b, c) =

√
3, while for a1 = a, a2 = b, a3 = c,

a4 =
1
2
(a+ b), one can check that one of the Steiner trees connecting a1, . . . , a4 is obtained by

joining a1 to a4, then taking the Steiner tree of a2, a3 and a4, cf. Figure 2; the other Steiner
tree is symmetric with respect to the line a3a4. If d is such that a2, a4, d is equilateral and if t
is the Fermat-Torricelli point associated to a2, a3, a4, from |ta4|+ |ta2| = |td| one obtains

S(a1, . . . , a4) = |a1a4|+ |a3d| = 1
2

(
1 +

√
7
)
> S(v1, . . . , vn).
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Theorem 3. Let K be a planar convex body, x, y, z ∈ bdK, and x′, y′, z′ ∈ R
2, such that xx′,

yy′, zz′, are supporting lines of K and the vectors x′ − x, y′ − y, z′ − z point toward the direct
sense on bdK. Assume that the order of x, y, z is also in the direct sense on bdK and that
the Steiner tree determined by x, y, z has a vertex v inside intK. Put αx = ∠x′xy, βx = ∠x′xv,
γx = ∠x′xz, and, analogously, αy, βy, γy and αz, βz, γz.
If f attains a local minimum at x, y, z, then

cosαx + cos βx + cos γx = 0,

cosαy + cos βy + cos γy = 0,

cosαz + cos βz + cos γz = 0.

Moreover, bdK is differentiable at x, y, z, and the normals at x, y, z are concurrent.

z

y

x

v

x′

z′
y′

αx

βx

γx

bdK

T = xx′

Figure 3: The law of cosines.

Proof. Consider for a moment v = (v1, v2), y = (y1, y2) and z = (z1, z2) fix, and x variable on
T = xx′. Put g(x) = |xy| + |xv| + |xz|. Again for a moment, consider T to be the real line
R× {0}, with the real number x corresponding to the point x as its abscissa. We have

g(x) =
√
(x− y1)2 + y22 +

√
(x− v1)2 + v22 +

√
(x− z1)2 + z22 ,

whence

g′(x) =
x− y1√

(x− y1)2 + y22
+

x− v1√
(x− v1)2 + v22

+
x− z1√

(x− z1)2 + z22
= cosαx + cos βx + cos γx.

Now, assume
cosαx + cos βx + cos γx 6= 0.

Then, for some x̃ ∈ T close to x, g(x̃) < g(x). This implies |zπK(x̃)|+|vπK(x̃)|+|yπK(x̃)| < g(x),
which yields f(x̃, y, z) < f(x, y, z), impossible.
To prove the second part, suppose that some normals at x, y, z form a non-degenerate triangle.
Then suitably and slightly turning the set {v, x, y, z} about an interior point of that triangle
brings all three points x, y, z in positions x′′, y′′, z′′ outside K. But then

f(πK(x
′′), πK(y

′′), πK(z
′′)) < f(x, y, z),

which is again impossible. �

In the rest of this Section, we compute the infimum of f on some sets; this will be useful in
Section 4.
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Lemma 2.6. We have inf{f(x, y, z) ; x, y, z ∈ S1,0 ∈ xyz} = 6.

Proof. Recall the perimeter function p, here defined by p(x, y, z) = |xyz| if all three points are
distinct and p(x, y, y) = 2|xy|. It is easily seen that both p and S have no local minimum with
distinct x, y, z. It follows that the global minimum of both functions is attained when two of
the points x, y, z collapse, i.e. when xyz is a diameter of S1. �

Lemma 2.7. If abc is an equilateral triangle of sides I1 = bc, I2 = ca, I3 = ab and side length
δ, then inf{f(u1, u2, u3) ; uk ∈ Ik} = 3+

√
3

2
δ. This infimum is reached precisely at (a′, b′, c′),

where a′, b′, c′ are the midpoints of bc, ca, ab respectively.

Proof. We prove that both functions p and S have a global minimum on I1×I2×I3 at (a
′, b′, c′),

and that this minimum is uniquely reached for p.
The minimality of p implies the so-called incidence/reflection law: ∠cu1u2 = ∠u3u1b, denoted
by α, and similarly ∠au2u3 = ∠u1u2c = β and ∠bu3u1 = ∠u2u3a = γ. Since the angles in a
triangle sum to π, we have α + β = β + γ = γ + α = 2π

3
, yielding α = β = γ = π

3
. It follows

that the minimum of p is reached only at (a′, b′, c′).
For S, however, there is a 2-dimensional subset of I1 × I2 × I3 where S attains its global
minimum: choose arbitrarily t ∈ abc and consider u1 = πbc(t), u2 = πca(t), and u3 = πab(t).

Then t is the Fermat-Torricelli point t(u1, u2, u3) and S(u1, u2, u3) =
√
3
2
δ. �

Lemma 2.8. If abcd is a parallelogram of sides I1 = ab, I2 = bc, I3 = cd, I4 = da, with
δ = |ac| ≤ |bd|, then inf{f(u1, . . . , u4) ; uk ∈ Ik} = 3δ.
If abcd is not a rectangle, then this infimum is reached precisely at (a, c, c, a). If abcd is a
rectangle, then the infimum is reached at both (a, c, c, a) and (b, b, d, d).

Proof. As before, we prove that both functions p and S have a global minimum at the afore-
mentioned points. Assume that abcd is not a rectangle, and put β = ∠abc. We have β < π

2
.

Firstly, observe that the perimeter function p has no local minimum at a quadruple (u1, . . . , u4)
with ui /∈ {a, b, c, d} for every i. Indeed, at such four points, the minimality of p implies the in-
cidence/reflection law, which yields 4β = 2π, a contradiction. Hence the minimum is attained,
say, for u1 = a or b. Then one easily shows that u4 = u1 in the first case and u2 = u1 in the
second, and finally that the global minimum of p is attained at u1 = u4 = a, u2 = u3 = c. In
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❈
❈
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✁
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u3

u4
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x3

πab(c)

πcd(a)

Figure 4: Left: x1 is the neighbour of u4 in the Steiner tree; right: x1 is the neighbour of u2.

the Steiner tree connecting u1, . . . , u4, let x1 be the neighbour of u1, and x3 that of u3. Then

S(u1, . . . , u4) = |u4x1|+ |u1x1|+ |x1x3|+ |x3u3|+ |x3u2|
≥ |aπab(x1)|+ |πab(x1)x1|+ |x1x3|+ |x3πcd(x3)|+ |πcd(x3)c| ≥ |ac|

7



if x1 is the neighbour of u4 and x3 the neighbour of u2 in the Steiner tree (see Fig. 4, left), and

S(u1, . . . , u4) = |u4x3|+ |u3x3|+ |x3x1|+ |x1u1|+ |x1u2|
≥ |πcd(a)πcd(x3)|+ |πcd(x3)x3|+ |x3x1|+ |x1πab(x1)|+ |πab(x1)πab(c)|
≥ |πcd(a)πab(c)| = |ac|

in the case x1 is the neighbour of u2 and x3 that of u4 (see Fig. 4, right). Hence, both functions
p and S attain their global minimum at u1 = u4 = a, u2 = u3 = c, and this remains true for
their sum. The case of a rectangle is clear. �

3 Points almost fixing planar convex bodies

In the sense of Baire categories, for most convex bodies K ⊂ R
2, the inscribed circle C, thought

to be the unit circle S1 of centre 0, is unique and touches bdK in exactly three points a, b, c,
with 0 ∈ int abc [11]. Then, obviously, the points a, b, c fix K. However, there are convex
bodies which cannot be fixed by any set of three points, e.g. parallelograms. A set of points is
fixing K if any small move of K brings some point of the set in intK. Precisely, a1, . . . , an fix
K if there is a neighbourhood V of the identity id in the set Isom+

R
2 of affine rotations such

that, for every f ∈ V satisfying f(K) 6= K, at least one of the ai belongs to intf(K). This is
slightly different from another commonly used definition of fixing, e.g. in [4, 3], where a subset
H of bdK is said to fix K if id is isolated in the set

{
f ∈ Isom+

R
2 ; H ∩ f(intK) = ∅

}
.

In particular, we consider that a rotation of a disc around its centre does not move the disc.
Observe that both definitions are equivalent if K is not a disc, since in this case there is a
neighbourhood V of id in Isom+

R
2 such that every f ∈ V \ {id } satisfies f(K) 6= K. We now

introduce the following related notion.
The points a1, . . . , an ∈ bdK almost fix the convex body K ⊂ R

2 if, for any neighbourhoods Vi

of ai (i = 1, . . . , n), there are pairs of points a′i, a
′′
i ∈ Vi ∩ bdK, such that a′1, a

′′
1, . . . , a

′
n, a

′′
n fix

K.

Theorem 4. For any planar convex body K, there are two or three points almost fixing K.

Proof. If K is a disc, then it is obviously almost fixed by two diametrally opposite boundary
points. So, assume from now on that K is not a disc.
Suppose without loss of generality that C = S1 is an inscribed circle of K.

Case 1. There exists no a ∈ C ∩ bdK with −a ∈ C ∩ bdK.
Let a ∈ C∩bdK and A be the component of −a in C∩ intK. The set A is an open arc ã′a′′ ⊂ C
of length less than π. Clearly, the triangle aa′a′′ is acute and a, a′, a′′ fix K.

Case 2. There exists a ∈ C ∩ bdK with −a ∈ C ∩ bdK.
Let ã1a2 ⊂ C be the connected component of a in C ∩ bdK. Then ã1a2 6= C because K is not
a disc. If −a ∈ ã1a2 and λã1a2 > π then K is fixed by a1, a2 and the midpoint a3 of ã1a2. The
case λã1a2 = π (hence a1 = ±a and a2 = ∓a) will be treated later on.

If −a /∈ ã1a2, let ã∗1a
∗
2 ⊂ C be the component of −a in C ∩ bdK. Then ã1a2 and ã∗1a

∗
2 are

disjoint.
Suppose a1, a2 6= a or a∗1, a

∗
2 6= −a, say a∗1, a

∗
2 6= −a. If λã∗1a

∗
2 < π, then the triangle aa∗1a

∗
2 is

acute and a, a∗1, a
∗
2 fix K. If λã∗1a

∗
2 ≥ π, then λã1a2 < π. Let m be the midpoint of ã1a2. Since

m /∈ ã∗1a
∗
2 and λã∗1a

∗
2 ≥ π, we have −m ∈ ã∗1a

∗
2. Then the triangle (−m)a1a2 is acute, and its

vertices fix K.
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If a1 = a, a∗1 = −a, and ã1a2, ã∗1a
∗
2 are non-degenerate and do not lie both on the same half of

C, then we are in the already treated case for some point in the relative interior of ã1a2 instead
of a.
It remains the case that at least one of ã1a2, ã∗1a

∗
2 is degenerate or they lie both on the same

half of C.
Let the lines Λ ∋ a, −Λ ∋ −a be orthogonal to −aa. Put bc = Λ ∩ bdK, with b, c perhaps
not distinct. Take small arcs b̃′b′′, c̃′c′′, ã′a′′ ⊂ bdK containing b, c,−a, respectively, in their
relative interior. Then a′, a′′, b′, b′′, c′, c′′ fix K, and consequently −a, b, c almost fix K. This
remains valid for bc degenerate (b = c); in that case a,−a almost fix K. �

In [7], almost necessary and sufficient conditions of first order are given for a finite collection
of points to fix K, resp. almost fix K. “Of first order” means that these conditions make
use of the left and right tangents of bdK at these points. “Almost” means that the necessary
conditions involve large inequalities, whereas the sufficient conditions involve the corresponding
strict inequalities. In [4] an almost necessary and sufficient condition of second order, i.e. using
the curvature of bdK, is given such that three points fix a C2 convex bodyK. We first introduce
some notation.
Given a planar convex body K, with bdK oriented counterclockwise, and a ∈ bdK, let Tℓ(a),
resp. Tr(a), be the left, resp. right, tangent at bdK in a. We orient these lines as bdK; thus
we have K ⊂ Tℓ(a)

+ ∩ Tr(a)
+. Let Nℓ(a), resp. Nr(a), be the left and right normals at bdK in

a, oriented in the directions Tℓ(a)
+, resp. Tr(a)

+, i.e. the line orthogonal to Tℓ(a), resp. Tr(a),
containing a, and pointing (as) inward K (as possible). Let L(a) be the open sector, union of
the left open half-planes bounded by Nℓ(a) and Nr(a):

L(a) = Nℓ(a)
+ ∪Nr(a)

+.

Let L(a) be the corresponding closed sector, and let

#»

L(a) = {x ∈ S1 ; a+ x ∈ L(a)}

be the set of directions of L(a); it is a compact subset of S1. Let R(a) and R(a) be the analogous

sectors for the right half-planes. Observe that the set of directions of R(a) is − #»

L(a), hence will
not be needed. If bdK is differentiable at a, then L(a) = R

2 \ R(a), otherwise L(a) ∩ R(a) is
the union of two sectors of vertex a. We will also use the intersection sectors:

ℓ(a) = Nℓ(a)
+ ∩Nr(a)

+ = R
2 \R(a),

r(a) = R
2 \ L(a), their corresponding closed sectors ℓ(a) and r(a), and the set of directions of

ℓ(a):
#»

ℓ (a) = {x ∈ S1 ; a+ x ∈ ℓ(a)}.

Theorem 5. [7] Let K be a planar convex body and a1 . . . , an ∈ bdK.

(i) If a1, ..., an fix K, then both intersections L(a1) ∩ ... ∩ L(an) and R(a1) ∩ · · · ∩ R(an) are
empty.

(ii) If the three intersections L(a1)∩ · · · ∩L(an), R(a1)∩ · · · ∩R(an), and
#»

L(a1)∩ · · · ∩ #»

L(an)
are empty, then a1, . . . , an fix K.

(iii) If a1, ..., an almost fix K, then both intersections ℓ(a1) ∩ ... ∩ ℓ(an) and r(a1) ∩ · · · ∩ r(an)
are empty.

(iv) If the three intersections ℓ(a1) ∩ · · · ∩ ℓ(an), r(a1) ∩ · · · ∩ r(an), and
#»

ℓ (a1) ∩ · · · ∩ #»

ℓ (an)
are empty, then a1, . . . , an almost fix K.
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Remarks. 1. The set of directions is needed in items (ii) and (iv): If K = [−2, 2] × [0, 1]
then the three points a = (−1, 0), b = (1, 0), c = (0, 1) do not fix K although the intersections
L(a) ∩ L(b) ∩ L(c) and R(a) ∩R(b) ∩R(c) are empty.

2. Another commonly used definition of fixing points is the following one [6]: The points
a1, . . . , an ∈ bdK weakly fix K if, for any path γ : [0, 1] → Isom+

R
2 , t 7→ γt such that

γ0(K) = K and γ1(K) 6= K, there exist i ∈ {1, . . . , n} and t ∈ [0, 1] such that ai ∈ intγt(K).
Obviously, if a1, . . . , an fix K in our first sense, then they weakly fix K. Example 3 of [7] shows
that the converse, however, is not true. Nevertherless Theorem 5 remains valid with this notion
of weakly fixing.

3. Example 3.1 below shows that, although every planar convex body can be almost fixed by
at most three points, sometimes it may be more economical to use more points to fix it, i.e. it
is possible to have

inf{f(a, b, c, d) ; a, b, c, d almost fix K} < inf{f(a, b, c) ; a, b, c almost fix K}. (2)

✘✘✘
✘✘✘

✘✘

✘✘✘
✘✘✘

✘✘PPPPPP✟✟
✟✟

PPPPPPr

a0

r

c′ = d = d0

r

b0 = b = b′

r

c0

r

a

r
c

rω
r

a′

r

e)δ

)α(β

Figure 5: Example 3.1.

Example 3.1. With ε > 0 small enough, let K be the parallelogram a0b0c0d0, with a0 =
(−2,−ε), b0 = (1,−ε), c0 = (2, ε), and d0 = (−1, ε). Its centre is ω = (0, 0), its ratio of side
lengths is almost 3 and its angles are δ = arctan 2ε and π − δ.

Using Theorem 5 (i), it is rather tedious but straightforward to prove that

inf{f(a, b, c, d) ; a, b, c, d almost fix K}

is attained for a = (−x,−ε), b = b0, c = (x, ε), and d = d0, where 0 < x < 1 is such that the
angles α = ∠b0cc0 and β = ∠acd0 satisfy 2 cosα = 1+cosβ. Using tanα = 2ε

1−x
and tan β = ε

x
,

we obtain 2α2 = β2 +O(ε4), hence x = (1 + 2
√
2)−1 +O(ε).

Since the Steiner tree of a, b, c, d is the union of the three segments da ∪ ac ∪ cb as soon as
α + β < π

6
, we have f(a, b0, c, d0) = 2|d0a|+ |ab0|+ 2|b0c|+ |cd0|+ |ac|, hence

inf{f(a, b, c, d) ; a, b, c, d almost fix K} = 6 +O(ε2).

Besides, one easily finds that inf{f(a, b, c) ; a, b, c almost fix K} is attained for a′ = (−1,−ε),
b′ = b0, and c′ = d0, yielding

inf{f(a, b, c) ; a, b, c almost fix K} = 6 + (
√
3 + 2)ε+O(ε2).

We used here that the length S(a′, b0, d0) of the Steiner tree joining a′, b0, and d0 is |eb0| =
2 +

√
3ε+O(ε2), where e = (−1−

√
3ε, 0) is such that a′d0e is equilateral. As a consequence,

(2) is satisfied if ε is small enough.
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4 Cages for planar convex bodies in R
3

Let r(K) denote the inradius of the planar convex body K.

Theorem 6. For any planar convex body K, L(K) ≥ 6r(K).

Proof. We may suppose r(K) = 1, and B2 to be inscribed in K.
Let G be a cage holding K, and set G0 = G∩ affK. Denote by v1, . . . , vm the vertices of G, and
write wi = πaffK(vi). Take the labelling so that w1, . . . , wn are the external vertices of πaffK(G).

Case 1. 0 ∈ convG0.
By the Carathéodory Theorem, there exist a, b, c ∈ G0 such that 0 ∈ abc. Clearly,

0 ∈ πB2(a)πB2(b)πB2(c),

too. By successively using Theorem 2, Corollary 2.5, and Lemmas 2.3 and 2.6, we obtain

λG ≥ f(w1, . . . , wn) ≥ f(a, b, c) ≥ f(πB2(a), πB2(b), πB2(c)) ≥ 6.

Case 2. 0 /∈ convG0.
We claim that diamG > 2, yielding the result since G is 3-connected.
Consider the arc S1 ∩ conv({0} ∪ G0), of endpoints α, β. Take a ∈ 0α ∩ G0, b ∈ 0β ∩ G0,
and consider the diameter c(−c) of S1, parallel to ab. We obtain the trapezoid ab(−c)c. There
are two half-lines starting at a and supporting K, one of which, say La, meets c(−c) at some
point a′, with c ∈ 0a′. Analogously, some supporting half-line Lb of K from b meets c(−c) at
b′, with −c ∈ 0b′. If ‖a − b‖ ≤ 2 then ‖a′ − b′‖ ≥ ‖a − b‖ and K could escape from the cage
via conv(La ∪ Lb ∪K), which contradicts the assumption. Hence, indeed, diamG ≥ diamG0 ≥
‖a− b‖ > 2. �

The next statement brings a link between points almost fixing a planar convex body and cages
holding that body.

Theorem 7. Let K be a planar convex body in R
3 and a, b, c ∈ relbdK.

(i) If a, b almost fix K, then L(K) ≤ f(a, b).

(ii) If a, b, c almost fix K, then L(K) ≤ f(a, b, c).

Remark. Example 3.1 shows that the statement of Theorem 7 would be false with four points
instead of two or three. Actually, it can be shown that no cage holding the parallelogram
K = a0b0c0d0 of Figure 5 can be approximated by the parallelogram ab0cd0 plus its Steiner tree
d0a ∪ ac ∪ cb0.

Question 4.1. Is there a planar convex body K in R
3 satisfying

L(K) < inf{f(a, b, c) ; a, b, c almost fix K}?

Proof of Theorem 7. (i) The plane Π0 = affK is thought to be the horizontal plane. Let a′, a′′

be close to a and b′, b′′ close to b such that a′, a′′, b′, b′′ fix K. These points are labelled such
that the quadrilateral a′a′′b′b′′ is convex. Consider the plane Π passing through a′′b′, making
an angle, say, π

4
with Π0, with b′′a′ below it. Similarly, let Π′ be the plane passing through b′′a′,

making an angle π
4
with Π0, and with a′′b′ below it. (Since λa′a′′ and λb′b′′ are small compared

with λa′′b′ and λb′′a′, these planes are almost perpendicular to each other.) The planes Π and Π′

11
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Figure 6: A cage holding K in the case (i).

cross along a straight line ∆ such that the projection πΠ0(∆) crosses the quadrilateral a′a′′b′b′′

at two points a0 ∈ a′a′′ and b0 ∈ b′b′′. These points are projections of some points ã, b̃ ∈ ∆. We
now make a dilation Dγ of centre the middle of ãb̃ and factor γ > 1, γ arbitrarily close to 1.

Then the 1-skeleton of Dγ(a
′a′′ãb′b′′b̃) holds K if γ is close enough to 1, and the length of this

cage is arbitrarily close to

|a′b′′|+ |a′′b′|+ |ãb̃|+ |a′a′′|+ |a′′ã|+ |ãa′|+ |b′b′′|+ |b′′b̃|+ |̃bb′|.

Because this can be done for any a′, a′′, b′, b′′ fixing K, a′, a′′ close to a and b′, b′′ close to b, this
sum can be made arbitrarily close to f(a, b) = 3|ab| and the result follows.

(ii) If a, b, c are collinear with c ∈ ab, then we prove that a, b almost fix K, see Fig. 7. Actually,
we have ab ⊂ relbdK. Choose the orientation such that the closure of (ab)+ containsK. (Recall
that (ab)+ is the open half-plane on the left of the line ab oriented from a to b.) Then ab is
the right tangent of relbdK at a and the left tangent at b. Denote by A the left tangent at
a and by B the right tangent at b. Since a, b, c almost fix K, we have that, either A and

K

A

B
ab

b

a

b′′

a′

a′′

b′

c

Figure 7: If a, b, c are collinear and almost fix K then a, b too.

B cross in (ab)+, or they are parallel. In the latter case we also have A ∩ relbdK = {a} or
B ∩ relbdK = {b} (or both), otherwise a, b, c would not almost fix K. It follows that, for any
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a′ ∈ (ab)+ ∩ relbdK, a′′ ∈ ]ab[ , a′, a′′ close to a and b′ ∈ ]ab[ , b′′ ∈ (ab)+ ∩ relbdK, b′, b′′ close to
b, the points a′, a′′, b′, b′′ fix K. This proves that a, b almost fix K, and case (i) applies, since
f(a, b, c) = f(a, b).

We now assume that a, b, c are not collinear. Let d = t(a, b, c) be the Fermat-Torricelli point of
a, b, c; we first assume that d is distinct from a, b and c.
For any arbitrarily small ε > 0, let a′, a′′, b′, b′′, c′, c′′ ∈ relbdK be six points fixing K, labelled
in that cyclic order on relbdK, with |aa′|, . . . , |cc′′| < ε. Let ã = a′′b′∩c′′a′. For ε small enough,

we have |aã| ≤ |aa′|+ |a′ã| ≤ ε+ |a′a′′|
sin(∠a′′ãa′)

≤ 3ε
sin(∠cab)

and similarly |b̃b|, |cc̃| = O(ε).

Let #»u be the unit vector orthogonal to Π0 = affKpointing upward, and put d̃ = d + ε #»u .
Consider the tetrahedron T = ãb̃c̃d̃. We chop T by three planes Πa,Πb,Πc making an angle of
π
4
with Π0, with d̃ under them, Πa containing a′a′′, Πb containing b′b′′ and Πc containing c′c′′.

This gives a heptahedron P , with three triangular faces a′a′′a′′′ ⊂ Πa, b
′b′′b′′′ ⊂ Πb, c

′c′′c′′′ ⊂ Πc,
with |aa′′′|, |bb′′′|, |cc′′′| = O(ε), three pentagonal faces d̃a′′′a′′b′b′′′, d̃b′′′b′′c′c′′′ and d̃c′′′c′′a′a′′′, and
a hexagonal face a′a′′b′b′′c′c′′, see Fig. 8.

rã

✡
✡
✡
✡
✡
✡✡

r b̃

❆
❆
❆
❆
❆
❆❆

r̃

c

✡✡
✡✡

✡✡
✡✡ ❆

❆
❆❇

❇
❇❇

r

a′′

❤❤❤ra′

✜
✜✜
✧
✧✧

ra′′′

✭✭✭✭rc′′
❅
❅rc′′′✁
✁✁
rc′

✆
✆
✆✆

✁
✁
✁

r

b′
❇
❇❇
r

b′′′✦✦✦
rb′′

◗
◗◗

rd̃

ra rb

r

c

Figure 8: A cage holding K in the case (ii).

We now make a dilation Pγ = Dγ(P ) of P , of centre d̃ and factor γ > 1, γ arbitrarily close
to 1. Then, if γ is close enough to 1, the 1-skeleton of Pγ is a cage holding K and of length(
f(a, b, c) +O(ε)

)
γ, hence arbitrarily close to f(a, b, c).

The case where t(a, b, c) is one of the points, say t(a, b, c) = a, goes similarly: We choose for d
the point on the bisector of ∠bac at the distance

√
ε from a. The rest of the proof is the same.

�

We say that the convex body K is weakly strictly convex if it possesses two parallel supporting
hyperplanes H,H ′ at distance widK from each other, such that H ∩K is a single point.
A consequence of Theorem 7 is the following.

Corollary 4.2. For any planar weakly strictly convex body K in R
3, we have L(K) ≤ 3widK.

Proof. Take the two supporting lines H,H ′ given by the definition of weakly strict convexity,
and the point {a} = H ∩K. Then the orthogonal projection b of a onto H ′ belongs to H ′ ∩K.
With ε > 0 small, consider the two lines parallel to ab and at distance ε from ab. These lines
cut relbdK in four points a′, a′′, b′, b′′ which fix K. This proves that a, b almost fix K and
Theorem 7 (i) applies. �

An immediate consequence of Corollary 4.2 and Theorem 6 is the following.

Corollary 4.3. Let K be a planar weakly strictly convex body. Assume that K contains a disc
of diameter widK. Then we have L(K) = 3widK.
In particular for the unit two-dimensional disc B2, we have L(B2) = 6.
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Corollary 4.3 also follows from the fact that any cage with S2 as circumscribed sphere has
length more than 6. This was proven by Lillington [8], and generalized to higher dimensions
by Linhart [9] and further to 1-skeletons of arbitrary convex bodies by Schneider [10].

A parallelogram will be called acute if, at each of its vertices, the angles between the diagonal
and the sides are acute.

Theorem 8. (i) If T = abc is a triangle of sides I1 = bc, I2 = ca, I3 = ab, then

L(T ) = min{f(x1, x2, x3) ; xk ∈ Ik}.

In particular, for the equilateral triangle T2 of unit edge length, we have L(T2) =
3+

√
3

2
.

(ii) Let K be a parallelogram of diagonal lengths δ,∆ with δ ≤ ∆. Then we have L(K) ≥ 3δ.
Moreover, if K is acute, then L(K) = 3δ. In particular, for the unit square C2, we have
L(C2) = 3

√
2.

Proof. (i) Since f is continuous and I1 × I2 × I3 is compact, inf{f(x1, x2, x3) ; xk ∈ Ik} is
reached at some point (u, v, w). Two cases occur: Either each point is in the relative interior
of its side, or two points, are at a vertex, say, u = v = c, and the third one w is at the foot
of the corresponding height. This second case occurs for all non-acute triangles; it can be seen
that it occurs also for some acute ones, if the largest angle is close enough to π

2
.

In the first case, the three normals at u, v, w are concurrent by Theorem 3, hence the points
u, v, w fix the triangle T . In the second case, we choose u′, v′ arbitrarily close to c such that the
three normals at u′, v′, w are concurrent, and the points u′, v′, w fix T . This proves that c, w
almost fix T . Then Theorem 7 applies, yielding L(T ) ≤ f(u, v, w).
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Figure 9: Proof of Theorem 8 (i).

Conversely, let G be a cage holding T . Let P = affT and consider the geometric graph πP (G),
i.e. the projection of the cage G in the plane P . Let v1, . . . vn denote the external vertices of
πP (G).
In the plane P , let Sa denote the half-strip not containing a, bounded by the side bc and the
two rays parallel to ab starting from b and from c. Then G intersects Sa at some point x,
otherwise T would escape from G by a translation inside Sa

Similarly let Sb and Sc denote the analogous half-strips for b and c. Then Then G intersects Sb at
some point y and Sc at some point z. Now consider the projections on T : u = πT (x), y = πT (y)
and w = πT (z). They satisfy u ∈ I1, v ∈ I2, and w ∈ I3. By respectively using Lemma 2.3,
Corollary 2.5, and Theorem 2, we obtain

f(u, v, w) ≤ f(x, y, z) ≤ f(v1, . . . , vn) ≤ λG.
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Lemma 2.7 proves the equality for the equilateral triangle.

(ii) Let G be a cage holding the parallelogram K = abcd, with |ac| = δ ≤ |bd| = ∆, let
P = affK, and let v1, . . . vn denote the external points of πP (G). In the plane P , let S be
the half-strip not containing K determined by da, ab, and bc. Then G intersects S at some
point m, otherwise K would escape from G by a translation inside S. Let H be the open
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Figure 10: Proof of Theorem 8 (ii).

half-plane not containing c bounded by the straight line containing a and orthogonal to ac, i.e.
H = {x ∈ R

2 ; ∠cax is obtuse }. Since H contains S and since m is in the convex hull of the
points v1, . . . , vn, one of these points, vk, belongs to H. In the same manner, one vl belongs to
the symmetric half-plane H ′ = {x ∈ R

2 ; ∠acx is obtuse }. We then obtain

λG ≥ f(v1, . . . , vn) ≥ f(vk, vl) = 3|vkvl| ≥ 3|ac| = 3δ.

For the ‘moreover’ part, if K is acute, then the angle ∠dca is acute, hence the vertices a and c
almost fix K, giving L(K) = 3δ by Theorem 7 (i). The case of the unit square C2 is clear. �

Remark. In the case of a nonacute parallelogram, it is easy to prove that the vertices a and c
do not almost fix K any more and that inf{f(x, y, z) ; x, y, z almost fix K} is attained e.g. for
x = a, y = c and z = πda(c), whereas inf{f(x, y) ; x, y almost fix K} is attained only for x = b,
y = d and is larger. By Theorem 7 (ii), we then obtain L(K) ≤ f

(
a, c, πda(c)

)
. We conjecture

that this is an equality.

5 Cages for convex bodies in R
3

As mentioned in the Introduction, Coxeter’s problem from 1959 was completely solved, as
follows.

Proposition 5.1. (Besicovitch, Aberth). For the unit ball B3, we have L(B3) =
8π
3
+ 2

√
3.

Denoting the number from the statement of Proposition 5.1 by γ, Besicovitch [2] provided a
cage G with λG > γ arbitrarily close to γ, while Aberth [1] proved that λG ≤ γ for no cage G.

Theorem 9. For any K ∈ K, we have L(K) ≤ 2πdiamK. If K is strictly convex, then
L(K) ≤ 4(diamK + widK).

Proof. Suppose K ∈ K is strictly convex. Let Π and Π′ be two parallel supporting planes of K
at distance widK from each other, and let a, a′ be the contact points, respectively. Consider a
plane Ψ through a and a′, and let K ′ = K ∩Ψ. Approximate relbdK ′ by a polygon P exterior
to and disjoint from K ′, having two sides α, α′ parallel to Π, close to a, a′ respectively. Take a
vector v orthogonal to Ψ, and consider the prism

Qv = conv((P + v) ∪ (P − v)).
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For ‖v‖ small enough, K ∩ skelQv = ∅.
All faces of Qv except (convP ) ± v are rectangles. We chop Qv using planes parallel to these
faces, such that the new faces (parallel to the old) now touch K. The number of faces may
decrease in the process. The new faces A and A′ corresponding to the old faces of Gv containing
α and α′ lie in Π and Π′, respectively. If xy is the line-segment A∩Ψ, then relbdA = x+y+y−x−,
where x± = x± v, y± = y ± v. Obviously, xy is parallel to α and contains a.
We chop again the already chopped Qv by a plane parallel to xy (but not necessarily to Π),
close to A, to replace both edges x+y+ and x−y− by edges x∗

+y
∗
+ and x∗

−y
∗
− touching K. Then,

clearly, the new face convx∗
+y

∗
+y

∗
−x

∗
− cuts K. The same procedure is applied to A′.

The resulting polytope Q′
v is not necessarily a prism any more, but skelQ′

v tightly holds K.
Put P ′ = Q′

v ∩Ψ.
Let ε > 0. By taking ‖v‖ suitably small, we have λskelQ′

v < 2λP ′ + ε. But the polygon P ′

approximates relbdK ′. Let R be the smallest rectangle in Ψ with two sides in Π,Π′, such that
convR ⊃ K ′. This rectangle touches K ′ in a, a′ and two further points b, b′. Two sides of R have
length |aa′| = widK, the other two have length at most |bb′| ≤ diamK. Moreover, convR ⊃ P ′.
Hence,

λP ′ ≤ λR ≤ 2(diamK + widK).

Thus, λskelQ′
v < 4(diamK + widK) + ε, for every ε > 0, proving the second inequality of the

statement.
The proof of the first inequality of the statement goes similarly, with just three modifications.
Instead of starting with the points a, a′, we start with the endpoints b, b′ of a diameter. Then b
and b′ are exposed points of K even if K is not strictly convex. One more modification consists
in taking Ψ not arbitrarily through b, b′, but containing a third point, interior to K. The third
modification concerns λP . It is well-known that K ′ is included in a (planar) convex body K ′′

of constant width equal to diamK ′ = |bb′| = diamK. Moreover,

λrelbdK ′ ≤ λrelbdK ′′ = πdiamK.

Farther, this leads to the first inequality. �

Consider now the regular tetrahedron T3 = abcd of unit edge length, a cage G holding T3, and
the projection function πT3 on T3.

Lemma 5.2. We have πT3(G) ∩ (ab ∪ ac) 6= ∅.

Proof. Suppose the intersection in the statement is empty. Imagine P0 := affabc to be horizontal
and d above it. Denote by P−

0 the half-space below, i.e. bounded by P0 and not contaning d.
Let Πa be the vertical plane (i.e. orthogonal to affabc) which includes bc. Similarly, let Πb and
Πc be the vertical planes which include respectively ac and ab, see Fig 11.
Denote by Π+

a the half space containing a and bounded by Πa. We have

G ∩ Πb ∩ Π+
a ∩ P−

0 = G ∩ Πc ∩ Π+
a ∩ P−

0 = G ∩ P0 ∩ Π+
a \ abc = ∅.

Since G holds T3, G contains a point x below affabc, in the triangular prism ∆ = π−1
T3
(intabc).

We claim that this prism also contains a vertex of G. To see this, take x ∈ G∩∆ to be farthest
from Π; this is possible by compactness of G and because the two boundaries of ∆ which are
parts of Πb and Πc do not cross G. If x is not a vertex of G, then the side e of G to which
x belongs must have an endpoint v below affabc. If v /∈ Π+, then the other endpoint v′ of e
equals x (otherwise πT3(v

′) ∈ ab ∪ ac). If v ∈ Π+, then both endpoints v, v′ of e lie in Π+, and
x ∈ {v, v′}, or e is parallel to bc and x can be chosen in {v, v′}.
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Figure 11: Proof of Lemma 5.2. Left: top view, right: front view.

Now, among all vertices of convG which are in ∆, choose one x0 such that the angle between
x0bc and abc is minimal. Then affx0bc separates intT3 from int convG. Thus, G cannot hold
T3, the seeked contradiction. �

Theorem 10. For the regular tetrahedron T3 of unit edge length, we have L(T3) = 3.

Proof. Let T3 = abcd. A plane parallel and close (at distance η) to ab cuts T3 along a rectangle
R. Any prism P whose 1-skeleton approximates R and is disjoint from T3, holds T3. As η → 0,
the length of six sides of P tends to 0, while the length of each of the remaining three tends to
1. Hence, L(T3) ≤ 3.

Conversely, let G be a cage holding T3. If πT3(G) does not meet some side e of T3, let e
′ denote

the side opposite to e; if πT3(G) meets all sides, choose opposite e, e′ arbitrarily.
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Figure 12: Proof of Theorem 10.

By Lemma 5.2, there exist w1, w2, w3, w4 ∈ G respectively projecting via πT3 into the four sides
different from e and e′, which we denote by e1, . . . , e4.
Consider the projection function πP onto a plane P parallel to e and e′. Then πP (T3) is a
square C, of side length 1√

2
and sides I1, . . . , I4, with Ii = πP (ei), see Fig. 12.

Of course, πP (wi) /∈ intC, for i = 1, . . . , 4, otherwise πT3(wi) would be on a face of T3 instead
of the side ei.
We have πC(πP (w1)) ∈ I1, hence πP (w1) is in the closed half-plane bounded by affe1 and
not containing intC. Therefore there exists an external vertex v1 of πP (G) in the same half-
plane, hence also satisfying πC(v1) ∈ I1. We do the same with w2, w3 and w4. This gives four
external vertices v1 . . . , v4 of πP (G), with possible coincidences, such that πC(vi) ∈ Ii. By using
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Theorem 2 and Lemmas 2.3 and 2.8, we then obtain

λG ≥ f(v1, . . . , v4) ≥ f(πC(v1), . . . , πC(v4)) ≥ inf
ui∈Ii

f(u1, . . . , u4) = 3.

�

Theorem 11. For the cube C3 of unit edge length, we have L(C3) ≤ 4 + 3
√
2.

Proof. Put C3 = abcda∗b∗c∗d∗, see Fig. 13. Take ε > 0, and let ab ∈ ab and ad ∈ ad be at
distance ε2 from ac. Let L ⊂ affacc∗a∗ be a line outside C3, parallel to ac, at distance ε from
it. A plane parallel to aa∗ passing through ab, ad cuts L at a′. Let

{a∗b} = a′ab ∩ affa∗b∗c∗d∗ and {a∗d} = a′ad ∩ affa∗b∗c∗d∗.

Analogously, construct c′, c∗b , c
∗
d. The 1-skeleton Sε of the triangular prism a′a∗ba

∗
dc

′c∗bc
∗
d immo-

bilises C3.

Figure 13: Proof of Theorem 11.

In order to calculate L(C3), put x = |a∗ba∗d|/2 and observe that

ε

1 + ε
=

ε2

x
,

whence x = ε+ ε2. Therefore, ε → 0 implies |a∗ba∗d| → 0. Moreover, it implies |a′a∗b | → 1 and

|a′c′| = |a∗bc∗b | = |a∗dc∗d| →
√
2.

This verifies the bound from the statement. �

Compared with the bounds given by Theorem 9, namely 2π for the regular tetrahedron, and
2π

√
3 for the cube, the exact value 3 in Theorem 10 and the bound 4+3

√
2 in Theorem 11 are

better. We even dare to formulate the following.

Conjecture. L(C3) = 4 + 3
√
2.
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