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Fixing and almost fixing a planar convex body

Augustin Fruchard

Notation. The plane R 2 is endowed with its euclidean norm . The origin of R 2 is denoted by 0. The unit cercle of centre 0 and radius 1 is denoted by S 1 . The group of planar affine rotations and translations is denoted by Isom + R 2 . The identity of R 2 is denoted by id. The rotation of centre ω ∈ R 2 and angle α ∈ R is denoted by R ω,α . Given an oriented line D, the open half-plane on the left of D is denoted by D + . As usual, for M ⊂ R 2 , bd M denotes its boundary and int M denotes its interior.

Throughout this note, K is a convex compact subset of R 2 of nonempty interior, and a 1 , . . . , a n are points on bd K. Definition 1. The points a 1 , . . . , a n fix K if there is a neighbourhood V of id in Isom + R 2 such that, for every f ∈ V satisfying f (K) = K, at least one of the a i belongs to int f (K). This is slightly different from the commonly used definition of fixing points, e.g. in [START_REF] Bracho | Immobilization of smooth convex figures[END_REF][START_REF] Bracho | Immobilization of solids and mondriga quadratic forms[END_REF], where a subset H of bd K is said to fix K if id is isolated in the set f ∈ Isom + R 2 ; H ∩ f (int K) = ∅ . In particular, we consider that a rotation of a disc around its centre does not move the disc. If K is not a disc, then both definitions are equivalent, since in this case there is a neighbourhood

V of id in Isom + R 2 such that every f ∈ V \ {id} satisfies f (K) = K.
Although most convex bodies in the sense of Baire categories can be fixed by three points, there are convex bodies which cannot be fixed by any set of three points, e.g. parallelograms. Other examples can be found in [START_REF] Czyzowicz | Immobilizing a Shape[END_REF].

Another commonly used definition of fixing points, closer to the intuition, is the following one, see e.g. [START_REF] Czyzowicz | Immobilizing a Shape[END_REF].

Definition 2. The points a 1 , . . . , a n ∈ bd K weakly fix K if, for any path γ : [0, 1] → Isom + R 2 , t → γ t such that γ 0 (K) = K and γ 1 (K) = K, there exist i ∈ {1, . . . , n} and t ∈ [0, 1] such that a i ∈ int γ t (K).

Obviously, if a 1 , . . . , a n fix K in the sense of Definition 1, then they weakly fix K. The converse is false, as shows the following example.

Example 3. Choose K admitting S 1 as an inscribed circle and such that bd K ∩ S 1 is the union of an arc of circle of length greater than π and a countable number of points accumulating to some point of S 1 , say:

bd K ∩ S 1 = {(cos θ, sin θ) ; |θ| ∈ [π/4, π] or ∃n ∈ N ; |θ| = π/2 n }.
This can be done by completing the arc of circle of length 3π/2 by segments tangent to S 1 at these points (cos(π/2 n ), sin(±π/2 n )); this could also be done such that K is strictly convex and smooth. Then the four points a i = (cos(iπ/2), sin(iπ/2)), i = 1, 2, 3, 4, weakly fix K but do not fix it in the sense of Definition 1.

A first order condition to fix K.

We want to give an almost necessary and sufficient condition of first order for a 1 , . . . , a n to fix K. "Of first order" means that these conditions make use of the left and right tangents of bd K at the a i s. "Almost" means that the necessary condition involves non-strict inequalities, whereas the sufficient condition involves the corresponding strict inequalities. In the case of three points, we find again the well-known necessary condition that the three normals are concurrent. In [START_REF] Bracho | Immobilization of smooth convex figures[END_REF] an almost necessary and sufficient condition of second order, i.e. using the curvature of bd K, is given such that three points fix a C 2 convex body K.

We first introduce some notation. We orient bd K counterclockwise. Given a ∈ bd K, let T ℓ (a), resp. T r (a), be the left, resp. right, tangent at bd K in a. We orient these lines as bd K; thus we have 

K ⊂ T ℓ (a) + ∩ T r (a) + . Let N ℓ (a), resp. N r (a)
L(a) = N ℓ (a) + ∪ N r (a) + .
Let L(a) be the corresponding closed sector, and let #» L(a) = {x ∈ S 1 ; a + x ∈ L(a)} be the set of directions of L(a). Let R(a) and R(a) be the analogous sectors for the right half-planes. The set of directions of R(a) is -#» L(a), hence will not be needed.

If bd K is differentiable at a, then L(a) = R 2 \ R(a), otherwise L(a) ∩ R(a)
is the union of two sectors of vertex a. Theorem 4. Let K be a planar convex body and a 1 . . . , a n ∈ bd K.

(i) If a 1 , ..., a n weakly fix K, then both intersections L(a 1 ) ∩ ... ∩ L(a n ) and R(a 1 ) ∩ • • • ∩ R(a n ) are empty. (ii) If the three intersections L(a 1 ) ∩ • • • ∩ L(a n ), R(a 1 ) ∩ • • • ∩ R(a n ), and #» L(a 1 ) ∩ • • • ∩ #» L(a n ) are empty, then a 1 , . . . , a n fix K.
Remark. The set of directions is needed in item (ii). For instance, if

K = [-2, 2] × [0, 1], then the three points a = (-1, 0), b = (1, 0), c = (0, 1) do not fix K, although the intersections L(a) ∩ L(b) ∩ L(c) and R(a) ∩ R(b) ∩ R(c) are empty.
For the proof of Theorem 4, we will need the following statement. Recall that R ω,α is the rotation of centre ω and angle α. 

. Let T ′ ℓ (δ) = R a,-δ (T ℓ (a)) and T ′ r (δ) = R a,δ (T r (a))
. By definition of the left and right tangents, there exists r > 0 such that D(a, r) ∩ T ′ ℓ (δ)

+ ∩ T ′ r (δ)
+ is entirely included in K, where D(a, r) denotes the disc of centre a and radius r. Then, as soon as α ν < r D , we have R ων ,-αν (a) ∈ int K.

(iii) By contraposition, assume x / ∈ #» L(a). Let δ > 0 be so small that x / ∈ R 0,-2δ #» L(a) ∪R 0,2δ #» L(a) . Then, for ν large enough, we have

ων ων / ∈ R 0,-δ #» L(a) ∪ R 0,δ #» L(a)
. With the above notation, let r > 0 be such that D(a, r) ∩ T ′ ℓ (δ) + ∩ T ′ r (δ) + ⊂ K. Then, as soon as α ν ω ν < r, we have R ων ,-αν (a) ∈ int K.

Proof of Theorem 4. (i) By contraposition, assume L(a 1 ) ∩ • • • ∩ L(a n ) nonempty and choose a point ω in this intersection. By Lemma 5 (i), for each i ∈ {1, . . . , n}, since ω ∈ L(a i ), there exists ε i > 0 such that R ω,-α (a i ) / ∈ K for all α ∈]0, ε i [. As a consequence, for all α < min(ε 1 , . . . , ε n ), none of the a i belongs to int R ω,α (K), hence a 1 , . . . , a n do not weakly fix K. The case R(a 1 ) ∩ • • • ∩ R(a n ) = ∅ is similar, using clockwise rotations.

(ii) By contraposition, if a 1 , . . . , a n do not fix K then, for any neighborhood V of id in Isom + R 2 , there exists

f ∈ V \ {id} such that ∀i = 1, . . . , n a i / ∈ int f (K). ( 1 
)
It follows that there is a sequence (f ν ) ν∈N tending to id in Isom + R 2 \ {id} and satisfying [START_REF] Bracho | Immobilization of solids and mondriga quadratic forms[END_REF]. At least one of the following cases must occur:

-an infinite number of f ν are direct (i.e. counterclockwise) rotations, -an infinite number of f ν are indirect rotations, -an infinite number of f ν are translations.

In the first case, considering a subsequence if necessary, we assume without loss of generality that the whole sequence (f ν ) consists of direct rotations, of centres ω ν ∈ R 2 and angles α ν > 0 tending to 0.

-If the sequence (ω ν ) ν∈N is bounded, then a subsequence converges to some point ω ∈ R 2 . Then, Lemma 5 (ii) and ( 1) imply that ω belongs to

L 1 ∩ • • • ∩ L n .
-If the sequence (ω ν ) ν∈N is unbounded, then a subsequence (ω ν k ) k∈N tends to infinity. By compactness of S 1 , a subsequence of ων k ων k k∈N converges to some

x ∈ S 1 . Then Lemma 5 (iii) and [START_REF] Bracho | Immobilization of solids and mondriga quadratic forms[END_REF] 

imply that x ∈ #» L 1 ∩ • • • ∩ #» L n .
The second case of indirect rotations yields similarly

R 1 ∩ • • • ∩ R n = ∅ or #» L 1 ∩ • • • ∩ #» L n = ∅.
In the third case, we also assume without loss of generality that every f ν is a translation of vector v ν . Then a subsequence of vν vν ν∈N converges to some x ∈ S 1

and we obtain similarly to the proof of Lemma 5 (iii

) that R 0,-π/2 (x) ∈ #» L 1 ∩• • •∩ #» L n .
A first order condition to almost fix K.

Definition 6. The points a 1 , . . . , a n almost fix K if, for any neighbourhoods V i of a i (i = 1, . . . , n), there are pairs of points

a ′ i , a ′′ i ∈ V i ∩ bd K, such that a ′ 1 , a ′′ 1 , . . . , a ′′ n fix K.
In [START_REF] Fruchard | Short cages holding convex bodies[END_REF] it is proven that any planar convex body can be almost fixed by two or three points.

It seems natural that, if a 1 , . . . , a n almost fix K, then one can choose a ′ i and a ′′ i on each side of a i . The following example shows that this is not the case! Example 7. For any integer n ≥ 2, let p n = 1 cos(π/4 n ) cos(3π/4 n ), sin(3π/4 n ) and choose for K the convex hull of S 1 ∪ {p 2 , p 3 , . . . }. Then K admits S 1 as an inscribed circle and, for any θ ∈ R, we have

(cos θ, sin θ) ∈ bd K ∩ S 1 ⇔ θ ∈ [π/4, 2π] or ∃n ∈ N ; π/4 n ≤ θ ≤ 2π/4 n .
The rest of bd K is made of segments tangent to S 1 , crossing at the p n .

Then the four points a k = (cos(kπ/2), sin(kπ/2)), k = 1, 2, 3, 4, almost fix K but in the neighbourhood of a 4 one has to choose both points a ′ 4 and a ′′ 4 on the same side of a 4 .

Our next statement is the analog of Theorem 4. The only difference is that the large sectors L and R are replaced by the following small sectors ℓ and r: Proof. The notation a ′ → ℓ a (resp. a ′ → r a) means that a ′ tends to a from the left (resp. from the right) on bd K, with a ′ = a. The semicontinuity of the left and right tangents can be expressed as follows:

ℓ(a) = N ℓ (a) + ∩ N r (a) + = R 2 \ R(a),
lim a ′ → ℓ a N ℓ (a ′ ) = lim a ′ → ℓ a N r (a ′ ) = N ℓ (a), lim a ′′ →r a N ℓ (a ′′ ) = lim a ′′ →r a N r (a ′′ ) = N r (a). (2) 
Here we use the topology of uniform convergence on every compact set: A subset M ′ of R 2 tends to M ⊂ R 2 if, for all r > 0, the Pompeiu-Hausdorff distance between M ′ ∩ D(0, r) and M ∩ D(0, r) tends to 0, where D(0, r) is the closed disc of centre 0 and radius r. As a consequence of (2), we have lim

a ′ → ℓ a,a ′′ →r a L(a ′ ) ∩ L(a ′′ ) = ℓ(a), lim a ′ → ℓ a,a ′′ →r a R(a ′ ) ∩ R(a ′′ ) = r(a), (3) lim 
a ′ → ℓ a,a ′′ →r a #» L(a ′ ) ∩ #» L(a ′′ ) = #» ℓ (a).
(i) Assume ℓ(a 1 ) ∩ ... ∩ ℓ(a n ) nonempty and choose a point ω in this intersection. Let us fix the index i ∈ {1, . . . , n}. By (2), there exists ε > 0 such that, for all a ′ i , a ′′ i ∈ bd K satisfying |a i a ′ i | < ε and |a i a ′′ i | < ε, we have ω ∈ L(a ′ i ) ∩ L(a ′′ i ). By Theorem 4 (i), it follows that a ′ 1 , . . . , a ′′ n do not fix K. (ii) By contraposition, if a 1 , . . . , a n do not almost fix K, then there exists ε > 0 such that, for all a ′ i , a ′′ i ∈ bd K satisfying |a i a ′ i | < ε, one on each side of a i , a ′ 1 , . . . , a ′′ n do not fix K. Given sequences (a ′ i,ν ) ν∈N and (a ′′ i,ν ) ν∈N tending to a i , using Theorem 4 (ii) and choosing adequate subsequences if necessary, it follows that one of the intersections L(a ′ 

  , be the left and right normals at bd K in a, oriented in the directions T ℓ (a) + , resp. T r (a) + , i.e. the line orthogonal to T ℓ (a), resp. T r (a), containing a, and pointing (as) inward K (as possible). Let L(a) be the open sector, union of the left open half-planes bounded by N ℓ (a) and N r (a):

Lemma 5 .

 5 Let K be a planar convex body, let a ∈ bd K, and let ω ∈ R 2 .(i) If ω ∈ L(a) then there exists ε > 0 such that R ω,-α (a) / ∈ K for all α ∈ ]0, ε[.(ii) Let (α ν ) ν∈N be a sequence of positive numbers tending to 0 and (ω ν ) ν∈N be a sequence of points of R 2 tending to ω. If R ων ,-αν (a) / ∈ int K for all ν ∈ N, then ω ∈ L(a).

(

  iii) Let (α ν ) ν∈N be a sequence of positive numbers tending to 0 and (ω ν ) ν∈N be a sequence of points of R 2 tending to infinity (i.e. ω ν → +∞) such that the sequence ων ων ν∈N converges to some x ∈ S 1 . We assume that the sequence of rotations (R ων ,-αν ) ν∈N tends to id ∈ Isom + R 2 , i.e. lim ν→+∞α ν ω ν = 0. If R ων ,-αν (a) / ∈ int K for all ν ∈ N, then x ∈ #» L(a).Proof. (i) If ω ∈ L(a) ∩ T ℓ (a) + then one can choose ε = 2∠naω, where n is any point on N ℓ (a) ∩ T ℓ (a) + . If ω ∈ L(a) \ T ℓ (a) + , then ε = π suits. (ii) By contraposition, let ω / ∈ L(a) be fixed, at a distance 2d > 0 from L(a) and at a distance D/2 from a. Then, for ν large enough, ω ν is at a distance at least d from L(a) and at most D from a, hence aω ν makes an angle at least δ = arctan d D with N ℓ (a) ∩ T ℓ (a) + and with N r (a) \ T r (a) +

  r(a) = R 2 \ L(a), ℓ(a) and r(a) are the corresponding closed sectors and#» ℓ (a) = {x ∈ S 1 ; a + x ∈ ℓ(a)}.Theorem 8. Let K be a planar convex body and a 1 . . . , a n ∈ bd K.

  (i) If a 1 , ..., a n almost fix K, then both intersections ℓ(a 1 ) ∩ ... ∩ ℓ(a n ) and r(a 1 ) ∩ • • • ∩ r(a n ) are empty. (ii) If the three intersections ℓ(a 1 ) ∩ • • • ∩ ℓ(a n ), r(a 1 ) ∩ • • • ∩ r(a n ), and #» ℓ (a 1 ) ∩ • • • ∩ #» ℓ (a n) are empty, then a 1 , . . . , a n almost fix K.

  1,ν ) ∩ • • • ∩ L(a ′′ n,ν ), R(a ′ 1,ν ) ∩ • • • ∩ R(a ′′ n,ν ), or #» L(a ′ 1,ν ) ∩ • • • ∩ #» L(a ′′ n,ν ), is nonempty for all ν ∈ N. By (3), we obtain ℓ(a 1 ) ∩ • • • ∩ ℓ(a n ) nonempty in the first case, r(a 1 ) ∩ • • • ∩ r(a n ) nonempty in the second case, and #» ℓ (a 1 ) ∩ • • • ∩ #» ℓ (a n) nonempty in the last case.