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The Granger Causality Effect between
Cardiorespiratory Hemodynamic Signals

Samir Ghouali, Mohammed Feham, and Yassine Zakarya Ghouali

Abstract Granger causality (GC) is one of the most popular measures to reveal
causality influence of time series based on the estimated linear regression model
and has been widely applied in economics and neuroscience due to its reliability,
clarity, and robustness.

Granger causality has recently received increasing attention to study causal
interactions of neurophysiological data; in this chapter we have developed a model
of causality between the respiratory, hemodynamic, and cardiac signals, more
specifically, a study based on the Granger causality between three ECG leads,
blood pressure, central venous pressure, pulmonary arterial pressure, respiratory
impedance, and airway CO2. We selected 187 patients of 250 for our study, taken
from Montreal General Hospital/MF (Massachusetts General Hospital/Marquette
Foundation) databases. These signals are ideal for understanding causality and
coupling (unidirectional or bidirectional).

In this approach we aim to analyze and understand the interactions between
the signals mentioned above, and identify the significance of this interaction. The
originality of this chapter is the number of variables selected for the study. Unlike
the majority of studies that are conducted only with two variables, our study is
multidimensional. The main advantage of a multidimensional and multivariable
model is to solve a myriad of problems which is not the case in the two-dimensional
studies.
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Introduction

Numerous studies in recent years have been devoted to the evaluation of causality;
several applications of the latter are omnipresent in areas ranging from the economy
[1, 2], climatology [3–5], directed information theory in networks [6], psychiatry
[7], brain imaging field [8] and especially the analysis of biological systems, with
a very special emphasis on the neural field [9–20], and the study of cardiac signals
[21–29].

Although this one is not the universal definition of causality [30], it is commonly
accepted that the notion of causality of two events describes why one event is caused
by the other. According to this very general definition, in this chapter, we will look
at the cardiovascular field. The importance of causality in this case appears in the
spontaneous cardiovascular variability and complexity of cardiovascular regulation.

The detection and modeling of this causality depends strictly on all signals
exploited to describe the observed interactions [31]. Characterization of the inter-
dependence between the sensed signals is one of the most critical problems in
cardiovascular pathophysiology [32]. From this idea, we can independently evaluate
by what is called the strength of the relationship between two signals to a minimum.

The causality analysis has the ability to provide an original framework to identify
the responsible mechanism for the spontaneous variations without the intervention
of an artificial stimulus such as pharmacological intervention, an experiment on the
patient or more severely surgery to obtain a specific causal relationship.

Causality is usually tested in time [33], frequency [34], and information domains
[30]. In this chapter, methods assessing causality in time domain were chosen
because they do not need to assume that the cardiovascular control mechanisms
occur along specific temporal scales and the distribution of the statistic assessing
causality under the null hypothesis of absence of a causal relationship between the
two series is well known, thus allowing to easily keep under control the percentage
of false causality detections.

In our case, we will look at the Granger causality because it perfectly studies
multivariable models (several variables at once). The mathematical formulation of
causality in measurable terms of predictability was given by Wiener [35]. Granger
[1] introduced a specific notion of causality into time series analysis by evaluation
of predictability autoregressive models.

The cardiovascular system is regulated by numerous control mechanisms acting
to guarantee that the necessities of each physiological area are satisfied and that
cardiovascular variables do not assume values incompatible with life. In the latter
application, a large body of work has been developed to assess causality in both
cardiovascular [24, 25] and cardiorespiratory [27] interactions.

Unfortunately, the world of physiological signals describing the behavior of a
given system is not affected; it means that there’s a restriction in the use of necessary
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physiological signals, which implies a certain limitation in reliability of causality.
To achieve this, we can give a small example of a study of causality between heart
period (HP) and systolic arterial pressure (SAP), it would be preferable to include
breathing (R) in the test [36]. According to several studies, neglecting (R), this
can lead us to erroneous results in the causal interpretation mentioned above, this
observation suggests that (R) should be included in this causality, the validation of
this hypothesis has been approved by work [40] and they were able to uncover the
importance of (R) in the causation (HP) and (SAP).

This demonstration gave us the reflex to study a large number of physiological
signals from the outset, to eliminate any gaps, ignorance, and negligence of other
signals, multivariate system identification approaches permit the dynamic charac-
terization of the causal interactions among cardiovascular regulatory mechanisms
responsible for coupling the variability between signals (e.g., heart rate, arterial
pressure, and respiratory signal) [38]. Multivariate characterization is not solely
helpful both to derive information about the gain and phase of the relationship
linking any signal pair but also to estimate causality (i.e., who drives whom) in
multivariate recordings.

Due to cardiopulmonary anatomy, there are strong mechanical interactions
between the mechanical activity of the heart and respiratory movements which
implies a change in atrial and pulmonary receptors [39]. The approach was applied
to three ECG leads, ART (arterial pressure), PAP (pulmonary arterial pressure),
CVP (central venous pressure), respiratory impedance, and airways CO2, taken from
the MGH/MF (Massachusetts General Hospital/Foundation Marquette) database.
These signals are ideal for understanding causality and coupling (unidirectional or
bidirectional).

The goal of the chapter is to propose to study the direction of causality between
the signals mentioned previously; our contribution in this chapter is based on the
following points:

• 3D Analysis of cardiovascular signals.
• Study bivariate/multivariate between the cardiovascular, respiratory, and hemo-

dynamic signals.
• Have the necessary information and details for our next work to develop

telemedicine applications on smartphones and especially on the part intended
to signal analysis.

The remainder of this chapter is organized as follows: In “Definitions of
Some Variables Studied,” we give some definition of the variables. In “Data and
Methodology,” we will establish the data used and the methodology to follow.
Then, in “The Method and Findings,” we present the model used and the result
obtained. And finally in “Discussions,” we lead an analysis, scientific discussion,
and a projection of perspectives.
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Definitions of Some Variables Studied

ECG leads: Lead systems allow you to look at the heart from different angles. Each
different angle is called a lead. The different leads can be compared to radiographs
taken from different angles.

ART: Blood pressure is the pressure of blood in the arteries, also referred to as blood
pressure because this pressure is the force exerted by the blood against the walls of
arteries, tends the wall of the artery.

CVP: Central venous pressure (CVP) also known as right atrial pressure (RAP)
describes the pressure of blood in the thoracic vena cava near the right atrium of
the heart; it reflects the amount of blood returning to heart and the heart’s ability to
pump blood into the arterial system.

PAP: Pulmonary arterial pressure measures the pressure in the pulmonary arteries,
the latter carries blood from the right side of the heart to the lungs.

Data and Methodology

Data Analysis

The Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform
database is a comprehensive collection of electronic records of hemodynamic and
electrocardiographic signals of stable and unstable patients in intensive care units,
operating rooms, and cath labs heart. It is the result of collaboration between
physicians, biomedical engineers, and nurses of the Massachusetts General Hospital
[40], which includes three ECG leads, arterial pressure, pulmonary arterial pressure,
central venous pressure, respiratory impedance, and airway CO2. This multidimen-
sional cardiac data collected from various parts of body can effectively imitate the
signals from various body sensor nodes.

The original dataset contains total 250 sets of cardiac signals, each containing
12–86 min in most cases are about an hour of recording. We selected 187 patients
were selected on 250 for our simulation and contain all the signals mentioned above
unlike the rest that does not have the typical data to our studies, these signals
include cardiac events such as extrasystole, premature supraventricular tachycardia,
bradycardia, extrasystole and ventricular stimulation, which are manually annotated
by clinical professionals.

Methodology

In the analysis of the causality relationship, the choice of the appropriate tech-
nique is an important theoretical and empirical question. Granger causality is
the most appropriate technique to study the relationship between hemodynamic,
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cardiorespiratory, and electrocardiographic signals. The empirical strategy used in
this chapter can be divided into three main stages. First, unit root tests in series are
undertaken to determine the stationarity of the series. Second, the AIC (Ackaik) and
SIC (Schwarz) criteria are used to determine the optimal lag used in the method
of causation. Third and finally, we will test for multivariate causality proposed by
Granger.

The Method and Findings

The Model Specification

The first causality was proposed and introduced by Wiener and Granger (Nobel
2003) and became a fundamental theory for the analysis of dynamic relationships
between time series. Sims presented a slightly different specification of test by
considering that future values help explain the present values.

In the remainder of this chapter, we will look at the multivariate Grange causality.
Before beginning the multivariate Granger causality, it is necessary to move to the
bivariate causality to see the difference and the limitation of the latter.

Bivariate Granger Causality Test

In this part, we will try to present the definitions of linear causality and discuss the
following tests to identify the causal relationship between these two variables.

Granger causality test is designed to detect causal direction between two time
series by examining a correlation between the current value of one variable and
the past values of another variable. Based on Granger’s definition of causality
Y is strictly Granger causing X if the conditional distribution of Xt, given the
past observation Xt�1; Xt�2; : : : and Yt�1; Yt�2; : : : differs from the conditional
distribution of Xt, given the past observation Xt�1; Xt�2; : : : only.

Intuitively, Y is a Granger cause of X if adding past observations of Y to the
information set increases the knowledge on the distribution of current values of X.
More precisely, the linear Granger causality is conducted based on the following
two-equation model:

xt D a1 C
kX

iD1

’ixt�i C
kX

iD1

“iyt�i C e1t (1)

and

yt D a2 C
kX

iD1

�ixt�i C
kX

iD1

�iyt�i C e2t (2)

Where all fxtg and f ytg are stationary variables, e1t and e2t are the disturbances
satisfying the regularity assumptions of the classical linear regression model and k
is the optimal lag.
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We say that the variable f ytg is not to Granger causality fxtg if and only if “i D 0

in (1), for any i D 1; : : : ; k. To better explain this, the past values of f ytg do not
provide any additional information on the performance of fxtg. In the same manner,
and vice versa, fxtg does not Granger causality f ytg if and only if �i D 0 in (2), for
any i D 1; : : : ; k:

We can test the causal relationships between two variables fxtg and f ytg by
checking the null hypothesis separately:

H1
0 W “1 D � � � D “k D 0 and H2

0 W �1 D � � � D �k D 0

1. If both Hypotheses H 1
0 and H 2

0 are accepted, there is no linear causal relationship
between fx tg and f y tg.

2. If hypothesis H 1
0 is accepted but hypothesis H 2

0 is rejected, then there exists
linear causality running unidirectionally from fx tg to f y tg.

3. If hypothesis H 1
0 is rejected but hypothesis H 2

0 is accepted, then there exists
linear causality running unidirectionally from fy tg to f x tg.

4. If both Hypotheses H 1
0 and H 2

0 are rejected, then there is feedback linear causal
relationship between fx tg and f y tg.

The purpose of the multidimensional study is that it allows us to quantitatively
analyze and respond to a myriad of problems and suggestions which is not the case
in bivariate studies (multivariate Granger causality: an estimation framework based
on factorization of the spectral density matrix).

Multivariate Granger Causality

Consider a p dimensional multivariate stochastic process, X .t/ D Œxt; yt; : : : ; zt
T,

where the rank of the original matrix X(t) is [p, 1], we can estimate the model as
MVAR (multivariate autoregressive) result:

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

x1 .t/
x2 .t/
:::
:::

xp .t/

9
>>>>>>=
>>>>>>;

D
1X

KD1

2
66666664

A11 .K/ A12 .K/ A13 .K/ � � � A1p .K/

A21 .K/ A22 .K/ A23 .K/ � � � A24 .K/
:::
:::

Ap1 .K/

:::
:::

Ap2 .K/

� � � � � � :::
� � � � � � :::

Ap3 .K/ � � � APP .K/

3
77777775

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

x1 .t � K/

x2 .t � K/
:::
:::

xp .t � K/

9
>>>>>>=
>>>>>>;

C

8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

©1 .t/
©2 .t/
:::
:::

©P .t/

9>>>>>>=
>>>>>>;

(3)

where Aij(K) is the coefficient at K Th lag and i(t) is a corresponding error terms.
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F-Test

Several statistics could be used to test the above hypotheses; one of the most
commonly used statistics is the standard F-test. It is a statistical hypothesis test for
testing the equality of two variances by taking the ratio of the two variances, it can
be represented by:

F � test D ¢2
x

¢2
y

(4)

Our Equations

First equation:

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
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ECG 1 .t/
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3
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2
66666664

ECG 1 .t � 1/
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CVP .t � 1/
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C
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Second equation:

8
ˆ̂̂̂
ˆ̂̂
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Third equation:

8
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(7)

We discussed earlier, we will try to make a causality test in three dimensions,
after extensive research of the model, and it was found that could write our
mathematical equations
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Empirical Result

Before beginning our results, we must clarify some details and signs:

• Corresponds to the causal direction between three ECG leads to (ART, CVP, PAP,
RESP, and CO2).

• Corresponds to the causal direction between (ART, CVP, PAP, RESP, and CO2)
to three ECG leads.

• *: Indicates statistical significance at 1 %.
• A value above the sign, is the value of F-statistic, which is considered a measure

of the correlation between the variables studied.
• A value above the sign, which is in brackets, corresponds to the value of the

probability of causation.
• (x. E x): (x exponential x).
• MGH Number: corresponds to a given patient.

The displayed results are partial; we only look at a sample of 30 patients
randomly chosen, all this in aim of showing the methodology followed for causality.
In our chapter, the following tables summarize the results obtained and the rate of
causality in each direction represented by the F-statistic seen previously and the
corresponding probability.

MGH002
Lags 46 ART CVP PAP RESP CO2

ECG1 13.4646* 5.1146* 11.8814* 1.7138* 1.6459*

(8.E-100) (5.E-27) (1.E-85) (0.0019) (0.0038)

ECG2 12.3759* 4.8100* 12.040* 1.3941 1.3370

(5.E-90) (1.E-24) (6.E-87) (0.0399) (0.0631)

ECG3 5.80308* 3.13526* 7.27528* 0.83496 0.83210

(1.E-32) (5.E-12) (5.E-45) (0.7789) 0.7835
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MGH005
Lags 46 ART CVP PAP RESP CO2

ECG1 3.3758* 5.1716* 8.2914* 6.3103* 5.0512*

(1.E-13) (2.E-27) (8.E-54) (7.E-37) (2.E-26)

ECG2 3.5804* 3.5811* 3.8269* 5.2412* 3.6362*

(3.E-15) (3.E-15) (5.E-17) (5.E-28) (1.E-15)

ECG3 4.8860* 4.2643* 8.1746* 3.1918* 3.1083*

(3.E-25) (2.E-20) (9.E-53) (2.E-12) (8.E-12)

MGH010
Lags 46 ART CVP PAP RESP CO2

ECG1 1.2906 1.4608 1.3528 1.1898 1.3872

(0.0897) (0.0225) (0.0557) (0.1772) (0.0422)
ECG2 1.2241 1.4560 2.0112* 1.6922* 1.8152*

(0.1421) (0.0235) (6.E-05) (0.0024) (0.0006)

ECG3 1.2631 1.3919 1.5093 1.6529* 1.8584*

(0.1088) (0.0406) (0.0145) (0.0035) (0.0004)

MGH016
Lags 46 ART CVP PAP RESP CO2

ECG1 5.81434* 9.07583* 8.58176* 8.94331* 6.14600*

(9.E-33) (1.E-60) (2.E-56) (2.E-59) (2.E-35)

ECG2 5.51416* 4.90756* 6.58831* 4.93960* 4.42447*

(3.E-30) (2.E-25) (3.E-39) (1.E-25) (1.E-21)

ECG3 3.86895* 4.25168* 4.58885* 4.40791* 3.79522*

(3.E-17) (3.E-20) (7.E-23) (2.E-21) (9.E-17)
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MGH019
Lags 46 ART CVP PAP RESP CO2

ECG1 13.1779* 63.8833* 37.2080* 15.3122* 4.91764*

(5 E-99) (0.0000) (0.0000) (2.E-116) (2.E-25)

ECG2 30.9990* 17.460* 32.044* 21.700* 19.270*

(2.E-259) (5.E-136) (7.E-269) (1.E-174) (2.E-152)

ECG3 36.4516* 37.4346* 31.4419* 18.0569* 17.6442*

(0.0000) (0.0000) (2.E-263) (2.E-141) (1.E-137)

MGH025
Lags 46 ART CVP PAP RESP CO2

ECG1 18.9841* 21.9002* 20.9682* 14.2303* 14.2677*

(6.E-150) (2.E-176) (5.E-168) (1.E-106) (5.E-107)

ECG2 16.8669* 18.2168* 17.6601* 14.084* 12.5292*

(1.E-130) (6.E-143) (7.E-138) (8.E-105) (2.E-91)

ECG3 21.9698* 37.8166* 37.6249* 34.7434* 30.9402*

(4.E-177) (0.0000) (0.0000) (2.E-293) (7.E-259)

MGH030
Lags 45 ART CVP PAP RESP CO2

ECG1 6.80357* 6.69719* 16.6775* 10.6880* 11.7569*

(3.E-40) (3.E-39) (3.E-126) (2.E-73) (1.E-82)

ECG2 9.29697* 9.53410* 8.45248* 8.85198* 19.4575*

(5.E-60) (5.E-62) (6 E-53) (3 E-56) (9.E-148)

ECG3 4.39468* 3.27079* 17.1573* 12.3559* 12.5787*

(6.E-21) (1.E-12) (2.E-130) (6.E-88) (7.E-90)
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MGH038
Lags 46 ART CVP PAP RESP CO2

ECG1 34.1336* 42.0905* 45.3102* 29.5296* 31.7334*

(8.E-288) (0.0000) (0.0000) (5.E-246) (5.E-266)

ECG2 18.9646* 21.7894* 24.6819* 12.1942* 13.3511*

(1.E-149) (2.E-175) (7.E-202) (2.E-88) (9.E-99)

ECG3 23.5344* 29.4159* 30.9951* 19.4842* 23.2000*

(2.E-191) (5.E-245) (2.E-259) (2.E-154) (2.E-188)

MGH040
Lags 46 ART CVP PAP RESP CO2

ECG1 8.36020* 37.9324* 8.91593* 274.813* 297.264*

(2.E-54) (0.0000) (3.E-59) (0.0000) (0.0000)

ECG2 0.89056 1.19442 1.16756 1.71417* 1.44555

(0.6825) (0.1723) (0.2032) (0.0019) (0.0258)

ECG3 1.23840 0.61661 1.88425* 1.16677 1.14884

(0.1292) (0.9809) (0.0003) (0.2042) (0.2270)

MGH051
Lags 46 ART CVP PAP RESP CO2

ECG1 2.24987* 2.95403* 3.94570* 1.22965 1.77085*

(3.E-06) (9.E-11) (7.E-18) (0.1371) (0.0010)

ECG2 1.69168* 0.47920 1.72074* 1.00992 1.30522

(0.0024) (0.9989) (0.0017) (0.4536) (0.0803)

ECG3 2.16370* 0.41638 2.28666* 0.78672 1.57048*

(8.E-06) (0.9998) (2.E-06) (0.8496) (0.0076)
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MGH053
Lags 46 ART CVP PAP RESP CO2

ECG1 10.3098* 5.50973* 6.75286* 10.1978* 10.8550*

(2.E-71) (3.E-30) (1.E-40) (1.E-70) (2.E-76)

ECG2 4.73162* 4.03205* 5.24456* 1.77028* 4.92457*

(6.E-24) (1.E-18) (4.E-28) (0.0010) (2.E-25)

ECG3 21.9699* 7.94890* 15.4340* 24.9747* 24.6144*

(4.E-77) (8.E-51) (1.E-117) (1.E-204) (3.E-201)

MGH057
Lags 46 ART CVP PAP RESP CO2

ECG1 4.67572* 1.21919 3.39351* 7.15210* 3.57831*

(2.E-23) (0.1469) (8.E-14) (5.E-44) (4.E-15)

ECG2 4.67572* 2.18725* 3.6724* 3.73050* 1.46234

(2.E-23) (6.E-06) (7.E-16) (3.E-16) (0.0222)

ECG3 4.99836* 1.43633 5.08211* 6.47808* 4.33791*

(4.E-26) (0.0279) (9.E-27) (3.E-38) (7.E-21)

MGH063
Lags 46 ART CVP PAP RESP CO2

ECG1 18.4866* 11.2375* 6.15746* 2.87877* 1.32860

(2.E-145) (8.E-80) (1.E-35) (3.E-10) (0.0673)

ECG2 1.05992 1.06988 1.74440* 1.58709* 2.75945*

(0.3630) (0.3460) (0.0013) (0.0069) (2.E-09)

ECG3 0.97387 1.30668 1.20308 1.00263 0.44818

(0.5226) (0.0795) (0.1631) (0.4674) (0.9996)
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MGH083
Lags 46 ART CVP PAP RESP CO2

ECG1 12.7866* 22.5566* 20.9038* 17.7196* 14.8111*

(1.E-93) (2.E-182) (2.E-67) (2.E-138) (6.E-112)

ECG2 7.61496* 9.96653* 9.84395* 13.3686* 9.15010*

(6.E-48) (2.E-168) (2.E-67) (6.E-99) (3.E-61)

ECG3 7.68454* 11.0423* 9.93059* 12.8800* 8.41489*

(1.E-48) (5.E-78) (3.E-68) (2.E-94) (7.E-55)

MGH089
Lags 46 ART CVP PAP RESP CO2

ECG1 73.1543* 95.5537* 31.9302* 31.0302* 23.8196*

(0.000) (0.000) (8.E-268) (1.E-259) (5.E-194)

ECG2 11.3719* 10.9364* 2.96698* 5.51151* 2.26551*

(5.E-81) (4.E-77) (7.E-11) (3.E-30) (2.E-06)

ECG3 24.1756* 33.800* 25.4177* 25.3225* 18.7283*

(3.E-197) (9.E-285) (1.E-208) (1.E-207) (1.E-147)

MGH092
Lags 46 ART CVP PAP RESP CO2

ECG1 2.08356* 4.54662* 6.58337* 4.53687* 5.11720*

(2.E-05) (2.E-22) (4.E-39) (2.E-22) (5.E-27)

ECG2 1.80886* 6.06665* 7.47223* 5.26159* 3.28409*

(0.0007) (8.E-35) (1.E-46) (3.E-28) (5.E-13)

ECG3 1.81199* 10.0576* 21.9470* 11.5843* 2.75473*

(0.0006) (3.E-69) (6.E-177) (7.E-83) (2.E-09)
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MGH100
Lags 46 ART CVP PAP RESP CO2

ECG1 4.91054* 16.0426* 3.79936* 20.7232* 3.24029*

(2.E-25) (4.E-123) (8.E-17) (9.E-166) (1.E-12)

ECG2 0.79440 7.89769* 1.16490 8.52316* 1.21279

(0.8393) (2.E-50) (0.2065) (8.E-56) (0.1532)

ECG3 8.75542* 15.9131* 8.65074* 17.7816* 9.32829*

(7.E-58) (6.E-122) (6.E-57) (6.E-139) (7.E-63)

MGH112
Lags 46 ART CVP PAP RESP CO2

ECG1 4.15145* 3.49901* 11.9535* 12.3790* 3.28641*

(2.E-19) (1.E-14) (3.E-86) (5.E-50) (4.E-13)

ECG2 5.43397* 3.44163* 10.0673* 8.05470* 18.3041*

(1.E-29) (3.E-14) (2.E-69) (9.E-52) (1.E-143)

ECG3 34.8159* 23.0383* 29.4004* 23.7304* 55.1399*

(6.E-294) (7.E-187) (9.E-245) (3.E-193) (0.0000)

MGH120
Lags 41 ART CVP PAP RESP CO2

ECG1 3.10504* 18.4799* 2.90835* 1.37478 2.97306*

(1.E-10) (4.E-130) (2.E-09) (0.0558) (6.E-10)

ECG2 1.91610* 8.35619* 1.03304 1.13946 1.95470*

(0.0004) (9.E-49) (0.4125) (0.2494) (0.0003)

ECG3 5.81538* 20.848* 5.41456* 2.19320* 4.85186*

(2.E-29) (2.E-149) (2.E-26) (2.E-05) (2.E-22)
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MGH125
Lags 46 ART CVP PAP RESP CO2

ECG1 37.2982* 59.1995* 56.2916* 41.9906* 46.1347*

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ECG2 23.9073* 32.6219* 34.3082* 27.3919* 26.0281*

(8.E-195) (4.E-274) (2.E-289) (1.E-226) (4.E-214)

ECG3 30.9119* 43.8797* 44.4954* 31.8713* 36.9114*

(1.E-258) (0.0000) (0.0000) (3.E-267) (0.0000)

MGH133
Lags 46 ART CVP PAP RESP CO2

ECG1 36.6303* 7.08807* 20.1787* 7.89099* 33.9250*

(0.0000) (2.E-43) (8.E-161) (2.E-50) (7.E-286)

ECG2 26.6880* 4.67989* 18.5284* 5.10445* 26.7680*

(4.E-220) (1.E-23) (9.E-146) (6.E-27) (7.E-221)

ECG3 11.8091* 5.58807* 11.1692* 6.56718* 10.2525*

(7.E-85) (1.E-30) (3.E-79) (5.E-39) (5.E-71)

MGH138
Lags 45 ART CVP PAP RESP CO2

ECG1 3.12395* 23.4754* 11.4000* 22.2300* 3.46775*

(1.E-11) (7.E-187) (1.E-79) (9.E176) (4.E-14)

ECG2 14.7510* 7.75526* 24.6622* 7.27460* 17.9733*

(4.E-109) (4.E-48) (2.E-197) (4.E-44) (9.E-138)

ECG3 2.65184* 30.2701* 8.61800* 22.8755* 2.22336*

(1.E-08) (2.E-247) (2.E-55) (2.E-181) (5.E-06)
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MGH140
Lags 46 ART CVP PAP RESP CO2

ECG1 10.6366* 16.0300* 2.64371* 5.33928* 1.78006*

(7.E-73) (2.E-120) (1.E-08) (3.E-28) (0.0010)

ECG2 2.74211* 4.28183* 0.59752 1.26172 17.6785*

(3.E-09) (5.E-120) (0.9852) (0.1202) (4.E-135)

ECG3 1.10066 1.47381 0.55523 1.40337 53.3474*

(0.2976) (0.0211) (0.9932) (0.0384) (0.0000)

MGH145
Lags 46 ART CVP PAP RESP CO2

ECG1 23.3972* 37.4371* 6.08542* 48.1748* 33.5794*

(4.E-190) (0.0000) (5.E-35) (0.0000) (9.E-283)

ECG2 8.96339* 29.8548* 1.67581* 17.5093* 10.5899*

(1.E-59) (5.E-249) (0.0028) (2.E-136) (5.E-74)

ECG3 4.27008* 32.6098* 1.29463 28.2415* 11.3783*

(2.E-20) (5.E-274) (0.0869) (3.E-234) (5.E-81)

MGH149
Lags 42 ART CVP PAP RESP CO2

ECG1 11.4165* 60.0942* 50.2848* 25.8305* 0.85858

(1.E-74) (0.000) (0.000) (1.E-194) (0.7282)

ECG2 4.17901* 17.564* 12.394* 19.6183* 2.0663*

(4.E-18) (2.E-125) (1.E-82) (1.E-142) (6.E-05)

ECG3 5.30225* 17.5014* 14.5339* 18.8263* 2.81741*

(3.E-26) (5.E-125) (2.E-100) (5.E-136) (4.E-09)
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MGH157
Lags 46 ART CVP PAP RESP CO2

ECG1 6.39863* 44.7048* 42.9332* 70.5331* 35.5973*

(1.E-37) (0.0000) (0.0000) (0.0000) (5.E-301)

ECG2 20.2817* 41.8912* 80.1427* 97.6992* 33.1709*

(1.E-161) (0.0000) (0.0000) (0.0000) (4.E-279)

ECG3 12.7252* 23.8653* 38.6965* 42.1619* 19.8184*

(4.E-93) (2.E-194) (0.0000) (0.0000) (2.E-157)

MGH164
Lags 45 ART CVP PAP RESP CO2

ECG1 10.6244* 38.4463* 39.8908* 3.08118* 0.46746

(9.E-73) (0.000) (0.000) (2.E-11) (0.9199)

ECG2 14.8957* 30.153* 25.192* 24.0169* 4.5827*

(2.E-110) (2.E-246) (3 E-202) (9.E-192) (2.E-22)

ECG3 41.7183* 37.8544* 30.4166* 62.3338* 32.2493*

(0.0000) (0.0000) (8.E-249) (0.0000) (4.E-265)

MGH172
Lags 46 ART CVP PAP RESP CO2

ECG1 29.6336* 103.428* 98.9313* 14.0733* 15.5381*

(5.E-247) (0.0000) (0.0000) (3.E-105) (1.E-118)

ECG2 5.59478* 17.9636* 16.0905* 9.22566* 5.18213*

(6.E-31) (1.E-140) (1.E-123) (6.E-62) (1.E-27)

ECG3 7.74507* 5.19981* 2.82488* 9.66148* 12.2956*

(4.E-49) (1.E-27) (7.E-10) (8.E-66) (3.E-89)
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MGH177
Lags 46 ART CVP PAP RESP CO2

ECG1 1.63370* 1.95421* 1.63423* 1.62246* 5.68801*

(0.0043) (0.0001) (0.0043) (0.0048) (1.E-31)

ECG2 14.7421* 4.41430* 11.2246* 9.16150* 7.20844*

(2.E-111) (2.E-21) (7.E-80) (2.E-61) (2.E-44)

ECG3 0.96802 1.44906 4.72939* 1.05768 1.80505*

(0.5340) (0.0250) (6.E-24) (0.3668) (0.0007)

MGH182
Lags 46 ART CVP PAP RESP CO2

ECG1 7.39968* 9.08936* 9.27866* 9.78691* 6.90695*

(4 E-46) (9 E-61) (2.E-62) (6 E-67) (7 E-42)

ECG2 7.62345* 7.9467* 10.627* 9.12096* 8.97988*

(5 E-48) (8 E-51) (2 E-74) (5 E-61) (8 E-60)

ECG3 5.74363* 7.42181* 8.01550* 11.576* 9.77919*

(4.E-32) (3.E-46) (2.E-51) (8.E-83) (8.E-67)

MGH186
Lags 46 ART CVP PAP RESP CO2

ECG1 27.0971* 40.3905* 41.2741* 34.0191* 26.6640*

(7.E-224) (0.0000) (0.0000) (9.E-287) (6.E-220)

ECG2 4.67641* 5.41086* 6.47160* 5.78547* 4.84396*

(2.E-23) (2.E-29) (3.E-38) (2.E-32) (7.E-25)

ECG3 21.0929* 28.8383* 29.2925* 26.9987* 22.4236*

(4.E-169) (9.E-240) (7.E-244) (5.E-223) (3.E-181)
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MGH191
Lags 46 ART CVP PAP RESP CO2

ECG1 12.5219* 1.99626* 31.7273* 24.0795* 4.71440*

(3.E-91) (7.E-05) (5.E-226) (2.E-196) (8.E-24)

ECG2 4.41125* 1.80146* 10.9193* 7.43139* 1.38848

(2.E-21) (0.0007) (6.E-77) (2.E-46) (0.0418)

ECG3 8.60126* 1.30267 30.7626* 22.7601* 1.02445

(2.E-56) (0.0819) (3.E-257) (2.E-184) (0.4265)

MGH195
Lags 45 ART CVP PAP RESP CO2

ECG1 18.5186* 15.4394* 13.7019* 21.6494* 16.2000*

(1.E-145) (1.E-117) (6.E-102) (3.E-174) (1.E-124)

ECG2 41.2513* 10.1139* 30.5860* 9.51562* 35.1716*

(0.0000) (8.E-70) (1.E-255) (2.E-64) (3.E-297)

ECG3 8.53683* 10.1623* 8.12275* 24.5725* 9.66749*

(6.E-56) (3.E-70) (2.E-52) (7.E-202) (7.E-66)

MGH198
Lags 46 ART CVP PAP RESP CO2

ECG1 11.4239* 60.0530* 46.7532* 28.9611* 7.84743*

(2.E-81) (0.0000) (0.0000) (7.E-241) (6.E-50)

ECG2 7.34840* 34.0190* 28.3777* 21.4622* 4.70172*

(1.E-45) (9.E-287) (1.E-235) (2.E-172) (1.E-23)

ECG3 8.90013* 43.8040* 38.3062* 23.9416* 3.79965*

(4.E-59) (0.0000) (0.0000) (4.E-195) (8.E-17)
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MGH202
Lags 45 ART CVP PAP RESP CO2

ECG1 17.3587* 26.6135* 6.24928* 9.14276* 0.76490

(3.E-132) (7.E-215) (1.E-35) (6.E-60) (0.8737)

ECG2 10.5459* 15.500* 7.10172* 9.24585* 13.1002*

(4.E-72) (1.E-115) (1.E-42) (7.E-61) (9.E-95)

ECG3 85.9955* 67.0712* 71.9574* 3.19624* 13.3631*

(0.0000) (0.0000) (0.0000) (3.E-12) (8.E-97)

MGH227
Lags 46 ART CVP PAP RESP CO2

ECG1 17.3587* 26.6135* 6.24928* 9.14276* 0.76490

(3.E-132) (7.E-215) (1.E-35) (6.E-60) (0.8737)

ECG2 7.11487* 27.5168* 26.1840* 25.4145* 6.04228*

(1.E-43) (1.E-227) (1.E-215) (1.E-208) (1.E-34)

ECG3 2.68736* 32.9532* 36.3138* 33.3783* 2.52247*

(5.E-09) (4.E-277) (2.E-307) (6.E-281) (6.E-08)

MGH229
Lags 46 ART CVP PAP RESP CO2

ECG1 8.36020* 37.9324* 8.91593* 274.813* 297.264*

(2.E-54) (0.000) (3.E-59) (0.000) (0.0000)

ECG2 0.89056 1.1944 1.16756 1.71417* 1.44555

(0.6825) (0.1723) (0.2032) (0.0019) (0.0258)

ECG3 1.23840 0.61661 1.88425* 1.16677 1.14884

(0.1292) (0.9809) (0.0003) (0.2042) (0.2270)
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Discussions

In order to establish Granger causality on the multivariate analysis dealing with
cardiac, respiratory, and hemodynamic signals, in contrast to existing work on the
heart by taking generally only two signals (two variables) to maximum, our work
focuses on 187 patients, but we displayed the results for 13, because the required
sizes of the item force us to do that.

Our study was fulfilling on a case-by-case basis, we will accomplish that for two
patients randomly just to see correspondence (Granger causality/Current status of
patients).

MGH002: We evaluate after the measures that all blood pressures have a bilateral
relationship with the cardiac signals and the rate of CO2 and breathing as they only
have a bilateral relationship only with ECG1 and this may be explained by a vicious
circle generated by the heart ectopic that causes disorders of blood tensions which
in it turn acted on the heart highlighting the disorder.

MGH019: Atrial fibrillation is a serious phenomenon, which is characterized
by rapid acute contractions and disordering of the auricle of the heart, which can
cause cardiac arrest. Due to this, there is a dangerous increase in blood pressure, the
resulting physical stress causes hyperventilation, this pressure increase complicates
the task of the heart that has been already weakened and disturbs the phenomenon of
oxygen uptake and expulsion of CO2 from pulmonary alveoli, which aggravates the
situation of the heart that has a workload coupled with a deficiency of these drivers.

We will present a table that accounts the results in proportion to better understand
the influence of signals studied. The table below contains all the results (186
patients).

ALL patients ART (%) CVP (%) PAP (%) RESP (%) CO2 (%)

ECG1 85.71 73.46 91.83 83.67 75.51

97.91 81.63 93.87 93.87 93.87

ECG2 87.75 75.51 87.75 85.71 81.63

93.87 79.59 89.79 97.95 95.91

ECG3 79.59 69.38 85.71 83.67 71.42

87.75 77.55 91.83 89.79 91.83
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Conclusion

Our methods are based and validated by the Granger causality. The mathematical
search result obtained by this method could confirm the cardiorespiratory hemo-
dynamic anatomy. The knowledge and the quantitative understanding of these
interactions are critical in monitoring people at risk situations (awakening from
anesthesia, age-related pathologies that followed pregnant women, etc.). So for
our future telemedicine applications it is a real progress towards the complete
analysis of signals received. Based on these results, and with the inclusion of all
the interdependencies with these specific degrees protocols; that enable an excellent
intervention.
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