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Abstract

Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel
imaging technique that can visualize human cartilage with high spatial resolution and soft
tissue contrast. Different textural approaches have been previously investigated for charac-
terizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoar-
thritic cartilage. However, the large size of feature sets extracted in such studies motivates
an investigation into algorithmic feature reduction for computing efficient feature representa-
tions without compromising their discriminatory power. For this purpose, geometrical fea-
ture sets derived from the scaling index method (SIM) were extracted from 1392 volumes of
interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens.
The extracted feature sets were subject to linear and non-linear dimension reduction tech-
niqgues as well as feature selection based on evaluation of mutual information criteria. The
reduced feature set was subsequently used in a machine learning task with support vector
regression to classify VOIs as healthy or osteoarthritic; classification performance was eval-
uated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our
results show that the classification performance achieved by 9-D SIM-derived geometric
feature sets (AUC: 0.96 £ 0.02) can be maintained with 2-D representations computed from
both dimension reduction and feature selection (AUC values as high as 0.97 + 0.02). Thus,
such feature reduction techniques can offer a high degree of compaction to large feature
sets extracted from PCI-CT images while maintaining their ability to characterize the under-
lying chondrocyte patterns.
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Introduction

Osteoarthritis (OA) is now established as one of the leading causes of disability worldwide
[1-3]. This disease is characterized by loss of articular cartilage, thickening of the underlying
subchondral bone, and osteophyte formation [4]. Given that monitoring OA progression for
purposes of patient health evaluation and response-to-therapy assessment are currently of sig-
nificant interest, it would be desirable to have an imaging modality that could provide early de-
tection and visualization of any degenerative modifications to cartilage [5-10]. Several imaging
techniques are currently under investigation for their ability to assess cartilage health, eg. de-
layed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) [11], *’Na MRI [12], T1p
[13], GAG chemical exchange saturation transfer (gagCEST) [14] etc. These techniques focus
on quantifying cartilage matrix composition where changes in water and collagen content, and
loss in glycosaminoglycan (GAG) content have been previously identified as early signs of car-
tilage degeneration [13].

In this context, phase contrast X-ray computed tomography (PCI-CT) has recently emerged
as a novel imaging modality that can visualize the internal architecture of the cartilage matrix
at micro-meter scale resolution. Rather than rely on bio-chemical markers, PCI exploits the
phase contrast effect associated with X-ray refraction in soft tissue, which is more pronounced
than conventional absorption contrast in cartilage, as previously shown in [15]. Analysis of
PCI-CT images acquired from ex vivo patellar cartilage specimens highlighted differences in
chondrocyte organization between healthy and osteoarthritic cartilage matrix. Specific differ-
ences were noted in the radial zone where healthy specimens exhibited chondrocyte alignment
(known as Benninghoff’s arch [16]) while osteoarthritic specimens presented disorganized
chondrocyte clustering throughout the matrix [15]. The high spatial resolution afforded by
PCI-CT enables the use of texture analysis methods based on statistics (gray-level co-occur-
rence matrices or GLCM), topology (Minkowski Functionals), geometry (Scaling Index Meth-
od), etc to characterize these differences, as pursued in previous studies [17, 18]. Such textural
approaches provide quantitative measures that could potentially serve as imaging markers for
detecting and quantifying OA-induced degenerative changes to the cartilage matrix.

Textural approaches involving topological or geometrical features, as outlined in previous
work [17, 18], provide a detailed characterization of the cartilage matrix through extraction of
large feature sets. However, the extraction of too many features poses problems as it can con-
tribute to overall deterioration in classification performance of machine learning algorithms,
referred to as the so-called curse of dimensionality [19]. It has also been suggested that irrele-
vant or noisy features can adversely affect classification performance. Such problems highlight
the need for employing some form of feature reduction to obtain an efficient representation of
the original feature space while simultaneously maintaining adequate separability between the
two classes of patterns, i.e. healthy and osteoarthritic. Feature reduction has been previously
achieved with feature selection algorithms in the context of lung [20], breast [21, 22] etc. In
such approaches, the original feature set is reduced through explicit exclusion of features either
redundant in information content or irrelevant to the classification task. More recently, dimen-
sion reduction has also been proposed as an alternative to feature selection in the context of
breast lesion classification [23-25]. Dimension reduction allows for an algorithmic weighting
of all features in the original set while computing a newer smaller feature set.

We are specifically focused on evaluating the classification performance of feature sets ex-
tracted from post-processed phase contrast X-ray CT data for purposes of establishing imaging
markers that can quantify OA-affected cartilage tissue. To that end, this specific study aimed at
analyzing the impact of incorporating feature reduction on the performance achieved with pre-
viously proposed geometrical feature sets [18] in classifying healthy and osteoarthritic cartilage
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tissue on PCI-CT. For this purpose, we present a new CADx methodology in this work where
dimension reduction is integrated in conjunction with out-of-sample extension. Dimension re-
duction is applied to the training subset of the feature sets extracted from patellar cartilage
VOIs; corresponding low-dimension representations for the test set are computed using out-
of-sample extension techniques. Thus, a strict separation between training and test sets is
maintained in our methodology, which is crucial for the supervised learning step in such auto-
mated classification tasks. This separates our work from previous attempts described in [23,
24] where dimension reduction was applied to the entire dataset prior to machine learning,
which violates this training-test separation requirement. Our improved CADx methodology is
described in detail in the following sections.

Data
Patellar Cartilage Samples

Age of the donor, macroscopic visual inspection and probing of the cartilage surface at autopsy
were taken into account for selection of patellae. Donors older than 40 years were a priori ex-
cluded for harvest of normal samples while no constraint in age was imposed on potential do-
nors for osteoarthritic samples. A smooth, white, and shiny surface present across the entire
patellar cartilaginous surface and prompt resilience to manually performed focal indentation
probing were criteria that defined macroscopically normal cartilage. Lack of these criteria in
addition to visually perceived defects in the joint surface were used to select osteoarthritic sam-
ples. Based on these inclusion criteria, 2 healthy and 3 osteoarthritic cylinder-shaped osteo-
chondral samples (diameter: 7 mm) were extracted within 48 hours postmortem from the
lateral facet of 4 human patellae using a shell auger. Cylinders were trimmed to a total height of
12 mm including the complete cartilage tissue and the subchondral bone. The samples were
continuously rinsed by 0.9% saline during extraction, trimming and removal of soiling from
sawing. During image acquisition, samples were dipped into a 10% formalin solution.

PCI Experimental Setup

The image acquisition used the analyzer-based imaging (ABI) PCI technique, which has been
previously demonstrated as highly sensitive to small phase variations [26]. The setup consisted
of a parallel quasi-monochromatic X-ray beam, used to irradiate the sample, and of a perfect
crystal, the analyzer, placed between the sample and the detector [27]. The analyzer acted as an
angular filter of the radiation transmitted through the object and only the X-rays traveling in a
narrow angle range close to the Bragg condition were diffracted onto the detector. Before being
detected, the beam was modulated by the angle-dependent reflectivity of the crystal (rocking
curve), which had a full width at half maximum (FWHM) typically of the order of a few micro-
radians. All images were acquired at the half maximum position on one slope of the rocking
curve (50% position), which was chosen to achieve the best sensitivity. Further details of this
ABI technique can be found in [15, 28].

Experiments were performed at the Biomedical Beamline (ID17) of the European Synchro-
tron Radiation Facility (ESRF, France). Quasi-monochromatic X-rays of 26 keV were selected
from the highly collimated X-ray beam by means of a double Si (111) crystal system and an ad-
ditional single Si (333) crystal [29]. The emerging refracted and scattered radiation from the
sample was analyzed with a Si (333) analyzer crystal. The imaging detector used was the Fast
Readout Low Noise (FReLoN) CCD camera developed at the ESRF [30]. The X-rays are con-
verted to visible light by a 60 ym thick Gadox fluorescent screen; this scintillation light is then
guided onto a 2048x2048 pixel 14x14 m* CCD (Atmel Corp, US) by a lens-based system. The
effective pixel size at the object plane was 8x8 ym®.
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Tomographic Image Reconstruction

In order to acquire tomographic images with our PCI experimental setup, the cartilage samples
were rotated about an axis perpendicular to the incident laminar beam. At the end of each rota-
tion, the sample was displaced along this axis to enable imaging of a different region. Unlike
conventional CT imaging, the beam and detector were kept stationary. To reduce the effects of
any spatial and temporal X-ray beam inhomogeneities, we then performed a flat field normali-
zation for each angular projection image. A direct Hamming filter backprojection (FBP) algo-
rithm was used for reconstructing tomographic images [31]. For data analysis, coronal slices
were reconstructed from the original data and subject to edge-preserving median filtering with
a [55 5] sliding window to smoothen noise artifacts. An example image acquired from one
healthy and one osteoarthritic specimen is shown in Fig. 1.

Pattern Annotation

Chondrocyte patterns were annotated with 3D cubic volumes of interest (VOI) in the radial
zone of the cartilage matrix on the reconstructed PCI-CT images of all five specimens. 842
VOIs were annotated in total, of which 455 were osteoarthritic and 387 were healthy. The an-
notations were made using a cube of 25x25x25 pixels; the choice of VOI size was determined
empirically based on previous work [18].

Methods
Ethics Statement

The institutional review board (IRB) of the Ludwig Maximilian University, Munich, Germany
waived the need for ethical approval for this study since it involved retrospective analysis of
anonymized tissue samples and imaging data collected from donors postmortem.

Overview

Fig. 2 presents the CADx methodology proposed and evaluated in this study. Different compo-
nents of this system are described in this section.

Feature extraction is achieved with the use of novel geometrical features derived from the
Scaling Index Method (SIM). While originally developed for analyzing multi-dimensional

Fig 1. Coronal reconstruction created from axial PCI-CT images of a healthy (left) and osteoarthritic (right) cartilage specimens. Our interest is in
the radial zone where chondrocyte organization is distinctly different in these two specimens.

doi:10.1371/journal.pone.0117157.9001
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Fig 2. An overview of our CADx methodology proposed in this study. Our proposed methodology limits
the application of dimension reduction to the training data alone, thus preserving the integrity (independence)
of the test set. Low-dimension representations for the test set are obtained through out-of-sample extension.

doi:10.1371/journal.pone.0117157.9002

arbitrary point distributions through evaluation of the surrounding structural neighborhood
[32], SIM has since been extended for estimating local scaling properties (or local dimension)
of the gray-level intensity map within an annotated VOI [33]. In this work, texture analysis
using SIM is pursued because of its suitability to the task of classifying between healthy and os-
teoarthritic cartilage, as previously demonstrated in [18].

The extracted feature vectors are then separated into training and test sets. The high-dimen-
sion feature vectors in the training set alone are subject to dimension reduction. While a wide
variety of dimension reduction algorithms are described in the literature, we showcase our
CADx methodology by focusing on a balanced selection of dimension reduction techniques
(with respect to algorithmic properties) principal component analysis or PCA (non-paramet-
ric, linear) [34], Sammon’s mapping (classical gradient descent, non-linear) [35], t-distributed
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stochastic neighbor embedding or t-SNE (global optimization, non-linear) [36] and explorato-
ry observation machine or XOM (local optimization, non-linear) [37]. The corresponding low-
dimension representations for the test set are obtained using out-of-sample extension tech-
niques. In particular, we investigate the use of Shepard’s interpolation [38] and function ap-
proximation with a generalized radial basis function neural network (GRBF-FA) [39]. For
comparison with dimension reduction, feature selection through evaluation of mutual infor-
mation criteria [20] is also used.

Feature reduction is followed by supervised learning and classification, which is achieved
through support vector regression (SVR) [40]. These processing steps were used to evaluate the
classification performance achieved with our proposed CADx methodology of maintaining
training-test data separation while applying dimension reduction. Individual components of
this system are described in further detail in the following sub-sections.

Texture Analysis

In a specific VOI, all N voxels are represented by a 4-D vector x; = (x;, 1 2 ), i=1,2,... N,
consisting of three spatial dimensions (x;, ¥, z;) and voxel gray-level intensity g; = g(x;, yi» z;). A
unit scaling constant was used to define the relationship between the spatial and intensity di-
mensions of each voxel. The application of SIM for a given scale r can be treated as an image
transformation where each voxel within the VOI is assigned a local scaling property ¢; = a(x;,
r). This scaling property reflects the structural and geometrical properties of the surface formed
in the voxel neighborhood defined by r. We use a previously proposed estimator for ¢ that uses
a Euclidean distance metric and Gaussian shaping functions, i.e.,

N 2 _(d:/r)?
2 (dy/r)e
N SV e’

where d;; is the Euclidean distance between pixel x; and neighboring pixel x; and r is the radius
of the Gaussian neighborhood [33]. After the SIM transformation is computed, the resulting
distribution of a-values reveals non-linear structural information of the gray-level patterns an-
notated in the VOI. Nine quantiles (10™, 20™. . .90™) of this distribution were computed and
used as a 9-D geometrical feature vector. The neighborhood radius was fixed as r = 1 based on
previous work [18]. This is further illustrated in Fig. 3 using PCI-CT VOI examples.

; (1)

x(x;,7)

Feature Reduction—Dimension Reduction

The goal of dimension reduction in this study was to obtain low-dimension representations of
high-dimension feature vectors for subsequent classification. Specifically, we investigated the
classification performance achieved with such representations of dimensions 2, 3, and 5, using
the following methods.

Principal component analysis (PCA): PCA is an orthogonal linear transform that maps the
original feature space to a new set of orthogonal coordinates or principal components [34].
This transform is defined in such a manner that the first principal component accounts for
highest global variance, and subsequent principal components account for decreasing amounts
of variance. The corresponding low-dimension representations of the SIM-derived geometric
feature vectors can be determined by including the appropriate number of principal compo-
nents (2, 3 or 5 in this study).

Sammon’s mapping: Sammon’s mapping establishes a point mapping relationship between
high-dimension feature vectors and a low-dimension space so that inter-point distances in the

PLOS ONE | DOI:10.1371/journal.pone.0117157 February 24, 2015 6/19
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Fig 3. An illustration of the SIM feature extraction process. Examples of a normal and osteoarthritic VOlIs (left), and their corresponding SIM
transformations for radius r = 1 (middle). In the SIM transformations, dark regions correspond to lower magnitudes of a while brighter regions reflect higher
magnitudes of a. The distribution of a-values from each SIM transformation are represented by histograms (top right) and by 9 percentiles (10"-90") (bottom

right).

doi:10.1371/journal.pone.0117157.g003

high-dimension space approximate the corresponding inter-point distances in the low-dimen-
sion space [35].

Let X;,i=1,2,... N, represent a set of high-dimension feature vectorsand Y;,i=1,2,... N,
their corresponding low-dimension representations. The cost function E, which represents
how well the low-dimension representations Y; represent the feature vectors X;, is given by—

1L Lo, —d)
E= I 2)
Zi<jD Z Dij

iji<j

where the distance between any two points X; and X; is represented by D;;, and the distance be-
tween any two points Y; and Y}, by d;;. A steepest descent procedure is used for minimizing E.
The implementation of this algorithm was taken from the self-organizing map (SOM)
toolbox for MATLAB [41].

t-distributed stochastic neighbor embedding (t-SNE): Stochastic Neighbor Embedding (SNE)
converts Euclidean distances between high-dimension texture feature vectors into conditional
probabilities representing similarities; the closer the feature vectors, the higher the similarity
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[36]. Once conditional probability distributions are established for both the high-dimension
feature vectors and their corresponding low-dimension representations, the goal of the algo-
rithm is to minimize the mismatch between the two.

Let X;,i=1,2,... N, represent a set of high-dimension feature vectorsand Y;,i=1,2,... N,
their corresponding low-dimension representations. Let p;;; be the condition probability that X;
selects X; as a neighbor, assuming that neighbors were picked in proportion to their probability
density under a Gaussian centered at X;. Similarly, g;; is the conditional probability in the low-
dimension space. Minimizing the difference between p;; and g;); is achieved through minimiza-
tion of the sum of Kullback-Leibler (KL) divergences over all feature vectors using a gradient
descent method. The cost function is given by—

E= ZKL(Pi”Qi) = Z ij\i log P (3)

>
i gjli

where P; represents the conditional probability distribution over all other feature vectors given
X, and Q; represents the conditional probability distribution over all other low-dimension rep-
resentations given Y.

t-SNE was developed as an improvement over SNE to further simplify cost function optimi-
zation and overcome the so-called crowding problem inherent to SNE [36]. Details pertaining
to this algorithm and its cost function minimization can be found in [36], and a review of the
algorithm can be found in [23, 37]. The t-SNE implementation used in this study was taken
from the dimension reduction toolbox for MATLAB [42]. t-SNE has several free parameters,
such as the degrees of freedom of the t-function, the number of iterations for which the cost
function optimization is processed and perplexity, which can be defined as a smooth measure
of the effective number of neighbors. All parameters were defined through default settings pro-
vided by the toolbox except for perplexity, which was optimized in the supervised learning step
describe later.

Exploratory Observation Machine (XOM): As described in [43-45], XOM maps a finite
number of data points X; in a high-dimension space of dimension D to target points Y; in the
low-dimension embedding space of dimension d.

The initial setup of XOM involves—(1) defining the topology of the high-dimension data in
the feature space through computation of distances d(X;, X;) between feature vectors X;, (2) de-
fining a structure hypothesis represented by sampling vectors S in the low-dimension space,
and (3) initializing output vectors Y;, one for each input feature vector X;. We use random sam-
ples from a uniform distribution for Sy in this study to enable occupation of the entire projec-
tion space. Once the initial setup was complete, the goal of the algorithm is to reconstruct the
topology induced by the high-dimension feature vectors X; through displacements of Y; in the
low-dimension space. Neighborhood couplings between feature vectors in the high-dimension
space are represented by a cooperativity function h, which was modeled in this study as a
Gaussian—

(=X (s1)?
WX, X/(S(1), () =¢ 0 . )

Here, X'(S(t)) represents the best-match for a input feature vector X;. For a randomly select-
ed sampling vector S, the best-match feature vector X' is identified by the criterion: ||S - Y'|| =
min;||S — Yi||. Once the best-match feature vector is identified, the output vectors Y; are incre-
mentally updated by a sequential adaptation step according to the learning rule

Y,(t+ 1) = Y,(8) + e(t)h(X, X (S(£)), o () (S(t) — Y, (8)): (5)

PLOS ONE | DOI:10.1371/journal.pone.0117157 February 24, 2015 8/19



el e
@ : PLOS | ONE Automated Classification of Ex Vivo Human Patellar Cartilage on PCI-CT

where t represents the iteration step, £(f) is the learning rate and o(¢) is a measure of neighbor-
hood width taken into account by the cooperativity function k. In this study, both £() and o(t)
are changed in a systematic manner depending on the number of iterations by an exponential
decay annealing scheme [45]. The algorithm is terminated when either the cost criterion is sat-
isfied, or the maximum number of iterations is completed. The above sequential learning rule
can be interpreted as a gradient descent step on a cost function for XOM, whose formal deriva-
tion can be found in [37]. The final position of Y; represents the low-dimension representations
of the high-dimension feature vectors.

We note three free parameters in this algorithm—(1) the learning parameter £ (2) the neigh-
borhood parameter ¢, and (3) the total number of iterations. As with t-SNE, default settings
were specified for £ and number of iterations while o was optimized in the supervised learning
step describe later.

Out-of-Sample Extension

Since feature reduction through dimension reduction was restricted in its application to the
training data alone, the test data were out-of-sample points. To obtain their corresponding low-
dimension representations, the training set of high-dimension points X; and their correspond-
ing known low-dimension representations Y; were used to define a mapping F such that Y;=F
(X;). This mapping F was then used to determine the low-dimension representations of the
test set.

The goal of out-of-sample extension in this context was to create or approximate the map-
ping F. For a high-dimension feature vector X whose low-dimension representation is un-
known, F can be treated as an interpolating function of the form

FX) =Y a0, ©)

where a; are the weights that define the interpolating function. We investigated two approaches
to defining these weights.

Shepard’s Interpolation: This technique implements an inverse distance weighting approach
in defining a; described previously in [38], i.e.,

1/d(X, X,)!

aX) == oo
S, 1/d(X.X)

(7)

The power parameter p controls how points at different distances from X contributed to the
computation of F(X).

Generalized Radial Basis Function Neural Network Function Approximation (GRBF-FA): As
an alternative to Shepard’s interpolation, the mapping F was approximated using a generalized
radial basis function neural network. The weights a; were defined as,

_x=xp)?

e ¥

a,(X) = —— (8)
Siee o,

which represented the activity of the hidden layer of the radial basis function network. The p
parameter controlled the shape of the radial basis function kernel, and defined the neighbor-
hood of feature vectors that contributed to the computation of F(X).

PLOS ONE | DOI:10.1371/journal.pone.0117157 February 24, 2015 9/19
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Of the dimension reduction techniques investigated in this study, PCA was a special case
that allowed for direct mapping of out-of-sample points into the low-dimension space and did
not require any special out-of-sample extension.

We would also like to note here that such non-linear dimension reduction and out-of-sam-
ple extension techniques have free parameters which must be specified. While the typical ap-
proach is to optimize such parameters using different quality measures [35, 46, 47], we instead
identified values for such free parameters that provided the best separation between the healthy
and osteoarthritic classes of patterns, through cross-validation-based optimization conducted
in the supervised learning step. We feel that our approach is justified since the best way to eval-
uate the quality of a lower-dimension projection is still unclear and under debate [46], and the
end goal for dimension reduction in our study is classification and not visualization.

Feature Reduction—Feature Selection

Feature selection involves identifying a subset of features from the input feature space that
makes the most relevant contribution to separating the two different classes of feature vectors
in the supervised learning step. This study used mutual information analysis to identify a sub-
set of features from the high-dimension feature vectors that best contributed to the pattern
classification task.

Mutual information (MI) is a measure of general independence between random variables
[19]. For two random variables X and Y, MI is defined as—

I(X,Y)=H(X)+H(Y)-H(X,Y), 9)

where entropy H(-) measures the uncertainty associated with a random variable. MI I(X, Y) es-
timates how the uncertainty of X is reduced when Y has been observed. If X and Y are indepen-
dent, their MI is zero.

For the dataset of ROIs used in this study, the MI between between texture feature f;, which
is the feature stored in the s dimension of feature vector f, and the corresponding class labels y
was calculated by approximating the probability density function of each variable using histo-
grams P(-)—

I(f,,y) XZPU y logZP(f(];}’)y&) (10)

Here, the number of classes 7. = 2 was used; the number of histogram bins for the texture fea-
tures nywas determined adaptively according to

n, = log,N + 1+ log,(1 +x\/N/6), (11)

where « is the estimated kurtosis and N the number of ROIs in the data set [20].

Once the mutual information between each feature of the original feature set and the corre-
sponding class labels was computed, those features with the highest mutual information were
selected for subsequent classification. In this study, we investigated the classification perfor-
mance achieved with 2, 3 and 5 features, as selected from the original feature set using mutual
information criteria. To maintain training-test separation, the best features of the texture fea-
ture vectors were selected by evaluating the mutual information criteria of the training
data alone.

PLOS ONE | DOI:10.1371/journal.pone.0117157 February 24, 2015 10/19
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Classification

The extraction of texture features and subsequent feature reduction was followed by a super-
vised learning step where the chondrocyte patterns were classified as healthy or osteoarthritic.
In this work, support vector regression (SVR) with a linear kernel was used for the machine
learning task [40]. The SVR implementation was taken from the libSVM library [48].

Owing to the practical limitations imposed by the small size of the patient population used
in this study, we specified the following patient constraints to the supervised learning step—(1)
ROIs from the same patient were not simultaneously used in both training and test sets, and
(2) the same number of ROIs were used from every patient to ensure that the classifier did not
get over-trained on patterns from a specific patient. Based on these constraints, each iteration
of the supervised learning step involved randomly sub-sampling 200 ROIs from each of the
five patients and randomly designating one each of the healthy and osteoarthritic subjects as
the test set (the other samples comprised the training set). Such a strategy ensured that training
sets used in different iterations of supervised learning were not identical despite
patient constraints.

In the training phase, models were created from labeled data by employing a random sub-
sampling cross-validation strategy where the training set was further split into 70% training
samples and 30% validations samples. The purpose of the training phase was to determine the
optimal parameters for the classifier, dimension reduction and out-of-sample extension algo-
rithms that best captured the boundaries between the two classes of VOIs. The free parameters
for the classifier used in this study were the cost parameter for SVR. Then, during the testing
phase, the optimized classifier predicted the class of VOIs in the independent test set. A receiv-
er-operating characteristic (ROC) curve was generated and used to compute the area under the
ROC curve (AUC) which served as a measure of classifier performance on the independent test
set. This process was repeated 50 times resulting in an AUC distribution for each feature set.

Statistical Analysis

A Wilcoxon signed-rank test was used to compare two AUC distributions corresponding to
different texture features. Significance thresholds were adjusted for multiple comparisons
using the Holm-Bonferroni correction to achieve an overall type I error rate (significance level)
less than o (where a = 0.05) [49, 50].

Texture, feature reduction, classifier and statistical analysis were implemented using Matlab
2010a (The MathWorks, Natick, MA).

Results
Evaluating Different Out-of-Sample Extension Methods

Fig. 4 shows the classification performance achieved with the SIM-derived geometric feature
vectors when processed with Sammon’s mapping, XOM and t-SNE in conjunction with the two
out-of-sample extension methods outlined earlier. No significant differences in performance are
observed between Shepard’s interpolation and GRBEF-FA for both Sammon’s mapping and
XOM. However, with t-SNE, a significant improvement in performance was noted with She-
pard’s interpolation over GRBF-FA for 5-D projections of the original vectors (p < 0.05).

Comparing Dimension Reduction, Feature Selection and No Feature
Reduction

Table 1 shows the classification performance achieved with different feature reduction strate-
gies pursued in this study. For each algorithm, the performance achieved with reduced feature
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Table 1. Classification performance achieved with different feature reduction techniques.

Algorithm

Projected Dim.

AUC

PCA

Sammon’s Mapping

XOM

t-SNE

Mutual Information

none

© O W N O WN T WwNhNOawND o wN

0.97 £0.02
0.97 £ 0.02
0.97 £0.02
0.94 + 0.03
0.96 £ 0.02
0.96 + 0.02
0.95 £ 0.02
0.96 + 0.03
0.94 + 0.06
0.90 + 0.09
0.94 +0.08
0.97 £ 0.02
0.97 £ 0.01
0.97 £ 0.02
0.95+0.02
0.96 + 0.02

Classification performance in AUC (mean = std) achieved with different dimension reduction and feature
selection techniques investigated in this study. The last row shows the performance achieved when no
feature reduction algorithm is applied, i.e. the original feature set is used for the classification task.

doi:10.1371/journal.pone.0117157.1001
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sets of dimensions 2, 3 and 5 were evaluated and compared. For Sammon’s mapping, XOM
and t-SNE, Shepard’s interpolation was used to obtain reduced feature representations of the
independent test set.

The classification performance achieved with the original 9-D SIM-derived geometrical fea-
ture set, i.e. with no feature reduction strategy applied, was 0.96 + 0.02. When reducing this fea-
ture set to a 2-D representation, comparable classification was achieved by PCA (dimension
reduction) and mutual information (feature selection). Other dimension reduction strategies
such as Sammon’s mapping, XOM and t-SNE were significantly outperformed (p < 0.05).
However, for 3-D and 5-D representations, all dimension reduction and feature selection strat-
egies yielded a comparable classification performance to the original feature set.

Discussion

Feature reduction strategies such as dimension reduction or feature selection have been previ-
ously proposed in computer-aided diagnosis (CADx) applications for obtaining efficient repre-
sentations of large feature sets extracted from patterns of interest on medical images [20-25].
One advantage of identifying a reduced feature set representation of a large feature set is the re-
duction in processing time of the supervised learning step, as noted in this study (9-D: 6.03s, 5-
D: 5.23s, 3-D: 4.88s, 2-D: 4.79s). However, the primary purpose of feature reduction in studies
with finite datasets with limited patient cohort (or number of ROIs) is to prevent over-training,
which stems from using too many features to describe too few ROIs, also known as the so-
called curse of dimensionality [19]. This study evaluates the impact of incorporating such algo-
rithms in the process of extracting feature sets that characterize chondrocyte organization in
the radial zone of the cartilage matrix, as visualized on PCI-CT, for purposes of automated clas-
sification. The motivation for our work stems from previous demonstrations of PCI-CT’s abili-
ty to visualize structural details of the human patellar cartilage matrix with high spatial
resolution [15]. This makes cartilage imaging with PCI-CT a suitable target for soft tissue char-
acterization with novel texture features [17, 18]. Given that such textural characterization usu-
ally yields a large feature set, it is important to obtain efficient representations of these
extracted features through some feature reduction strategy.

In this study, we demonstrated a new CADx methodology for automated classification of
healthy and osteoarthritic cartilage that incorporates dimension reduction into CADx while si-
multaneously maintaining a strict separation between training and test sets. This differentiates
our study from previous attempts at using dimension reduction in CADx where such algo-
rithms where applied to the entire dataset [23, 24]. Such implementation compromises the in-
tegrity of the independent test set, since feature vectors belonging to the training and test sets
are free to interact and influence the computation of low-dimension representations. Our new
methodology maintains the required training-test set separation by applying dimension reduc-
tion to the training data alone; corresponding low-dimension representations for the test set
are obtained through out-of-sample extension techniques. Our methodology explored the inte-
gration of dimension reduction techniques such as PCA, Sammon’s mapping, XOM and t-SNE
in conjunction with out-of-sample extension techniques such as Shepard’s interpolation and
GRBEF-FA for reducing the size of the originally extracted feature set.

Our results suggest that the high classification performance achieved with SIM-derived geo-
metrical features (0.96 + 0.02) can be maintained while substantially reducing the size of the
original feature set. The fact that no statistically significant deterioration in performance is ob-
served with the original feature set suggests room for further inclusion of other features when
necessary. We specifically note that both dimension reduction through PCA and feature selec-
tion with mutual information were able to yield 2-D representations of the 9-D SIM feature set
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extracted from the patellar cartilage ROIs without compromising the classification perfor-
mance achieved. Non-linear dimension reduction techniques such as Sammon’s mapping,
XOM and t-SNE exhibited a small but significant deterioration in performance for 2-D projec-
tions of the original feature set, but exhibited comparable performance for 3-D and 5-D projec-
tions. The high classification performance noted with both the original feature set as well as the
reduced feature set representations obtained with different techniques is further illustrated by
Fig. 5, where distinct clusters of the healthy and osteoarthritic features are observed, albeit with
poor separation as indicated by the corresponding Dunn’s separation index [51]. Note that dif-
ferences between the two clusters are only emphasized in the machine learning step; such visu-
alizations are for exploratory analysis of the feature space only.

The high degree of compaction achieved by such techniques, i.e. reducing 9-D feature set to
2-D or 3-D, suggests tremendous potential for future application in computational tools for ra-
diologists. As an example, content-based image retrieval (CBIR) could retrieve prior cases with
similar patterns based on an annotated pattern in the current study. Such CBIR tools could rely
on matching feature sets extracted from the current study to those previously extracted from
other studies and stored in some database. In such a scenario, its not surprising that the
computational efficiency (in terms of processing speed, memory usage etc) improves when the
feature sets are smaller in size. As long as such feature reduction approaches are only used in
such ancillary support tools for radiologists in a clinical setting and not interpreted directly for
evaluation of clinical findings, we anticipate minimal impact on clinical work flow in terms of
information loss.

While we observe no significant differences in performance when using dimension reduc-
tion or feature selection for reducing the size of the original feature set in this study, their ad-
vantages and disadvantages are worth highlighting. Feature selection explicitly exclude features
and results in a loss of information. Such losses could be relatively minimized in dimension re-
duction strategies where all features in the original set contribute to the final low-dimension
representations. This has been previously observed when attempting to compact large feature
sets (eg. 100-D) into very small representations (2-D/3-D) [25]. However, feature selection al-
lows for identification of features that were selected as part of the reduced set. Dimension re-
duction results in the creation of new features, and the contributions of the original features to
the reduced feature set is not readily interpretable. This will likely serve as an important criteri-
on to consider while deciding upon which feature reduction strategy to pursue for a
specific problem.

One must also note an inherent concern in integrating dimension reduction in its current
form into CADx despite the promising results reported in this study. CADx aims to best sepa-
rate different classes of feature vectors while dimension reduction attempts to best represent
high-dimension data in a low-dimension space through some optimization paradigm (preser-
vation of distances, similarities, topologies etc). These are essentially two independent optimi-
zation tasks with goals that are not guaranteed to align. One may explore dimension reduction
techniques that incorporate some form of class discrimination while computing the low-di-
mension representations of the high-dimension feature vectors. Supervised dimension reduc-
tion variants of learning vector quantization approaches such as the neighbor retrieval
visualize (NeRV) algorithm [46], generalized matrix learning vector quantization (GMLVQ)
[52], or limited rank matrix learning vector quantization (LiRAM LV Q) [53], would be better
suited to integration with our CADx methodology proposed in this study.

Finally, we acknowledge some limitations with the current study. To facilitate comparisons
between different feature reduction algorithms, we arbitrarily fixed the sizes of the reduced fea-
ture sets to 2, 3 and 5. One could instead optimize for the smallest number of features that ei-
ther yield the best classification performance or maintain the performance of the original
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of 2-D projections of the SIM feature set obtained with XOM (left) and t-SNE (right). As seen, here all feature reduction techniques yield discernible clusters of
healthy and osteoarthritic VOIs, but with varying degrees of overlap.

doi:10.1371/journal.pone.0117157.g005

feature set. A small number of patients served as donors of the cartilage specimens for PCI-CT
imaging and as a result, the classifier could be over-trained to the limited variations of healthy
and osteoarthritic patterns found in these subjects. Future studies should include a larger pa-
tient cohort to ensure that the classifier is trained with a potentially larger variation of healthy
and osteoarthritic patterns.

Conclusion

We demonstrate a CADx methodology with integrated feature reduction using either dimen-
sion reduction or feature selection in the research context of classifying healthy and osteoar-
thritic patellar cartilage annotated on PCI-CT images. We specifically outline a method to
integrate dimension reduction in CADx while concurrently maintaining a strict training-test
set separation required for supervised learning components. Our results suggest that both fea-
ture selection and dimension reduction could maintain the performance of the original pattern
characterizing feature set while achieving a high degree of feature compaction. We hypothesize
that such an approach would have significant practical advantages in a clinical setting as low-
dimension representations of large feature sets extracted from annotated patterns can contrib-
ute to improved efficiency in terms of storage, processing speed etc. However, larger controlled
trials need to be conducted in order to further validate the clinical applicability of our method.

Supporting Information

S1 Dataset. High-dimensional SIM-derived geometrical feature vectors and corresponding
label data for the PCI-CT VOIs used in this manuscript.
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