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Organic semiconductors constitute promising candidates toward large-scale electronic circuits that are
entirely spintronics-driven. Toward this goal, tunneling magnetoresistance values above 300% at low
temperature suggested the presence of highly spin-polarized device interfaces. However, such spinterfaces
have not been observed directly, let alone at room temperature. Thanks to experiments and theory on the
model spinterface between phthalocyanine molecules and a Co single crystal surface, we clearly evidence a
highly efficient spinterface. Spin-polarised direct and inverse photoemission experiments reveal a high
degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the
molecule’s nitrogen p orbitals, which substantiates an ab-initio theoretical description of highly
spin-polarised charge conduction across the interface due to differing spinterface formation mechanisms in
each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic
interfaces with remarkable spintronic properties that can endure well above room temperature.

T
echnological progress in the past decade has been nothing short of astounding as revealed by our maturing
information society. An important milestone will be to design not only electrical components but entire
circuits that pervasively utilize the electron spin as well as its charge. In this vein, research has focused on the

interface between ferromagnets (FM), whose current is spin-polarised, and organic semiconductors (OS), which
have been identified as a promising medium to transport spin-encoded information due to low spin-orbit induced
spin decoherence in this class of semiconductors1. A proof-of-concept experiment involving electrons far from
the Fermi level EF was recently reported2.

When integrated into devices, such interfaces can yield large values of magnetoresistance at low temperature
due to transport at/near EF, whether in the diffusive regime3, in the ballistic regime across individual molecules4 or
in the tunneling regime5. As supported by a phenomenological model, this latter result could underscore how, due
to molecular chemisorption onto a transition metal surface, the OS’s molecules at the interface may exhibit a
molecular orbital (MO) at EF

6 that extends the electrode conduction onto the first molecular monolayer(ML)7.
Due to exchange-split bands, the unequal density of states (DOS) of the two spin populations at EF in the FM is
then believed to lead to a spin-selective broadening of this MO5, i.e. to a spin-polarised interface7 that is termed a
spinterface8. This original mechanism of spinterface formation leads to band-induced spinterface states (BISS).
Some of us have observed substantial (.500%), low-temperature tunneling magnetoresistance (TMR) across a
fully organic barrier using Co/phthalocyanine (Co/Pc) interfaces. However, experiments have thus far not
revealed large values of room temperature (RT) spin polarization (P) at/close to the Fermi level of such FM/
OS interfaces, whether through spectroscopy techniques9,10 or on actual devices11. In this sense, a validation of the
promise behind the spinterface concept5,8 --- namely more efficient interfaces for spintronic applications --- is still
lacking. Indeed, the spinterface concept is a pre-requisite for ballistic4, tunneling5 and diffusive3 regimes of
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transport, while spin transport in the diffusive regime also requires
spin conservation during transport across the OS bulk.

Results
In what follows, we demonstrate that solving this riddle requires the
study of FM/OS interfaces whose structure and electronic properties
are well characterised. Given the link between photoemission (PE)
and magnetotransport spectroscopy techniques12, we have performed
spin-polarised direct and inverse PE experiments at RT on interfaces
between fcc Co(001) and MnPc (see the molecular schematic in the
inset to fig. 2e) or H2Pc as potential spinterface candidates4,7.

The PE experiments reveal the presence of Pc-induced states close
to EF

9,10. In order to extract the signal coming only from the molecu-
lar sites, we adopt a subtraction procedure that takes into account the
attenuation of the signal arising from ever deeper atomic sites away
from the sample surface (see SI). We present in Fig. 1a the spin-
resolved difference spectra of direct and inverse PE spectroscopy of
Co/MnPc at RT (2.6 ML MnPc for direct and 2 ML MnPc for inverse
PE) that are obtained by this subtraction procedure. Both direct and
inverse PE experiments reveal significant (nearly no) spin " (#)
intensity at/near EF, which indicates a high P of the Pc-induced states
in the vicinity of EF. We note that very similar difference spectra (in
direct PE) are also obtained in the case of H2Pc, which shows that the
central Mn21-ion in MnPc plays a minor role in the formation of the
spinterface. Assuming that the spin asymmetry of spectra is directly
related to P (see Ref. 11), we can safely state that the RT P at EF of the
first two layers of MnPc or H2Pc adsorbed on Co(001) reaches 180%
6 10%, i.e. is opposite in sign to that of bare Co.

We now confirm the interfacial nature of P by examining the
impact of additional Pc coverage. Upon appropriately subtracting
the spin-resolved spectra of 1 ML H2Pc/Co from those of 2 ML
H2Pc/Co, the intensity of the interface states is strongly reduced
(see Fig. 1b): the second Pc layer contributes only 20% to the total
intensity of the interface states of Fig. 1(a), which could reflect devia-
tions from perfect layer-by-layer growth. The third ML does not
contribute at all to the interface states’ intensity. We have also
excluded the artefact of an altered Co interface magnetism on our
analysis and conclusions (see SI).

To determine whether these interface states originate dominantly
from the Co substrate or the Pc-overlayer, we compared data for
photon energies of 20 eV and 100 eV (see Fig. 1c). From 20 eV to
100 eV, the cross section of photoionisation for free atoms decreases
by over one order of magnitude for 2p states (C and N) while that for
3d states (Co and Mn) does not vary much13. We expect that such
a large effect for free atoms shall trend similarly in solid-state
systems. Consequently, if the interface states were mainly of Co 3d
character, they should also be present at 100 eV photon energy.
However, the spin-resolved direct PE difference spectra at 100 eV
show no indication for any Pc-induced structure at low binding
energies. We thus conclude that the interface states are mainly of
C or N 2p character.

Why does the interface between fcc Co(001) and MnPc or H2Pc
exhibit such a high P of PE at EF, and this at RT? We propose the
following key extension to the spinterface concept5,8: highly efficient,
thermally robust spinterfaces may be engineered by choosing the
ferromagnet/molecule pair such that the dominant interfacial
hybridization mechanism involves states at/near EF from the ferro-
magnet (FM) and molecule that are present only in one spin channel.
In addition to the well-known spinterface formation mechanism of
spin-dependent broadening in that spin channel4,5,8, this promotes
the hybridization in the other spin channel between the FM’s surface
states at the vicinity of EF and MOs of the molecule. This mechanism
ensures that energetically narrow and strongly spin-polarized hybrid
interface states are pinned close to the Fermi level so as to drive the
interface’s spintronic response. The resilience of the ensuing spinter-
face properties against thermal disorder are enhanced not only by a
large FM Curie temperature but also when direct exchange coupling
that results from the hybridization mechanism magnetises at least
some of the molecule’s atoms.

When considering all electronic orbitals, ab-initio calculations on
Co/Pc interfaces with unrelaxed atomic positions predicted a P that
can reach -25%7, rather than the 180% now measured experiment-
ally. To more realistically describe the interface, our formalism now
relaxes atomic positions and includes van der Waals forces so as to
quantitatively reproduce the crucially important molecule-substrate
distance inferred from x-ray standing wave measurements. This
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Figure 1 | Direct and inverse photoemission reveals a high interface spin polarisation P using commonplace Co and phthalocyanine molecules.
(a) Spin-resolved difference spectra of direct (closed symbols; hn 5 20 eV) and inverse (open symbols) photoemission (PE) spectroscopy at room

temperature of Co/MnPc(2.6(2.0) ML for direct(inverse) PE) reveal a P,180% at EF. (b) The Pc thickness dependence of the direct PE signal (hn 5

20 eV) reveals that Pc-induced intensity at low binding energies is essentially confined to the interface. (c) Spin-resolved difference spectra of direct PE

spectroscopy at room temperature of Co(3 ML)/MnPc(2.6 ML) for hn 5 100 eV show no sign of any Pc-induced interface state, indicating that the

interface states are mainly of C or N 2p character.
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leads to a final distance Dz between Co and the adsorbed molecule of
2.1Å.

To unravel the formation of the spinterface, we first consider the
‘molecule-Co’ system as calculated using the actual atomic positions
of the final interface, but we artificially impose Dz 5 6.6 Å. We can
then examine the states of the two systems using a common Fermi
level in the absence of interactions between them (see Fig. 2a). We
extrapolated the spin referentials found for finite exchange coupling
at lower Dz to those in the present case, at Dz 5 6.6 Å, of vanishing
exchange interactions between the two subsystems. The Co d- spin #
band crosses EF, while the d spin " band ends at E-EF 5 20.7 eV.
Above this energy level, the spin " sub-band exhibits only small DOS
spikes that correspond to surface states. We note in particular one
surface state at EF with a strong perpendicular component (z-DOS,
black) compared to its planar counterpart (pl-DOS, magenta). We
emphasize that these surface states also exhibit a s-component of
DOS (gray). Near EF, the molecule exhibits a MO only in the spin
# channel. Adsorption-induced displacements of the molecule’s
atoms overall promote a slight energy shift (,30 meV) of the MOs.

We now turn on interactions between the molecule and the Co
surface by reducing Dz to 3.5 Å (fig. 2b). At this distance, p orbitals
that spatially extend perpendicularly to the nascent interface pro-
mote wavefunction overlap between the molecule and Co surface
sites, causing EF to shift from E 5 22.4 eV to E 5 22.2 eV. At
the vicinity of EF, the Co spin # states and spin " surface states are
little affected. In contrast, the interaction strongly modifies the mole-
cule’s states: while planar states remain mostly unaffected, perpen-
dicular states experience the onset of hybridization. In particular, this
results in the energy dispersion of the initially sharp spin # states in
Fig. 2a at 22.4 eV and 22.2 eV. We emphasize here that there are no
spin "MO at/near EF at Dz 5 3.5 Å (right-hand panel of fig. 2b).

At the final Dz 5 2.1 Å (fig. 2c), the molecule and Co surface sites
may fully hybridize to form the spinterface. More precisely, all com-
binations of s-p, p-d and s-d hybridization may occur. Although fcc
Co(001) has, near EF, no p states and a highly spin-polarized d band,
the flat, spin-degenerate s-band that crosses EF is essentially respons-
ible, through s-d hybridization14, for the only moderate 45% spin
polarization of conduction electrons. Yet, referring to Fig. 2c, the
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Figure 2 | The formation and properties of the Co/MnPc spinterface reflect distinct mechanisms in each spin channel. As the distance between molecule

and the Co surface is reduced from (a) 6.6 Å to (b) 3.5 Å and to (c) the final position of 2.1 Å, p-d hybridization with the Co spin # band causes energetically

sharp, spin #MOs in the z-DOS to disperse (red area of panel d), leading to a monotonous spin-# z-DOS (black) at/near EF (right-hand graph of panel c). In

the spin " channel at the vicinity of EF, there are neither Co d band states nor MOs but simply Co surface states (panel a) that begin to hybridize as the

molecule is brought closer in (panel b) and lead, at the final molecular position (panel c), to energetically sharp peaks that cross EF. These surface-induced

spinterface states (SISS) carry virtually no Co s-character (gray datasets in panels a,b,c) and involve all atomic species of the molecule (panel e). The

spinterface’s planar DOS (pl-DOS; magenta) near EF is mostly featureless and adopts the spin polarization of Co (right- and left-hand graphs of panel c).
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spinterface formation involves Co s-states (gray datasets) only very
weakly. Thus, although fcc Co(001) is obviously not half-metallic15,16,
the Co/MnPc spinterface shall strongly transmit the highly spin-
polarized d-component of the Co DOS and attenuate the s and p
components.

How is the Co d-band DOS transmitted onto the molecule in each
spin channel? Prior to adsorption and in the spin # channel, the Co d
band z-DOS intersects EF and the z-DOS of the free molecule also
exhibits a MO at/near EF. Hybridization is therefore governed by the
well-known spinterface mechanism of spin-dependent broadening
of MOs due to band hybridisation4,5,8. The resulting BISS (band-
induced spinterface states) are shaded in red in fig. 2d. These BISS
exhibit a flat, continuous energy dependence across EF.

However, the molecule does not exhibit any sizeable, preexisting
spin " z-DOS at the vicinity of EF to hybridise with, and the Co
surface’s d-band doesn’t cross EF. Another spinterface formation
mechanism must therefore account for the appearance of entirely
new, hybrid states in the spin " channel within 22.7 eV, E ,

21.9 eV, i.e. at the vicinity of EF, (see right-hand panel of Fig. 2c
and the segment of the spinterface z-DOS shaded in green in fig. 2d).
We propose that preexisting Co surface states (see left-hand panel of
Fig. 2a and b) pin initially distant MOs to EF. The narrow energy
width of these surface-induced spinterface states (SISS) reflects that
of both the preexisting Co surface states --- because the surface atoms
are missing bonds --- and of the preexisting MOs. Due to the Pauli
exclusion principle, these newly formed SISS cannot occupy the spin
# states since they are already occupied by Co, and hence appear only
in the spin " channel. The presence of two sharp, tall peaks near EF

reflects a lifting of degeneracy induced by upward (downward) buck-
ling of the benzene rings below(at) EF along each of the two ortho-
gonal axes that define the free molecule’s 4-fold symmetry. This
underscores how crucial it is to fully relax the interface structure if
one wishes to study SISS.

Since surface states naturally lie at the vicinity of EF, so shall SISS.
Although SISS may appear as energetically sharp DOS peaks, which
could reflect localization, SISS contribute to conduction across the
interface. Indeed, the spectral signature of the SISS appears in the
spin " z-DOS of both Co surface and molecular sites (compare

graphs of fig. 2c or refer to the SI). Focusing now on the DOS that
contributes to transport at RT, we present in Fig. 3c–d spin-polarised
spatial maps, taken along the dashed line of Fig. 3a, of the Co/MnPc
interface DOS within EF 225 meV , E , EF125 meV (see Fig. 3b).
Aside from the central Mn site, the remaining N and C sites exhibit
very large positive P at EF thanks to electronic states that are clearly
hybridised with the Co interface atoms. In fact, these interface states
are present on all atomic species of the molecule (fig. 2e) and their
amplitude trends with the number of molecular nearest-neighours
for a given Co spinterface site.

At EF, both the energetically smooth BISS in the spin # channel
and the energetically sharp SISS in the spin " channel define the sign
and amplitude of the spinterface’s P. Due in large part to the ener-
getically sharp SISS that crosses EF, we find that P 5 80%. Thus,
considering the limitations of the comparison, we find that both
theory and the direct/inverse PE experiments yield the same sign
and high amplitude of P at EF (see fig. 1a and 2e). Furthermore, peaks
in the spin " (#) PE (see fig. 1a) and DOS spectra (see fig. 2d) at ,E 2

EF 5 20.3(21.0) eV underscore a reasonably good agreement
between theory and the direct PE experiment thanks to its good
energy resolution (130 meV), while a qualitative agreement is found
with inverse PE.

Since both PE experiments and ab-initio theory describe how the
molecule’s sites are spin-polarised, we now consider the magnetic
properties of the spinterface. Referring to the on-site local magneti-
sation density map of Fig. 4a, our theory indicates that a strong
antiferromagnetic (AF) coupling between Co and the numerous C
benzene sites leads to a total magnetic moment for all C atoms of
20.22 mB. Within a Hund’s rule description, this is expected since the
Co d orbitals are more than half-filled. Only the partially filled d #
band may then hybridize, so that the coupling between C and Co is
mediated essentially by minority electrons. Direct p-d coupling then
leads to an exchange splitting of the C majority and minority DOS
that is opposite in direction to that of Co.

The magnetic coupling of N sites is more subtle. Indeed, although
N is coupled AF to Mn for free MnPc, molecular adsorption onto Co
leads, through d-d hybridization, to ferromagnetic (F) coupling
between Mn and Co (as expected since the Mn d band is less than
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half filled)7,17. Due to aromaticity, this F coupling is found to drive F
coupling onto all N and C pyrrole sites. Thus, although C and N sites
both contribute to the high P at EF, their magnetisations are in fact
opposite to one another.

If the molecule z-DOS is spin-polarized at EF owing to BISS and
SISS, then the molecule’s p DOS at EF should be spin-polarised. To
support this theoretical description of spinterface magnetism, and as
a tenet of spintronically active interfaces18, we have performed x-ray
magnetic circular dichroism (XMCD) experiments at the N K edge of
MnPc’s 8 nitrogen sites (see Methods). Referring to Fig. 4b, we wit-
ness XMCD intensity within the energy range corresponding to final
2p p (i.e. that probe the z-DOS just above EF), but not 2p s, states7.
This unequivocal XMCD signal is very strong compared to the stray
XMCD signal obtained when MnPc is adsorbed onto Cu(001) (see
Fig. 4c), for which one does not expect the presence of on-site
magnetic moments. The sharp absorption peak at 401 eV in the
Cu/MnPc spectrum, which leads to the derivative-like XMCD signal,
is in fact due to low-temperature N2 adsorption. Since these are K
edge transitions, we can only state19 that an orbital magnetic moment
appears on the final N 2p p states at the Co/MnPc spinterface, the
sign of which is in agreement with that found theoretically. This
experimentally confirms that the N z-DOS is spin-polarised as we
have described theoretically.

Discussion
We now discuss spintronics prospects for these Co/Pc spinterfaces.
Indeed, an ideal spin-polarized current source (IspCS) should
1) exhibit a very high degree of spin polarisation P that 2) endures
well above RT for technological applications; 3) be both cheap and
straightforward to synthesize considering existing industrial capabil-
ities; 4) be compatible with miniaturisation challenges at the

nanoscale; and 5) provide an easy integration path with a semi-
conductor so as to enable transport of, and operations on, the highly
spin-polarised current. Behind criterion 5 lies the original promise of
the spintronics field to promote the rise of an electronics in which not
only individual electronic components (e.g. read heads in hard disks)
but entire electronic circuits are conceived so as to encode and trans-
port information using the electron spin.

Candidates toward an IspCS include half-metallic ferromagnets,
which ideally conduct electrons of only one spin direction15 and
could, using merely a band hybridisation mechanism of spinterface
formation5,8, lead to efficient spinterfaces. Such materials have been
studied using direct PE20 and been integrated into devices with size-
able P, not only at low temperature16 but also at RT21. However, this
track fails criteria 3 and 4 for an IspCS because such materials are
sensitive to disorder. Dilute magnetic semiconductors offer an inter-
esting solution to criterion 5, but lose their half-metallic property
well below RT22. Another track is to resistively filter the current so as
to spin-polarise it. Fe/MgO-based IspCS accomplish this23 through
tunneling across MgO24 and can reach P 5 85%25, but this resistive
solution to spin-filtering a) must involve several dielectric mono-
layers that b) must be of finite lateral extent in order to promote
k// conservation. This resistive solution is therefore not as practical
toward nanoscale applications (criterion 4) as a conductive one
involving merely an interface that can scale down laterally to the
individual molecule4.

In contrast, the Co/Pc interface involves differing spinterface
formation mechanism in each spin channel to yield a high P (cri-
terion 1). Since both mechanisms are driven by direct rather
than indirect17 hybridisation, the resulting current source is spin-
filtered across a conductive6,7 interface (criterion 4) and inherits
the large temperature resiliency of the Co interface magnetisation
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of the on-site magnetisation density of the MnPc molecule adsorbed onto Co. While the pyrrole cage around Mn is ferromagnetically coupled to Co

(F, red), that of the C-based benzene rings is mostly coupled antiferromagnetically (AF, blue) to Co. x-ray magnetic circular dichroic spectra acquired

for H 5 5 T and a 45u angle of photon incidence to the sample surface reveal a magnetic polarisation of the N p states of MnPc for (b) Co/MnPc(0.5 ML)

at T 5 300 K but not (c) Cu/MnPc(1.2 ML) even at T 5 8 K. This confirms that the z-DOS of N just above EF is spin-polarised. The slight energy

shift of the N edge onset when going from Cu to Co reflects an increase in chemisorption strength6.
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(criterion 2). Such spinterfaces utilize cheap, abundant materials that
can be straightforwardly deposited and will not degrade when pro-
cessed appropriately into devices26 even at typically large process
temperatures27 (criterion 3). Finally, with its spin-polarized molecu-
lar plane, this IspCS candidate elegantly mitigates9 the conductivity
mismatch problem28 associated with interfaces between metals and
semiconductors, which is promising toward satisfying criterion 5, at
the very least when considering a Pc OS. Indeed, the hybridization of
wavefunctions from the interfacial molecular plane of high P with
those of subsequent molecular layers away from the interface is
intrinsically favored. Furthermore, referring to Fig. 3, conductivity
is substantially lowered when going from Co to the Pc spinterface due
to a strongly attenuated spin # channel. These attributes of the Co/Pc
spinterface represent important pre-requisites toward a future room-
temperature demonstration of sizeable spin transport in the diffusive
regime.

In conclusion, using direct and inverse PE, we have explicitly
measured the interface contribution to the spin polarized DOS for
Pc monolayers on Co(001), the so-called spinterface. At room tem-
perature, the spinterface around the Fermi level is strongly domi-
nated by the majority channel, leading to a spin polarization P,80%.
Thus, our work on Co/Pc interfaces provides a direct proof of
the promise behind the spinterface concept, which was initially
described in terms of band-induced spinterface states (BISS)5,8. We
propose to extend this concept to include the additional spinterface
formation mechanism of surface-induced spinterface states (SISS).
SISS appear if the FM band of the dominant hybridisation mech-
anism is absent near EF in one spin channel. This criterion is for
example satisfied in the spin " channel by strong ferromagnets such
as Co or Ni. By combining BISS and SISS in separate spin channels,
the spintronic response of these spinterfaces is not only large but can
potentially be controlled through external stimuli. For example, due
to the adsorbed molecule’s lower symmetry, we find that rotating the
magnetisation by 90u shifts the SISS peak at EF by ,1 meV, leading
to a 10% change in P. Underscoring this effect is the spinterface’s
magnetic anisotropy, which can itself in principle be controlled using
an electric field (e.g. Ref. 29) so as to more substantially alter the
spinterface properties.

Finally, these spinterfaces constitute a strong candidate toward
satisfying the five criteria for an IspCS, so as to pervasively use the
electron spin, not simply in individual electronic components, but in
future electronics industrial designs. Indeed, the P amplitude that we
extract from spectroscopy experiments at RT and from theory is in
agreement with that inferred from low-temperature TMR experi-
ments across Co/Pc/Co nanojunctions. Thus, our results lay out a
materials strategy for TMR devices with sizeable TMR at RT, as a
stepping stone toward consequent spin transport in the diffusive
regime at RT. Beyond future Co/Pc-based spintronic demonstrators
based on the well-established tunneling mechanism of spin-polar-
ized transport, we are presently working to extend these spinterface-
induced IspCS concepts to memristive organic interfaces30,31, so as to
pave the way for robust organic multifunctional devices alongside
their inorganic counterparts32.

Methods
To prepare samples for x-ray absorption (XAS), spin-polarised photoemission
(SPARPES) and spin-polarised inverse photoemission (SPIPES) experiments, we
used a Cu(100) single crystal as substrate. It was cleaned by sputtering and annealing
at 900 K. MnPc and H2Pc were sublimated (P,1029 mbar, 1 monolayer (ML) 5

0.38 nm) so as to form ultrathin films on Cu(100) or on Co(100) layers epitaxially
grown on Cu(001). XAS were acquired (beamlines SIM at SLS and ID8 at ESRF) in
total electron yield mode (P , 2 3 10210 mbar) by reversing both the circular polarity
of the photons and the sign of the external magnetic field. XAS were measured at the
N K edge. The XMCD signal (ID8) was normalised to the height of the absorption
edge step. The incidence angle was ,45u to be sensitive to both in- and out-of-plane
orbitals. We affirm a successful subtraction of the Co L3,2 harmonics from the N K
edge XMCD. Indeed, the N K edge XMCD is of same sign as the remnant Co L3

harmonic. Since the Co L3 and L2 harmonics are necessarily of opposite sign, the
measured XMCD cannot arise from the Co L2 harmonic. Note that beamline ID8

exhibits a strong C absorption within the background spectrum that precluded XAS/
XMCD experiments at the C K edge.

SPARPES experiments were undertaken on the Cassiopee Beamline at
Synchrotron Soleil using photons at 20 and 100 eV and with the horizontal electric
field impinging upon the sample at 45u. Photoelectrons were then acquired along a
direction normal to the sample surface. The energy resolution is 130 meV.

SPIPES experiments were performed using a collimated and transversely polarised
electron beam with 25% polarisation, from a GaAs photocathode. The SPIPES spectra
are taken in the isochromatic mode by collecting photons at a fixed photon energy of
9.3 eV, while varying the incident-beam energy33. The energy of the incident
electrons was varied between 9 and 17 eV. Data were collected at room temperature
and at normal incidence. The energy resolution is 750 meV.

All density functional theory (DFT) calculations were carried by means of the
VASP package34 and the generalized gradient approximation for exchange-
correlation potential as parametrized by Perdew, Burke, and Ernzerhof35. We used the
projector augmented wave (PAW) pseudopotentials as provided by VASP36. The van
der Waals (vdW) weak interactions were computed within the so called GGA-D2
approach developed by Grimme37 and later implemented in the VASP package38. Our
formalism can correctly reproduce the experimentally determined atomic distances
between molecular sites and metallic sites. Fcc Co(001) and fcc Cu(001) surfaces were
modeled by using a supercell of 3 atomic monolayers of 8 3 8 atoms separated by a
vacuum region. The lattice vector perpendicular to the surface is 3 nm. This results in
a supercell of 249 atoms, including the 57 atoms of the MnPc molecule. Since
experiments used cobalt epitaxially grown on Cu, we used the fcc lattice parameter of
0.36 nm for both cobalt and copper. We have found that additional monolayers will
not change significantly the results39. A kinetic energy cutoff of 450 eV has been used
for the plane-wave basis set. For our study of a single molecule on metallic surfaces, we
used only the gamma point to sample the first Brillouin zone. DOS were calculated
using a 1 meV energy mesh and a Gaussian broadening of 20 meV full-width at half-
maximum. Spin-orbit coupling was included pertubatively in the augmentation
region at each atomic site.
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