
HAL Id: hal-01572836
https://hal.science/hal-01572836

Submitted on 8 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PyFAI, a versatile library for azimuthal regrouping
Jerome Kieffer, Dimitrios Karkoulis

To cite this version:
Jerome Kieffer, Dimitrios Karkoulis. PyFAI, a versatile library for azimuthal regrouping. 11th Inter-
national Conference on Synchrotron Radiation Instrumentation (SRI), Jul 2012, Lyon, France. 5 p.,
�10.1088/1742-6596/425/20/202012�. �hal-01572836�

https://hal.science/hal-01572836
https://hal.archives-ouvertes.fr


PyFAI, a versatile library for azimuthal regrouping

Jérôme Kieffer, Dimitrios Karkoulis

European Synchrotron Radiation Facility; 6 rue Jules Horowitz; 38043 Grenoble; France

E-mail: jerome.kieffer@esrf.fr

Abstract. 2D area detectors like ccd or pixel detectors have become popular in the last 15
years for diffraction experiments (e.g. for waxs, saxs, single crystal and powder diffraction
(xrpd)). These detectors have a large sensitive area of millions of pixels with high spatial
resolution. The software package pyFAI has been designed to reduce saxs, waxs and xrpd

images taken with those detectors into 1D curves (azimuthal integration) usable by other
software for in-depth analysis such as Rietveld refinement, or 2D images (a radial transformation
named caking). As a library, the aim of pyFAI is to be integrated into other tools like PyMca
or edna with a clean pythonic interface. However pyFAI features also command line tools for
batch processing, converting data into q-space (q being the momentum transfer) or 2θ-space (θ
being the Bragg angle) and a calibration graphical interface for optimizing the geometry of the
experiment using the Debye-Scherrer rings of a reference sample. PyFAI shares the geometry
definition of spd but can directly import geometries determined by the software fit2d. PyFAI
has been designed to work with any kind of detector and geometry (transmission or reflection)
and relies on FabIO, a library able to read more than 20 image formats produced by detectors
from 12 different manufacturers. During the transformation from cartesian space (x, y) to
polar space (2θ, χ), both local and total intensities are conserved in order to obtain accurate
quantitative results. Technical details on how this integration is implemented and how it has
been ported to native code and parallelized on graphic cards are discussed in this paper.

1. Introduction

With the advent of hyperspectral experiments like diffraction tomography in the world of
synchrotron radiation, existing software tools for azimuthal integration like fit2d[1] and spd[2]
reached their performance limits owing to the fast data rate needed by such experiments. Even
when integrated into massively parallel frameworks like edna[3], such stand-alone programs, due
to their monolithic nature, cannot keep the pace with the data flow of new detectors. Therefore
we decided to implemente from scratch a novel azimuthal integration tool which is designed to
take advantage of modern parallel hardware features.

2. Python Fast Azimuthal Integration

PyFAI is implemented in Python programming language, which is open source and already very
popular for scientific data analysis (PyMca[4], PyNX[5], . . . ).

2.1. Geometry and calibration

PyFAI and spd[2] share the same 6-parameter geometry definition: distance, point of normal
incidence (2 coordinates) and 3 rotations around the main axis; these parameters are saved
in text files usually with the .poni extension. The program pyFAI-calib helps calibrating the

11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012) IOP Publishing
Journal of Physics: Conference Series 425 (2013) 202012 doi:10.1088/1742-6596/425/20/202012

Published under licence by IOP Publishing Ltd 1



experimental setup using a constrained least squares optimization on the Debye-Scherrer rings
of a reference sample (LaB6, silver behenate, . . . ). Alternatively, geometries calibrated using
fit2d[1] can be imported into pyFAI, including geometric distortions (i.e. optical-fiber tapers
distortion) described as spline-files.

2.2. PyFAI executables

PyFAI was designed to be used by scientists needing a simple and effective tool for azimuthal
integration. Two command line programs pyFAI-waxs and pyFAI-saxs are provided with pyFAI
for performing the integration of one or more images. The waxs version outputs result in 2θ/I,
whereas the saxs version outputs result in q/I(/σ). Options for these programs are parameter
file (poni-file) describing the geometry and the mask file. They can also do some pre-processing
like dark-noise subtraction and flat-field correction (solid-angle correction is done by default).

2.3. Python library

PyFAI is first and foremost a library: a tool of the scientific toolbox built around IPython[6]
and NumPy[7] to perform data analysis either interactively or via scripts. Figure 1 shows an
interactive session where an integrator is created, and an image loaded and integrated before
being plotted.

Figure 1. Example of interactive use of FabIO and pyFAI in the notebook edition of IPython.

3. Regrouping mechanism

In pyFAI, regrouping is performed using a histogram-like algorithm. Each pixel of the image is
associated to its polar coordinates (2θ, χ) or (q, χ), then a pair of histograms versus 2θ (or q)
are built, one non weighted for measuring the number of pixels falling in each bin and another
weighted by pixel intensities (after dark-current subtraction, and corrections for flat-field, solid-
angle and polarization). The division of the weighted histogram by the number of pixels per bin
gives the diffraction pattern. 2D regrouping (called caking in fit2d) is obtained in the same
way using two-dimensional histograms over radial (2θ or q) and azimuthal angles (χ).

3.1. Pixel splitting algorithm

Powder diffraction patterns obtained by histogramming have a major weakness where pixel
statistics are low. A manifestation of this weakness becomes apparent in the 2D-regrouping
where most of the bins close to the beam-stop are not populated by any pixel. In Figure 2,

11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012) IOP Publishing
Journal of Physics: Conference Series 425 (2013) 202012 doi:10.1088/1742-6596/425/20/202012

2



many pixels are missing in the low 2θ region, due to the arbitrary discretization of the space
in pixels as intensities were assigned to each pixel center which does not reflect the physical
reality of the scattering experiment. PyFAI solves this problem by pixel splitting (Figure 3): in
addition to the pixel position, its spatial extension is calculated and each pixel is then split and
distributed over the corresponding bins, the intensity being considered as homogeneous within
a pixel and spread accordingly.

Figure 2. 2D-regrouped image without pixel
splitting. Note the missing pixels near the beam
stop and the high-frequency noise patterns.

Figure 3. 2D-regrouped image with pixel
splitting. The transformation of a smooth image
remains smooth.

3.2. Performances and migration to native code

Originally, regrouping was implemented using the histogram provided by NumPy[7], then re-
implemented in Cython[8] with pixel splitting to achieve a four-fold speed-up. The computation
time scales like O(N) with the size of the input image. The number of output bins shows only
little influence; overall the single threaded Cython implementation has been stated at 30 Mpix/s
(on a 3.4 GHz Intel core i7-2600).

3.3. Graphic card implementation

Graphics Processing Units (gpus) are composed of hundreds of arithmetic logic units; they
are optimized for highly parallel algorithms with speed-up factors reaching up to 3 orders of
magnitude over sequential codes running on Central Processing Units (cpu). While histograms
do not fall into this category, they can nevertheless be ported to a gpu architecture efficiently.
In order to benefit from gpu acceleration, the Open Computing Language[9] (OpenCL) was
used. OpenCL can make use of multiple different devices such as cpus and gpus with very
different features and capabilities. OpenCL allows the code to work on multiple cpu cores,
which is useful for validation purposes. As azimuthal integration is a reduction of millions
of pixels into hundreds of bins, double-precision arithmetic is preferred, which however is not
available on all OpenCL devices. Table 1 summarizes the execution times for images recorded on
various detectors on a dual-processor computer, either using 1) single threaded implementation
in Cython, 2) OpenCL on 12 cpu-cores, 3) OpenCL on a nVidia Tesla C2075 (448 gpu-cores),
4) OpenCL on a nVidia GTX580 (512 gpu-cores) and 5) OpenCL on an AMD FirePro v7800
(1440 gpu-cores but only in single precision).

The OpenCL implementation of pyFAI is very fast on gpu providing an extra five-fold speed-
up over the cpu implementation. The profiling of the code revealed new bottlenecks which will

11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012) IOP Publishing
Journal of Physics: Conference Series 425 (2013) 202012 doi:10.1088/1742-6596/425/20/202012

3



Table 1. Execution time in milliseconds measured on a Dell T7500 with two Intel Xeon X5690
@3.47GHz and various gpus.

Detector type Image size cpu X5690 OpenCL 1D regrouping
in Mpix 1D 2D X5690 C2075 GTX580 FirePro

Pilatus-1M 1 34.4 63.1 13.9 7.2 6.3 13.8
Half-Frelon 2 76.6 132.4 23.4 14.4 12.2 18.8
Frelon 4 165.0 269.4 52.6 34.1 28.2 40.0
Pilatus-6M 6 232.0 350.7 74.4 49.8 40.7 48.1
Fairchild 16 613.9 849.7 158.9 99.0 96.4 95.6

be addressed in future optimizations. The OpenCL implementation of the 2D regrouping will
also be finalized in a future release.

4. Conclusion

The library pyFAI was developed with two main goals:

• Performing azimuthal integration with a clean programming interface.

• No compromise on the quality of the results is accepted: a careful management of the
geometry and precise pixel splitting ensures total and local intensity preservation.

PyFAI is the first implementation of an azimuthal integration algorithm on a gpu as far as we
are aware of, and the stated twenty-fold speed up opens the door to a new kind of analysis,
not even considered before: a ten-line Python script is sufficient to reduce the data of a whole
diffraction-tomography experiment. Such analysis takes a few minutes using pyFAI on a 60 x
200 frames dataset whereas it used to take days with existing tools. We believe PyFAI is able
to sustain the data streams from the next generation high-speed detectors.

Acknowledgments

The authors would like to express their most sincere appreciation to their colleagues and
especially M. Sánchez del Ŕıo for suggesting the usage of weighted histograms; P. Bösecke for
the provision of the experiment geometry setup; V. A. Solé for his expertise on developing native
code under Windows and J. Wright for precise specifications and validations. Porting pyFAI to
gpu would have not been possible without the financial support of LinkSCEEM-2 (RI-261600).

Appendix

PyFAI is open-source software released under the GPL licence. As of July 2012, pyFAI version
0.6, which includes OpenCL acceleration, is available on the epn campus forge[10]. PyFAI
depends on Python v2.6 or v2.7, NumPy[7] and OpenCL[9]. In order to be able to read images
from various detectors, pyFAI relies on the FabIO[11] library available from SourceForge. In
addition, the graphical user interface for calibration of diffraction setups uses matplotlib[12],
SciPy[13], and FFTw3[14]. C, C++ compilers and Cython[8] are needed to build pyFAI from
sources. PyFAI is packaged and available in common Linux distributions like Debian 7.0 and
Ubuntu 12.04. Installer packages for Windows are also available on the epn campus forge.

References
[1] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Press. Res. 14

235–248
[2] Bösecke P 2007 J. Appl. Cryst. 40 s423–s427

11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012) IOP Publishing
Journal of Physics: Conference Series 425 (2013) 202012 doi:10.1088/1742-6596/425/20/202012

4



[3] Incardona M F, Bourenkov G P, Levik K, Pieritz R A, Popov A N and Svensson O 2009 J. Synchrotron Rad.

16 872–879
[4] Solé V, Papillon E, Cotte M, Walter P and Susini J 2007 Spectrochim. Acta Part B 62 63 – 68
[5] Favre-Nicolin V, Coraux J, Richard M I and Renevier H 2011 J. Appl. Cryst. 44 635–640
[6] Pérez F and Granger B E 2007 Comput. Sci. Eng. 9 21–29 URL http://ipython.org

[7] Oliphant T E 2007 Comput. Sci. Eng. 9 10–20
[8] Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn D and Smith K 2011 Comput. Sci. Eng. 13 31 –39
[9] Khronos OpenCL Working Group 2010 The OpenCL Specification, version 1.1 URL

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[10] Kieffer J et al. 2010– Azimuthal integration URL https://forge.epn-campus.eu/projects/azimuthal

[11] Sorensen H O, Knudsen E, Wright J, Kieffer J et al. 2007– FabIO: I/O library for images produced by 2D
X-ray detectors URL http://fable.sf.net/

[12] Hunter J D 2007 Comput. Sci. Eng. 9 90–95 ISSN 1521-9615
[13] Jones E, Oliphant T, Peterson P et al. 2001– SciPy: Open source scientific tools for Python URL

http://www.scipy.org/

[14] Frigo M and Johnson S G 2005 Proceedings of the IEEE 93 216–231

11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012) IOP Publishing
Journal of Physics: Conference Series 425 (2013) 202012 doi:10.1088/1742-6596/425/20/202012

5




