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Abstract: We report a multilens X-ray interferometer consisting of six 
parallel arrays of planar compound refractive lenses, each of which creates 
a diffraction limited beam under coherent illumination. Overlapping such 
coherent beams produces an interference pattern demonstrating 
substantially strong longitudinal functional dependence. The interference 
fringe pattern produced by multilens interferometer was described by 
Talbot imaging formalism. Theoretical analysis of the interference pattern 
formation was carried out and corresponding computer simulations were 
performed. The proposed multilens interferometer was experimentally 
tested at ID06 ESRF beamline in the X-ray energy range from 10 to 30 
keV. The experimentally recorded fractional Talbot images are in a good 
agreement with computer simulations. 

©2014 Optical Society of America 

OCIS codes: (030.0030) Coherence and statistical optics; (230.0230) Optical devices; 
(340.0340) X-ray optics. 
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1. Introduction 

Since their development, the use of X-ray refractive lenses has rapidly expanded to the extent 
that they are now widely used on synchrotron beamlines [1–6]. Being in-line optics, the 
compound refractive lenses offer a number of advantages, they are easy to align, stable and 
relatively insensitive to misorientations and mechanical vibrations. The use of tunable 
systems such as transfocators with a variable number of lenses, offers focal length tunability 
that drastically extends the applicability of refractive optics [7–9]. They can be adapted to 
very high X-ray energies by modifying composition and number of lenses, and furthermore, 
refractive optics can be easily inserted and removed from the beam to allow fast switching of 
the beam size from the micrometer to nanometer scale. 

The field of applications of refractive optics is not limited to beam conditioning, but can 
be extended into the area of Fourier optics, as well as coherent diffraction and imaging 
techniques [10,11]. Using the intrinsic property of the refractive lens as a Fourier transformer, 
the coherent diffraction microscopy and high resolution diffraction methods have been 
proposed to study 3-D structures of semiconductor crystals and mesoscopic materials [12–
15]. 

Another promising direction of refractive optics development is in-line X-ray 
interferometry. For example, a recently proposed bilens interferometer generated an 
interference field with a variable period ranging from tens of nanometres to tens of 
micrometers [16]. As an evolution of such systems, in this paper we propose a multilens 
interferometer in which more than two parallel lens arrays are arranged. The enlargement of 
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the interferometer acceptance gives rise to the increases the contrast of the interference 
pattern, and a narrowing of the interference fringes. 

The bilens system produces a steadily expanded sinusoidal interference field, while the 
multilens arrangement substantially changes the interference pattern by adding a strong 
longitudinal functional dependence. For simplicity we will describe the interference fringe 
pattern produced by the multilens interferometer using the Talbot imaging formalism [17]. It 
is known the object illuminated by a monochromatic plane wave can be self reproduced at 
Talbot distance 22 /

T
z d λ= , where d is grating period and λ is the wavelength of light. It was 

demonstrated that there is an infinite family of fractional Talbot images between the primary 
and secondary images [18–22]. The fractional Talbot distances are

pq T p qz z= , where p and 

q are integers, and p < q. However, the main set of distances is / 2n Tz z n= , where n = 1, 2,.... 

We emphasize that in the case of a multilens interferometer, the classical amplitude grid 
used in Talbot imaging is replaced by a collection of periodic line sources produced by linear 
lens arrays separated by the distance d. It is should be noted that the Talbot distance is 
measured from lens foci andthat these foci are reproduced in both the Talbot planes and 
fractional Talbot planes. 

The Talbot imaging approach was already applied at hard X-rays in which a single Fresnel 
diffraction image of a grating was obtained with a microfocus X-ray generator in reflection 
geometry. Fractional Talbot imaging of the phase grating at reduced defocusing distances 
were used for coherence characterization and phase modulation of the object, as well as 
grating interferometer for phase contrast imaging [23–26]. Recently, Talbot imaging was also 
used for electrochemical lithography of Ni under coherent X-ray irradiation [27]. 

As a proof of concept we designed and manufactured “hexalens” composed of six lens 
arrays. The interference pattern formation was studied theoretically and computer simulations 
were performed. The optical properties of the interferometer were studied experimentally in 
the X-ray energy range 10-30 keV. 

2. Sixlens interferometer design and manufacturing 

The schematic diagram of hexalens interferometer image is shown in Fig. 1 (a). It consists of 
six arrays of identical, parallel planar compound refractive lenses (CRL) separated 
transversally by a distance d. Each compound refractive lens focuses the beam at the distance 

( )01fz F F z= − , where 2F R Nδ=  is the lens focal length and z0 is the source-to-lens 

distance, R is the radius of curvature of one parabolic surface, N is the number of double 
concave elements in the CRL, δ is the decrement of complex refraction index 1  n iδ β= − + . 

Under coherent illumination each lens generates a coherent, diffraction limited focal spot of 

size 0.44f f effw z Aλ= , where λ is the wavelength and ( ) 1 20.66eff fA zλ δ β=  is the 

absorption limited effective aperture of the lens [1]. At a distance 3 /f effz z d A> from the focal 

plane, the cones diverging from all six secondary sources overlap resulting interference in this 
region. 

The hexalens interferometer was manufactured using a process involving electron beam 
lithography and deep etching into silicon [4, 6]. The length and aperture of each double 
concave individual lens are 62 and 30 μm respectively. Structures are 70 μm deep. The radius 
of the parabola apex is R = 3.75 μm, and the minimum thickness between the parabola apexes 
is 2 μm. The split distance between lens arrays in the interferometer is d = 30 μm. A new 
interferometer design was applied in order to reduce split distance and to eliminate inrefracted 
X-Rays which spoil the performance of the interference fringes at higher energies. 
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Fig. 1. (a) Schematic view of sixlens interferometer. (b) Scanning Electron Microscope image 
of the sixlens interferometers fabricated at the Si substrate. 

The novelty of the design is that the lens arrays in the interferometer are arranged in a 
chessboard pattern; differently i.e. the arrays are shifted relative to each other (staggered) by 
the distance equal to half length of the single lens. An additional advantage of such lens 
arrangement is the coincidence of the lens array separation period and lens physical aperture. 
A Scanning Electron Microscope image of the six-lens interferometer is shown in Fig. 1(b). 
With the aim to simplify the use of interferometers in the experiments where energy tunability 
is required, we manufactured five sets of the hexalens on the same Si chip. All interferometer 
sets have a fixed focal distance (F = 4 cm) for the chosen energy that was achieved by 
varying the numbers of individual lenses in each lens array. The chip covers a considerable 
X-ray energy range from 10 to 50 keV. To choose the desirable working energy, one can 
switch from one interferometer set to another by a parallel displacement of the chip in the 
vertical direction. Table 1 summarized the main parameters of the hexalens sets. 

Table 1. Parameters of sixlens interferometers 

Set 
number 

Energy, 
keV 

Number 
of lenses 

Lens length, 
μm 

Diffraction 
Limited 

Resolution, 
nm 

Effective 
aperture, μm 

1 10 10 618 190 13 
2 20 39 2416 87 17 

3 30 87 5392 63 21 
4 40 156 9670 55 23 
5 50 243 15064 53 23 

* Diffraction limited resolution calculated for single lens array in the interferometer 

3. Theory 

We have created a computer program to simulate the optical properties of X-ray multilens 
interferometers based on the general theory of X-ray phase contrast imaging [28]. The wave 
field of radiation from the point source at the distance z0 is described by 0exp( ) ( , )iKz P x z , 

where 

 ( )
2

1
2

1
, exp( ),

( )

x
P x z i

zi z
π

λλ
=  (1) 

is the Fresnel propagator which is a part of spherical wave in the paraxial approximation, K = 
2π/λ. Here λ is the wavelength, x is a transverse coordinate and z is the coordinate along the 
optical axis. The exponential term ( )exp iKz  can be omitted because it does not influence the 

intensity. 
Let us now consider the multilens interferometer, which consists of M arrays of CRLs 

separated by distance d. The length of the interferometer is much smaller than the distance to 
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the source. Therefore, to study its optical properties we treat the interferometer as a phase 
object which can be taken into account by the transmission function 

 ( ) ( )   ( [ ] ), T x exp iK i t xδ β= − −  (2) 

where t(x) is a variable thickness of the M-lens interferometer along the ray parallel to the 
optical axis. Here t(x) is the sum of the thickness of each CRL 

 ( )2 1
( ) / , ( ), 1, ...

2k k k

M
t x N x x R x d k k M

+= − = − =  (3) 

where N is a number of individual lenses in CRL, R is a curvature radius, xk is a position of 
the k-th lens center, M is a number of CRLs in the interferometer. 

A propagation of the wave through free space on the distance z1 between the 
interferometer and the detector is described by a convolution of the wave function and P(x, 
z1). The total expression can be transformed to a new form as a product P(x, zt) and a 
convolution of T(x) and P(x, zr), where 0 1 0 1   ,   /t r tz z z z z z z= + = . From this, a relative intensity 

is calculated as follows 

 
2

0 0 1 0 1 1 0 0( ) ( , ( ) ( , ) ( ),r tI x a x a x dx P x x z T x x x z z= = − =  (4) 

We note that if z0 is not large compared to z1 then the image sizes is increased compared to 
the object, however, all features of the image stay the same. 

The computer program based on these formulas allowed numerical simulation of the 
optical properties of the multilens interferometer for diverse parameters of the experimental 
setup. The finite size of the source was taken into account by a calculation of the convolution 
of the intensity for a point source and Gaussian with FWHM as S(z1/z0) where S is the source 
size. 

Nevertheless, the properties of multilens interferometer can be formulated without 
calculations complex described above. It is of interest to analyze the main features of the 
interference fringes analytically. It is known that the M-lens interferometer transforms the 
incoming parallel beam to M sets of divergent beams behind the focusing distance zf. We will 
assume symmetrical case where M is even. These focal lines are placed periodically in space 
along the axis x with the period d. Our goal is to determine the distances zn where rays from 
all sources come to the optical axis (x = 0) with the same phase or with a difference which is 
integer number of 2π. It is clear that the relative intensity will be increased from 1 to M 2 at 
such distances. One can calculate the ray path rk from k-th CRL to the optical axis at the 
distance z from the sources and consider a difference of ray paths for the arbitrary k and j 
sources. The result is 

 
2

(0) 1
( )

2 2k j k j

d k j M
r r r k j

z

 + +  − = = − −    
 (5) 

Since k, j, M are integer and M is even the expression in the square brackets is also 
integer. Indeed, if (k – j) is odd then (k + j) is odd too and the expression in the second round 
bracket is integer. If (k – j) is even then the expression in the round bracket is semi-integer but 
it is multiplied by even integer. 

Thus the condition for constructive interference of the secondary sources produced by M 
CRLs of the interferometer can be written as  2d z nλ=  where n is arbitrary integer number. 

Distance 22 /Tz d λ=  is a Talbot distance where the set of M periodic line sources are 

reproduced. Halfway through the picture, a secondary Talbot image is formed which is 
shifted vertically from the primary image by half a period. At distances 2

 / (   2)n Td nz z nλ= =  
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between primary and secondary Talbot images the shrunken fractional Talbot images can be 
observed. 

The next step is to calculate the period of the interference fringes. We repeat the 
calculations for all x coordinates and obtain the result for the distances zn as follows 

 (0) (0)( ) ( )k j k j k j
n

xd x
r r r k j r n k j

z d
λ− = − − = − −  (6) 

This expression shows that the period of interference fringes is Λ = d/n. The case where M 
= 2 is special because the expression in the square brackets of Eq. (5) is equal to zero, 
therefore the high contrast, sharp interference pattern exist at any distance. Correspondingly, 
the period depends directly on the distance and is equal to Λ = λz/d. 

Let us now estimate the width wt of the interference fringe maximum across the beam. We 
will assume that the distance z is sufficiently large and all CRLs can interfere. In this case we 
can replace each secondary source by the real point source which is described by the function 

P(x, z). Then, intensity can be written as ( ) 1
( , ) ( , )fI x z z K x zλ −= . Initially the function Kf 

(x,z) is a sum of M and a double sum of cosines of complex argument which contains the 
coordinates of all CRLs. The double sum can be reordered to a more suitable expression 
which can be simplified significantly in the case of z = zn. 

We omit the calculations and present the result 

 
1

1

( , ) 2 ( ) cos 2 ,
M

f n
m

m d
K x z M M m x

n
π

−

=

 = + − Λ = Λ 
  (7) 

We note that this expression is valid for the finite M secondary sources produced by the 
interferometer, while the Talbot effect is applicable for the infinite periodic system. The 
period of the fringes does not depend on M; whereas the fringe intensity of the interference 
pattern is determined by M. For x = 0 we have Kf (0,zn) = M 2, at the same time a mean value 
of the fringe intensity averaged over the fringe period is equal to M. 

To estimate a peak width we note that a numerical calculation of Kf (x,zn) shows that for 
large M it is a peak which can be described approximately by a 
Gaussian: ( ) 2 2( )fK x M exp xα≈ − . We can calculate the parameter α from the first term of the 

expansion of (7) in power series. As a result we have 

 
2 2

1/ 2 2 1/ 2

2 1 1.665 0.918
,

12 ( 1)t

M
w

M

πα
α

− = = = Λ Λ − 
 (8) 

One can see that for the bilens interferometer of M = 2 we have wt = 0.52Λ whereas wt = 
0.92Λ/M for large values of M. 

To estimate a peak depth we can put x = 0 and consider ( )  1  /nz z s n= + . Considering the 

general expression in this particular case, and making a replacement of this variable one can 
obtain 

 
( 1)/21

1
1 ( 1)/ 2

(0, ) 2 cos(2 )
M mM

f
m l M m

K s M mlsπ
− −−

= =− − −

= +    (9) 

Now we apply the same procedure as above and expand the function over s. The first two 
terms of expansion are 

 
2 2 2( 1)/21

2 2 2 2
1

1 ( 1)/ 2

( 1)( 4)
(0, ) (2 ) ,

720

M mM

f
m l M m

M M M
K s M s C C m lπ

− −−

= =− − −

− −= − = =   (10) 

The calculation is cumbersome, but a physical meaning is evident because C must be 
equal to zero for M = 0, 1, 2. 
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Now it is easy to calculate wl as follows 

 
2 22

2 2

7.111
8.438 ,s t

l

d w w
w

M M λλ λ
Λ= ≈ ≈  (11) 

where ws is FWHM for the function (10). We note that the relation between wl and wt is very 
similar to the same relation for the focus spot and differs only by numerical coefficient 8.438 
instead of 7.850. This is further evidence that the fractional Talbot effect is focusing. 

4. Experimental results 

The experimental tests of the sixlens interferometer were carried out at the Micro Optics Test 
Bench (MOTB) of the ID06 ESRF beamline. A liquid nitrogen cooled Si-111 double crystal, 
fixed exit monochromator was used to adjust the X-ray energy in the range from 10 keV to 30 
keV. The Si sixlens system was mounted at the stage with all necessary rotation and 
translation movements at a distance z0 = 56 m from the source [see Fig. 1(a)]. Interference 
patterns were recorded with a high resolution x-ray CCD camera with a spatial resolution 
about 1.3 μm (0.65 μm pixel size). The typical exposure time was 2 seconds during a 7/8 
beam bunch mode (200 mA current). 

As it was mentioned earlier, the foci of the six lens arrays in the interferometer form a 
periodic structure and therefore the foci are reproduced at the Talbot distances and are 
reproduced with a different scale in the fractional Talbot distances. Considering the 
parameters of hexalens it can be easily estimated that for 12 keV X-rays, the Talbot distance 
zT is in the order of 18 m. Taking into account the beamline characteristics (energy range, 
length) and CCD spatial resolution, the interference fringes were observed at the fractional 
Talbot distances zn. Therefore the CCD was always placed at distance 1 f nz z z= + . The quality 

of the fringes produced by a multilens system can be described quantitatively using the 
visibility ( ) ( )max min max minV I I I I= − + , where Imax and Imin are the irradiances corresponding 

to the maximum and nearby minimum in the fringe system, respectively. 
To characterize the interferometer at 12 keV, the fractional 1/6 Talbot distance which 

corresponds to zn = 3 m was chosen. The observed interference pattern and intensity variation 
obtained for the line through the center of the fringe pattern are shown in Fig. 2. The 
measured fringe spacing was Λ = 10.3 μm, which is in very good agreement with the 
calculations: the measured FWHM of the fringe maximum is 3 μm, while according to the 
calculations it should be around of 1.7 μm. The broadening of the measured fringe width is 
because of the finite size of the source. The source size was measured by a B-fiber 
interferometry technique [29], which during the interferometer tests was in the order of 45 
microns. The measured fringe visibility was approximates 73%, while the theoretical contrast 
was around 88%. Let us introduce the spatial coherence length described as 0 /cohl z Sλ= , 

where S is the source size. For the 45 μm source size at 54 m from the source it is in the order 
of 130 μm. The width of the interferometer is 180 μm; therefore we cannot exclude the 
influence of the partially coherent illumination that reduces the contrast of the fringe pattern. 
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Fig. 2. (a) An interference pattern generated by a hexalens, recorded with 12 keV X-rays. (b) 
The intensity variation obtained for the line though the centre of the fringe pattern. The 
contrast visibility is approximately 71%. (c) The comparison of the intensity variations of the 
interference pattern experimentally measured and calculated one. 

Let us estimate the stability of the interference pattern in terms of depth of field. Similar 
to the criteria for refractive lenses depth of focus [30], we define the interferometer depth of 
field as a range of distances along the optical axis trough which the lateral size of interference 
fringe (FWHM) is less than √2 of its value at the exact Talbot imaging distance. For this we 
placed the hexalens at the distance zn = 3.06 m and then we scanned it along the optical axis 
in the interval ± 100 mm with 1 mm step around exact position. At each position the 
interference pattern was registered and the lateral size of the interference fringe was measured 
together with the contrast. Regarding the criteria expressed above a depth of field in the order 
of 80 mm was obtained which is in a very good agreement with calculations. It should be 
noted that within these depth of field the fringe contrast was reduced in the order of 20%. For 
practical applicability of the interferometer the large depth of field is very important. 

The sixlens interferometer was tested with 24 keV X-rays and the interference pattern was 
registered at the fractional 1/12 Talbot distance which is zn = 3 m. Experimentally measured 
fringe spacing of the recorded interference pattern was 6.3 μm and FWHM of the fringe 
maximum was 2.7 μm. The measured contrast was around 40%, which 30% lower than was 
expected from the calculations. We would like to note that the spatial coherence length at 24 
keV is in the order of 70 μm. This means that only 3 lens arrays are illuminated coherently, 
which leads to the broadening of the interference fringes and decreasing of the fringe 
visibility. 
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Fig. 3. (a) Scanning Electron Microscopy image of bilens and sixlens interferometers and (b) 
comparison of the fringe patterns produced by bilens and sixlens interferometers. 

To demonstrate the narrowing of the interference fringe maximum in the case of the 
hexalens, the interference pattern produced by a bilens interferometer was recorded under 
identical experimental conditions: X-ray energy was 12 keV and distance zn = 3 m. The bilens 
interferometer consists of two lens arrays with the separation period of 30 μm. The measured 
fringe spacing (peak-to-peak distance) of the bilens interference pattern was Λ = 10.3 μm. 
The comparison of the intensity variation through the center of the fringe pattern for the 
bilens and sixlens interferometers is shown in Fig. 3. The measured FWHM of fringe maxima 
for the bilens interferometer is 5.2 μm, as for the sixlens interferometer it is 3 μm. The results 
show a narrowing of the interference fringes but not as much as expected. As discussed 
above, the reason for this is a finite source size and partial coherent illumination. It is clearly 
seen that the contrast of the fringes produced by sixlens interferometer is superior to the 
fringe contrast of the bilens. 

Hexalens was also experimentally tested with the point secondary source produced by Si 
planar refractive lens. The sketch of the experimental setup is shown in Fig. 4. The lens 
consisted of 26 individual lenses with radius of parabola apex of 6.25 μm and aperture 50 μm. 
The Si lens was located at z01 = 55 m from the source. At energy E = 12 keV it has a focal 
distance zf1 = 3.5 cm. The interferometer was placed at the distance z0 = 550 mm from the 
secondary source. In the case where incident radiation comes from a point source at a finite 
distance z0, the spherical wave approximation has to be considered. It is readily shown that the 
fractional Talbot image will be magnified by a factor 0 0( )n fz z z z+ +  and interference 

occurs at the distance zn given by: 
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A high order fractional 1/40 Talbot image was registered at the distance z20 = 3.8 m from 
the lens array foci, with a magnification factor of around 7. The measured fringe spacing is 
11.5 μm and FWHM of the interference fringe maximum is 3.1 μm [Figs. 4(b) and 4(c)]. The 
measured visibility of the interference pattern is 91.5%, which corresponds to the secondary 
source size in the order of 220 nm. It should be mentioned that for the plane wave 
illumination, the 1/40 fractional Talbot image can be registered at 45 cm distance from the 
lens focal lines. The period of the fringe pattern is 1.5 μm and the FWHM of the fringe 
maximum is 0.25 μm which beyond the resolution of current CCD with scintillation screen 
based X-Ray detectors. 
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Fig. 4. (a) Experimental set-up fort the hexalens test with the point secondary source produced 
by a Si planar refractive lens. (b) An interference pattern generated by a hexalens, recorded at a 
1 Å wavelength. (c) The intensity variation obtained for the line though the centre of the fringe 
pattern. 

4. Conclusion 

A hexalens was designed and manufactured for hard X-rays. The lens arrays in the 
interferometer were arranged in a “chessboard” pattern such that the CRL arrays are shifted 
relative to each other by the distance equal to half length of the individual single lens. The 
new design allows us to overcome problems of the transmission of higher energies between 
lens arrays. Although all sets were designed for the X-ray energy range from 10 to 50 keV, in 
reality the energy diapason can be significantly extended from few keV up to 100 keV by 
changing the nominal focal distance. The hexalens was studied at the energy range from 10 to 
30 keV. The interference fringe images were recorded at different fractional Talbot distances. 
Narrowing of the interference fringe width produced by hexalens was confirmed 
experimentally through comparison with a bilens system. The enhancement of the fringe 
contrast was observed as well. The depth of field was studied and it is shown that it changed 
with the fraction of Talbot distance. Even at fractional 1/40 Talbot distance, the depth of field 
for the hexalens is more than 10 times greater compared to a Si nanolens with the same focal 
spot dimension. More than 90% interference fringe contrast was produced by the multilens 
interferometer under point source illumination. This gives us a hope that the hexalens 
interferometer structures are very good quality and do not exhibit a diffuse scattering at all. 
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Fig. 5. Calculated interference pattern generated by sixlens interferometer for 10 μm source 
size at 30 keV X-rays. 

For efficient use of the proposed sixlens interferometer it makes sense to address the 
question of the minimum period and fringe width of the interference pattern. Using the 
computer program developed here let us calculate the fringe pattern recorded at 12nz = cm 

fractional Talbot distance. The calculations were performed for 30 keV X-rays and the source 
size was chosen 10 microns. The resulting interference pattern is depicted in Fig. 5. The 
periodicity of the pattern is 150 nm, fringe width (FWHM) is 30 nm, and visibility is close to 
100%. 

This simple way to create an X-ray standing wave in paraxial geometry opens up the 
opportunity to develop new X-ray interferometry techniques to study natural and advanced 
man-made nanoscale materials, such as self-organised biosystems, photonic and colloidal 
crystals, and nanoelectronics materials. As a classical interferometer it can be used for phase 
contrast imaging and radiography. Finally it can be useful for the coherence characterization 
of the X-rays sources and free electron lasers. It should be noted that the proposed 
interferometer can be applied for electrochemical X-ray photolithography resulting in a direct 
non-contact pattern transfer onto an electrodeposited metal film [27]. Nanometer scale 
interference fringe pattern in combination with the short lifetime of radiolysis products and 
with a small spur radii and electron inelastic mean free paths in condensed matter will provide 
a possible means to rapidly improve the ultimate resolution of the proposed method to tens of 
nanometres (Talbot assisted lithography). 

The same technology can be easily transferred to produce a multilens interferometer with 
an aperture up to 1mm that is comparable with the beam size at the ESRF undulator 
beamlines. 
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