
HAL Id: hal-01572624
https://hal.science/hal-01572624v2

Submitted on 30 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rearrangement Moves on Rooted Phylogenetic
Networks

Philippe Gambette, Leo van Iersel, Mark Jones, Manuel Lafond, Fabio Pardi,
Celine Scornavacca

To cite this version:
Philippe Gambette, Leo van Iersel, Mark Jones, Manuel Lafond, Fabio Pardi, et al.. Rearrangement
Moves on Rooted Phylogenetic Networks. PLoS Computational Biology, 2017, 13 (8), pp.e1005611.
�10.1371/journal.pcbi.1005611�. �hal-01572624v2�

https://hal.science/hal-01572624v2
https://hal.archives-ouvertes.fr

Rearrangement Moves on Rooted Phylogenetic Networks

Philippe Gambette1, Leo van Iersel2, Mark Jones2, Manuel Lafond4, Fabio Pardi *,3,5,
Celine Scornavacca5,6

1 Laboratoire d’Informatique Gaspard-Monge (LIGM), Université Paris-Est, CNRS,
ENPC, ESIEE Paris, UPEM, F-77454, Marne-la-Vallée, France
2 Delft Institute of Applied Mathematics, Delft University of Technology – Postbus
5031, 2628 CD Delft - The Netherlands
3 Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
(LIRMM), Université de Montpellier, CNRS – 34095 Montpellier Cedex 5 - France
4 Department of Mathematics and Statistics, University of Ottawa – K1N 6N5 Ottawa -
Canada
5 Institut de Biologie Computationnelle (IBC), 34095 Montpellier - France
6 Institut des Sciences de l’Evolution (ISE-M), Université de Montpellier, CNRS, IRD,
EPHE – 34095 Montpellier Cedex 5 - France

* pardi@lirmm.fr

Abstract

Phylogenetic tree reconstruction is usually done by local search heuristics that explore
the space of the possible tree topologies via simple rearrangements of their structure.
Tree rearrangement heuristics have been used in combination with practically all
optimization criteria in use, from maximum likelihood and parsimony to distance-based
principles, and in a Bayesian context. Their basic components are rearrangement moves
that specify all possible ways of generating alternative phylogenies from a given one,
and whose fundamental property is to be able to transform, by repeated application,
any phylogeny into any other phylogeny. Despite their long tradition in tree-based
phylogenetics, very little research has gone into studying similar rearrangement
operations for phylogenetic networks — that is, phylogenies explicitly representing
scenarios that include reticulate events such as hybridization, horizontal gene transfer,
population admixture, and recombination. To fill this gap, we propose “horizontal”
moves that ensure that every network of a certain complexity can be reached from any
other network of the same complexity, and “vertical” moves that ensure reachability
between networks of different complexities. When applied to phylogenetic trees, our
horizontal moves — named rNNI and rSPR — reduce to the best-known moves on
rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and
regrafting. Besides a number of reachability results — separating the contributions of
horizontal and vertical moves — we prove that rNNI moves are local versions of rSPR
moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses
on the most biologically meaningful versions of phylogenetic networks, where edges are
oriented and reticulation events clearly identified. Moreover, our rearrangement moves
are robust to the fact that networks with higher complexity usually allow a better fit
with the data. Our goal is to provide a solid basis for practical phylogenetic network
reconstruction.

PLOS 1/32

Author Summary

Phylogenetic networks are used to represent reticulate evolution, that is, cases in which
the tree-of-life metaphor for evolution breaks down, because some of its branches have
merged at one or several points in the past. This may occur, for example, when some
organisms in the phylogeny are hybrids. In this paper, we deal with an elementary
question for the reconstruction of phylogenetic networks: how to explore the space of all
possible networks. The fundamental component for this is the set of operations that
should be employed to generate alternative hypotheses for what happened in the past –
which serve as basic blocks for optimization techniques such as hill-climbing. Although
these approaches have a long tradition in classic tree-based phylogenetics, their
application to networks that explicitly represent reticulate evolution is relatively
unexplored. This paper provides the fundamental definitions and theoretical results for
subsequent work in practical methods for phylogenetic network reconstruction: we
subdivide networks into layers, according to a generally-accepted measure of their
complexity, and provide operations that allow both to fully explore each layer, and to
move across different layers. These operations constitute natural generalizations of
well-known operations for the exploration of the space of phylogenetic trees, the lowest
layer in the hierarchy described above.

Introduction

A recent trend in evolutionary biology is the growing appreciation of reticulate
evolution — which occurs when the history of a set of taxa (e.g., species, populations or
genes) cannot be accurately represented as a phylogenetic tree [1, 2], because of events
causing inheritance from more than one ancestor. There is a wide variety of reticulate
events in nature, for example: hybrid speciation [3–5], population admixture [6–8]
horizontal gene transfer [9–11] and genomic recombination [12–14]. These phenomena
are often of interest to different communities of researchers (e.g., in plant biology,
population genetics, microbiology, epidemiology), meaning that different approaches and
terminologies are in use in these fields.

However, the different approaches to studying reticulate evolution share the same
ambition: to represent evolutionary history explicitly, with phylogenetic networks. These
are simple generalizations of phylogenetic trees, where some nodes — named
reticulations — are allowed to have multiple direct ancestors [15, 16]. See Fig. 1 for two
examples of phylogenetic networks, with 3 reticulations each, showing the putative
relationships among modern humans and their closest relatives. Networks such as those
in Fig. 1 are sometimes referred to as “explicit” to distinguish them from other,
“data-display”, networks that are not used to represent any particular scenario, but
rather to graphically display conflicting phylogenetic signals in the data [15, 16]. (As an
example of the latter, see the networks produced by the popular program
Neighbor-net [17]). In this paper, we focus on the former type of networks, like those in
Fig. 1.

Although methods to infer phylogenetic networks are by necessity context-dependent
— e.g., gene tree vs. species tree comparisons to study horizontal gene transfers [18],
analyses of gene tree frequencies to study inter-specific hybridizations [19,20], and
analyses of SNP allele frequencies to study population admixture [6, 7] — in this paper
we examine a component that should be central to all network inference methods: the
basic moves that an algorithm should use to explore alternative reticulate scenarios.
Given a network such as the one on the left in Fig. 1, these moves allow one to generate
and evaluate many alternative hypotheses, such as the one on the right in Fig. 1. If a

PLOS 2/32

Fig 1. Phylogenetic network showing hypothetical evolutionary scenarios relating
modern human populations and their closest relatives. On the left, a slightly simplified
version of an admixture graph from a recent publication on human diversity [8]. On the
right, an alternative scenario obtained by applying one of the rearrangement moves that
we define here (an rNNI), which essentially swaps the order of the two events
immediately ancestral to the Denisovans. S.Afr.: Sub-Saharan Africans, W.Eur.: West
Eurasians, E.Asi.: Eastern Asians, Aus.: Australasians, Nea.: Neanderthals, Den.:
Denisovans.

network improving the fit with the data is encountered, then the search continues from
that network, and is carried on until no more improvements are possible — that is, until
a local optimum is reached.

These ideas are the natural transposition to phylogenetic networks of what is
routinely done for phlogenetic trees, whose reconstruction relies heavily on local search
heuristics that explore the space of the possible tree topologies by means of simple
rearrangements of their structure. These heuristics have an impressively long tradition
(they started appearing in the 1960s [21]) and they have been used in combination with
practically all optimization criteria in use, from maximum parsimony and likelihood, to
distance-based principles [22,23]. The best known tree rearrangements are nearest
neighbor interchange (NNI) and subtree pruning and regrafting (SPR). Despite their
long history in phylogenetics, the application of topological rearrangement moves within
network reconstruction software is very recent (e.g., [24]) and the first
mathematically-grounded reflections on how to define these moves to ensure desirable
properties are even more recent [25,26].

In this context, one important difference between trees and networks is that
networks can have varying levels of reticulate complexity. In the next section, we will see
that this term can be formally defined in several equivalent ways — for example, as the
number of reticulations in the network. Intuitively, it can be seen as the equivalent of
the number of parameters in a statistical model, or as a measure of the explanatory

PLOS 3/32

power of the set of networks of that level of complexity: higher complexity — that is,
being able to hypothesize more reticulate events — generally allows a better fit with the
data [27]. Although alternative measures of network complexity exist (e.g., the level of a
network, see also the Discussion section), the approach we adopt here is consistent with
most approaches to measure model complexity in networks [28, 29]. Interestingly, unless
a limit is imposed on reticulate complexity, there exist an infinite number of different
networks describing the evolution leading to a given set of sampled taxa, unlike for
phylogenetic trees.

Because comparing optimization scores across networks with different complexities
may be problematic, in this paper we make a clear distinction between “horizontal”
rearrangement moves, which enable the exploration of a “layer” of networks having a
fixed reticulate complexity, and “vertical” moves, which allow a change of reticulate
complexity, that is, a jump across layers. We will focus on the former, and provide
natural definitions of rearrangement moves that generalize the well-known NNI and
SPR moves for phylogenetic trees. As we shall show, these moves transform a network
of a given reticulate complexity into another network of the same reticulate complexity,
and they guarantee that every network of a given complexity is reachable from every
other network of the same complexity, within a finite number of moves. Reachability
between any two points of a search space is the fundamental property of any
rearrangement move that can serve as basis for a search heuristic (see, e.g., the seminal
paper on NNI for trees [30]).

The importance of distinguishing between horizontal and vertical moves lies in the
fact that if moves are allowed to change the reticulate complexity of a network, then a
sequence of moves transforming one network N into another network N ′ may have to
pass via networks of lower or higher complexity than both N and N ′. This is not
optimal: Lower complexity usually implies a lower fit with the data, so if every path
from N to N ′ has to pass via networks of lower complexity than both, then even
assuming that N ′ fits the data better than N , the search may get stuck before reaching
N ′. (Fig. 2, discussed below, shows an example of this for a type of move recently
proposed.) Similarly, if every path from N to N ′ contains networks of higher complexity
than both, and thus probably of higher fit with the data, it is very hard for a search
starting in N to ever consider N ′, as once it moves at a higher complexity, the search
will likely stay there. A possible way to deal with these problems is to include in the
optimization criterion a regularization term penalizing networks of higher
complexity [28,29].

Fig 2. Two networks such that any sequence of rooted LST moves transforming one
into the other goes through a tree. LST moves are defined as in Huber et al. [25]. Note
that a tree is a less complex model than either of these networks. The rearrangement
moves proposed here (rNNI, see below) can transform each of these networks directly
into the other (see third line in Fig. 8, with γ = c and δ = b).

Two works similar in spirit to the present one have appeared recently [25,26]. The
first of these [25] focuses on level-1 networks (defined in the next section), which are a
relatively narrow class of networks, not including, for example, the networks in Fig. 1.
The local subnetwork transfer (LST) moves introduced in that paper include both a

PLOS 4/32

horizontal and a vertical component, and the results proving the reachability between
any two level-1 networks do not distinguish between these components, meaning that
any sequence of LST moves transforming a network N into another network N ′ with
the same reticulate complexity may have to go through networks of lower (or higher)
reticulate complexity. This is precisely what happens for the two networks in Fig. 2,
where to transform one into the other, the LST moves must pass via a tree. As we
explained above, we believe that this is not desirable, because in many realistic
scenarios, trees will have a lower fit with the data than either network.

The second paper [26], while it does consider horizontal and vertical moves
separately, only focuses on a class of phylogenetic networks that are (a) unrooted, and
(b) such that it is impossible to identify the nodes that represent reticulation events.
(We note that a does not imply b: a definition of unrooted phylogenetic networks in
which reticulations are well-determined is recently given by Soĺıs-Lemus and Ané [20].)
Rather than representing reticulate evolution explicitly, these networks should be seen
as abstract ways to depict evolutionary relationships or, alternatively, as data-display
networks. Nevertheless, that paper provides a reachability result between unrooted
networks, on which we will rely for some of our proofs.

The rearrangement moves that we define here are named rNNI and rSPR, where the
initial “r” denotes the fact that they are defined for rooted, directed phylogenetic
networks such as the ones in Fig. 1, which are the most intuitive way to represent
reticulate evolutionary scenarios explicitly.

The paper is organized as follows: After introducing the necessary mathematical
background (in Methods: mathematical preliminaries), we give our definition of rNNI
moves for networks (generalizing NNI on trees), and prove that any two networks of
equal reticulate complexity are mutually reachable by applying rNNI moves (in rNNI
moves on rooted binary networks). Next, we define rSPR moves for networks
(generalizing SPR on trees), and prove that rNNI moves can be seen as “local” rSPR
moves (in rNNI moves as local rSPR moves). Because of this, reachability trivially
extends to rSPR moves. Then, we study properties of the rNNI neighborhood of a
network N — that is, the set of networks that can be obtained from N with just one
rNNI move — giving a simple bound on its size (in Studying the size of the rNNI
neighborhood). Finally, we discuss vertical moves and show that the properties they
must have to ensure reachability between any pair of networks (of any complexity) are
very minimal (in Changing the network complexity). We conclude with a discussion on
the relevance of the results obtained to practical search heuristics for phylogenetic
network inference (Discussion).

PLOS 5/32

Methods: mathematical preliminaries

A graph is directed when its edges, called arcs, are directed. An arc starting in u and
ending at v is denoted by uv; u is called the tail and v the head of uv. We also call u a
parent of v, and v a child of u. The degree, indegree and outdegree of a vertex v are the
number of arcs incident to v, ending at v and starting at v, respectively (i.e., in a
directed graph, the degree is the sum of indegree and outdegree). A directed path
from s to t is called an s-t path, and is said to be nonelementary if it contains at least
one vertex other than s and t. A directed graph is acyclic if it contains no directed
cycle, that is, no directed path from a vertex to itself. An undirected graph is connected
if there is a path between every pair of vertices.

Let X be a set of taxa. A rooted (phylogenetic) network on X is a directed acyclic
graph with only one indegree-0 vertex, called its root, and whose set of outdegree-0
vertices, its leaves, is X. An unrooted (phylogenetic) network on X is any connected
undirected graph whose set of degree-1 vertices is X. Given a rooted phylogenetic
network N , the underlying unrooted network of N is the unrooted network obtained
from N by replacing each arc uv in N by an undirected edge {u, v}. A phylogenetic
network N is a (phylogenetic) tree if N , or the underlying unrooted network of N , does
not contain any cycles. A phylogenetic network N is level-1 if its simple cycles, or those
of its underlying unrooted network, are pairwise disjoint.

A network is binary if any of its vertices has either degree 1 or 3. In the case of
binary rooted networks, we also require that the root has outdegree 1. This implies that
in a binary rooted network all degree-3 vertices either have indegree 1 and outdegree 2 —
the bifurcations — or indegree 2 and outdegree 1 — the reticulations. Unless otherwise
stated, the rooted networks we consider here do not have parallel arcs, that is, they are
not allowed to contain more than one arc of the form uv. Note that for a binary rooted
network on X with root ρ, its underlying unrooted network is on X ∪ {ρ}.

An arc removal in a binary rooted network N is the operation of removing from N
an arc uv, where u is a bifurcation and v is a reticulation, followed by the replacement
of u with a new arc connecting the parent of u with the only remaining child of u, and
finally by the replacement of v with a new arc connecting the only remaining parent of
v with the child of v. See Fig. 3 for an illustration of this operation.

Fig 3. An arc removal.

We will use repeated arc removals to measure the reticulate complexity of a network
(see Proposition 1 below). Note that although this operation can produce directed
acyclic graphs with parallel arcs, this is temporary: an additional arc removal applied to
one of the two copies of the arc produces a binary rooted network without parallel arcs.

Let uv again be an arc connecting a bifurcation u to a reticulation v in a binary
rooted network N . Moreover, suppose that N contains no nonelementary u-v path. An
arc flip consists of replacing such an arc uv by the arc vu. Note that an arc flip
transforms a binary rooted network into another binary rooted network.

As discussed in the introduction, the rearrangement moves that we define in this

PLOS 6/32

paper allow us to explore the space of networks of a fixed reticulate complexity. The
following proposition shows that there are several equivalent ways to define the same
measure of reticulate complexity.

Proposition 1. Let N1 and N2 be two binary rooted networks on X. Then the
following propositions are equivalent:

1. N1 and N2 have the same number of reticulations r.

2. N1 and N2 have the same number of vertices n.

3. N1 and N2 have the same number of arcs m.

4. N1 and N2 require the same number of arc removals to be turned into a rooted
phylogenetic tree.

Proof. (1⇔ 2) In order to prove the equivalence between 1 and 2, we show that for any
binary rooted network on X the following equation holds:

n = 2(r + |X|).

Let v be the number of bifurcations and let I (resp. O) be the sum of indegrees (resp.
outdegrees) of the vertices of N . We have I = v + 2r + |X| and O = 1 + 2v + r (here 1
is for the root). Because I = O, we have v + 2r + |X| = 1 + 2v + r, which implies
v = r + |X| − 1. Now substitute this in n = 1 + v + r + |X| (which expresses the total
number of vertices) to obtain the equation above.

(1⇔ 3) Note that the number of arcs in a network is equal to the sum of the
indegrees (or outdegrees) of its vertices, which we have already derived above. By
substituting the expression above for v in that for I (or O), we obtain:

m = 3r + 2|X| − 1,

which shows that two networks on X have the same number of reticulations if and only
if they have the same number of arcs.

(1⇔ 4) We show that any binary rooted network N requires exactly r arc removals
to be turned into a tree. If N is not a tree, then it must contain a reticulation v such
that none of its parents is a reticulation. Then any arc entering v can be removed,
which reduces the number of reticulations in N by one. Thus the number of arc
removals that are necessary to turn N into a tree is r.

Note that in the statistical settings where a network is seen as a probabilistic model,
the number of parameters can usually be expressed as a function of the measures above:
for example if there is one parameter per arc (usually a branch length) and one
parameter per reticulation (e.g., [28]), we have a total of m+ r parameters. In cases
such as this one, two networks on the same set of taxa require the same number of
parameters if and only if they have the same reticulate complexity.

Our proofs will rely on previous work by Huber and collaborators [26] on NNI moves
for unrooted binary networks, defined as follows: Given an unrooted binary network N
and four distinct vertices (s, u, v, t) in N such that there exists a path p = (s, u, v, t)
and neither {s, v} nor {u, t} are edges of N , the NNI move on (s, u, v, t) consists in
replacing p with the path (s, v, u, t). In particular we will use the following result.

Theorem 1 ([26]). If N1 and N2 are unrooted binary networks on X with the same
number of vertices, then there exists a sequence of NNI moves turning N1 into N2.

PLOS 7/32

Results

rNNI moves on rooted binary networks

We say that a rooted phylogenetic network N has an arc on {u, v} if it has either the
arc uv or vu.

Definition 1. If a rooted binary phylogenetic network N has four distinct
vertices s, u, v, t and arcs on {s, u}, {u, v} and {v, t} but not on {u, t} and {s, v}, then
an rNNI move consists of replacing the arcs on {s, u}, {u, v} and {v, t} by arcs on
{u, t}, {u, v} and {s, v} such that:

1. the in- and outdegrees of s and t are not affected by the move;

2. the in- and outdegrees of u and v remain at most 2 and

3. the obtained network is acyclic.

An rNNI move replacing arcs a1, a2, a3 by arcs a4, a5, a6 is denoted by
(a1, a2, a3 → a4, a5, a6). If Conditions 1 and 2 are satisfied but Condition 3 is not then
the move is called a cycle-creating rNNI move.

Note in particular that an rNNI move may or may not change the orientation of the
arc on {u, v}. Also note that an rNNI move does not change the total degree of any
vertex, hence it follows from restrictions 1 and 2 that the network remains binary. Nor
does it change the number of vertices of the network, and thus none of the measures of
reticulate complexity (see Proposition 1), including the number of reticulations.
Moreover, the newly created arcs are necessarily distinct (because all four involved
vertices are distinct), and not already present in N (because no arcs on {u, t} and {s, v}
are present in N), meaning that an rNNI move cannot produce parallel arcs. Finally we
observe that rNNI moves are reversible: if (a1, a2, a3 → a4, a5, a6) is an rNNI move
turning N into N ′, then (a4, a5, a6 → a1, a2, a3) is an rNNI move turning N ′ into N .

Observation 1. Applying an rNNI move to a binary rooted phylogenetic network N on
X results in another binary rooted phylogenetic network N ′ on X with the same number
of reticulations. Moreover, N can be obtained from N ′ by an rNNI move.

The rNNI moves can be divided into seven different types, as shown by the following
lemma, and illustrated in Fig. 4.

Lemma 1. Each rNNI move on rooted binary phylogenetic network N is of one of the
following types.

(1) (us, uv, vt→ ut, uv, vs) and there is no s-v path in N ;

(1∗) (us, uv, vt→ ut, vu, vs), there is no s-v path and v is a reticulation in N ;

(2) (su, uv, tv → sv, uv, tu) and there is no u-t path in N ;

(2∗) (su, uv, tv → sv, vu, tu), there is no u-t path and u is a bifurcation in N ;

(3) (su, uv, vt→ sv, uv, ut), u is a reticulation and v a bifurcation in N ;

(3∗) (su, uv, vt→ sv, vu, ut) and there is no nonelementary u-v path in N ;

(4) (us, uv, tv → vs, uv, tu) and there is no s-t path in N .

PLOS 8/32

Proof. An rNNI move assumes the existence of three arcs: one on {s, u}, one on {u, v}
and one on {v, t}. We consider the four possible arc orientations for {s, u} and {v, t},
while without loss of generality the third arc is fixed as uv. For each of these
combinations, we consider two possible moves: one leaving the orientation of uv
unchanged, which gives cases (1)-(4), and one reversing its orientation, which gives cases
(1∗)-(3∗). Note that a (4∗) move (us, uv, tv → vs, vu, tu) is not an rNNI, as it would
introduce nodes with indegree or outdegree 3. For each of the seven resulting cases, we
also provide restrictions that ensure that the conditions given in Definition 1 are
satisfied (e.g., u has to be a reticulation in (3)). It is tedious but relatively easy to check
each of these cases and its associated restrictions.

Fig 4. The seven different variants of the rNNI move.
Dashed edges indicate that there is no arc between those vertices. Gray arcs are those
that change with the move. If vertices have additional incident arcs that are not drawn,
then these may be oriented either way. These moves are only valid if the resulting
network is acyclic. Note that the difference between (i) and (i∗) is that (i∗) reverses the
direction of the uv arc.

Note that moves (1∗), (2∗), (3∗) reverse the direction of arc uv while moves
(1), (2), (3) and (4) do not. Also note that if N is a phylogenetic tree, then only the
moves of types (1) and (3∗) are allowed (as they are the only ones not assuming the
presence of a reticulation) and then the rNNI moves defined above coincide with NNI
moves on rooted trees.

Recall the definition of arc flips in the Methods: mathematical preliminaries, as
operations that reverse the direction of an arc connecting a bifurcation to a reticulation
without introducing cycles. The following three lemmas show some interesting
relationships between rooted networks with the same underlying unrooted network, and
between rNNI moves on a rooted network and NNI moves on the underlying unrooted
network. The proofs of the first two lemmas can be found in the Supporting Text S1.

Lemma 2. Let N be a binary rooted network on X, and let N ′ be a binary network
obtained by applying an arc flip to N . Then, unless N and N ′ are the same network
(that is, they are isomorphic), N can be turned into N ′ in exactly two rNNI moves.

Lemma 3. Let N be a binary rooted phylogenetic network and let Nu be its underlying
unrooted network. If an unrooted network N ′u can be obtained by applying a single NNI
move to Nu, then there exists a sequence of rNNI moves turning N into a network N ′

that has N ′u as its underlying unrooted network.

Lemma 4. If N and N ′ are binary rooted level-1 phylogenetic networks on X with the
same underlying unrooted network, then there exists a sequence of arc flips turning N
into N ′.

PLOS 9/32

Proof. The gist of the proof is the following: because N and N ′ have the same
underlying unrooted network, then their cycles only differ by paths that are oriented in
opposite directions in each of the networks. A flipping applied to each of the arcs in
these paths transforms one of the networks into the other one. However, to be valid,
these arc flips must be performed in a specific order, as we now describe.

For any node u in N , let dN (u) be the length of a longest path from the root of N
to u. We say that an arc xy of N is incorrectly oriented if N ′ has the arc yx and
correctly oriented if N ′ has the arc xy. If N 6= N ′ then N has at least one incorrectly
oriented arc. Let uv be an incorrectly oriented arc of N such that there is no u′v′ that
is incorrectly oriented and dN (u′) > dN (u).

First, v is a reticulation in N since if it were a bifurcation, for our choice of u, v
would have two correctly-oriented outgoing arcs in N and hence outdegree 3 in N ′, and
if v were a leaf, then N ′ would not be on the same set of taxa X as N . Second, u is a
bifurcation in N since if it were a reticulation N would not be level-1, while if it were
the root of N , then N ′ would have u among its leaves, implying that N and N ′ would
not be on the same set X.

Now, we want to prove that there is no nonelementary u-v path in N . Suppose that
there exists one. Then this path has at least one incorrectly oriented arc u′v′, otherwise
N ′ would contain a cycle. Then, because of our choice of u, we know that u′ = u. Now,
notice that v′ cannot be a reticulation, since otherwise N would not be level-1. Again,
for our choice of u, both outgoing arcs of v′ in N are correctly oriented. Then uv′

cannot be incorrectly oriented unless v′ has outdegree 3 in N ′, which is impossible.

Hence, there is no nonelementary u-v path in N . Therefore, we can perform an arc
flip on uv and reduce the number of incorrectly-oriented arcs by one. We repeat this
until there are no incorrectly-oriented arcs left.

As we now show, the three lemmas above allow us to prove the restriction of our
main result on rNNI moves to level-1 networks. Note that in the theorem below we do
not require intermediate networks to be level-1.

Theorem 2. If N and N ′ are binary rooted level-1 phylogenetic networks on X with
the same number of reticulations, then there exists a sequence of rNNI moves turning N
into N ′.

Proof. By Theorem 1, there exists a sequence of unrooted NNI moves that turns the
underlying unrooted network of N into the underlying unrooted network of N ′ (by
Proposition 1 these unrooted networks have the same number of vertices). Hence, by
Lemma 3, there exists a sequence of rNNI moves that turns N into a network N ′′ (on
X) that has the same underlying unrooted network as N ′. By Lemma 4, there exists a
sequence of arc flips turning N ′′ into N ′, which by Lemma 2 can be reproduced by a
sequence of rNNI moves. Together, this gives a sequence of rNNI moves turning N
into N ′.

Interestingly, Lemma 4 does not hold for networks that are not level-1, as shown in
Fig. 5. This means that in order to generalize Theorem 2, we need to adopt a more
complex approach. These observations prompt the next definition.

Definition 2. A binary rooted phylogenetic network N on X is called flip-friendly if it
can be transformed into any other binary rooted network N ′ on X with the same
underlying unrooted network as N by repeatedly applying arc flips.

Note that if N is flip-friendly, then every network with the same underlying
unrooted network as N is also flip-friendly. Although not every binary rooted network

PLOS 10/32

Fig 5. Lemma 4 does not hold for general networks.
Two rooted networks with the same underlying unrooted network that are not reachable
from one another by performing a sequence of arc flips. The only arc flips that can be
applied are to the gray arcs, as the reversal of any other arc produces a network that
either is nonbinary or contains a cycle.

is flip-friendly (e.g., Fig. 5), the following lemma — whose proof can be found in the
Supporting Text S1 — shows that there are flip-friendly networks at every level of
reticulate complexity.

Lemma 5. For any nonempty X and r ≥ 1, there exists at least one flip-friendly
binary rooted network on X with r reticulations.

This result allows us to prove that any two binary rooted networks of equal
reticulate complexities are reachable from one another via rNNI moves, by using a
slightly different approach than that employed to prove Theorem 2.

Theorem 3. Let N1 and N2 be two binary rooted phylogenetic networks on X with the
same number of reticulations r. Then there exists a sequence of rNNI moves turning N1

into N2.

Proof. Let NF be a flip-friendly binary rooted network on X with r reticulations, which
exists by Lemma 5, and let Nu

F be its underlying unrooted network. Also let Nu
1 be the

underlying unrooted network of N1. By Theorem 1, there exists a sequence of NNI
moves transforming Nu

1 to Nu
F , and thus by Lemma 3, there is a sequence S1 of rNNI

moves transforming N1 into a network N ′1 such that N ′1 has Nu
F as underlying unrooted

network. By the same argument, there is a sequence S2 of rNNI moves transforming N2

into a network N ′2 also having Nu
F as underlying unrooted network. Because NF is

flip-friendly and N ′1 and N ′2 are binary rooted networks on X with the same underlying
unrooted network as NF , NF can be turned into N ′1 and N ′2 by only using arc flips. But
then, as arc flips are reversible, N ′1 can be turned into N ′2 by a sequence of arc flips,
which by Lemma 2 corresponds to a sequence Sflip of rNNI moves. Then one can
obtain N2 from N1 by first applying S1 to obtain N ′1, then applying Sflip to obtain N ′2,
and finally applying S2 in reverse order to obtain N2.

An interesting consequence of Theorem 3 is that our definition of rNNI moves
induces natural metrics over the spaces of the rooted binary networks of fixed reticulate
complexity: if we let N1 and N2 be two binary rooted phylogenetic networks on X with
the same number of reticulations, their rNNI distance can be defined as the minimum
number of rNNI moves required to transform N1 into N2 (or vice versa, because of the
reversibility of the moves). It is easy to see that this definition satisfies the conditions
for a metric.

PLOS 11/32

rNNI moves as local rSPR moves

In this section, we will give a natural definition of SPR moves on binary rooted
networks (rSPR), and show that the rNNI moves defined above have a very simple
interpretation as rSPR moves that regraft an arc “locally”.

Definition 3. Let xz, zy and x′y′ be three arcs in a rooted binary phylogenetic
network N , such that x′ 6= z 6= y′ and none of x′z, zy′ and xy is a arc of N . Then an
rSPR move consists of replacing the arcs xz, zy and x′y′ with x′z, zy′ and xy, under
the condition that the resulting network is acyclic. Such a move is denoted by
[xz, zy, x′y′ → x′z, zy′, xy]. Arcs xz and zy are called the donor arcs and x′y′ is the
recipient arc.

Fig 6. Illustration of rSPR moves.
The donor arcs (xz and zy) and the recipient arc (x′y′) are in black, while the arc
whose head or tail is moved is drawn in grey.

Note that vertex z is either the tail of an arc zw or the head of an arc wz. Informally,
an rSPR move can be described as moving (or “regrafting”) the tail or the head of this
arc from the donor “arc” xy, to the recipient arc x′y′ (see Fig. 6). We call the former
type of rSPR move tail-moving, and the latter head-moving. As stated, such moves are
only allowed if they do not create cycles in the network. Note that when applied to a
phylogenetic tree, the rSPR moves can only be tail-moving; they then coincide with the
rooted SPR operations commonly defined on rooted trees [31,32]. The name rSPR is
meant to stand for rooted subnetwork pruning and regrafting, where the subnetwork
being affected can be identified as the one consisting of all descendants of the pruned
arc in a tail-moving rSPR, or of all of its ancestors in a head-moving rSPR move.

The definition above implies that the newly created arcs {x′z, zy′, xy} are
necessarily distinct and not already present in N , meaning that an rSPR move cannot
create parallel arcs. Moreover, an rSPR move does not change the number of vertices of
the network (and thus none of the measures of reticulate complexity in Proposition 1),
nor the indegree or outdegree of any vertex. Thus an rSPR move always turns a binary
rooted network into another binary rooted network, and, like rNNI moves, it is easy to
see that rSPR moves are reversible.

Observation 2. Applying an rSPR move to a binary rooted phylogenetic network N on
X results in another binary rooted phylogenetic network N ′ on X with the same number
of reticulations. Moreover, N can be obtained from N ′ by an rSPR move.

PLOS 12/32

We now provide the conditions that determine whether a candidate rSPR move
creates a cycle in a network.

Lemma 6. Similarily to Definition 3, let xz, zy and x′y′ be three arcs in a rooted
binary phylogenetic network N , such that x′ 6= z 6= y′ and none of x′z, zy′ and xy is an
arc of N . Furthermore, let w be the vertex adjacent to z in N that is neither x nor y,
and let N ′ be the directed graph obtained from N by replacing the arcs in {xz, zy, x′y′}
with those in {x′z, zy′, xy} (see Fig. 6 for an illustration).

1. If the move is tail-moving (i.e. zw is an arc of N), N ′ is acyclic if and only if
there is no w-x′ path in N .

2. If the move is head-moving (i.e. wz is an arc of N), N ′ is acyclic if and only if
there is no y′-w path in N .

Proof. The only if parts are trivial, as it is easy to check that the indicated paths imply
a cycle in N ′. As for the if part, the fact that N is acyclic implies that there cannot be
any cycles in N ′ not containing zw (in the tail-moving case) or wz (in the head-moving
case). But then the existence of a cycle in N ′ would imply the existence of a w-x′ path,
or of a y′-w path, respectively, in N ′, and therefore in N .

NNI moves for phylogenetic trees are often viewed as SPR moves that regraft a
subtree onto an edge that is incident to the edge from which the subtree was initially
pruned [33]. This observation prompts the following definition.

Definition 4. An rSPR1 move is an rSPR move where the recipient arc is incident
with one of the donor arcs.

Note that because of the requirement in Definition 3 that the recipient arc x′y′

cannot be incident to z, an rSPR1 move can only regraft vertex z and its incident arc to
one of four possible recipient arcs (see Fig. 7).

Fig 7. Illustration of rSPR1 moves.
Vertex z and its incident arc can only be regrafted onto: (a) an arc entering x, (b) an
arc exiting x, (c) an arc exiting y, (d) an arc entering y. Grey arcs are the ones whose
direction is undetermined.

We can now state the main result of this section. Its relatively tedious proof —
which can be found in the Supporting Text S1 — consists of showing that each of the
four types of rSPR1 moves in Fig. 7 is in fact an rNNI move, and, conversely, each of
the seven rNNI types in Lemma 1 can be reproduced with a single rSPR1 move.

PLOS 13/32

Theorem 4. Let N and N ′ be binary rooted networks. Then, N can be turned into N ′

with one rNNI move if and only if N can be turned into N ′ with one rSPR1 move.

Theorem 4 implies that every rNNI move is also an rSPR move, and every sequence
of rNNI moves (e.g., that in Theorem 3) is also a sequence of rSPR moves. If we define
the rSPR distance of two networks as the minimum number of rSPR moves to
transform one network into the other, we then have the following result.

Corollary 1. Let N1 and N2 be two binary rooted networks on X with the same
number of reticulations. Then there exists a sequence of rSPR moves turning N1 into
N2. Moreover, the rSPR distance between N1 and N2 is at most equal to their rNNI
distance.

Studying the size of the rNNI neighborhood

The two previous subsections provide two alternative definitions for rNNI moves. One
important aspect that they have in common is that one arc in the starting network N is
“central” in both definitions: uv in the original definition (Def. 1) and the donor arc
incident to the recipient arc in the definition of rSPR1 moves (e.g., arc xz in Fig. 7(a);
Def. 4). We say that the rNNI move is around this arc.

We can list the different networks that can be reached from a network N with one
rNNI move — that is, the rNNI neighborhood of N — by considering one internal arc of
N at a time, and then by enumerating the networks N ′ that can be obtained with one
rNNI move around that arc. This is the approach we take to prove the following bound
on the size of the rNNI neighborhood.

Proposition 2. Let N be a binary rooted network. Within N , let eBB denote the
number of arcs from a bifurcation to a bifurcation, eBR the number of arcs from a
bifurcation to a reticulation, eRB the number of arcs from a reticulation to a bifurcation,
and eRR the number of arcs from a reticulation to a reticulation. Then, the number of
different binary rooted networks that can be obtained from N by one rNNI move is at
most 2(eBB + eRR) + 3eBR + 4eRB.

Although we refer the reader to the Supporting Text S1 for a detailed proof of
Proposition 2, we give a brief outline here: because every rNNI move applied to N must
be around some arc uv in N , where each of u and v can either be a bifurcation or a
reticulation, rNNI moves can be divided into four cases: those around an arc from a
bifurcation to a bifurcation (case BB), from a reticulation to a reticulation (case RR),
and those around and arc connecting a bifurcation and a reticulation (in any order,
cases BR and RB). By considering these four cases, it is easy to see that for cases BB
and RR at most 2 other network topologies can be obtained from N , while for cases BR
and RB at most 3 and 4 networks can be obtained, respectively, which gives the claimed
bound. See Fig. 8 for an illustration of these four cases.

When N is a tree, only case BB is applicable and the bound above gives twice the
number of internal arcs, coinciding with the classic result on the size of the NNI
neighborhood for phylogenetic trees. We note that rNNI moves around different arcs
may result in the same network (see, e.g., Fig. 9(i)), which means that if we consider
one arc at a time and enumerate all networks that can be obtained with one rNNI move
around that arc, we may end up listing the same network twice. An extreme case of this
situation is given in the Supporting Text S1, where we show a family of networks whose
neighborhood has logarithmic size in the number of arcs, whereas the upper bound
given above is linear in the number of arcs.

PLOS 14/32

Fig 8. rNNI moves around the different types of internal arcs.
For each type (BB, RR, BR, RB), we list the networks that can be obtained by
performing an rNNI around that an arc of that type. The four types of arc are named
on the basis of u and v being a bifurcation (B) or a reticulation (R). If some of the
vertices in the drawing are not distinct (e.g., if α = γ in a move of type RR), or if a γ-β
path exists in a move of type BR, then some of the moves above may not be applicable.
See the proof of Proposition 2 (in the Supporting Text S1) for details.

Fig 9. Reasons why the bound of Prop. 2 is not tight.
(i) rNNI moves around different arcs may give the same network: the rNNI type-(1)
move (u1u2, u1v1, v1v2 → u1v2, u1v1, v1u2) and the rNNI type-(2) move
(u1u2, u2v2, v1v2 → u1v2, u2v2, v1u2) on N1 both give the network N ′1. (ii) Some of the
moves drawn in Fig. 8 are not viable rNNI moves: no move of type BR around arc vv4 of
N2 is allowed, because of the presence of a v1-v3 path, which would cause the resulting
network to contain a cycle. (iii) The bound of Prop. 2 is tight for some networks: the
size of the rNNI neighborhood of network N3, equal to 12, coincides with the bound.

It may be difficult to derive the exact size of the rNNI neighborhood, unless

PLOS 15/32

important limitations on the structure of the network are imposed. For example, in the
context of unrooted networks, Huber and colleagues derived an exact formula for the size
of the NNI neighborhood (see Theorem 3 of [25]), but only for the restricted subclass of
unrooted level-1 networks: distinguishing distinct cases for cycles of length 3 or 4 allows
them to deal with cases such as the one of Fig. 9(i). However, on rooted networks,
acyclicity constraints also need to be taken into account, and do not permit a simple
formula even for level-1 networks, like N2 in Fig. 9(ii). Note that the upper bound of
Proposition 2 is tight in some cases, e.g. for N3 of Fig. 9(iii), as detailed in Text S1.
Interestingly, N2 and N3 in Fig. 9 have the same underlying unrooted network, and the
same values for eBB , eBR, eRB and eRR, yet different sizes of rNNI neighborhoods,
showing that any exact formula for the size of the rNNI neighborhood must depend on
parameters of the network other than those used here or by Huber et al. [25].

Changing the network complexity

Both topological rearrangements defined above only permit the exploration of the set of
networks of a fixed reticulate complexity, where the complexity of a phylogenetic
network can be defined in any of the ways specified by Proposition 1. In some
applications this may be sufficient, for example to tackle optimization problems where
network reconstruction is constrained to networks with a prespecified number of
reticulations. In many cases, however, one would like to be able to move across spaces
of networks of different complexities, so that any two rooted binary networks are
reachable from one another.

In order to do this, consider a pair of rearrangement moves C+, C− with the
following properties: C+ can transform any rooted binary network N on X into a
number of rooted binary networks on X with a level of complexity immediately higher
than N (i.e., the transformed network has one more reticulation and two more vertices).
Conversely, C− maps any rooted binary network N that is not a phylogenetic tree to
some rooted binary networks on the same set of taxa, and with a level of complexity
immediately lower than N . We call such a pair of rearrangement moves a
complexity-changing rearrangement pair. It is easy to see that a number of natural
rearrangement pairs can be defined. For example, C− and C+ can be defined as arc
removals (see the Methods: mathematical preliminaries) and arc insertions, respectively,
or as rooted versions of the ∆− and ∆+ moves by Huber et al. [26]. Precise definitions
will be given below. The following proposition is a direct consequence of Theorem 3.

Proposition 3. Let C+ and C− be a complexity-changing rearrangement pair. If N1

and N2 are rooted binary networks on X, then there exist: (1) a sequence of rNNI and
C+ moves connecting N1 and N2 and (2) a sequence of rNNI and C− moves connecting
N1 and N2.

Proof. Without loss of generality, let N1 have fewer reticulations than N2 (or the same
number). One can transform N1 into N2 by applying C+ moves until obtaining a
network with the same number of reticulations as N2, which then, thanks to Theorem 3,
can be turned into N2 using only rNNI moves. In the same way, N2 can be transformed
into N1 by using C− moves until obtaining a network with the same complexity as N1,
followed by rNNI moves.

Note that the proposition above makes very few assumptions on the chosen
complexity-changing rearrangement pair. Namely, it holds even if C+ and C− are not the
reverse of each other, which could happen for example if we define C+ so that it maps
every network with r reticulations to the same single network with r + 1 reticulations.
However these kinds of moves are unlikely to have any relevance in practice.

PLOS 16/32

As an example of a realistic complexity-changing rearrangement pair, consider
defining C− as the arc removals that do not create parallel arcs, and C+ as their reverse
operation. We refer to such C+ moves as arc insertions. They simply consist of choosing
two distinct arcs a, a′ in the network — with a′ not ancestral to a — followed by
creating two new vertices u, v that subdivide a and a′, respectively, and finally by
adding a new arc uv. A variation of arc insertion was first proposed by Jin et al. [34],
where further constraints are imposed on the arcs a, a′ that can be connected.

Proposition 4. Let N− and N+ be binary rooted networks. N+ can be obtained by
performing an arc insertion on N− if and only if N− can be obtained by performing an
arc removal on N+.

Proof. If N+ is obtained from N− by inserting arc uv, then clearly u is a bifurcation
and v is a reticulation. We can then apply an arc removal to uv to obtain N− from N+.
If N− is obtained from N+ by removing arc uv, then let a and a′ be the arcs in N−

that replace u and v, respectively. Clearly, a′ cannot be ancestral to a, as otherwise
there would be a v-u path in N+, which would make it contain a cycle. Applying an arc
insertion between a and a′ in N−, which amounts to re-inserting uv in N−, results in
N+.

Another example of complexity-changing rearrangement pair can be given by
adapting to the rooted case the ∆+ and ∆− moves defined by Huber et al. [26] for
unrooted networks: we simply define a rooted ∆+ move as an arc insertion (as defined
above) between two arcs a, a′ that are incident. Its reverse, the rooted ∆− move, is any
arc removal that is applied to an arc whose endpoints are separated by two incident
arcs. In the same way as rNNI moves can be seen as “local” rSPR moves, the ∆+ and
∆− moves are “local” arc insertions and arc removals.

Discussion

In this paper, we have generalized to rooted phylogenetic networks the best-known tree
rearrangement moves: nearest neighbor interchange (NNI) and subtree pruning and
regrafting (SPR). The new moves, which we call rNNI and rSPR, transform a network of
a given reticulate complexity into another network of the same complexity, and they
guarantee that every network of a given complexity is reachable from every other
network of the same complexity, within a finite number of moves (Theorem 3).

Here, reticulate complexity is measured in terms of number of reticulations, or,
equivalently, number of vertices in the network. This measure of complexity is the one
that most closely models the “explanatory power” of a network, as it is often directly
related to the number of free parameters in a network model (e.g., branch lengths and
inheritance proportions at each reticulation [28]). We note that another measure of
complexity is often adopted in the computational phylogenetics literature: the level of
the network [35,36]. This measure, however, essentially has a motivation in terms of
computational complexity, rather than in terms of ability to fit the data. It is related to
the algorithmic efficiency of solving some fundamental problems on the network — most
notably, for the purposes of this paper, that of evaluating a network under a number of
optimization criteria (e.g. [34, 37]).

Another choice we have made in this paper is to not allow multi-edges, or parallel
arcs, in the networks we consider, on the assumption that they are difficult to
reconstruct from real data. In a number of applications, this may not be true [38,39].
The rearrangement moves that we define here are easy to adapt so that they can deal
with networks containing parallel arcs: for example, in the definition of rSPR moves, it

PLOS 17/32

suffices to remove the condition that “none of x′z, zy′ and xy is an arc of N” (which
immediately also determines a definition of rNNI as rSPR1).

In addition to the “horizontal” moves above, which enable full exploration of a layer
of networks of fixed complexity, this paper also provides the basic ideas on how to
switch across spaces of networks of different complexities, via “complexity-changing” or
“vertical” moves. Although very little assumptions on vertical moves are needed if we
only wish to ensure reachability of any network from any other network (Proposition 3),
it is likely that in practice the choice of adequate vertical moves will be important.

In practical search heuristics, it seems reasonable to only increase the complexity of
a candidate network (via a vertical move) once a layer of networks of equal complexity
has been sufficiently explored via horizontal moves. If we follow this guideline, then the
obvious way to proceed would be to first look for the best tree with respect to the data
and the chosen optimization criterion, then the best network with one reticulation, then
the best network with two reticulations, and so on. This is indeed a common approach
in practice [19,29,34,40], and produces a list of networks of increasing complexity and
fit to the data. In order to choose between these networks, techniques for model
selection are often advocated: for example the Akaike (AIC) or the Bayesian
information criterion (BIC) [24,28,29], or nonparametric techniques such as
cross-validation [24]. The fact that our horizontal and complexity-increasing moves C+
are enough to go from any starting tree to any network (Proposition 3) provides a
theoretical basis for this approach: no network inferred early on in the list precludes the
inference of another network at a later stage.

Another aspect that deserves to be discussed is the locality of the proposed
rearrangement moves. Clearly, rNNI and rSPR moves provide different degrees of
locality for horizontal moves, and ∆+/∆− moves and arc insertions/removals do the
same for vertical moves. Recall that the neighborhood of a network N with respect to a
rearrangement move is the set of networks that can be reached with one move from N .
Choosing moves that are less local implies increasing the sizes of the neighborhoods,
which means fewer local optima, thus potentially more accurate reconstructions. On the
other hand, local moves are often considered to lead to fewer computations, as fewer
neighbors need to be considered at each iteration of the search heuristic; this is
counterbalanced by the fact that, typically, more iterations are needed to find an
optimum (see Corollary 1). In practice adapting the degree of locality is a question of
craftsmanship, and the best practices may be context-dependent. For example, the
locality of the moves can change during the search, typically increasing with later
iterations. Interestingly, the fact that rNNI moves can be seen as rSPR1 moves
immediately suggests that several intermediate degrees of locality can be achieved by
defining rSPRk moves allowing a maximum distance k between the recipient and the
donor arcs in an rSPR. Similarly, vertical moves that are intermediate between ∆+/∆−

moves and arc insertions/removals can be defined by bounding the distance between the
endponts of the arc being inserted/removed.

Our work provides a theoretical basis to analyse the search strategy implemented in
the most popular program for network reconstruction, PhyloNet [41]. In the
implementation described by Yu et al. [24], the search proceeds by randomly generating
networks produced by horizontal or vertical moves that are at the non-local end of the
spectrum of the moves described here (they are essentially equivalent to rSPR moves
and arc insertions/removals, although parallel arcs seem to be allowed there). Note that
horizontal and vertical moves can occur during the search in any order. Our results
imply that PhyloNet is able to reach any binary rooted network from any other binary
rooted network — unsurprisingly, given the large size of the neighborhoods considered
in its search. Proposition 3 shows that in fact reachability can be assured even under

PLOS 18/32

much more local moves. Future work on practical heuristics for network reconstruction
will be likely inspired by common practices for tree reconstruction implemented by
popular software such as PhyML [42] and RAxML [43]. In particular, it should be
possible to speed up the evaluation (i.e. the calculation of the optimization score) of the
networks in the neighborhood of a network that has already been evaluated, by
identifying the parts of the computation that do not need to be repeated.

Another direction for future research is to constrain horizontal rearrangement moves
so as to preserve not only reticulate complexity, but also the level of the network. Given
that the level is often related to the computational complexity of computing the
optimization score of a network (e.g., for parsimony [37], and for likelihood [34]), it
would be useful to keep the level bounded during the local search. An interesting open
question is to determine the maximum level reached by intermediate networks when
transforming a level-k network into another level-k network with the same number of
reticulations via rNNI moves or rSPR moves. An advantage of rSPR moves is that,
given the larger sizes of their neighborhoods, they may be able to to avoid high-level
intermediate networks.

Finally, in this paper we have not tackled natural questions related to the metrics
induced by the moves defined here — such as the maximum distance between networks

— which for trees have been studied in depth [30,44–46]. From an algorithmic
standpoint, we remark that because our rNNI and rSPR distances reduce to well-known
distances on phylogenetic trees, all the known hardness results on computing such
distances on trees extend to our distances [32,47].

References

1. Doolittle WF. Phylogenetic Classification and the Universal Tree. Science.
1999;284:2124–2128.

2. Bapteste E, van Iersel L, Janke A, Kelchner S, Kelk S, McInerney JO, et al.
Networks: expanding evolutionary thinking. Trends in Genetics.
2013;29(8):439–441.

3. Mallet J. Hybrid speciation. Nature. 2007;446(7133):279–283.

4. Nolte AW, Tautz D. Understanding the onset of hybrid speciation. Trends in
Genetics. 2010;26(2):54–58.

5. Abbott R, Albach D, Ansell S, Arntzen J, Baird S, Bierne N, et al. Hybridization
and speciation. Journal of Evolutionary Biology. 2013;26(2):229–246.

6. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, et al. Ancient
admixture in human history. Genetics. 2012;192(3):1065–1093.

7. Pickrell JK, Pritchard JK. Inference of population splits and mixtures from
genome-wide allele frequency data. PLoS Genet. 2012;8(11):e1002967.

8. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. The Simons
Genome Diversity Project: 300 genomes from 142 diverse populations. Nature.
2016;538(7624):201–206.

9. Boto L. Horizontal gene transfer in evolution: facts and challenges. Proceedings
of the Royal Society B: Biological Sciences. 2010;277(1683):819–827.

10. Hotopp JCD. Horizontal gene transfer between bacteria and animals. Trends in
Genetics. 2011;27(4):157–163.

PLOS 19/32

11. Zhaxybayeva O, Doolittle WF. Lateral gene transfer. Current Biology.
2011;21(7):R242–R246.

12. Posada D, Crandall KA, Holmes EC. Recombination in evolutionary genomics.
Annual Review of Genetics. 2002;36(1):75–97.

13. Vuilleumier S, Bonhoeffer S. Contribution of recombination to the evolutionary
history of HIV. Current Opinion in HIV and AIDS. 2015;10(2):84–89.

14. Rasmussen MD, Hubisz MJ, Gronau I, Siepel A. Genome-wide inference of
ancestral recombination graphs. PLoS Genetics. 2014;10(5):e1004342.

15. Huson DH, Rupp R, Scornavacca C. Phylogenetic networks: concepts, algorithms
and applications. Cambridge University Press; 2010.

16. Morrison DA. Introduction to Phylogenetic Networks. RJR Productions; 2011.

17. Bryant D, Moulton V. Neighbor-net: an agglomerative method for the
construction of phylogenetic networks. Molecular Biology and Evolution.
2004;21(2):255–265.

18. Huson DH, Scornavacca C. A survey of combinatorial methods for phylogenetic
networks. Genome Biology and Evolution. 2011;3:23–35.

19. Yu Y, Nakhleh L. A maximum pseudo-likelihood approach for phylogenetic
networks. BMC Genomics. 2015;16(10):1.

20. Soĺıs-Lemus C, Ané C. Inferring phylogenetic networks with maximum
pseudolikelihood under incomplete lineage sorting. PLoS Genetics.
2016;12(3):e1005896.

21. Camin JH, Sokal RR. A method for deducing branching sequences in phylogeny.
Evolution. 1965; p. 311–326.

22. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM. Phylogenetic inference. In: Hillis
DM, Moritz C, Mable B, editors. Molecular systematics, 2nd edn. Sinauer
Associates Inc.; 1996. p. 407–514.

23. Felsenstein J. Inferring phylogenies. Sinauer Associates Sunderland; 2004.

24. Yu Y, Dong J, Liu KJ, Nakhleh L. Maximum likelihood inference of reticulate
evolutionary histories. Proceedings of the National Academy of Sciences.
2014;111(46):16448–16453.

25. Huber KT, Linz S, Moulton V, Wu T. Spaces of phylogenetic networks from
generalized nearest-neighbor interchange operations. Journal of Mathematical
Biology. 2016;72(3):699–725.

26. Huber KT, Moulton V, Wu T. Transforming phylogenetic networks: Moving
beyond tree space. Journal of Theoretical Biology. 2016;404:30–39.

27. Nakhleh L. Evolutionary phylogenetic networks: models and issues. In: Problem
solving handbook in computational biology and bioinformatics. Springer; 2010. p.
125–158.

28. Kubatko LS. Identifying hybridization events in the presence of coalescence via
model selection. Systematic Biology. 2009;58(5):478–488.

PLOS 20/32

29. Park HJ, Nakhleh L. Inference of reticulate evolutionary histories by maximum
likelihood: the performance of information criteria. BMC Bioinformatics.
2012;13(Suppl 19):S12.

30. Robinson DF. Comparison of labeled trees with valency three. Journal of
Combinatorial Theory, Series B. 1971;11(2):105–119.

31. Baroni M, Grünewald S, Moulton V, Semple C. Bounding the number of
hybridisation events for a consistent evolutionary history. Journal of
Mathematical Biology. 2005;51(2):171–182.

32. Bordewich M, Semple C. On the computational complexity of the rooted subtree
prune and regraft distance. Annals of Combinatorics. 2005;8(4):409–423.

33. Semple C, Steel M. Phylogenetics. Oxford University Press, Oxford; 2003.

34. Jin G, Nakhleh L, Snir S, Tuller T. Maximum likelihood of phylogenetic
networks. Bioinformatics. 2006;22(21):2604–2611.

35. Choy C, Jansson J, Sadakane K, Sung WK. Computing the maximum agreement
of phylogenetic networks. Theoretical Computer Science. 2005;335(1):93–107.

36. Jansson J, Sung WK. Inferring a level-1 phylogenetic network from a dense set of
rooted triplets. Theoretical Computer Science. 2006;363(1):60–68.

37. Fischer M, Van Iersel L, Kelk S, Scornavacca C. On computing the maximum
parsimony score of a phylogenetic network. SIAM Journal on Discrete
Mathematics. 2015;29(1):559–585.

38. Pardi F, Scornavacca C. Reconstructible phylogenetic networks: Do not
distinguish the indistinguishable. PLoS Computational Biology.
2015;11(4):e1004135.

39. Zhu S, Degnan JH. Displayed Trees Do Not Determine Distinguishability Under
the Network Multispecies Coalescent. Systematic Biology.
2017;doi:10.1093/sysbio/syw097.

40. Jin G, Nakhleh L, Snir S, Tuller T. Inferring phylogenetic networks by the
maximum parsimony criterion: a case study. Molecular Biology and Evolution.
2007;24(1):324–337.

41. Than C, Ruths D, Nakhleh L. PhyloNet: a software package for analyzing and
reconstructing reticulate evolutionary relationships. BMC bioinformatics.
2008;9(1):322.

42. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New
algorithms and methods to estimate maximum-likelihood phylogenies: assessing
the performance of PhyML 3.0. Systematic Biology. 2010;59(3):307–321.

43. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313.

44. Culik K, Wood D. A note on some tree similarity measures. Information
Processing Letters. 1982;15(1):39–42.

45. Li M, Tromp J, Zhang L. On the nearest neighbour interchange distance between
evolutionary trees. Journal of Theoretical Biology. 1996;182(4):463–467.

PLOS 21/32

46. Allen BL, Steel M. Subtree transfer operations and their induced metrics on
evolutionary trees. Annals of Combinatorics. 2001;5(1):1–15.

47. DasGupta B, He X, Jiang T, Li M, Tromp J, Zhang L. On computing the nearest
neighbor interchange distance. In: Discrete Mathematical Problems with Medical
Applications: DIMACS Workshop Discrete Mathematical Problems with Medical
Applications, December 8-10, 1999, DIMACS Center. vol. 55. American
Mathematical Soc.; 2000. p. 125–143.

PLOS 22/32

Supporting Text S1: proofs omitted from the main
text

Here, we provide full proofs for Lemmas 2, 3, 5, Theorem 4, and Proposition 2. We
conclude with a few remarks on the size of rNNI neighborhoods.

Lemma 2. Let N be a binary rooted network on X, and let N ′ be obtained by
applying an arc flip to N . Then, unless N and N ′ are the same network (that is, they
are isomorphic), N can be turned into N ′ in exactly two rNNI moves.

Proof. Let uv be the arc being flipped in N . First suppose that the parent s of u and
the parent t 6= u of v are distinct vertices. Then we apply a type-(2) rNNI move
(su, uv, tv → sv, uv, tu). This is allowed because if there were a u-t path, there would be
a nonelementary u-v path in N , which is not the case by the assumption that arc uv
can be flipped. Now we can apply a type-(2∗) move (sv, uv, tu→ su, vu, tv), because no
u-s path can exist in N . The net effect of these two moves is that arc uv is reversed
to vu, see Figure S1.

u

v

(2)

u

v

(2*)

u

v

s

t

Figure S1. Reversing an arc uv when u and v have different parents.

Now suppose that u and v have a common parent p but the child ŝ 6= v of u and the
child t̂ of v are distinct vertices. Then we apply a type-(1) rNNI move
(uŝ, uv, vt̂→ ut̂, uv, vŝ). This is allowed because if there were an ŝv path in N , this
path would need to pass through p, and hence imply the existence of a directed cycle
in N . Now we can apply a type-(1∗) move (ut̂, uv, vŝ→ uŝ, vu, vŝ), because no t̂-v path
can exist in N . The net effect of these two moves is that arc uv is reversed to vu, see
Figure S2.

u

v

(1) (1*)

u

v

u

vŝ

t̂

p

Figure S2. Reversing an arc uv when u and v have a common parent but different
children.

If we are in neither of the previous cases, u and v have a common parent p and a
common child c. But then it is easy to see that that N and N ′ are isomorphic (just map
u to v and viceversa), meaning that no rNNI move is needed to turn N into N ′.

Lemma 3. Let N be a binary rooted phylogenetic network and let Nu be its
underlying unrooted network. If an unrooted network N ′u can be obtained by applying a
single NNI move to Nu, then there exists a sequence of rNNI moves turning N into a
network that has N ′u as its underlying unrooted network.

PLOS 23/32

Proof. There are four ways in which the edges affected by the NNI move can be oriented
in N , see the four networks to the left in Figure 4. In each case, there is at least one
move that satisfies Conditions 1 and 2 of Definition 1 (the degree conditions). Hence,
there exists a (possibly cycle-creating) rNNI move turning N into N ′ such that N ′

has N ′u as its underlying unrooted network. However, N ′ may contain a directed cycle.
Note that a move of type (3) cannot create a directed cycle. Moreover, if the move is of
type (1∗) or (2∗), then it can be replaced by a move of type (1) or (2) without changing
the underlying unrooted network. Hence, we only need to consider moves of types
(1),(2),(3∗) and (4). These moves can create a directed cycle in the following cases:

(1) (us, uv, vt→ ut, uv, vs) and there is an s-v path in N ;

(2) (su, uv, tv → sv, uv, tu) and there is a u-t path in N ;

(3∗) (su, uv, vt→ sv, vu, ut) and there is a nonelementary u-v path in N ;

(4) (us, uv, tv → vs, uv, tu) and there is a s-t path in N .

For each of these cases, we show that an acyclic network N ′′ with the same underlying
unrooted network as N ′ can be obtained from N by applying a sequence of rNNI moves.

Case (1). (us, uv, vt→ ut, uv, vs) and there is a s-v path in N , see Figure S3.

(1)

s

u v

t

Figure S3. A cycle-creating rNNI move of type (1).

The s-v path must contain at least one internal vertex since N does not contain an
arc on {s, v}. Let w be the last internal vertex on this path.

First suppose that w is a bifurcation. Then we reverse the arc wv to vw using rNNI
moves. To see that this is possible, note that w is a bifurcation and v a reticulation, and
that there cannot be a nonelementary w-v path in N : this path would have to go via u
and would form a directed cycle in combination with the s-w path in N . Hence,
reversing wv to vw is an arc flip, which by Lemma 2 can be reproduced using rNNI
moves. We can then apply a type-(1) rNNI move (us, uv, vt→ ut, uv, vs) and obtain an
acyclic network N ′′ with the same underlying unrooted network as N ′. See Figure S4.

(1)

s

u v

t

w

Figure S4. Avoiding directed cycles in Case (1) when w is a bifurcation. Note that
the arc leaving w that does not point at v could point at t.

Now suppose that w is a reticulation. Let (s = x0, x1, x2, . . . , xk = w) be a longest
s-w path. Let xi be the first reticulation on this path. Note that there cannot be a
nonelementary xi−1-xi path because otherwise there would be a longer s-w path. Hence,
we can flip the orientation of arc xi−1xi using rNNI moves by Lemma 2. We repeat this
procedure until there is no s-w path. Then we apply type-(1) rNNI move
(us, uv, vt→ ut, uv, vs) and obtain an acyclic network N ′′ with the same underlying
unrooted network as N ′. See Figure S5.

Case (2). (su, uv, tv → sv, uv, tu) and there is a u-t path in N , see Figure S6.

PLOS 24/32

(1)s

u v

t

w

xi−1

xi

Figure S5. Avoiding directed cycles in Case (1) when w is a reticulation.

(2)

s

u v

t

Figure S6. A cycle-creating rNNI move of type (2).

First suppose that t is a bifurcation. Then we flip arc tv to vt using rNNI moves. To
see that this is possible, assume that there were a nonelementary t-v path. This path
would then have to enter v through u. However, since there is also a u-t path, this
would imply the existence of a directed cycle in N . Hence, we can perform an arc flip
on tv via rNNI moves by Lemma 2. Then we can apply a type-(3∗) rNNI move
(su, uv, vt→ sv, vu, ut). This move is possible because there can be no nonelementary
u-v path since v has indegree 1. We have thus obtained an acyclic network N ′′ with the
same underlying unrooted network as N ′. See Figure S7.

(3*)

s

u v

t

Figure S7. Avoiding directed cycles in Case (2) when t is a bifurcation.

Now suppose that t is a reticulation. Let (u = x0, x1, x2, . . . , xk = t) be a longest u-t
path in N . Let xi be the first reticulation on this path. Then we flip arc xi−1xi (which
is again possible since we chose a longest u-t path) using rNNI moves, and keep
repeating this procedure until there are no u-t paths left. Then we apply type-(2) rNNI
move (su, uv, tv → sv, uv, tu) and obtain an acyclic network N ′′ with the same
underlying unrooted network as N ′. See Figure S8.

(2)

s

u v

t

x1

xi−1

xi

Figure S8. Avoiding directed cycles in Case (2) when t is a reticulation.

Case (3∗). (su, uv, vt→ sv, vu, ut) and there is a nonelementary u-v path in N , see
Figure S9.

(3*)

s

u
v

t

Figure S9. A cycle-creating rNNI move of type (3∗).

First suppose there exists at least one nonelementary u-v path where the last

PLOS 25/32

internal vertex w of the path is a bifurcation. Then we flip arc wv using rNNI moves.
This is possible by Lemma 2 because a nonelementary w-v path would have to pass
through u and hence imply the existence of a directed cycle in N involving u and w.
After that, there can be no nonelementary u-v path since v has only one incoming arc
which comes from u. Therefore, we can apply the type-(3∗) move
(su, uv, vt→ sv, vu, ut) and we are done. See Figure S10.

(3*)

s

u
v

t

w

Figure S10. Avoiding directed cycles in Case (3) when w is a bifurcation.

Now suppose that in all nonelementary u-v paths the last internal vertex is a
reticulation. Then we take a longest u-v path (u = x0, x1, x2, . . . , xk = v) and let xi be
the first reticulation on this path. Then we flip arc xi−1xi, which is again possible since
we chose a longest u-v path. We repeat this procedure until there are no nonelementary
u-v paths left. Then we can apply the type-(3∗) move (su, uv, vt→ sv, vu, ut) and we
are done. See Figure S11.

(3*)

s

u
v

t

xi−1

xi

w

Figure S11. Avoiding directed cycles in Case (3) when w is a reticulation.

Case (4). (us, uv, tv → vs, uv, tu) and there is an s-t path in N , see Figure S12.

(4)

s

u

v

t

Figure S12. A cycle-creating rNNI move of type (4).

First suppose that t is a bifurcation. Then we flip arc tv using rNNI moves. As
before, this is possible because a nonelementary t-v path would need to pass through u
and hence imply the existence of a directed cycle in N . Then we apply a type-(1) rNNI
move (us, uv, vt→ ut, uv, vs). This is possible because any s-v path would have to pass
through u and hence imply the existence of a directed cycle in N . See Figure S13.

(1)

s

u

v

t

Figure S13. Avoiding directed cycles in Case (4) when t is a bifurcation.

Now suppose that t is a reticulation. Then we take a longest s-t path
(s = x0, x1, x2, . . . , xk = t) and let xi be the first reticulation on this path. If i = 0, i.e.
if s is a reticulation, then we flip arc us, apply a type-(2) move (su, uv, tv → sv, uv, tu)
and we are done. Otherwise, we flip arc xi−1xi which is, as before, possible since we
chose a longest s-t path, and we repeat the procedure until there are no s-t paths left.

PLOS 26/32

Then we can apply the type-(4) move (us, uv, tv → vs, uv, tu) and we are done. See
Figure S14.

(4)

s

u

v

t

xi−1 xi

Figure S14. Avoiding directed cycles in Case (4) when t is a reticulation.

Lemma 5. For any nonempty X and r ≥ 1, there exists a flip-friendly binary
rooted network on X with r reticulations.

Proof. Any network with just one reticulation is level-1, and thus, by Lemma 4, also
flip-friendly. In order to prove the lemma for r ≥ 2, we proceed as follows: we introduce
a special type of rooted binary networks, the laddered networks, and then we show that
(1) there are laddered networks on X with any number of reticulations r ≥ 2, and (2)
laddered networks are flip-friendly.

A rooted ladder is a binary rooted network that can be obtained in the following
manner (see Fig. S15, left): take a directed path P = p1p2 . . . pr and another directed
path Q = q1q2 . . . qr, both on r vertices, and add an arc from pi to qi for each
i ∈ {1, . . . , r}. Then add a vertex x with children p1 and q1, and a vertex y with
parents pr and qr. Finally add a root ρ whose only child is x and a leaf l whose parent
is y. Note that the reticulations in a rooted ladder are the vertices of the Q path, and
the y vertex. Clearly, for each r ≥ 2 there exists a rooted ladder with r reticulations.

ρ

x

p1

p2

p3

p4

q1

q2

q3

q4

y

l

ρ

x

p1

p2

p3

p4

q1

q2

q3

q4

y

l

ρN

c

nm

Figure S15. A rooted ladder L with 5 reticulations (left) and a laddered network
(right), obtained by grafting L on the root arc of a rooted tree on {m,n}.

A laddered network is a rooted binary network obtained by taking a rooted binary
tree N , then grafting a rooted ladder on the arc between the root of N and its child; if
we denote these two nodes by ρN and c, respectively, and the root of the rooted ladder
by ρ, this means replacing the arc ρNc in N with two new arcs ρNρ, ρc and then adding
to N the remaining vertices and arcs of the rooted ladder. See Fig. S15 (right) for an
example of laddered network. We can now prove the claims on laddered networks that
are necessary to conclude our proof.

PLOS 27/32

Claim (1). For any nonempty X and r ≥ 2, there exists a laddered network on X
with r reticulations.

Let l be any element of X, and L be the rooted ladder having r reticulations and l
as its leaf. Then let N be a laddered network obtained by taking a binary rooted tree
on X \ {l}, then grafting L on the branch between the root of this tree and its child. If
X \ {l} = ∅, then let N simply be L. Thus, N is a laddered network on X with r
reticulations.

Claim (2). Laddered networks are flip-friendly.

Let N be a laddered network on X, and N ′ another binary rooted network on X
with the same underlying unrooted network. We show that N can be transformed into
N ′ by only using arc flips.

First observe that in the “tree part” of N ′ all arcs will be oriented in the same way
as in N . If this were not true, N ′ would be rooted in a different degree-1 node than N ,
and the two networks would not be on the same set X. Therefore the only arcs
appearing in N but not in N ′ will be in its “ladder part”. So consider this part of N ,
and let x, y, l, p1, . . . , pr, q1, . . . , qr be the vertices in N described in the definition of a
rooted ladder (see Fig. S15). For notational convenience let p0 = q0 = x, and let
pr+1 = qr+1 = y.

Consider the set W0 = {x, p1, . . . , pr, q1, . . . , qr, y, l}. The only vertex in W0 with a
neighbor outside of W0 is x, and every vertex in W0 has indegree at least 1 (as W0 does
not contain the root of N). Therefore if N ′ contains the arc p1x or q1x, it holds that for
every w ∈W0 there exists z ∈W0 such that zw is an arc in N ′. But this implies that
N ′ has a cycle contained in W0, a contradiction. Thus N ′ can have neither of the arcs
p1x, q1x, and so instead N ′ must have arcs xp1, xq1.

We have thus shown that N ′ contains the arcs p0p1, q0q1. We will now show by
induction that for each i ∈ {1, . . . , r}, N ′ contains the arcs pipi+1 and qiqi+1.

Consider the set Wi = {pi, . . . , pr, qi, . . . , qr, y, l}. The only vertices in Wi with a
neighbor outside of Wi are pi and qi. If N ′ contains the arc pi+1pi then, as N ′ contains
the arc pi−1pi, N

′ must also contain the arc piqi. But then we have that for every
w ∈Wi there exists z ∈Wi such that zw is an arc in N ′. This implies that N ′ has a
cycle contained in Wi, a contradiction. Thus N ′ cannot contain the arc pi+1pi. By a
symmetric argument N ′ cannot contain the arc qi+1qi. Thus we have that for any N ′

and every i ∈ {0, . . . , r}, N ′ contains the arcs pipi+1 and qiqi+1.

It follows that the only arcs in N that may not be in N ′ are the piqi for some
i ∈ {1, . . . , r}. For any such arc there is no nonelementary pi-qi path in N , pi is a
bifurcation and qi is a reticulation. Therefore, we can perform an arc flip on each arc in
N and not in N ′, meaning that N ′ can be obtained from N by a sequence of arc flips.

Theorem 4. Let N and N ′ be binary rooted networks. Then, N can be turned into
N ′ with one rNNI move if and only if N can be turned into N ′ with one rSPR1 move.

Proof. We first prove that every rSPR1 move is an rNNI move (which implies the if
part of the theorem). In order to do this, we consider four different cases for the
position of the recipient arc x′y′ relative to the donor arcs xz, zy (see Fig. 7). We refer
to Lemma 1 for the definitions of the rNNI types (1), (1∗), . . . , (4).

(a) y′ = x, that is the recipient arc enters x. In this case the rSPR1 move coincides
with the rNNI (x′x, xz, zy → x′z, zx, xy), which is an rNNI of type (3∗) with
s = x′, u = x, v = z, t = y.

PLOS 28/32

(b) x′ = x, that is the recipient arc exits x. In this case the rSPR1 move coincides with
the rNNI (xy′, xz, zy → zy′, xz, xy), which is an rNNI of type (1) with
s = y′, u = x, v = z, t = y.

(c) x′ = y, that is the recipient arc exits y. In this case the rSPR1 move coincides with
the rNNI (xz, zy, yy′ → xy, yz, zy′), which is an rNNI of type (3∗) with
s = x, u = z, v = y, t = y′.

(d) y′ = y, that is the recipient arc enters y. In this case the rSPR1 move coincides
with the rNNI (xz, zy, x′y → xy, zy, x′z), which is an rNNI of type (2) with
s = x, u = z, v = y, t = x′.

We now proceed to prove the only if direction of the theorem. That is, if N can be
turned into N ′ with one rNNI move, then the same can be done with one rSPR1 move.
Similarly to above, we consider each possible type of rNNI in turn.

(1) (us, uv, vt→ ut, uv, vs). This rNNI move is an rSPR1 with donor arcs uv, vt and
recipient arc us.

(1∗) (us, uv, vt→ ut, vu, vs), where v is a reticulation in N . Let x be the only parent
of u in N , and x′ the parent of v other than u. Now consider the rSPR1 move
with donors xu, uv and recipient arc x′v, that is [xu, uv, x′v → x′u, uv, xv]. The
resulting network is the same as N ′ (formally, isomorphic to N ′), the network
produced by the rNNI above: both networks contain the arcs x′α, xβ, αβ, αs, βt,
with α = v, β = u in N ′, and α = u, β = v in the network produced by the rSPR1.

(2) (su, uv, tv → sv, uv, tu). This rNNI move is an rSPR1 with donor arcs su, uv and
recipient arc tv.

(2∗) (su, uv, tv → sv, vu, tu), where u is a bifurcation in N . Let y be the only child of
v in N , and y′ the child of u other than v. Now consider the rSPR1 move with
donors uv, vy and recipient arc uy′, that is [uv, vy, uy′ → uv, vy′, uy]. The
resulting network is the same as N ′ (formally, isomorphic to N ′), the network
produced by the rNNI above: both networks contain the arcs sα, tβ, αβ, αy, βy′,
with α = v, β = u in N ′, and α = u, β = v in the network produced by the rSPR1.

(3) (su, uv, vt→ sv, uv, ut), where u is a reticulation and v a bifurcation in N . Let x′

be the parent of u other than s in N , and y the child of v other than t. Now
consider the rSPR1 move with donors uv, vy and recipient arc x′u, that is
[uv, vy, x′u→ x′v, vu, uy]. The resulting network is the same as N ′ (formally,
isomorphic to N ′), the network produced by the rNNI above: both networks
contain the arcs x′α, sβ, αβ, αt, βy, with α = u, β = v in N ′, and α = v, β = u in
the network produced by the rSPR1.

(3∗) (su, uv, vt→ sv, vu, ut). This rNNI move is an rSPR1 with donor arcs su, uv and
recipient arc vt. Interestingly, it is also an rSPR1 with donor arcs uv, vt and
recipient arc su.

(4) (us, uv, tv → vs, uv, tu). Let y be the only child of v in N , and x′ the only parent
of u. Now consider the rSPR1 move with donors uv, vy and recipient arc x′u, that
is [uv, vy, x′u→ x′v, vu, uy]. The resulting network is the same as N ′ (formally,
isomorphic to N ′), the network produced by the rNNI above: both networks
contain the arcs x′α, tα, αβ, βs, βy, with α = u, β = v in N ′, and α = v, β = u in
the network produced by the rSPR1.

PLOS 29/32

Proposition 2. Let N be a binary rooted network. Within N , let eBB denote the
number of arcs from a bifurcation to a bifurcation, eBR the number of arcs from a
bifurcation to a reticulation, eRB the number of arcs from a reticulation to a bifurcation,
and eRR the number of arcs from a reticulation to a reticulation. Then, the number of
different binary rooted networks that can be obtained from N by one rNNI move is at
most 2(eBB + eRR) + 3eBR + 4eRB.

Proof. Every rNNI move applied to N must be around some arc uv in N , where both u
and v are internal vertices (that is, neither the root or a leaf). Thus, u and v are either
bifurcations or reticulations. To prove the statement, we consider the four possible
assignments of u and v to these categories.

In the following, we show that if u and v are both bifurcations (case BB) or both
reticulations (case RR), then at most 2 networks can be obtained with an rNNI move
around uv (top two lines in Fig. 8). If instead u is a bifurcation and v a reticulation
(case BR), then at most 3 networks can be obtained (third line in Fig. 8). Finally, if u is
a reticulation and v a bifurcation (case RB), then at most 4 networks can be reached
with an rNNI move around uv (bottom line in Fig. 8). These observations allow us to
obtain the upper bound of 2(eBB + eRR) + 3eBR + 4eRB on the size of the rNNI
neighborhood. In the following four paragraphs, we provide the detailed (but tedious)
proofs for cases BB, RR, BR and RB.

Case BB. If both u and v are bifurcations, name the vertices adjacent to u or v,
and networks N1 and N2 in the way described in Fig. 8 (top line), where we may have
β = γ or β = δ, but no other equality between vertices (any such equality would either
imply a cycle or parallel arcs). The only rNNI moves that can be applied to N are of
type (1) and (3∗), as all other rNNI types require that either u or v is a reticulation.
The type-(1) move (uβ, uv, vγ → uγ, uv, vβ) and the type-(3∗) move
(αu, uv, vδ → αv, vu, uδ) result in network N1, whereas the type-(1) move
(uβ, uv, vδ → uδ, uv, vβ) and the type-(3∗) move (αu, uv, vγ → αv, vu, uγ) result in
network N2. Note that if β = γ or β = δ, then some of the moves above may not be
applicable. Thus at most 2 networks can be obtained with an rNNI move around uv in
this case.

Case RR. If both u and v are reticulations, name the vertices adjacent to u or v,
and networks N1 and N2 in the way described in Fig. 8 (2nd line), where we may have
β = γ or α = γ, but no other equality between vertices. The only rNNI moves that can
be applied to N are of type (2) and (3∗), as all other rNNI types require that either u or
v is a bifurcation. The type-(2) move (βu, uv, γv → γu, uv, βv) and the type-(3∗) move
(αu, uv, vδ → αv, vu, uδ) result in network N1, whereas the type-(2) move
(αu, uv, γv → γu, uv, αv) and the type-(3∗) move (βu, uv, vδ → βv, vu, uδ) result in
network N2. Note that if β = γ or α = γ, then some of the moves above may not be
applicable. Thus at most 2 networks can be obtained with an rNNI move around uv in
this case.

Case BR. If u is a bifurcation and v a reticulation, name the vertices adjacent to u
or v, and networks N1, N2 and N3 in the way described in Fig. 8 (3rd line), where we
may have α = β, δ = γ, γ = β. Here type-(3) rNNI moves cannot be applied, as they
require that u is a reticulation. All other moves, if applicable, result in one among N1,
N2 and N3: the only type-(1) move (uγ, uv, vδ → uδ, uv, vγ) results in N3; the only
type-(1∗) move (uγ, uv, vδ → uδ, vu, vγ) results in N2; the only type-(2) move
(αu, uv, βv → βu, uv, αv) results in N2; the only type-(2∗) move
(αu, uv, βv → βu, vu, αv) results in N3; the only type-(3∗) move
(αu, uv, vδ → αv, vu, uδ) results in N1; the only type-(4) move (uγ, uv, βv → vγ, uv, βu)
results in N1. Once again (when some of the involved vertices are not distinct, or when
N contains a γ-β path) some of the moves above may not be applicable. Thus at most 3

PLOS 30/32

networks can be obtained with an rNNI move around uv in this case.

Case RB. If u is a reticulation and v a bifurcation, name the vertices adjacent to u
or v in the way described in Fig. 8 (bottom line). The only rNNI moves that can be
applied to N are of type (3) and (3∗), as all other rNNI types require that either u is a
bifurcation or v a reticulation. They result in one among N1, N2, N3 and N4: the
type-(3) move (βu, uv, vγ → uγ, uv, βv) and the type-(3∗) move
(αu, uv, vδ → αv, vu, uδ) result in N1; the type-(3) move (βu, uv, vδ → uδ, uv, βv) and
the type-(3∗) move (αu, uv, vγ → αv, vu, uγ) result in N2; the type-(3) move
(αu, uv, vγ → uγ, uv, αv) and the type-(3∗) move (βu, uv, vδ → βv, vu, uδ) result in N3;
the type-(3) move (αu, uv, vδ → uδ, uv, αv) and the type-(3∗) move
(βu, uv, vγ → βv, vu, uγ) result in N4. Note that in this case, no equality between any
of the named vertices can hold. Moreover, because no nonelementary u-v path can exist
in N , none of the moves above can create a cycle. Thus all of the moves above are
applicable, and exactly 4 networks can be obtained with an rNNI move around uv in
this case.

About the size of rNNI neighborhoods.

We now give a family of networks Nk, illustrated in Fig. S16, whose rNNI neighborhood
has size logarithmic in the number of arcs, in contrast with the upper bound given in
the Results section, which is linear in the number of arcs.

Each network Nk is built by taking two copies T k
1 and T k

2 of a complete binary
rooted tree with 2k leaves. For each pair of leaves u and v, add all possible arcs from
the copies of u and v in T k

1 to the copies of u and v in T k
2 . Finally, replace each arc uv

in T 2
k with the arc vu, so that the resulting network is binary with a single root and a

single leaf. This completes the construction of Nk (see Fig. S16).

u1

a

T
2

2

u2

u3

u4

u5

u6

T
2

1

Figure S16. The network N2, illustrating a family of networks Nk with O(2k) arcs
and only O(k) networks in the rNNI neighborhood.

For all k > 0, as the number of arcs of a complete binary subtree with 2k leaves is
2k+1 − 1, the number of arcs of Nk is 2× (2k+1 − 1) + 2× 2k, that is 3× 2k+1 − 2.
However, because of the extreme symmetry of this network, all arcs that lie at the same
height in the network are effectively indistinguishable, implying that rNNI moves
around different arcs often result in the same network. More precisely, consider two arcs
uv and u′v′ whose sources u and u′ are at the same distance d from the root, for
d ∈ {1, . . . , 2k + 1}. It is easy to see that the set of networks that can be obtained by
one rNNI move around uv is the same as the set obtained by one rNNI move around
u′v′, or around any other arc whose source is at distance d of the root. Thus, as Prop. 2
implies that there are at most 4 networks in each of these sets, the size of the rNNI
neighborhood of Nk is at most 4(2k + 1). This proves that the size of the rNNI
neighborhood of Nk is logarithmic in its number of arcs.

PLOS 31/32

Finally, in Fig. S17, we illustrate the rNNI neighborhood of the network N3 of Fig. 9
in the main text, which consists of 12 networks. Now note that because
eBB = 3, eBR = 2, Prop. 2 gives an upper bound of exactly 12, showing that this bound
is tight in this case.

ac db a db c b da c a db c d b c a db ca

a dc b d ab c a cb d a d cba db c a db c

N3;1 N3;2 N3;3 N3;4 N3;5 N3;6

N3;7 N3;8 N3;9 N3;10 N3;11 N3;12

Figure S17. The rNNI neighborhood of network N3 of Fig. 9: N3,1 and N3,2 are
obtained by rNNI moves of type BB around arc vv1 of N3, N3,3 and N3,4 are obtained
by rNNI moves of type BB around arc v1v2, N3,5 and N3,6 are obtained by rNNI moves
of type BB around arc vv4, N3,7, N3,8 and N3,9 are obtained by rNNI moves of type BR
around arc v2v3 and N3,10, N3,11 and N3,12 are obtained by rNNI moves of type BR
around arc v4v3.

PLOS 32/32

