
HAL Id: hal-01572508
https://hal.science/hal-01572508v1

Submitted on 7 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local null controllability of a rigid body moving into a
Boussinesq flow

Arnab Roy, Takéo Takahashi

To cite this version:
Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq
flow. Mathematical Control and Related Fields, 2019, 9 (4), pp.793-836. �10.3934/mcrf.2019050�.
�hal-01572508�

https://hal.science/hal-01572508v1
https://hal.archives-ouvertes.fr


LOCAL NULL CONTROLLABILITY OF A RIGID BODY MOVING INTO A
BOUSSINESQ FLOW

ARNAB ROY

TIFR Centre for Applicable Mathematics, Post Bag No. 6503,
GKVK Post Office, Bangalore 560065, India

(arnabr@math.tifrbng.res.in)
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Abstract. In this paper, we study the controllability of a fluid-structure interaction system.
We consider a viscous and incompressible fluid modeled by the Boussinesq system and the
structure is a rigid body with arbitrary shape which satisfies Newton’s laws of motion. We
assume that the motion of this system is bidimensional in space. We prove the local null
controllability for the velocity and temperature of the fluid and for the position and velocity of
rigid body for a control acting only on the temperature equation on a fixed subset of the fluid
domain.
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1. Introduction and main result

Let Ω be a bounded, nonempty, open subset of R2 with C2 boundary that contains a rigid
body and a viscous incompressible fluid. The domain of the rigid body is denoted by Sptq Ă Ω
and it is assumed to be of class C2, compact, simply connected and with non-empty interior.
The fluid domain is denoted by Fptq “ ΩzSptq and it is assumed to be connected. Since, we
assume that the structure is a rigid solid, we can describe Sptq with two functions t ÞÑ hptq P R2

and t ÞÑ βptq P R through the formulas

Sptq “ Shptq,βptq, Fptq “ Fhptq,βptq. (1.1)

In the above relations and in what follows, we write for any h P R2 and for any β P R,

Sh,β “ h`RβS and Fh,β “ ΩzSh,β, (1.2)

where S is a fixed subset of R2 of class C2, compact, simply connected and with non-empty
interior. In (1.2), Rβ is the rotation matrix, defined by

Rβ “

ˆ

cos β ´ sin β
sin β cos β

˙

. (1.3)

We assume that there exist h0 P R2, β0 P R such that

Sh0,β0 Ă Ω.

Without loss of generality, we can assume that the center of gravity of S is at the origin. In
that case, hptq is the position of the centre of mass of the rigid body.

Let O be an open subset with O Ă Ω. The fluid-rigid body system is controlled by a force
field supported in O and we suppose that O Ă Fptq.

We shall assume that the motion of the fluid is described by the Boussinesq approximation.
The fluid is treated as incompressible when formulating the Navier-Stokes mass and momentum
conservation equations and here the effect of temperature change is taken into account. The
motion of the rigid body is governed by the balance equations for linear and angular momentum.
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The equations of motion of fluid-structure are:

Bpu

Bt
` ppu ¨∇qpu´ ν∆pu`∇pp “ pθe2, t P p0, T q, x P Fptq, (1.4)

div pu “ 0, t P p0, T q, x P Fptq, (1.5)

pupt, xq “ 0, t P p0, T q, x P BΩ, (1.6)

pupt, xq “ h
1

ptq ` β
1

ptqpx´ hptqqK, t P p0, T q, y P BSptq, (1.7)

Bpθ

Bt
` pu ¨∇pθ ´ µ∆pθ “ w01O, t P p0, T q, x P Fptq, (1.8)

Bpθ

Bpn
pt, xq “ 0, t P p0, T q, x P BFptq, (1.9)

Mh
2

ptq “ ´

ż

BSptq
σppu, ppqpndΓ, t P p0, T q, (1.10)

Jβ
2

ptq “ ´

ż

BSptq
px´ hptqqK ¨ σppu, ppqpndΓ, t P p0, T q, (1.11)

pup0, xq “ pu0pxq, pθp0, xq “ pθ0pxq, x P Fp0q, (1.12)

hp0q “ h0, βp0q “ β0, h
1
p0q “ p`0, β

1
p0q “xω0. (1.13)

In the above system, pupt, yq is the velocity field of the fluid, pppt, yq denotes the pressure of

the fluid and pθpt, yq is the temperature. Here ν ą 0 is the kinematic viscosity and µ ą 0 is the

thermal diffusivity. For all x “

ˆ

x1

x2

˙

P R2, we denote by xK, the vector

ˆ

´x2

x1

˙

. Moreover the

boundaries of the rigid body and fluid domain are denoted by BSptq and BFptq respectively.
The outward unit normal to BFptq is denoted by pnpt, xq. The constants M and J are the mass
and the moment of inertia of the rigid body. For the sake of convenience, we will assume that
the rigid body is homogeneous with a constant density ρS P R˚` and thus we have

M “ ρS |S|, J “ ρS

ż

S

|y|2 dy.

The Cauchy stress tensor is defined as:

σppu, ppq “ ´ppI2 ` 2νDppuq,

where Dppuq is the symmetric gradient:

Dppuqi,j “
1

2

ˆ

Bpui
Bxj

`
Bpuj
Bxi

˙

.

The state of system (1.4)-(1.13) is ppu, pp, pθ, h, βq and we want to emphasize the fact that the
domains Fptq and Sptq are depending on the state and thus evolve through the dynamics
induced by the system (1.10)-(1.11). This is one of the main difficulties in this problem: we are
working on a non cylindrical domain and the spatial domain is unknown. A standard tool to
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handle this difficulty consists in using a change of variables in order to rewrite the system in a
cylindrical domain. We need however to take care that such a change of variables is constructed
from the state and this leads to some technical estimates on the coefficients coming from this
transformation.

Several studies on the existence of weak solutions or strong solutions of fluid-structure in-
teraction system have been published in recent years, usually without the equation on the
temperature. The stationary problem was studied in Serre [39] and in Galdi [23]. An existence
result of strong solutions in two or three dimension was proved in Grandmont and Maday [26]
under the assumption that the inertia of the rigid body is large enough with respect to the
inertia of the fluid. The existence and uniqueness of strong solutions in the case of a bounded
domain has been proved in [40] without the hypothesis of [26] about the inertia of the rigid
body. In the case of whole space, existence and uniqueness of strong solutions in two dimen-
sions have been proved by Takahashi and Tucsnak [41] for an infinite cylinder and a similar
result has been proved in three dimension by Silvestre and Galdi [24] for a rigid body having
an arbitrary form. The question of existence of weak solutions has been investigated by many
authors: [11], [7], [38], [15], [14], [28] etc. We can also mention a result on existence of weak solu-
tions of the case where the fluid motion is modeled by the Boussinesq system: in [35], Nečasová
proved the existence of weak solutions in three dimension for the problem of motion of one or
several rigid bodies immersed in an incompressible non-Newtonian and heat-conducting fluid.

The controllability of the Navier-Stokes system has been the objective of considerable work
over the last years. In the case of the two dimensional incompressible Navier-Stokes equations
with the Navier slip boundary conditions, an approximate controllability result for boundary or
distributed controls was proved by Coron in [8] and local exact controllability was established
by Imanuvilov in [30]. In [18] and [31] the authors obtained the local exact controllability
of the 2D or 3D Navier-Stokes equations with Dirichlet boundary condition with distributed
controls supported in a small subset. They established a new Carleman inequality for the
linearized Navier-Stokes system, which leads to null controllability and then they deduced a
local result concerning the exact controllability. Fursikov and Imanuvilov established the local
exact boundary controllability to the trajectories of the N dimensional Boussinesq system with
N ` 1 scalar controls acting over the whole boundary and the local exact controllability to the
same trajectories with N ` 1 scalar distributed controls when Ω is a torus in [20], [21], [22] by
deducing a global Carleman estimate for the adjoint system. The techniques in [18] have been
adapted in [27] to obtain the local exact controllability to the trajectories of the N dimensional
Boussinesq systems with N ` 1 distributed scalar controls supported in subsets of the domain.
In [25], the authors also establish same result as in [27] but via a method based on applying
fictitious control on the divergence equation.

Here we want to emphasize that there have been many works in the literature where the
authors deal with the controllability problem of Navier-Stokes type systems via reduced number
of controls. In [19], the authors show that the N dimensional Navier-Stokes and Boussinesq
systems can be controlled with only N ´ 1 scalar controls under some geometrical assumptions
on control domains. In [9], Coron and Guerrero established the null controllability of the N
dimensional Stokes system with internal controls having one vanishing component with no
condition imposed on the control domain. Local null controllability of the N dimensional
Navier-Stokes and Boussinesq system with N ´1 scalar controls in an arbitrary control domain
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has been obtained in [6], [5]. Here we want to mention that in [19], [5] for Boussinesq system,
the authors obtained the local exact controllability result with two vanishing components of
velocity control. Let us mention that in [33], Lions and Zuazua showed that three dimensional
Stokes system is not necessarily null controllable with two vanishing components for the control
even if the control is distributed on the entire domain. But in [10], local null controllability of
the three dimensional Navier-Stokes system with a control distributed in an arbitrarily small
nonempty open subset having two vanishing components has been proved by Coron and Lissy
by using the return method and a Gromov method.

There are few articles in the last decade concerning the controllability results on fluid-
structure interaction problem. In a paper of Raymond and Vanninathan [37], they considered
a simplified model in 2D where the fluid equations are replaced by the Helmholtz equations
and the motion of a solid represented by a harmonic oscillator. In that case, the domain is
supposed to be fixed but one of the difficulties comes from the fact that there is no control in
the solid part. They established exact controllability results for this model with an internal
control only in the fluid part. In the work of Doubova and Fernández-Cara [12], they proved
the local null controllability by boundary controls for a 1D model where point mass is immersed
in a fluid which evolves in p´1, 1q. In that case, the domain is not fixed any more and the proof
of the result is based on the global null controllability of the linearized system (by Carleman
estimates) and on Kakutani’s fixed point theorem. In [29], the authors established exact con-
trollability of a 2D fluid-structure system where the body is a ball. In the paper of Boulakia
and Osses [4], the authors dealt with the same problem as in [29], except that the body can
have more general shape. In [3], Boulakia and Guerrero proved the local null controllability of
a fluid-solid interaction problem in three dimension. Finally, in [34], the authors studied the
local null controllability problem for the simplified one dimensional model considered in [12]
and they managed to reduce the number of controls.

Our aim in this article is to control the fluid-structure system (1.4)-(1.13). More precisely, we
want to control the position of the rigid body, the velocities of the fluid and of rigid body and
the temperature of the fluid at a given time T ą 0. Our main result can be stated as follows:

Theorem 1.1. Assume T ą 0, hT P R2, and βT P R such that

O X ShT ,βT “ H.

There exists ε ą 0 such that for every

ppu0, pθ0, h0, p`0, β0,xω0q P H1
pFh0,β0q ˆH

1
pFh0,β0q ˆ R2

ˆ R2
ˆ Rˆ R

satisfying

div pu0 “ 0 in Fh0,β0 ,

pu0 “ 0 on BΩ,

pu0pyq “ p`0 `xω0py ´ h0q
K for y P BSh0,β0 (1.14)

and

}pu0}H1pFh0,β0 q ` }
pθ0}H1pFh0,β0 q ` |h0 ´ hT | ` |p`0| ` |β0 ´ βT | ` |xω0| ă ε, (1.15)
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we can find a control w0 P L
2p0, T ;L2pOqq such that the solution of (1.4)–(1.13) satisfies

pupT, ¨q “ 0, h1pT q “ 0, β1pT q “ 0, (1.16)

and

pθpT, ¨q “ 0, hpT q “ hT , βpT q “ βT . (1.17)

Observe that by using a translation and a rotation we can always assume that

hT “ 0 and βT “ 0, (1.18)

and thus

ShT ,βT “ S, FhT ,βT “ F .

Therefore in what follows, we assume (1.18).
Our main result consists of the local null controllability of a fluid-structure system in dimen-

sion two by applying a control only on the temperature equation. In our knowledge, there are
no results on the controllability of fluid-structure interaction problems that deal with reduced
number of controls (that is, the number of controls is less that the number of equations). We
use the same change of variables and similar type fixed point argument as in [29]. But, un-
like [29], we have considered the Boussinesq system and we are interested in the controllability
via reduced number of controls. In [5], the author proved the local exact controllability of the
N -dimensional Boussinesq system with internal controls having two vanishing components in
velocity control and the main tool is to use a suitable Carleman inequality. We also prove the
main result by showing a Carleman estimate. In our case, we have to incorporate some terms
due to the presence of rigid body.

This paper is organized as follows. In Section 2, we give the notation used in this paper and
we recall some results. In Section 3, we introduce a change of variables to rewrite the problem
(1.4)-(1.13) in a fixed spatial domain. In Section 4, we study the existence and regularity of
a linearized problem in a fixed domain associated to our problem. Section 5 is devoted to
establish a suitable Carleman inequality of the adjoint system of the linearized problem in a
fixed domain. Then, in Section 6, we first give a link between controllability properties and
Carleman estimates and then prove the controllability of an auxiliary linear system associated
to (1.4)-(1.13). Finally, Section 7 is devoted to the proof of Theorem 1.1 where we use a fixed
point procedure to obtain a solution of the nonlinear system.

2. Notation and Preliminaries

2.1. Notation. We set L2pΩq “ L2pΩ;R2q, H1pΩq “ H1pΩ;R2q and the same notation con-
ventions will be used for trace spaces. We introduce the following spaces that we use frequently
later on:

H
1
4
, 1
2 pp0, T q ˆ BFq “ H

1
4 p0, T ; L2

pBFqq X L2
p0, T ; H

1
2 pBFqq,

H1,2
pp0, T q ˆ BFq “ H1

p0, T ; L2
pBFqq X L2

p0, T ; H2
pBFqq,
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with the following norms

}u}
H

1
4 ,

1
2 pp0,T qˆBFq

“

´

}u}2
H

1
4 p0,T ;L2pBFqq

` }u}2
L2p0,T ;H

1
2 pBFqq

¯
1
2
,

}u}H1,2pp0,T qˆBFq “
´

}u}2H1p0,T ;L2pBFqq ` }u}
2
L2p0,T ;H2pBFqq

¯
1
2
.

We also define

H1 “ tu P L2
pΩq| divu “ 0 in Ω, Dpuq “ 0 in S, u ¨ n “ 0 on BΩu. (2.1)

We recall that (see, for instance, [44, Lemma 1.1, p.18]) for any u P H1, there exist `u P R2

and ωu P R such that

upyq “ `u ` ωuy
K, @ y P S.

2.2. Preliminaries.

Lemma 2.1. There exists a constant C ą 0 such that

ż

BS

|a` by1|
2 dΓ ě C

`

|a|2 ` |b|2
˘

.

Proof. Let us prove that

pa, bq ÞÑ

¨

˝

ż

BS

|a` by1|
2 dΓ

˛

‚

1
2

(2.2)

is a norm of R2. It is enough to show the following implication:

a` by1 “ 0 py1 P BSq ùñ a “ 0, b “ 0.

We have

BS Ă ty1 P R | a` by1 “ 0u .

If b ‰ 0, then we obtain that BS is included in the line
!

y1 P R | y1 “ ´
a

b

)

,

which is a contradiction. Thus b “ 0, which implies a “ 0 and consequently, (2.2) defines a
norm of R2 and we have

¨

˝

ż

BS

|a` by1|
2 dΓ

˛

‚

1
2

ě C
`

|a|2 ` |b|2
˘

1
2 .

�

Lemma 2.2. Assume z P H1, with z “ ``ωyK in S. Then there exists a constant C independent
of z, `, ω such that

}z}L2pFq ě C|`|.

If S is not a disk, we also have

}z}L2pFq ě C|ω|.
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Proof. Using Theorem 1.2 p.9 in [43], there exists C such that

}z}L2pFq ě C}p`` ωyKq ¨ n}H´1{2pBSq. (2.3)

First let us consider the case where S is a disk. Then, using that the center of S is 0, relation
(2.3) writes

}z}L2pFq ě C}` ¨ n}H´1{2pBSq. (2.4)

Let us show that
` ÞÑ }` ¨ n}H´1{2pBSq

is a norm of R2. Indeed assume ` ¨ n “ 0 on BS.
If ` ‰ 0, there exists a point of BS such that n “ `{|`| and thus, ` ¨ n “ |`| ‰ 0. Thus we
conclude from (2.4) that

}z}L2pFq ě C|`|.

If S is not a disk, let us prove that

p`, ωq ÞÑ }p`` ωyKq ¨ n}H´1{2pBSq

is a norm of R3. We want to prove the following implication:

p`` ωyKq ¨ n “ 0 py P BSq ùñ ` “ 0, ω “ 0.

This is equivalent to show

pa` byq ¨ τ “ 0 py P BSq ùñ a “ 0, b “ 0.

Let us introduce fpyq :“ a¨y`b |y|
2

2
. Then, Bf

Bτ
pyq “ pa`byq¨τ for any y P BS. If pa`byq¨τ “ 0

for any y P BS, then it implies that there exists c P R such that fpyq ` c “ 0 for any y P BS.
This yields

BS Ă
"

y P R2 ; a ¨ y ` b
|y|2

2
` c “ 0

*

.

The set in the right-hand side is either empty, a point, a line, a circle or R2. The last case is
the only one possible and it is equivalent to a “ 0 and b “ 0.

Thus we conclude from (2.3) that

}z}L2pFq ě Cp|`| ` |ω|q.

�

3. The change of variables

3.1. Construction of the change of variables. Assume Sptq is defined by (1.1) and S Ă Ω.
We also take a control region O such that

O X S “ H. (3.1)

The above assumptions imply that distpS,Oq ě d0 and distpS, BΩq ě d0 for some d0 ą 0. Then
we can prove the following result

Lemma 3.1. There exists a constant c0 such that if

|h| ă c0, |β| ă c0, (3.2)

then distpSh,β ,Oq ě d0
2

and distpSh,β , BΩq ě d0
2

.
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Taking ε ă c0 in (1.15), we deduce that

distpSh,β ,Oq ě
d0

2
, distpSh,β , BΩq ě

d0

2
.

We want to construct change of variables X : Ω Ñ Ω that transforms F onto Fptq and S onto
Sptq. Thus we can define

X pt, yq “ y ` kpyqrhptq `Rβptqy ´ ys, t P p0, T q, y P Ω. (3.3)

Here k : Ω Ñ R is a smooth function such that

kpyq “

#

1 if distpy,Sq ď d0
16

0 if distpy,Sq ě d0
8
.

The map X is a C8 diffeomorphism of Ω onto itself if

}k}W 1,8pΩqp|hptq| ` |βptq|q ă c (3.4)

for c small enough.
With the above choices,

‚ in a neighborhood of S, X pt, yq “ hptq `Rβptqy, and thus X pt,Sq “ Sptq.
‚ in a neighborhood of BΩ and of O, X pt, yq “ y.

Let the inverse of X pt, ¨q is denoted by Ypt, ¨q. Observe that, in a neighborhood of Sptq, we
have

Ypt, xq “ R´βptqpx´ hptqq.

3.2. The system in a cylindrical domain. We set

upt, yq “ Cofp∇X pt, yqq˚pupt,X pt, yqq, (3.5)

ppt, yq “ pppt,X pt, yqq, (3.6)

θpt, yq “ pθpt,X pt, yqq, (3.7)

`ptq “ R´βptqh
1
ptq, ωptq “ β1ptq. (3.8)

Here CofpMq is the cofactor matrix of M , which satisfies

MpCofpMqq˚ “ pCofpMqq˚M “ detpMq Id .

We transform (1.4)-(1.13) by using this change of variables. Such a calculation is already done
in [1] except for the temperature equation. We give here only the part of the calculation that
corresponds to the temperature equation and we refer to [1] for the calculation of the other
equations. From (3.7), we have:

Bpθ

Bt
“
Bθ

Bt
pYq ` BY

Bt
¨∇θpYq, (3.9)

∇pθ “ p∇Yq˚∇θpYq, (3.10)

B2
pθ

Bx2
i

“

2
ÿ

k,l“1

B2θ

BylByk
pYqBYk

Bxi

BYl
Bxi

`

2
ÿ

k“1

Bθ

Byk
pYqB

2Yk
Bx2

i

, (3.11)

pu ¨∇pθ “ detp∇Yq pupYq ¨∇θpYqq . (3.12)
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In order to transform the Neumann boundary condition (1.9), we also need to rewrite the
exterior normal to BFptq. Let us denote by n the exterior normal to BF . Then,

pn “ n on BΩ,

and

pnpt, xq “ RβptqnpR´βptqpx´ hptqqq x P BSptq.
In a neighborhood of Sptq,

Ypt, xq “ pR´βptqpx´ hptqqq
and in a neighborhood of BΩ, Y “ Id.

Thus on BSptq,

Bpθ

Bpn
pt, xq “ p∇Yq˚∇θpYq ¨RβptqnpYq “

Bθ

Bn
pYq, (3.13)

and on BΩ,

Bpθ

Bn
“
Bθ

Bn
pYq.

Thus, we can rewrite the system (1.4)-(1.13) as:
„

Ku
Bu

Bt



` rMuus ` rNuus ´ νrLuus ` rGups “ θe2, in p0, T q ˆ F , (3.14)

div u “ 0, in p0, T q ˆ F , (3.15)

upt, yq “ 0, t P p0, T q, y P BΩ, (3.16)

upt, yq “ `ptq ` ωptqyK, t P p0, T q, y P BS, (3.17)

Bθ

Bt
` rMθθs ` rNθpu, θqs ´ µrLθθs “ w01O, in p0, T q ˆ F , (3.18)

Bθ

Bn
pt, yq “ 0, t P p0, T q, y P BF , (3.19)

M`1ptq “ ´

ż

BS
σpu, pqn dΓ ´Mω`K, t P p0, T q, (3.20)

Jω1ptq “ ´

ż

BS
yK ¨ σpu, pqn dΓ , t P p0, T q, (3.21)

h1ptq “ Rβptq`ptq t P p0, T q, (3.22)

β1ptq “ ωptq t P p0, T q, (3.23)

up0, yq “ u0pyq and θp0, yq “ θ0pyq, y P F , (3.24)

hp0q “ h0, `p0q “ `0, βp0q “ β0, ωp0q “ ω0. (3.25)

Here we want to underline the fact that the linear and nonlinear operators rKus,rNus, rLus,
rGus, rNθs, rLθs depend on h and β and the operators rMus, rMθs depend on h, β, `, ω through
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the change of variables X and its inverse Y . The definitions of the operators are given through
the following formulas:

rKuus “ Cofpp∇Yq˚ ˝ X qu, (3.26)

rMuus “
B

Bt
Cofpp∇Yq˚ ˝ X qu` pCofp∇Yq˚ ˝ X qp∇uq

ˆ

BY
Bt

˙

˝ X , (3.27)

rLuusi “
ÿ

j,k,l,m

Cofp∇YqkipX q
B2uk
BylBym

BYl
Bxj

pX qBYm
Bxj

pX q

` 2
ÿ

j,k,l

B

Bxj
Cofp∇YqkipX q

Buk
Byl

BYl
Bxj

pX q

ÿ

j,k,l

Cofp∇YqkipX q
Buk
Byl

B2Yl
Bx2

j

pX q `
ÿ

j,k

B2

Bx2
j

Cofp∇YqkipX quk, (3.28)

rNuusi “
ÿ

j,k,r

Cofp∇YqkjpX q
B

Bxj
Cofp∇YqripX qukur `

ÿ

k,r

detpp∇YqpX qq2BXi

Byr
uk
Bur
Byk

, (3.29)

rGupsi “
2
ÿ

k“1

Bp

Byk

BYk
Bxi

pX q, (3.30)

rMθθs “
BY
Bt
pX q ¨∇θ, (3.31)

rLθθs “
2
ÿ

i“1

2
ÿ

k“1

«

2
ÿ

l“1

B2θ

BylByk

BYl
Bxi
pX qBYk

Bxi
pX q ` Bθ

Byk

B2Yk
Bx2

i

pX q

ff

, (3.32)

rNθpu, θqs “
u ¨∇θ

det∇X
. (3.33)

We have set

u0 :“ Cofp∇X p0, yqq˚pu0pX p0, yqq, θ0 :“ pθ0pX p0, yqq, (3.34)

`0 :“ R´β0
p`0, ω0 :“xω0. (3.35)

4. Some linear systems

In this section we analyze two linear systems associated with (3.14)–(3.25):

Bu

Bt
´ ν∆u`∇p “ θe2 `

rf, in p0, T q ˆ F , (4.1)

divu “ 0, in p0, T q ˆ F , (4.2)

upt, yq “ 0, t P p0, T q, y P BΩ, (4.3)

upt, yq “ `ptq ` ωptqyK, t P p0, T q, y P BS, (4.4)
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Bθ

Bt
´ µ∆θ “ rg ` w01O, in p0, T q ˆ F , (4.5)

Bθ

Bn
pt, yq “ 0, t P p0, T q, y P BF , (4.6)

M`
1

ptq “ ´

ż

BS
σpu, pqn dΓ`Mrhp1q, t P p0, T q, (4.7)

Jω1ptq “ ´

ż

BS
yK ¨ σpu, pqndΓ` Jrhp2q, t P p0, T q, (4.8)

h1ptq “ Rβptq`ptq t P p0, T q, (4.9)

β1ptq “ ωptq t P p0, T q, (4.10)

up0, yq “ u0pyq and θp0, yq “ θ0pyq, y P F , (4.11)

hp0q “ h0, βp0q “ β0, (4.12)

`p0q “ `0 P R2, ωp0q “ ω0 P R, (4.13)

and

Bu

Bt
´ ν∆u`∇p “ rf, in p0, T q ˆ F , (4.14)

div u “ 0, in p0, T q ˆ F , (4.15)

upt, yq “ 0, t P p0, T q, y P BΩ, (4.16)

upt, yq “ `ptq ` ωptqyK, t P p0, T q, y P BS, (4.17)

M`
1

ptq “ ´

ż

BS
σpu, pqn dΓ`Mrhp1q, t P p0, T q, (4.18)

Jω1ptq “ ´

ż

BS
yK ¨ σpu, pqndΓ` Jrhp2q, t P p0, T q, (4.19)

up0, yq “ u0pyq y P F , (4.20)

`p0q “ `0 P R2, ωp0q “ ω0 P R, (4.21)

For both systems, we extend u and rf to Ω by setting:

upt, yq “ `ptq ` ωptqyK, @pt, yq P p0, T q ˆ S,
rfpt, yq “ rhp1q ` rhp2qyK, @pt, yq P p0, T q ˆ S.

In particular, u is a rigid velocity in S, that is Dpuq “ 0 in p0, T q ˆ S. We recall that H1 is
defined by (2.1). We set

H “ H1 ˆ L
2
pFq. (4.22)

We consider the inner product on L2pΩq ˆ L2pFq defined by
Bˆ

u
θ1

˙

,

ˆ

v
θ2

˙F

L2pΩqˆL2pFq
“

ż

F

u ¨ v dy ` ρS

ż

S

u ¨ v dy `

ż

F

θ1θ2 dy.
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The corresponding norm is equivalent to the usual norm in L2pΩq ˆ L2pFq. Moreover, if
u, v P H1, then we have

Bˆ

u
θ1

˙

,

ˆ

v
θ2

˙F

L2pΩqˆL2pFq
“

ż

F

u ¨ v dy `M`u ¨ `v ` Jωuωv `

ż

F

θ1θ2 dy.

In order to work with (4.1)-(4.13), we use an approach based on semigroups. We define:

DpA1q “

!

u P H1
0pΩq |u|F P H2

pFq, div u “ 0 in Ω, Dpuq “ 0 in S
)

, (4.23)

DpA2q “

"

θ P H2
pFq | Bθ

Bn
“ 0 on BF

*

(4.24)

and
DpAq “ DpA1q ˆDpA2q. (4.25)

For all u P DpA1q, we set

A1u “

$

’

’

&

’

’

%

ν∆u in F

´
2ν

M

ż

BS

DpuqndΓ´

»

–

2ν

J

ż

BS

yK ¨DpuqndΓ

fi

fl yK in S (4.26)

A1u “ PA1u (4.27)

where P is the orthogonal projector from L2pΩq onto H1.
We also define for θ P DpA2q,

A2θ “ µ∆θ, D0θ “ Ppθe21Fq.

Finally, we define A : DpAq Ñ H by

A “

ˆ

A1 D0

0 A2

˙

. (4.28)

It is shown in [42, Proposition 4.2] that A1 is a self-adjoint, maximal dissipative operator.
It is also well-known that A2 is a self-adjoint, maximal dissipative operator. Thus, using a
perturbation argument (see [36, Corollary 2.2, Chapter 3, p. 81]), we deduce the following
result:

Proposition 4.1. The operator pA,DpAqq defined by (4.28) is the generator of an analytic
semigroup on H. Its adjoint is given by DpA˚q “ DpAq and

A˚ “

ˆ

A1 0
D˚0 A2

˙

, (4.29)

with
D˚0φ “ φ2|F .

Observe that

Dpp´A1q
1
2 q “

!

u P H1
0pΩq | div u “ 0 in Ω, Dpuq “ 0 in S

)

, (4.30)

Dpp´Aq
1
2 q “ Dpp´A1q

1
2 q ˆH1

pFq. (4.31)
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As a consequence of Proposition 4.1, and by using the isomorphism theorem (see, for instance, [2,
Theorem 3.1, p. 143]), we have the following result:

Corollary 4.2. Let T ą 0 and rf P L2p0, T ; L2pFqq, rg P L2p0, T ;L2pFqq, w0 P L
2p0, T ;L2pOqq

rhp1q P L2p0, T ;R2q, rhp2q P L2p0, T ;Rq, u0 P H1pFq, θ0 P H
1pFq be such that:

div u0 “ 0 in F , u0pyq “ 0 on BΩ, u0pyq “ `0 ` ω0y
K for y P BS.

Then the linear system (4.1)-(4.13) admits a unique solution pu, p, θ, `, ωq with

u P L2
p0, T ; H2

pFqq XH1
p0, T ; L2

pFqq X Cpr0, T s; H1
pFqq,

p P L2
p0, T ;H1

pFq{Rq, ` P H1
p0, T ;R2

q, ω P H1
p0, T ;Rq,

θ P L2
p0, T ;H2

pFqq XH1
p0, T ;L2

pFqq.

Moreover, the solution pu, p, θ, `, ωq satisfies the following estimate:

}u}L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ` }p}L2p0,T ;H1pFqq

` }`}H1p0,T ;R2q ` }ω}H1p0,T ;Rq ` }θ}L2p0,T ;H2pFqqXH1p0,T ;L2pFqq

ď C

˜

} rf}L2p0,T ;L2pFqq ` }rg}L2p0,T ;L2pFqq ` }w0}L2p0,T ;L2pOqq ` }rh
p1q
}L2p0,T ;R2q

` }rhp2q}L2p0,T ;Rq ` }u0}H1pFq ` }θ0}H1pFq ` |`0| ` |ω0|

¸

. (4.32)

In what follows, we also need some properties of the linear system (4.14)-(4.21) that we can
write as

9u “ A1u` P rf, up0q “ u0. (4.33)

Corollary 4.3. Let T ą 0 and rf P L2p0, T ; L2pFqq, u0 P H1pFq such that:

div u0 “ 0 in F , u0pyq “ 0 on BΩ, u0pyq “ `0 ` ω0y
K for y P BS.

Then the linear system (4.14)-(4.21) admits a unique solution pu, p, `, ωq with

u P L2
p0, T ; H2

pFqq XH1
p0, T ; L2

pFqq X Cpr0, T s; H1
pFqq,

p P L2
p0, T ;H1

pFq{Rq, ` P H1
p0, T ;R2

q, ω P H1
p0, T ;Rq.

Moreover, the solution pu, p, `, ωq satisfies the following estimate:

}u}L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ` }p}L2p0,T ;H1pFqq ` }`}H1p0,T ;R2q ` }ω}H1p0,T ;Rq

ď C

˜

} rf}L2p0,T ;L2pFqq ` }rh
p1q
}L2p0,T ;R2q ` }

rhp2q}L2p0,T ;Rq ` }u0}H1pΩq

¸

. (4.34)

If

P rf P L2
p0, T ;DpA1qq XH

1
p0, T ;H1q

and

u0 P Dpp´A1q
3{2
q,
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then

u P L2
p0, T ;DppA1q

2
qq XH2

p0, T ;H1q

Moreover, there exists C such that

}u}L2p0,T ;H4pFqqXH2p0,T ;L2pFqq ` }`}H2p0,T ;R2q ` }ω}H2p0,T ;Rq

ď C

˜

}P rf}L2p0,T ;DpA1qqXH1p0,T ;H1q ` }u0}Dpp´A1q
3{2q

¸

. (4.35)

5. The Carleman Inequality

Let us introduce the adjoint system of (4.1)-(4.13):

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
Bφ

Bt
´ ν∆φ`∇q “ f, in p0, T q ˆ F ,

div φ “ 0, in p0, T q ˆ F ,
φpt, yq “ 0, t P p0, T q, y P BΩ,

φpt, yq “ `φptq ` ωφptqy
K, t P p0, T q, y P BS,

´
Bψ

Bt
´ µ∆ψ “ g ` φ2, in p0, T q ˆ F ,

Bψ

Bn
pt, yq “ 0, t P p0, T q, y P BF ,

´M`
1

φptq “ ´

ż

BS
σpφ, qqn dΓ ` hp1q, t P p0, T q,

´Jω1φptq “ ´

ż

BS
yK ¨ σpφ, qqn dΓ ` hp2q, t P p0, T q,

φpT, yq “ φT pyq and ψpT, yq “ ψT pyq, y P F ,
`φpT q “ `T , ωφpT q “ ωT .

(5.1)

In this section, our aim is to establish a suitable Carleman estimate for the adjoint system
(5.1). Let us introduce the weight functions used for this estimate.

Let us consider η P C2pFq satisfying

η ą 0 in F , |∇η| ě c0 ą 0 in FzO0, (5.2)

η “ 0 on BF and
Bη

Bn
ď ´c1 ă 0 on BF , (5.3)

where O0 be a nonempty open subset of R2 such that O0 Ă O. The existence of such a function
is standard (see, for instance, [21, Lemma 1.1, p. 4] or [45, Theorem 9.4.3, p. 299]).
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Let λ ě 1 and let us consider the following functions defined in p0, T q ˆ F :

αpt, xq “
e2λ}η}L8pFq ´ eληpxq

Eptq8
, ξpt, xq “

eληpxq

Eptq8
(5.4)

αMptq “ max
xPF

αpt, xq , ξMptq “ max
xPF

ξpt, xq (5.5)

αmptq “ min
xPF

αpt, xq , ξmptq “ min
xPF

ξpt, xq, (5.6)

where E P C8pr0, T sq, E ą 0 in p0, T q, E is even, increasing in p0, T {2q and satisfies Eptq “ t
in p0, T {4q, Eptq “ T ´ t in p3T {4, T q.

Such functions are standard for Carleman estimates. Let us give some properties that are
used in what follows:

∇α “ ´λξ∇η (5.7)

∇ξ “ λξ∇η (5.8)
1

ξmptq
ď C pt P p0, T qq, (5.9)

ξMptq ď Cξmptq pt P p0, T qq, (5.10)

|ξ1mptq| ď Cξptq9{8 pt P p0, T qq, (5.11)

|ξ2mptq| ď Cξptq10{8
pt P p0, T qq, (5.12)

|α1Mptq| ď Cξptq9{8 pt P p0, T qq, (5.13)

|α2Mptq| ď Cξptq10{8
pt P p0, T qq, (5.14)

αMptq ď 2αmptq pt P p0, T qq, (5.15)

sm1ξm2e´2sα
ď C in p0, T q ˆ F if m1 ď m2 and s ě 1. (5.16)

for some positive constants C depending on T and on λ.
Now, we can state the following Carleman inequality:

Theorem 5.1. Let T ą 0 and O be a nonempty open subset such that O Ă F . Then there
exists a constant λ0 ą 0 such that for any λ ě λ0 there exist constants Cpλq ą 0 and s0pλq ą 0
such that for all f P L2p0, T ; L2pFqq, g P L2p0, T ;L2pFqq, hp1q P L2p0, T ;R2q, hp2q P L2p0, T ;Rq
and for all φT P H1, ψ

T P L2pFq, `T P R2, ωT P R satisfying φT “ `T ` ωTyK in S, the solution
of (5.1) satisfies the inequality:

s4

T
ż

0

ż

F

e´5sαM pξmq
4
|φ|2dy dt` s5

T
ż

0

ż

F

e´5sαM pξmq
5
|ψ|2 dy dt` s4

T
ż

0

e´2sαM pξmq
4
p|`φ|

2
` |ωφ|

2
q dt

ď C

˜ T
ż

0

ż

F

e´3sαM p|f |2 ` |g|2qdy dt`

T
ż

0

e´3sαM p|hp1q|2 ` |hp2q|2q dt

` s12

T
ż

0

ż

O

e´4sαm´sαM pξMq
49
4 |ψ|2 dy dt

¸

, (5.17)

for all s ě s0.



17

Proof. In this proof, we follow similar ideas as in [9] and [5]. Throughout the proof, C stands
for a positive constant depending only on F ,O and η.

First, the proof of the above estimate is done by density, for more regular solutions. More
precisely, we can assume that

ˆ

f
g

˙

P L2
p0, T ;DpA˚qq XH1

p0, T ;Hq and

ˆ

φT

ψT

˙

P Dpp´A˚q3{2q,

where we have as usual extended f and φT in S by respectively hp1q ` hp2qyK and `T ` ωTyK.
In that case, our solution satisfies

ˆ

φ
ψ

˙

P L2
p0, T ;DppA˚q2qq XH2

p0, T ;Hq.

Step 1: decomposition of the solution of (5.1).

Let pφ, q, ψ, `φ, ωφq be the solution to (5.1). We set

ρ :“ e´
3
2
sαM .

The function ρ is C8pr0, T sq and for any k P N,

ρpkqp0q “ ρpkqpT q “ 0.

From (5.13) and (5.14), we deduce the following relations

ρ1 “ ´
3

2
sα1Mρ, |ρ1| ď Csρpξq9{8, (5.18)

and

|ρ2| ď Cs2ρpξq9{4. (5.19)

We then consider the following decomposition

ρφ “ v ` z, ρq “ qv ` qz, ρψ “ rψ,

ρ`φ “ `v ` `z ρωφ “ ωv ` ωz, (5.20)

where pv, pv, `v, ωvq, pz, pz, `z, ωzq and rψ satisfy the following systems :
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
Bv

Bt
´ ν∆v `∇qv “ ρf, in p0, T q ˆ F ,

div v “ 0, in p0, T q ˆ F ,
vpt, yq “ 0, t P p0, T q, y P BΩ,

vpt, yq “ `vptq ` ωvy
K, t P p0, T q, y P BS,

´M`1vptq “ ´

ż

BS
σpv, qvqndΓ ` ρhp1q, t P p0, T q,

´Jω1vptq “ ´

ż

BS
yK ¨ σpv, qvqndΓ ` ρhp2q, t P p0, T q,

vpT, yq “ 0, y P F ,
`vpT q “ 0, ωvpT q “ 0.

(5.21)
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$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
Bz

Bt
´ ν∆z `∇qz “ ´ρ1φ, in p0, T q ˆ F ,

div z “ 0, in p0, T q ˆ F ,
zpt, yq “ 0, t P p0, T q, y P BΩ,

zpt, yq “ `zptq ` ωzy
K, t P p0, T q, y P BS,

´M`
1

zptq “ ´

ż

BS
σpz, qzqndΓ ´ Mρ1`φ, t P p0, T q,

´Jω1zptq “ ´

ż

BS
yK ¨ σpz, qzqndΓ ´ Jρ1ωφ, t P p0, T q,

zpT, yq “ 0, y P F ,
`zpT q “ 0, ωzpT q “ 0.

(5.22)

and

$

’

’

’

’

’

&

’

’

’

’

’

%

´
B rψ

Bt
´ µ∆ rψ “ ρg ` ρφ2 ´ ρ

1ψ, in p0, T q ˆ F ,

B rψ

Bn
pt, yq “ 0, in p0, T q ˆ BF ,

rψpT, yq “ 0, in F .

(5.23)

Note that since

φ P L2
p0, T ;DpA2

1qq XH
2
p0, T ;H1q, (5.24)

we have

z P L2
p0, T ;DpA2

1qq XH
2
p0, T ;H1q. (5.25)

Step 2: Carleman estimates for the heat equation, the Laplace and the Gradient operators
First we apply the divergence operator to the first equation of (5.22) and we deduce that

∆qz “ 0. Then we apply the operator ∇∆ “ p B
By1

∆, B

By2
∆q to the first equation of (5.22)

satisfied by z2 and we obtain

´
Bp∇∆z2q

Bt
´∆p∇∆z2q “ ∇p´ρ1∆φ2q in p0, T q ˆ F . (5.26)

This means that ∇∆z2 satisfies a heat equation with nonhomogeneous boundary conditions.
For such an equation, we have the following Carleman estimates, obtained in [32]: there exists
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C ą 0, λ0 ą 0, s0 ą 0 such that for any λ ě λ0, s ě s0

1

s

T
ż

0

ż

F

e´2sα1

ξ
|∇2∆z2|

2dy dt` s

T
ż

0

ż

F

e´2sαξ|∇∆z2|
2dy dt

ď C

˜

s

T
ż

0

ż

O0

e´2sαξ|∇∆z2|
2dy dt` s´

1
2 }e´sαM pξmq

´ 1
8∇∆z2}

2
L2pp0,T q;L2pBFqq

` s´
1
2 }e´sαM pξmq

´ 1
4∇∆z2}

2

H
1
4 ,

1
2 pp0,T qˆBFq

`

T
ż

0

ż

F

e´2sα
|ρ1|2|∆φ2|

2dy dt

¸

(5.27)

Now by using a Carleman estimate on the gradient operator (see [9, Lemma 3]) on ∆z2 there
exist λ1, s1, C such that

s3

T
ż

0

ż

F

e´2sαξ3
|∆z2|

2 dy dt

ď C

¨

˝s

T
ż

0

ż

F

e´2sαξ|∇∆z2|
2dy dt` s3

T
ż

0

ż

O0

e´2sαξ3
|∆z2|

2dy dt

˛

‚ (5.28)

for λ ě λ1 and s ě s1.
Let O0, O1 be open subsets of F such that O0 Ă O1, O1 Ă F . Then we can use a Carleman

estimate for the Laplace operator (see for instance [3]). We recall the proof of such an estimate
in the appendix (Corollary A.2).

s6

T
ż

0

ż

F

e´2sαξ6
|z2|

2dy dt` s4

T
ż

0

ż

F

e´2sαξ4
|∇z2|

2dy dt` s6

T
ż

0

e´2sαM ξ6
m

ż

BS

|z2|
2 dΓ dt

ď C

˜

s3

T
ż

0

ż

F

e´2sαξ3
|∆z2|

2dy dt` s6

T
ż

0

ż

O1

e´2sαξ6
|z2|

2dy dt

` s4

T
ż

0

e´2sαM ξ4
m

ż

BS

ˇ

ˇ

ˇ

ˇ

Bz2

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ dt

¸

, (5.29)

for λ ě λ2 and s ě s2.
On BS, we have

z2 “ `z ¨ e2 ` ωzy1,
Bz2

Bτ
“ ωzτ1.

Using Lemma 2.1, we have
ż

BS
|z2|

2dΓ ě Cp|`z ¨ e2|
2
` |ωz|

2
q. (5.30)
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On the other hand, there exists a constant depending only on BS such that

ż

BS

ˇ

ˇ

ˇ

ˇ

Bz2

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ ď C|ωz|
2. (5.31)

Combining (5.9), (5.29), (5.30) and (5.31) we deduce

s6

T
ż

0

ż

F

e´2sαξ6
|z2|

2dy dt` s4

T
ż

0

ż

F

e´2sαξ4
|∇z2|

2dy dt` s6

T
ż

0

e´2sαM pξmq
6
p|`z ¨ e2|

2
` |ωz|

2
q dt

ď C

¨

˝s3

T
ż

0

ż

F

e´2sαξ3
|∆z2|

2dy dt` s6

T
ż

0

ż

O1

e´2sαξ6
|z2|

2dy dt

˛

‚, (5.32)

for λ ě λ3 and s ě s3.
We set

Jps, rψq “ s

T
ż

0

ż

F

e´2sαξ

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

B rψ

Bt

ˇ

ˇ

ˇ

ˇ

ˇ

2

` |∆ rψ|2

˛

‚dy dt` s3

T
ż

0

ż

F

e´2sαξ3
|∇ rψ|2dy dt

` s5

T
ż

0

ż

F

e´2sαξ5
| rψ|2dy dt. (5.33)

We recall a standard Carleman estimate for equation (5.23) (see, for instance [16]). Let O0,
O1 be open subsets of F such that O0 Ă O1, O1 Ă F . Then there exist constants λ4, κ4, C
depending only on F ,O0,O1 such that for s ě s4, λ ě λ4,

Jps, rψq ď C

˜

s2

T
ż

0

ż

F

e´2sαξ2ρ2
p|g|2 ` |φ2|

2
q dy dt

` s2

T
ż

0

ż

F

e´2sαξ2
|ρ1|2|ρ|´2

| rψ|2 dy dt` s5

T
ż

0

ż

O1

e´2sαξ5
| rψ|2 dy dt

¸

. (5.34)
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Let us introduce the following quantities

Ip2qps, z2, `z, ωzq “
1

s

T
ż

0

ż

F

e´2sα1

ξ
|∇2∆z2|

2dy dt` s

T
ż

0

ż

F

e´2sαξ|∇∆z2|
2dy dt

` s3

T
ż

0

ż

F

e´2sαξ3
|∆z2|

2 dy dt` s4

T
ż

0

ż

F

e´2sαξ4
|∇z2|

2dy dt

` s6

T
ż

0

ż

F

e´2sαξ6
|z2|

2dy dt` s6

T
ż

0

e´2sαM pξmq
6
p|`z ¨ e2|

2
` |ωz|

2
q dt , (5.35)

B1 “ s

T
ż

0

ż

O0

e´2sαξ|∇∆z2|
2dy dt` s3

T
ż

0

ż

O0

e´2sαξ3
|∆z2|

2dy dt

` s6

T
ż

0

ż

O1

e´2sαξ6
|z2|

2dy dt` s5

T
ż

0

ż

O1

e´2sαξ5
| rψ|2 dy dt, (5.36)

B2 “ s´
1
2 }e´sαM pξmq

´ 1
8∇∆z2}

2
L2pp0,T q;L2pBFqq ` s´

1
2 }e´sαM pξmq

´ 1
4∇∆z2}

2

H
1
4 ,

1
2 pp0,T qˆBFq

, (5.37)

and

B3 “

T
ż

0

ż

F

e´2sα
|ρ1|2|∆φ2|

2dy dt` s2

T
ż

0

ż

F

e´2sαξ2ρ2
|φ2|

2 dy dt

` s2

T
ż

0

ż

F

e´2sαξ2
|ρ1|2|ρ|´2

| rψ|2 dy dt. (5.38)

Gathering (5.27), (5.28), (5.32), (5.34) and the above definitions, we deduce

Ip2qps, z2, `z, ωzq ` Jps, rψq ď C

˜

B1 ` B2 ` B3 ` s
2

T
ż

0

ż

F

e´2sαξ2ρ2
|g|2 dy dt

¸

. (5.39)

Step 3: recovering z1 and `z ¨ e1

Using that z “ 0 on p0, T q ˆ BΩ and that the domain Ω is bounded, we can apply the Poincaré
inequality

s4

T
ż

0

ż

F

e´2sαM pξmq
4
|z1|

2 dy dt ď Cs4

T
ż

0

e´2sαM pξmq
4

¨

˝

ż

F

ˇ

ˇ

ˇ

ˇ

Bz1

By1

ˇ

ˇ

ˇ

ˇ

2

dy

˛

‚dt.
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Combining the above estimate with the fact that div z “ 0, we deduce

s4

T
ż

0

ż

F

e´2sαM pξmq
4
|z1|

2 dy dt ď Cs4

T
ż

0

ż

F

e´2sαξ4
|∇z2|

2 dy dt. (5.40)

Using Lemma 2.2, we have

s4

T
ż

0

e´2sαM pξmq
4
|`z|

2 dt ď Cs4

T
ż

0

ż

F

e´2sαM pξmq
4
|z|2 dy dt. (5.41)

Step 4: estimate of B3

Here (5.18) and (5.20) allow us to write

T
ż

0

ż

F

e´2sα
|ρ1|2|∆φ2|

2dy dt “

T
ż

0

ż

F

e´2sα
|ρ1|2|ρ|´2

|∆pρφ2q|
2dy dt

ď Cs2

T
ż

0

ż

F

e´2sα
pξq9{4|∆z2|

2dy dt` Cs2

T
ż

0

ż

F

e´2sα
pξq9{4|∆v2|

2dy dt. (5.42)

By applying Corollary 4.3 on system (5.21), we have

}v}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ` }`v}
2
H1p0,T ;R2q ` }ωv}

2
H1p0,T ;Rq

ď C

˜

}ρf}2L2p0,T ;L2pFqq ` }ρh
p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

. (5.43)

Using (5.16) and applying estimate (5.43), we deduce

s2

T
ż

0

ż

F

e´2sα
pξq9{4|∆v2|

2dy dt ď C

T
ż

0

ż

F

|∆v2|
2dy dt

ď C

¨

˝

T
ż

0

ż

F

|ρf |2dy dt`

T
ż

0

p|ρhp1q|2 ` |ρhp2q|2q dt

˛

‚.

From the above estimate, (5.9) and (5.42), we obtain

T
ż

0

ż

F

e´2sα
|ρ1|2|∆φ2|

2dy dt

ď Cs2

T
ż

0

ż

F

e´2sαξ3
|∆z2|

2dy dt` C

¨

˝

T
ż

0

ż

F

|ρf |2dy dt`

T
ż

0

`

|ρhp1q|2 ` |ρhp2q|2
˘

dt

˛

‚. (5.44)
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Similarly, by using (5.9), (5.18), (5.20) and (5.43)

s2

T
ż

0

ż

F

e´2sαξ2ρ2
|φ2|

2 dy dt` s2

T
ż

0

ż

F

e´2sαξ2
|ρ1|2|ρ|´2

| rψ|2 dy dt

ď Cs2

T
ż

0

ż

F

e´2sαξ2
|z2|

2dy dt` C

¨

˝

T
ż

0

ż

F

|ρf |2 dy dt`

T
ż

0

`

|ρhp1q|2 ` |ρhp2q|2
˘

dt

˛

‚

` Cs4

T
ż

0

ż

F

ξ17{4e´2sα
| rψ|2 dy dt. (5.45)

Adding (5.44) and (5.45), we deduce

|B3| ď Cs2

T
ż

0

ż

F

e´2sαξ3
|∆z2|

2 dy dt` Cs2

T
ż

0

ż

F

e´2sαξ2
|z2|

2dy dt

` C

¨

˝

T
ż

0

ż

F

|ρf |2 dy dt`

T
ż

0

`

|ρhp1q|2 ` |ρhp2q|2
˘

dt

˛

‚` Cs4

T
ż

0

ż

F

ξ17{4e´2sα
| rψ|2 dy dt. (5.46)

Step 5: estimate of B1

We recall here a technical lemma that is obtained in [6, Step 3, Section 2.1]:

Lemma 5.2. Let O0, O1 be open subsets of F such that O0 Ă O1, O1 Ă F . There exist
constants λ5, s5 and C depending on F ,O0,O1 such that for every s ě s5, λ ě λ5, ε ą 0

s

T
ż

0

ż

O0

e´2sαξ|∇∆z2|
2dy dt` s3

T
ż

0

ż

O0

e´2sαξ3
|∆z2|

2dy dt

ď ε

¨

˝

1

s

T
ż

0

ż

O1

e´2sα1

ξ
|∇2∆z2|

2dy dt` s

T
ż

0

ż

O1

e´2sαξ|∇∆z2|
2dy dt` s3

T
ż

0

ż

O1

e´2sαξ3
|∆z2|

2dy dt

˛

‚

` Cs7

T
ż

0

ż

O1

e´2sαξ7
|z2|

2dy dt.
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Let us introduce

Ips, z, `z, ωzq “
1

s

T
ż

0

ż

F

e´2sα1

ξ
|∇2∆z2|

2dy dt` s

T
ż

0

ż

F

e´2sαξ|∇∆z2|
2dy dt

` s3

T
ż

0

ż

F

e´2sαξ3
|∆z2|

2 dy dt` s4

T
ż

0

ż

F

e´2sαξ4
|∇z2|

2dy dt

` s6

T
ż

0

ż

F

e´2sαξ6
|z2|

2dy dt` s4

T
ż

0

ż

F

e´2sαM ξ4
m|z1|

2 dy dt

` s4

T
ż

0

e´2sαM ξ4
mp|`z|

2
` |ωz|

2
q dt.

Thus by using (5.16), (5.39), (5.40), (5.41), (5.44), (5.46) and Lemma 5.2, we obtain that for
λ ě λ6, s ě s6

Ips, z, `z, ωzq ` Jps, rψq ď C

˜ T
ż

0

ż

F

`

|ρf |2 ` |ρg|2
˘

dy dt`

T
ż

0

`

|ρhp1q|2 ` |ρhp2q|2
˘

dt

`s5

T
ż

0

ż

O1

e´2sαξ5
| rψ|2 dy dt` s7

T
ż

0

ż

O1

e´2sαξ7
|z2|

2 dy dt` B2

¸

. (5.47)

Step 6: estimate of B2

In order to estimate the first term of B2, we use a trace theorem and an interpolation result:

}e´sαM pξmq
´ 1

8∇∆z2}
2
L2pBFq ď C}e´sαM pξmq

´ 1
8∇∆z2}

2

H
1
2 pFq

ď C}e´sαM pξmq
´ 1

8∇∆z2}L2pFq}e
´sαM pξmq

´ 1
8∇∆z2}H1pFq

“ C}e´sαMs
1
2 pξmq

1
4∇∆z2}L2pFq}e

´sαMs´
1
2 pξmq

´ 1
2∇∆z2}H1pFq

ď C
´

}e´sαMs
1
2 pξmq

1
4∇∆z2}

2
L2pFq ` }e

´sαMs´
1
2 pξmq

´ 1
2∇∆z2}

2
H1pFq

¯

.

Now integrating both sides in p0, T q and using (5.9) we obtain

s´
1
2 }e´sαM pξmq

´ 1
8∇∆z2}

2
L2pp0,T q;L2pBFqq

ď Cs´
1
2

¨

˝s

T
ż

0

ż

F

e´2sαM ξm|∇∆z2|
2 dy dt`

1

s

T
ż

0

ż

F

e´2sαM
1

ξm
|∇2∆z2|

2 dy dt

˛

‚

ď Cs´
1
2 Ips, z, `z, ωzq. (5.48)
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In order to estimate the second term of B2, we use that

L2
p0, T ;H2

pFqq XH1
p0, T ;L2

pFqq Ă H1{4
p0, T ;H3{2

pFqq

with continuous embedding. In particular, combining this and the trace theorem, we find

s´
1
2 }e´sαM pξmq

´ 1
4∇∆z2}

2

H
1
4 p0,T ;L2pBFqq

ď Cs´
1
2 }e´sαM pξmq

´ 1
4∇∆z2}

2

H
1
4 p0,T ;H1{2pFqq

ď Cs´
1
2 }e´sαM pξmq

´ 1
4 ∆z2}

2

H
1
4 p0,T ;H3{2pFqq

ď Cs´
1
2

˜

}e´sαM pξmq
´ 1

4 z2}
2
L2p0,T ;H4pFqq ` }e

´sαM pξmq
´ 1

4 z2}
2
H1p0,T ;H2pFqq

¸

. (5.49)

On the other hand, by using the trace theorem,

s´
1
2 }e´sαM pξmq

´ 1
4∇∆z2}

2
L2p0,T ;H1{2pBFqq ď Cs´

1
2 }e´sαM pξmq

´ 1
4 z2}

2
L2p0,T ;H4pFqq.

Combining the above estimate and (5.49), we deduce

s´
1
2 }e´sαM pξmq

´ 1
4∇∆z2}

2

H
1
4 ,

1
2 pp0,T qˆBFq

ď Cs´
1
2

˜

}e´sαM pξmq
´ 1

4 z2}
2
L2p0,T ;H4pFqq ` }e

´sαM pξmq
´ 1

4 z2}
2
H1p0,T ;H2pFqq

¸

. (5.50)

We now estimate the right-hand side of (5.50). Let us write

pz “ e´sαM pξmq
´ 1

4 z, pqz “ e´sαM pξmq
´ 1

4 qz; (5.51)

p`z “ e´sαM pξmq
´ 1

4 `z, xωz “ e´sαM pξmq
´ 1

4ωz. (5.52)

Since pz, qz, `z, ωzq satisfies (5.22), ppz, pqz, p`z,xωzq is the solution of the following system
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
Bpz

Bt
´ ν∆pz `∇pqz “ F p4q, in p0, T q ˆ F ,

div pz “ 0, in p0, T q ˆ F ,
pzpt, yq “ 0, t P p0, T q, y P BΩ,

pzpt, yq “ p`zptq `xωzy
K, t P p0, T q, y P BS,

´M p`z
1

ptq “ ´

ż

BS
σppz, pqzqndΓ ` F p5q, t P p0, T q,

´Jxωz
1
ptq “ ´

ż

BS
yK ¨ σppz, pqzqndΓ ` F p6q, t P p0, T q,

pzpT, yq “ 0, y P F ,
p`zpT q “ 0, xωzpT q “ 0,

(5.53)
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where

F p4q “ ´e´sαM pξmq
´ 1

4ρ1φ´
d

dt

´

e´sαM pξmq
´ 1

4

¯

z,

F p5q “ ´Mρ1e´sαM pξmq
´ 1

4 `φ ´M
d

dt

´

e´sαM pξmq
´ 1

4

¯

`z,

F p6q “ ´Jρ1e´sαM pξmq
´ 1

4ωφ ´ J
d

dt

´

e´sαM pξmq
´ 1

4

¯

ωz.

Note that if we extend F p4q by F p5q ` F p6qyK for y P S, we have from (5.24) and (5.25) that

F p4q P L2
p0, T ;DpA1qq XH

1
p0, T ;H1q.

We can thus apply Corollary 4.3 and we have the following estimate

}pz}2L2p0,T ;H4pFqqXH1p0,T ;H2pFqq ` }
p`z}

2
H2p0,T ;R2q ` }xωz}

2
H2p0,T ;Rq

ď C

˜

}F p4q}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ` }F
p5q
}

2
H1p0,T ;R2q ` }F

p6q
}

2
H1p0,T ;Rq

¸

. (5.54)

Now

}F p4q}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ď }e
´sαM pξmq

´ 1
4ρ1φ}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq

`

›

›

›

›

d

dt

´

e´sαM pξmq
´ 1

4

¯

z

›

›

›

›

2

L2p0,T ;H2pFqqXH1p0,T ;L2pFqq
. (5.55)

Since |ρ1| ď Cspξmq
9{8ρ and by using (5.9)-(5.16) we obtain

}e´sαM pξmq
´ 1

4ρ1φ}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ď C
´

}se´sαM pξmq
7
8 pz ` vq}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq

` }s2e´sαM ξ2
mz}

2
L2p0,T ;L2pFqq ` }v}

2
L2p0,T ;L2pFqq

¯

.

(5.56)

With the help of (5.9)-(5.16), the second term in right hand side of (5.55) becomes

›

›

›

›

d

dt

´

e´sαM pξmq
´ 1

4

¯

z

›

›

›

›

2

L2p0,T ;H2pFqqXH1p0,T ;L2pFqq
ď C

´

}se´sαM pξmq
7
8 z}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq

` }s2e´sαM ξ2
mz}

2
L2p0,T ;L2pFqq

¯

. (5.57)

Thus, in order to estimate }F p4q}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq, we have to find an estimate on

}se´sαM pξmq
7
8 z}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq. Let us define

qz “ se´sαM pξmq
7
8 z, qqz “ se´sαM pξmq

7
8 qz;

q`z “ se´sαM pξmq
7
8 `z, |ωz “ se´sαM pξmq

7
8ωz. (5.58)
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From (5.22), we deduce that pqz, qqz, q`z,|ωzq satisfies the following system
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
Bqz

Bt
´ ν∆qz `∇qqz “ F p1q, in p0, T q ˆ F ,

div qz “ 0, in p0, T q ˆ F ,
qzpt, yq “ 0, t P p0, T q, y P BΩ,

qzpt, yq “ q`zptq `|ωzptqy
K, t P p0, T q, y P BS,

´M q`z
1

ptq “ ´

ż

BS
σpqz, qqzqndΓ ` F p2q, t P p0, T q,

´J|ωz
1
ptq “ ´

ż

BS
yK ¨ σpqz, qqzqndΓ ` F p3q, t P p0, T q,

qzpT, yq “ 0, y P F ,
q`zpT q “ 0, |ωzpT q “ 0,

(5.59)

where

F p1q “ ´se´sαM pξmq
7
8ρ1φ´

d

dt
pse´sαM pξmq

7
8 qz,

F p2q “ ´Mse´sαM pξmq
7
8ρ1`φ ´M

d

dt
pse´sαM pξmq

7
8 q`z,

F p3q “ ´Jse´sαM pξmq
7
8ρ1ωφ ´ J

d

dt
pse´sαM pξmq

7
8 qωz.

By applying Corollary 4.3 on system (5.59), we have

}qz}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ` }
q`z}

2
H1p0,T ;R2q ` }|ωz}

2
H1p0,T ;Rq

ď C

˜

}F p1q}2L2p0,T ;L2pFqq ` }F
p2q
}

2
L2p0,T ;R2q ` }F

p3q
}

2
L2p0,T ;Rq

¸

. (5.60)

Now we are going to estimate the quantities in the right-hand side of (5.60). Using (5.18),
(5.20) and (5.16), we deduce

}se´sαM pξmq
7
8ρ1φ}2L2p0,T ;L2pFqq ď C}s2e´sαM ξ2

mpz ` vq}
2
L2p0,T ;L2pFqq

ď C
´

}s2e´sαM ξ2
mz}

2
L2p0,T ;L2pFqq ` }v}

2
L2p0,T ;L2pFqq

¯

. (5.61)

Using (5.13) and (5.11)

›

›

›

›

d

dt
pse´sαM pξmq

7
8 qz

›

›

›

›

2

L2p0,T ;L2pFqq

ď C
´

›

›s2e´sαM ξ2
mz

›

›

2

L2p0,T ;L2pFqq `
›

›se´sαM ξmz
›

›

2

L2p0,T ;L2pFqq

¯

.
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Gathering the above estimate with (5.61) and (5.43), we deduce

}F p1q}2L2p0,T ;L2pFqq ď C

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

.

(5.62)
Similarly, we obtain

}F p2q}2L2p0,T ;R2q ` }F
p3q
}

2
L2p0,T ;Rq ď C

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q

`}ρhp2q}2L2p0,T ;Rq

¸

. (5.63)

Thus from (5.60), (5.62) and (5.63), we get

}qz}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ` }
q`z}

2
H1p0,T ;R2q ` }|ωz}

2
H1p0,T ;Rq

ď C

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

. (5.64)

Now we go back to (5.56) and by applying (5.43), (5.64) with (5.9), we obtain

}e´sαM pξmq
´ 1

4ρ1φ}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq

ď C
´

}se´sαM pξmq
7
8 pz`vq}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq`}s

2e´sαM ξ2
mz}

2
L2p0,T ;L2pFqq`}v}

2
L2p0,T ;L2pFqq

¯

ď C

˜

}qz}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ` }s
2e´sαM ξ2

mz}
2
L2p0,T ;L2pFqq ` }v}

2
L2p0,T ;H2pFqqXH1p0,T ;L2pFqq

¸

ď C

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

. (5.65)

Now we look at (5.57) and the second term in right hand side of (5.55) becomes

›

›

›

›

d

dt

´

e´sαM pξmq
´ 1

4

¯

z

›

›

›

›

2

L2p0,T ;H2pFqqXH1p0,T ;L2pFqq

ď C
´

}se´sαM pξmq
7
8 z}2L2p0,T ;H2pFqqXH1p0,T ;L2pFqq ` }s

2e´sαM ξ2
mz}

2
L2p0,T ;L2pFqq

¯

ď C

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

. (5.66)
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Similarly we obtain

}F p5q}2H1p0,T ;R2q ` }F
p6q
}

2
H1p0,T ;Rq

ď }Mρ1e´sαM pξmq
´ 1

4 `φ}
2
H1p0,T ;R2q ` }Mpe

´sαM pξmq
´ 1

4 qt`z}
2
H1p0,T ;R2q

` }Jρ1e´sαM pξmq
´ 1

4ωφ}
2
H1p0,T ;Rq ` }Mpe

´sαM pξmq
´ 1

4 qtωz}
2
H1p0,T ;Rq

ď C

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

. (5.67)

Thus by using (5.65), (5.66) and (5.67), inequality (5.54) becomes

}pz}2L2p0,T ;H4pFqqXH1p0,T ;H2pFqq ` }
p`z}

2
H2p0,T ;R2q ` }xωz}

2
H2p0,T ;Rq

ď C

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

. (5.68)

By definition (5.51) of pz, the above estimate yields

}e´sαM pξmq
´ 1

4 z2}
2
L2p0,T ;H4pFqq ` }e

´sαM pξmq
´ 1

4 z2}
2
H1p0,T ;H2pFqq

ď C

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

.

Hence by above estimate and (5.48), (5.50), we get

B2 “ s´
1
2 }e´sαM pξmq

´ 1
8∇∆z2}

2
L2p0,T ;L2pBFqq ` s

´ 1
2 }e´sαM pξmq

´ 1
4∇∆z2}

2

H
1
4 ,

1
2 pp0,T qˆBFq

ď Cs´
1
2

˜

Ips, z, `z, ωzq ` }ρf}
2
L2p0,T ;L2pFqq ` }ρh

p1q
}

2
L2p0,T ;R2q ` }ρh

p2q
}

2
L2p0,T ;Rq

¸

.

Step 7: going back to φ, `φ, ωφ
By taking s large enough, from (5.47) we can conclude that:

Ips, z, `z, ωzq ` Jps, rψq ď C

˜ T
ż

0

ż

F

`

|ρf |2 ` |ρg|2
˘

`

T
ż

0

`

|ρhp1q|2 ` |ρhp2q|2
˘

` s5

T
ż

0

ż

O1

e´2sαξ5
| rψ|2 dy dt` s7

T
ż

0

ż

O1

e´2sαξ7
|ρφ2|

2 dy dt

¸

. (5.69)
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Let us introduce

rIps, ρφ, ρ`φ, ρωφq “ s3

T
ż

0

ż

F

e´2sαξ3ρ2
|∆φ2|

2 dy dt` s4

T
ż

0

ż

F

e´2sαξ4ρ2
|∇φ2|

2dy dt

` s6

T
ż

0

ż

F

e´2sαξ6ρ2
|φ2|

2dy dt` s4

T
ż

0

ż

F

e´2sαM pξmq
4ρ2
|φ1|

2 dy dt

` s4

T
ż

0

e´2sαM pξmq
4
`

|ρ`φ|
2
` |ρωφ|

2
˘

dt.

Again by using (5.16), (5.20), (5.43), (5.58), (5.64) and (5.69), for all λ ě λ7, s ě s7, we have

s2

T
ż

0

ż

F

e´2sαM ξ7{4ρ2

ˇ

ˇ

ˇ

ˇ

Bφ2

Bt

ˇ

ˇ

ˇ

ˇ

2

dy dt` rIps, ρφ, ρ`φ, ρωφq ` Jps, rψq

ď C

˜ T
ż

0

ż

F

p|ρf |2 ` |ρg|2q `

T
ż

0

p|ρhp1q|2 ` |ρhp2q|2q

` s5

T
ż

0

ż

O1

e´2sαξ5
| rψ|2 dy dt` s7

T
ż

0

ż

O1

e´2sαξ7
|ρφ2|

2 dy dt

¸

, (5.70)

Step 8: removing the local term in φ2

We are going to estimate the last term of inequality (5.70) by following the same approach
as in [5]:
Let O1 Ă O. Consider a non-negative function χ P C2

c pOq such that χ “ 1 in O1. Now by
using equation (5.23), we get

s7

T
ż

0

ż

O1

e´2sαξ7
|ρφ2|

2 dy dt ď Cs7

T
ż

0

ż

O

χe´2sαξ7
|ρφ2|

2 dy dt

“ Cs7

T
ż

0

ż

O

χe´2sαξ7ρφ2

˜

´
B rψ

Bt
´∆ rψ ´ ρg ` ρ1ψ

¸

dy dt.
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Our main aim is to estimate the local integrals of rψ and g. Then via integration by parts and
Young’s inequality, we obtain that for any ε ą 0, there exists C ą 0 such that

s7

T
ż

0

ż

O1

e´2sαξ7
|ρφ2|

2 dy dt ď ε

˜

s2

T
ż

0

ż

O

e´2sαM pξmq
7{4ρ2

|φ12|
2 dy dt` rIps, ρφ, ρ`φ, ρωφq

¸

` C

˜

s12

T
ż

0

ż

O

e´4sα`2sαM ξ
49
4 | rψ|2 dx dt` s8

T
ż

0

ż

O

e´2sαξ8
|ρg|2

¸

. (5.71)

Thus finally from (5.70) and (5.71), we get

s2

T
ż

0

ż

F

e´2sαM ξ7{4ρ2

ˇ

ˇ

ˇ

ˇ

Bφ2

Bt

ˇ

ˇ

ˇ

ˇ

2

dy dt` rIps, ρφ, `z, ωzq ` Jps, rψq

ď C

˜ T
ż

0

ż

F

`

|ρf |2 ` |ρg|2
˘

`

T
ż

0

`

|ρhp1q|2 ` |ρhp2q|2
˘

` s12

T
ż

0

ż

O

e´4sα`2sαM ξ
49
4 | rψ|2 dx dt` s8

T
ż

0

ż

O

e´2sαξ8
|ρg|2

¸

. (5.72)

We have finished the proof of Proposition 5.1. �

6. Null controllability of the linearized system

In this section, we use the Carleman estimate obtained in Theorem 5.1 to deduce the null
controllability of a linear system associated with (3.14)–(3.25). We recall that H is defined
in (4.22) and the operator A is defined in (4.23)-(4.28). We define the control operator B P

LpL2pOq,Hq as

Bw0 “ p0, w01Oq,

and the operator C P LpH,R3q is defined as

Cpu, θq “ p`u, ωuq, if u “ `u ` ωuy
K in S.

If we set Z “

ˆ

u
θ

˙

, d “

ˆ

h
β

˙

and Z0 “

ˆ

u0

θ0

˙

, d0 “

ˆ

h0

β0

˙

, then the linear system (4.1)-(4.13)

can be written as
$

’

’

&

’

’

%

9Zptq “ AZptq `Bw0ptq ` F ptq,
9dptq “ CZptq,
Zp0q “ Z0 P H,
dp0q “ d0 P R3,

(6.1)

with

F “

ˆ

Pf1

rg

˙

,
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where

f1 “

#

rf in F ,
rhp1q ` rhp2qyK in S.

The adjoint system of (6.1) is given by:
"

´ 9Φptq “ A˚Φptq ` γ1
ptq ` C˚γ2,

ΦpT q “ 0,
(6.2)

where pγ1, γ2q P L2p0, T ;Hq ˆ R3.
Let us fix s ě s0, λ ě λ0 as in Theorem 5.1 and consider ρi for i P t1, 2, 3u and rρ in the following
way

ρ1ptq “

#

s2e´
5
2
sαM pT {2qpξmpT {2qq

2 if t P p0, T {2q,

s2e´
5
2
sαM ptqpξmptqq

2 if t P pT {2, T q;
(6.3)

ρ2ptq “

#

e´
3
2
sαM pT {2q if t P p0, T {2q,

e´
3
2
sαM ptq if t P pT {2, T q;

(6.4)

ρ3ptq “

#

s6e´2sαmpT {2q´
s
2
αM pT {2qpξMpT {2qq

49
8 if t P p0, T {2q,

s6e´2sαmptq´
s
2
αM ptqpξMptqq

49
8 if t P pT {2, T q,

(6.5)

and

rρptq “

#

e´
11
8
sαM pT {2q if t P p0, T {2q,

e´
11
8
sαM ptq if t P pT {2, T q.

(6.6)

Thus ρi and rρ are continuous functions such that

ρipT q “ 0 and ρi ą 0 in r0, T q,

rρpT q “ 0 and rρ ą 0 in r0, T q.

We define the following spaces

F “

"

F P L2
p0, T ;Hq;

F

ρ1

P L2
p0, T ;Hq

*

,

Z “

"

Z P L2
p0, T ;Hq;

Z

ρ2

P L2
p0, T ;Hq

*

,

U “

"

w0 P L
2
p0, T ;L2

pOqq; w0

ρ3

P L2
p0, T ;L2

pOqq
*

.

Our main result here is the following

Theorem 6.1. There exists a linear bounded operator

ET : Hˆ R3
ˆ FÑ U

such that for any pZ0, d0, F q P H ˆ R3 ˆ F, the control w0 “ ET ppZ0, d0, F qq is such that the
solution pZ, dq to equation (6.1) satisfy Z P Z and dpT q “ 0.



33

Moreover, if we assume that Z0 P Dpp´Aq
1
2 q, then we have

Z

rρ
P L2

p0, T ;DpAqq X Cpr0, T s;Dpp´Aq
1
2 qq XH1

p0, T ;Hq, (6.7)

and we have the following estimate:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

rρ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2p0,T ;DpAqqXCpr0,T s;Dpp´Aq
1
2 qqXH1p0,T ;Hq

ď C
´

}F }F ` }d0}R3 ` }Z0}Dpp´Aq
1
2 q

¯

. (6.8)

Proof. We use [29, Theorem 4.1]: the existence of ET is obtained from the following observability
inequality for adjoint equation (6.2):

}γ2
}

2
R3 ` }Φp0q}2H `

T
ż

0

}ρ1Φ}2H dt ď C

¨

˝

T
ż

0

}ρ2γ
1
}

2
H dt`

T
ż

0

}ρ3B
˚Φ}2L2pOq dt

˛

‚. (6.9)

We thus prove the above estimate and this gives us the existence of ET and the second part
of the theorem. Indeed, using [29, Corollary 4.3], this second part comes from the following
relations

prρq1ρ2

prρq2
P L8p0, T q and

ρi
rρ
P L8p0, T q, @i P t1, 3u (6.10)

that can be obtained from the definition of functions (6.3)-(6.6) and from the relations (5.9)-
(5.16).

It remains to prove (6.9). First, we notice that (6.2) can be written in the following form:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
Bφ

Bt
´ ν∆φ`∇q “ γ1

1 , in p0, T q ˆ F ,

div φ “ 0, in p0, T q ˆ F ,
φpt, yq “ 0, t P p0, T q, y P BΩ,

φpt, yq “ `φptq ` ωφptqy
K, t P p0, T q, y P BS,

´
Bψ

Bt
´ µ∆ψ “ γ1

2 ` φ2, in p0, T q ˆ F ,

Bψ

Bn
pt, yq “ 0, t P p0, T q, y P BF

´M`
1

φptq “ ´

ż

BS
σpφ, qqn dΓ`M`γ1 `M`γ2 , t P p0, T q,

´Jω1φptq “ ´

ż

BS
yK ¨ σpφ, qqn dΓ` Jωγ1 ` Jωγ2 , t P p0, T q,

φpT, yq “ 0 and ψpT, yq “ 0, y P F ,
`φpT q “ 0, ωφpT q “ 0,

(6.11)

where γ1 “ pγ1
1 , γ

1
2q P H1 ˆ L

2pFq and γ2 “ p`γ2 , ωγ2q P R3. In particular, we have

γ1
pt, yq “ `γ1ptq ` ωγ1ptqy

K t P p0, T q, y P S.
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With the above notation, the condition (6.9) can be rewritten as

|γ2
|
2
` }φp0q}2L2pFq ` }ψp0q}

2
L2pFq `

T
ż

0

}ρ1φ}
2
L2pΩq dt`

T
ż

0

}ρ1ψ}
2
L2pFq dt

ď C

¨

˝

T
ż

0

}ρ2γ
1
}

2
H dt`

T
ż

0

ż

O

|ρ3ψ|
2 dy dt

˛

‚. (6.12)

The proof of (6.12) is based on Theorem 5.1. We set

ρ˚i ptq “

#

ρipT ´ tq if t P p0, T {2q,

ρiptq if t P pT {2, T q .

and then, (5.17) implies that

T
ż

0

}ρ˚1φ}
2
L2pΩq dt`

T
ż

0

}ρ˚1ψ}
2
L2pFq dt ď C

¨

˝

T
ż

0

}ρ˚2pγ
1
` C˚γ2

q}
2
L2pΩq dt`

T
ż

0

ż

O

|ρ˚3ψ|
2 dy dt

˛

‚. (6.13)

Then by following similar steps as in [5, Lemma 3.2] (using in particular the energy estimates),
we can deduce from the above estimate

}φp0q}2L2pΩq ` }ψp0q}
2
L2pFq `

T
ż

0

}ρ1φ}
2
L2pΩq dt`

T
ż

0

}ρ1ψ}
2
L2pFq dt

ď C

¨

˝

T
ż

0

}ρ2pγ
1
` C˚γ2

q}
2
H dt`

T
ż

0

ż

O

|ρ3ψ|
2 dy dt

˛

‚. (6.14)

In order to prove (6.12) from the above estimate, it is sufficient to show the following inequality:

|γ2
|
2
ď C

¨

˝

T
ż

0

}ρ2γ
1
1}

2
L2pΩq dt`

T
ż

0

}ρ2γ
1
2}

2
L2pΩq dt`

T
ż

0

ż

O

|ρ3ψ|
2 dy dt

˛

‚. (6.15)

We argue by contradiction: assume that (6.15) is false. Then there exists a sequence

pγ2
n, γ

1
1,n, γ

1
2,n, φn, ψnq

such that (6.11) holds and such that

T
ż

0

}ρ2γ
1
1,n}

2
L2pΩq dt`

T
ż

0

}ρ2γ
1
2,n}

2
L2pΩq dt`

T
ż

0

ż

O

|ρ3ψn|
2 dy dtÑ 0, |γ2

n|
2
“ 1. (6.16)

Writing Φn “ pφn, ψnq, we have
"

´ 9Φnptq “ A˚Φnptq ` γ
1
nptq ` C

˚γ2
n,

ΦnpT q “ 0.
(6.17)
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Let us fix ε ą 0. From (6.16), we deduce, up to a subsequence, γ2
n Ñ γ2 in R3 with |γ2| “ 1

and

γ1
n Ñ 0 in L2

p0, T ´ ε;Hq.
From inequality (6.14), we also have that }pρ1φn, ρ1ψnq}L2p0,T ;Hq is bounded. In particular,

up to a subsequence,

pφn, ψnq Ñ pφ, ψq weakly in L2
p0, T ´ ε;Hq,

where pφ, ψq satisfies the following system
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
Bφ

Bt
´ ν∆φ`∇q “ 0, in p0, T ´ εq ˆ F ,

div φ “ 0, in p0, T ´ εq ˆ F ,
φpt, yq “ 0, t P p0, T ´ εq, y P BΩ,

´
Bψ

Bt
´ µ∆ψ “ φ2, in p0, T ´ εq ˆ F ,

ψpt, yq “ 0, t P p0, T ´ εq, y P BΩ,

φpt, yq “ `φptq ` ωφptqy
K, t P p0, T ´ εq, y P BS,

ψpt, yq “ 0, t P p0, T ´ εq, y P BS,

´M`
1

φptq “ ´

ż

BS
σpφ, qqn dΓ`M`γ2 , t P p0, T ´ εq,

´Jω1φptq “ ´

ż

BS
yK ¨ σpφ, qqn dΓ` Jωγ2 , t P p0, T ´ εq,

(6.18)

with p`γ2 , ωγ2q “ γ2.
On the other hand, we have from (6.16)

ψ “ 0 in p0, T ´ εq ˆO. (6.19)

Thus from (6.18) and (6.19), we obtain

φ2 “ 0 in p0, T ´ εq ˆO. (6.20)

Now, combining div φ “ 0 and φ2 “ 0 in p0, T ´ εq ˆO, we deduce

Bφ1

Bx1

“ 0 in p0, T ´ εq ˆO. (6.21)

On the other hand, Bφ
Bx1

satisfies the system

´
B

Bt

ˆ

Bφ

Bx1

˙

´ ν∆

ˆ

Bφ

Bx1

˙

`∇
ˆ

Bq

Bx1

˙

“ 0, in p0, T ´ εq ˆ F , (6.22)

div

ˆ

Bφ

Bx1

˙

“ 0, in p0, T ´ εq ˆ F , (6.23)

Bφ

Bx1

“ 0 in p0, T ´ εq ˆO. (6.24)
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Thus, by using unique continuation property of the Stokes system ( [13]), we obtain that

Bφ

Bx1

“ 0 in p0, T ´ εq ˆ F . (6.25)

By applying the Poincaré inequality, the above relation yields

φ “ 0 in p0, T ´ εq ˆ F . (6.26)

In particular, p`φ, ωφq “ p0, 0q in p0, T ´ εq and from last two equations of (6.18), we find

γ2
“ p`γ2 , ωγ2q “ p0, 0q, (6.27)

which contradicts the fact that |γ2| “ 1.
Thus we have established inequality (6.15) and combining this inequality with (6.14), we

have proven (6.12). �

7. The Nonlinear Problem

This section is devoted to the proof of the main result.

7.1. Estimates of the nonlinear terms. In this section, we give some estimates on the
coefficients appearing in the system (3.14)-(3.25).

We assume here that h and β satisfy

hpT q “ 0, βpT q “ 0,
ph1, β1q

rρ
P L2

p0, T q.

With our choice of rρ (see (6.6) and (5.5)), we deduce in particular that

|hptq| ` |βptq| ď T 1{2
rρptq

˜

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

.

Following the proofs of [1, Proposition 12] and [1, Lemma 31], we obtain the following esti-
mates

Lemma 7.1. Assume (3.4). Then, for any pu, p, θq P H2pFq ˆH1pFq ˆH2pFq, the following
relations holds for a.e. t P p0, T q:

}pKu ´ I2qu}L2pFq ď Crρptq

˜

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

}u}L2pFq ,

}pLu ´∆qu}L2pFq ď Crρptq

˜

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

}u}H2pFq,

}Nuu}L2pFq ď C

˜

1`

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

}u}H1pFq}u}H2pFq,

}Muu}L2pFq ď Crρptq

˜

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

}u}H1pFq,
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}pGu ´∇qp}L2pFq ď Crρptq

˜

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

}∇p}L2pFq,

}pLθ ´∆qθ}L2pFq ď Crρptq

˜

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

}θ}H2pFq,

}Nθpu, θq}L2pΩq ď C

˜

1`

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

}u}H1pFq}θ}H2pFq,

}Mθθ}L2pFq ď Crρptq

˜

›

›

›

›

h1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

β1

rρ

›

›

›

›

L2p0,T q

¸

}θ}H1pFq.

Since we will use the Banach fixed point theorem, we also need to estimate the differences of
coefficients. More precisely, let us consider, for i “ 1, 2, hpiq and βpiq that satisfy

hpiqpT q “ 0, βpiqpT q “ 0,
pphpiqq1, pβpiqq1q

rρ
P L2

p0, T q.

With our choice of rρ (see (6.6) and (5.5)), we deduce in particular that

|hp1qptq ´ hp2qptq| ` |βp1qptq ´ βp2qptq|

ď T 1{2
rρptq

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

.

We assume that for all i, hpiq and βpiq satisfy (3.4). In particular we can define the change of
variables X piq, Ypiq, and the operators

Kpiqu , Lpiqu , N piq
u , Gpiqu , L

piq
θ , N

piq
θ , Mpiq

u , M
piq
θ

defined by (3.26)–(3.33).
Following the proof of [1, Lemma 33], we obtain the following estimates of the difference of

coefficients:

Lemma 7.2. For any pu, p, θq P H2pFq ˆH1pFq ˆH2pFq, the following relations hold for a.e.
t P p0, T q:

}pKp1qu ´Kp2qu qu}L2pFq ď Crρptq

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

}u}L2pFq ,

}pLp1qu ´ Lp2qu qu}L2pFq ď Crρptq

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

}u}H2pFq,

}
`

N p1q
u ´N p2q

u

˘

u}L2pFq

ď C

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

}u}H1pFq}u}H2pFq,
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}
`

Mp1q
u ´Mp2q

u

˘

u}L2pFq ď Crρptq

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

}u}H1pFq,

}
`

Gp1qu ´ Gp2qu
˘

p}L2pFq ď Crρptq

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

}∇p}L2pFq,

}

´

Lp1qθ ´ Lp2qθ
¯

θ}L2pFq ď Crρptq

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

}θ}H2pFq,

}

´

N p1q
θ ´N p2q

θ

¯

pu, θq}L2pΩq

ď C

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

}u}H1pFq}θ}H2pFq,

}

´

Mp1q
θ ´Mp2q

θ

¯

θ}L2pFq ď Crρptq

˜

›

›

›

›

php1qq1 ´ hp2qq1

rρ

›

›

›

›

L2p0,T q

`

›

›

›

›

pβp1qq1 ´ βp2qq1

rρ

›

›

›

›

L2p0,T q

¸

}θ}H1pFq.

7.2. The fixed point argument. We are now in position to prove the main result.

Proof of Theorem 1.1. First, we assume that ph0, β0q satisfies (3.2) and (3.4) so that we can
consider X p0, .q, Yp0, .q and define pu0, θ0, `0, ω0q by (3.34)-(3.35).
From (1.14), (4.31) and the properties of X and Y (Section 3), we can check that

pu0, θ0q P Dpp´Aq
1{2
q and }pu0, θ0q}Dpp´Aq1{2q ď C}p pu0, pθ0q}H1pFh0,β0 qˆH

1pFh0,β0 q, (7.1)

where A is defined by (4.23)-(4.25).

The proof of Theorem 1.1 is based on a fixed point argument. If we set Z “

ˆ

u
θ

˙

, d “

ˆ

h
β

˙

and Z0 “

ˆ

u0

θ0

˙

, d0 “

ˆ

h0

β0

˙

then we can write (3.14)–(3.25) as

$

’

’

&

’

’

%

9Zptq “ AZptq `Bw0ptq ` rF pZ, dq,
9dptq “ CZptq,
Zp0q “ Z0 P H,
dp0q “ d0 P R3,

(7.2)

with

rF pZ, dq “

ˆ

Pf2

´rMθθs ´ rNθpu, θqs ` µrpLθ ´∆qθs

˙

, (7.3)

where

f2 “

#

´rpKu ´ I2q
Bu
Bt
s ´ rMuus ´ rNuus ` νrpLu ´∆qus ` rp∇´ Guqps in F ,

´ω`K in S.
(7.4)
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Now from Theorem 6.1, we know there exists a control w0 “ ET pZ0, d0, F q such that the solution
of

$

’

’

&

’

’

%

9Zptq “ AZptq `Bw0ptq ` F ptq,
9dptq “ CZptq,
Zp0q “ Z0 P H,
dp0q “ d0 P R3,

(7.5)

satisfies (6.7) and (6.8). Let us consider r ą 0 (that is fixed later) and let us set

Kr “

#

F P L2
p0, T ;Hq ;

›

›

›

›

F

ρ1

›

›

›

›

L2p0,T ;Hq
ď r

+

. (7.6)

If

}Z0}Dpp´Aq1{2q ď r and }d0}R3 ď r, F P Kr, (7.7)

then we deduce
›

›

›

›

Z

rρ

›

›

›

›

L2p0,T ;DpAqqXCpr0,T s;Dpp´Aq
1
2 qqXH1p0,T ;Hq

ď Cr. (7.8)

We take r small enough so that (3.2) and (3.4) holds true and we can construct the change of
variables X and Y as in Section 3. We can thus define

T pF q “ rF pZ, dq, (7.9)

where rF pZ, dq is given by (7.3)-(7.4). By using Lemma 7.1, (7.8) and rρ2

ρ1
P L8p0, T q, we can

verify that

T : Kr Ñ K, (7.10)

and
›

›

›

›

T pF q
ρ1

›

›

›

›

L2p0,T ;Hq
ď Cr2. (7.11)

In particular for r small enough, T maps Kr to Kr. Similarly, by using Lemma 7.2 and (7.8),
we deduce that

›

›

›

›

T pF1q ´ T pF2q

ρ1

›

›

›

›

L2p0,T ;Hq
ď Cr

›

›

›

›

F1 ´ F2

ρ1

›

›

›

›

L2p0,T ;Hq
(7.12)

and thus for r small enough, T admits a unique fixed point F in Kr. The corresponding solution
of (7.5) is the solution of (7.2) and satisfies

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

rρ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2p0,T ;DpAqqXCpr0,T s;Dpp´Aq
1
2 qqXH1p0,T ;Hq

ď C
´

} rF pZ, dq}F ` }d0}R3 ` }Z0}Dpp´Aq
1
2 q

¯

, (7.13)

and dpT q “ 0. In particular, we obtain (1.16)-(1.17).
�
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Appendix A. Carleman estimates for the Laplace operator

In this section, we recall a Carleman estimate for the Laplace equation. We give the proof
of such an estimate for completeness.

Proposition A.1. Let λ ą 1 and ζ “ exppληq with η given by (5.2)-(5.3). Assume O0, O1 are
open subsets of F such that O0 Ă O1, O1 Ă F . Then there exist constants λ1, κ1, C depending
only on F ,O0,O1 such that, for any λ ě λ1, κ ě κ1 and u P H2pFq, the following inequality
holds:

λ8κ6

ż

F

e2κζζ6
|u|2dx ` λ6κ4

ż

F

e2κζζ4
|∇u|2dx ` λ7κ6

ż

BF

e2κ
|u|2dΓ

ď C

¨

˝λ4κ3

ż

F

e2κζζ3
|∆u|2dx ` λ8κ6

ż

O1

e2κζζ6
|u|2dx ` λ5κ4

ż

BF

e2κ

ˇ

ˇ

ˇ

ˇ

Bu

Bτ

ˇ

ˇ

ˇ

ˇ

2

˛

‚ . (A.1)

Proof. We follow the same steps as [21] and [17] but here we incorporate the boundary terms.
Let us set f “ ´∆u and

σ “ eκζu and g “ eκζf.

Then we obtain

Mσ `Nσ “ gκ,λ, (A.2)

where

M1σ “ 5λ4κ
5
2 ζ

5
2 |∇η|2σ, M2σ “ 2λ3κ

5
2 ζ

5
2∇η ¨∇σ ;

N1σ “ ´λ
4κ

7
2 ζ

7
2 |∇η|2σ, N2σ “ ´λ

2κ
3
2 ζ

3
2 ∆σ ;

Mσ “M1σ `M2σ, Nσ “ N1σ `N2σ ; (A.3)

gκ,λ “ λ2κ
3
2 ζ

3
2 g ´ λ3κ

5
2 ζ

5
2 ∆η σ ` 4λ4κ

5
2 ζ

5
2 |∇η|2σ.

We have from (A.2)

}Mσ}2L2pFq ` }Nσ}
2
L2pFq ` 2

2
ÿ

i,j“1

Iij “ }gκ,λ}
2
L2pFq, (A.4)

where Iij “

ż

F

pMiσq pNjσq dx . First, we have

I11 “ ´5λ8κ6

ż

F

ζ6
|∇η|4|σ|2 dx . (A.5)
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Then

I21 “ ´2λ7κ6

ż

F

ζ6
|∇η|2p∇η ¨∇σqσ dx

“ 6λ8κ6

ż

F

ζ6
|∇η|4|σ|2dx ` λ7κ6

ż

F

ζ6∆η|∇η|2|σ|2dx

` 2λ7κ6
2
ÿ

i,j“1

ż

F

ζ6
Biη Bijη Bjη |σ|

2dx ´ λ7κ6

ż

BF

ζ6
|∇η|2 Bη

Bn
σ2dΓ

“ A1 ` A2 ` A3 ` A4. (A.6)

Due to the property (5.2) of η, we have

I11 ` A1 “ λ8κ6

ż

F

ζ6
|∇η|4|σ|2 dx

ě c4
0λ

8κ6

ż

F

ζ6
|σ|2dx ´ c4

0λ
8κ6

ż

O0

ζ6
|σ|2dx . (A.7)

A2 and A3 satisfy:

|A2| ` |A3| ď Cλ7κ6

ż

F

ζ6σ2dx . (A.8)

Since η “ 0 on BF , we have ∇η “
`

Bη
Bn

˘

n and ζpxq “ 1 @x P BF . Moreover, Bη
Bn
ă 0 on BF , so

ˇ

ˇ

Bη
Bn

ˇ

ˇ “ ´
Bη
Bn

. Therefore,

A4 “ λ7κ6

ż

BF

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

3

σ2dΓ. (A.9)

The next term of (A.4) that we estimate is:

I12 “ ´5λ6κ4

ż

F

ζ4
|∇η|2 p∆σqσdx

“ 5λ6κ4

ż

F

ζ4
|∇η|2|∇σ|2dx ` 10λ6κ4

2
ÿ

i,j“1

ż

F

ζ4
Biη Bijη pBjσqσdx

` 20λ7κ4

ż

F

ζ4
|∇η|2p∇η ¨∇σqσdx ´ 5λ6κ4

ż

BF

ζ4
|∇η|2 Bσ

Bn
σdΓ

“ C1 ` C2 ` C3 ` C4 (A.10)

We first estimate the quantities C2 and C3:

|C2| ď Cλ8κ5

ż

F

ζ5
|σ|2 dx` Cλ4κ3

ż

F

ζ3
|∇σ|2 dx (A.11)
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and

|C3| ď Cλ8κ5

ż

F

ζ5
|σ|2 dx` Cλ6κ3

ż

F

ζ3
|∇σ|2 dx. (A.12)

Since λ ą 1,

I12 “ C1 ` C2 ` C3 ` C4 ě 5λ6κ4

ż

F

ζ4
|∇η|2|∇σ|2dx´ Cλ8κ5

ż

F

ζ5
|σ|2 dx

´ Cλ6κ3

ż

F

ζ3
|∇σ|2 dx` C4. (A.13)

We have the following estimate on C4:

´C4 “ 5λ6κ4

ż

BF

ζ4
|∇η|2 Bσ

Bn
σdΓ “ 5λ6κ4

ż

BF

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

2
Bσ

Bn
σdΓ

“

ż

BF

«

λ
7
2κ3

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

3
2

σ

ff

¨

«

5λ
5
2κ

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

1
2 Bσ

Bn

ff

dΓ

ď

ż

BF

λ7κ6

2

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

3

σ2dΓ`

ż

BF

25λ5κ2

2

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bσ

Bn

ˇ

ˇ

ˇ

ˇ

2

dΓ . (A.14)

Finally, we estimate I22:

I22 “ ´2λ5κ4

ż

F

ζ4
p∇η ¨∇σq∆σdx

“ ´2λ5κ4

ż

BF

Bη

Bn

ˇ

ˇ

ˇ

ˇ

Bσ

Bn

ˇ

ˇ

ˇ

ˇ

2

dΓ` 2λ5κ4
2
ÿ

i,j“1

ż

F

Bijη ζ
4
BiσBjσdx

` 8λ6κ4

ż

F

ζ4
|∇η ¨∇σ|2dx` λ5κ4

ż

F

ζ4∇η ¨∇|∇σ|2dx

“ D1 `D2 `D3 `D4 . (A.15)

We have

|D2| ď Cλ5κ4

ż

F

ζ4
|∇σ|2dx (A.16)
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and

D4 “ λ5κ4

ż

F

ζ4∇η ¨∇|∇σ|2dx

“ λ5κ4

ż

BF

Bη

Bn

ˇ

ˇ

ˇ

ˇ

Bσ

Bn

ˇ

ˇ

ˇ

ˇ

2

dΓ` λ5κ4

ż

BF

Bη

Bn

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ´ 4λ6κ4

ż

F

ζ4
|∇η|2|∇σ|2 dx

´ λ5κ4

ż

F

ζ4 ∆η |∇σ|2 dx. (A.17)

We obtain :

I22 “ D1 `D2 `D3 `D4 ě´ 4λ6κ4

ż

F

ζ4
|∇η|2|∇σ|2 dx´ Cλ5κ4

ż

F

ζ4
|∇σ|2 dx

´ λ5κ4

ż

BF

Bη

Bn

ˇ

ˇ

ˇ

ˇ

Bσ

Bn

ˇ

ˇ

ˇ

ˇ

2

dΓ` λ5κ4

ż

BF

Bη

Bn

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

“ ´4λ6κ4

ż

F

ζ4
|∇η|2|∇σ|2 dx´ Cλ5κ4

ż

F

ζ4
|∇σ|2 dx`B1 `B2 .

(A.18)

Now we look at the boundary terms appearing in the estimates of Ii,j, i, j P t1, 2u and by
using (A.9), (A.14) and (A.18), we deduce:

B “ A4 ` C4 `B1 `B2

ěλ7κ6

ż

BF

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

3

σ2dΓ´
λ7κ6

2

ż

BF

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

3

σ2dΓ´
25λ5κ2

2

ż

BF

ˇ

ˇ

ˇ

ˇ

Bη

Bn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bσ

Bn

ˇ

ˇ

ˇ

ˇ

2

dΓ

´ λ5κ4

ż

BF

Bη

Bn

ˇ

ˇ

ˇ

ˇ

Bσ

Bn

ˇ

ˇ

ˇ

ˇ

2

dΓ` λ5κ4

ż

BF

Bη

Bn

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ .

There exists κ2 such that for any κ ě κ2, we have

B ě Cλ7κ6

ż

BF

σ2dΓ´ Cλ5κ4

ż

BF

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ . (A.19)

Gathering (A.7),(A.8), (A.13), (A.18), (A.19), we deduce the existence of λ3 ě 1, κ3 ě κ2 such
that for λ ě λ3, κ ě κ3:

2
ÿ

i,j“1

Iij ěC

ż

F

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx ´ C

ż

O0

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx

` Cλ7κ6

ż

BF

σ2dΓ´ Cλ5κ4

ż

BF

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ . (A.20)
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Combining (A.3), (A.4) and the above estimate, we obtain:

}Nσ}2L2pFq `

ż

F

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx ` λ7κ6

ż

BF

σ2dΓ

ď C

¨

˝}gκ,λ}
2
`

ż

O0

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx` λ5κ4

ż

BF

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

˛

‚

ď C

˜

λ4κ3

ż

F

ζ3
|g|2 dx` λ8κ5

ż

F

ζ5
|σ|2 dx`

ż

O0

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx

` λ5κ4

ż

BF

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

¸

. (A.21)

The above relation yields the existence of λ4 ě λ3, κ4 ě κ3 such that for λ ě λ4, κ ě κ4:

}Nσ}2L2pFq `

ż

F

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx ` λ7κ6

ż

BF

σ2dΓ

ď C

˜

λ4κ3

ż

F

ζ3
|g|2 dx`

ż

O0

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx` λ5κ4

ż

BF

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

¸

. (A.22)

On the other hand, from the definition (A.3) of N , we can check the following relation for κ ě 1:

λ4κ2

ż

F

ζ2
|∆σ|2 dx ď C

˜

}Nσ}2L2pFq ` λ
8κ6

ż

F

ζ6
|σ|2 dx

¸

. (A.23)

Thus we deduce from (A.22)-(A.23) that for λ ě λ4, κ ě κ4:

λ4κ2

ż

F

ζ2
|∆σ|2 dx`

ż

F

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx ` λ7κ6

ż

BF

σ2dΓ

ď C

˜

λ4κ3

ż

F

ζ3
|g|2 dx`

ż

O0

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx` λ5κ4

ż

BF

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

¸

. (A.24)

To eliminate the term involving ∇σ in the right hand side of (A.24), let us introduce a function
χ P C2

c pO1q, with χ “ 1 in O0, 0 ď χ ď 1 and O0 Ă O1, O1 Ă F . Then for any ε ą 0, there
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exists C ą 0 such that

λ6κ4

ż

O0

ζ4
|∇σ|2 dx ď λ6κ4

ż

O1

χζ4
|∇σ|2 dx

“ ´λ6κ4

ż

O1

χζ4
p∆σqσ dx´ λ6κ4

ż

O1

ζ4
p∇σ ¨∇χqσ dx´ 4λ7κ4

ż

O1

χζ4
p∇σ ¨∇ηqσ dx

ď ελ4κ2

ż

O1

ζ2
|∆σ|2 dx` C

˜

λ8κ6

ż

O1

ζ6
|σ|2 dx

¸

. (A.25)

Combining (A.24) and (A.25) yields:

λ4κ2

ż

F

ζ2
|∆σ|2 dx`

ż

F

`

λ8κ6ζ6
|σ|2 ` λ6κ4ζ4

|∇σ|2
˘

dx ` λ7κ6

ż

BF

σ2dΓ

ď C

˜

λ4κ3

ż

F

ζ3
|g|2 dx`

ż

O1

λ8κ6ζ6
|σ|2dx` λ5κ4

ż

BF

ˇ

ˇ

ˇ

ˇ

Bσ

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

¸

. (A.26)

Now we can go back to our original function u “ e´κζσ. Observe that

∇u “ e´κζ p∇σ ´ κλ∇η ζ σq . (A.27)

Hence,

λ6κ4

ż

F

e2κζζ4
|∇u|2 dx ď Cλ6κ4

ż

F

ζ4
|∇σ|2 dx` Cλ8κ6

ż

F

ζ6
|σ|2 dx (A.28)

and
ż

F

λ8κ6ζ6e2κζ
|u|2 dx “

ż

F

λ8κ6ζ6
|σ|2 dx. (A.29)

Thus, we have obtained the estimate (A.1). �

From the above proposition, we deduce the following result.

Corollary A.2. Let O0, O1 be open subsets of F such that O0 Ă O1, O1 Ă F . Then
there exist constants s0, C depending only on λ,F ,O0,O1 such that, for any s ě s0 and
u P L2p0, T ;H2pFqq, the following inequality holds:

s6

T
ż

0

ż

F

e´2sαξ6
|u|2dy dt` s4

T
ż

0

ż

F

e´2sαξ4
|∇u|2dy dt` s6

T
ż

0

ż

BF

e´2sαM pξmq
6
|u|2dΓ dt

ď C

¨

˝s3

T
ż

0

ż

F

e´2sαξ3
|∆u|2dy dt` s6

T
ż

0

ż

O1

e´2sαξ6
|u|2dy dt` s4

T
ż

0

ż

BF

e´2sαM pξmq
4

ˇ

ˇ

ˇ

ˇ

Bu

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

˛

‚ .

(A.30)
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Proof. We take λ ě λ1 in Proposition A.1. Then there exists C “ Cpλq such that

κ6

ż

F

e2κζζ6
|u|2dx ` κ4

ż

F

e2κζζ4
|∇u|2dx ` κ6

ż

BF

e2κ
|u|2dΓ

ď C

¨

˝κ3

ż

F

e2κζζ3
|∆u|2dx ` κ6

ż

O1

e2κζζ6
|u|2dx ` κ4

ż

BF

e2κ

ˇ

ˇ

ˇ

ˇ

Bu

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

˛

‚,

for every κ ě κ1. We take κ “ s
Eptq8

. For s large enough, we have κ ě κ1. This gives :

s6

ż

F

e2sξξ6
|u|2dx ` s4

ż

F

e2sξξ4
|∇u|2dx ` s6

ż

BF

e2sξmpξmq
6
|u|2dΓ

ď C

¨

˝s3

ż

F

e2sξξ3
|∆u|2dx ` s6

ż

O1

e2sξξ6
|u|2dx ` s4

ż

BF

e2sξmpξmq
4

ˇ

ˇ

ˇ

ˇ

Bu

Bτ

ˇ

ˇ

ˇ

ˇ

2

dΓ

˛

‚, (A.31)

Now if we multiply the above inequality by exp
´

´2s e
2λ}η}L8

Eptq8

¯

and integrate from 0 to T , we

obtain (A.30). �
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