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ABSTRACT. In this paper, we study the controllability of a fluid-structure interaction system.
We consider a viscous and incompressible fluid modeled by the Boussinesq system and the
structure is a rigid body with arbitrary shape which satisfies Newton’s laws of motion. We
assume that the motion of this system is bidimensional in space. We prove the local null
controllability for the velocity and temperature of the fluid and for the position and velocity of
rigid body for a control acting only on the temperature equation on a fixed subset of the fluid
domain.
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1. INTRODUCTION AND MAIN RESULT

Let © be a bounded, nonempty, open subset of R? with C? boundary that contains a rigid
body and a viscous incompressible fluid. The domain of the rigid body is denoted by S(t) <
and it is assumed to be of class C?, compact, simply connected and with non-empty interior.
The fluid domain is denoted by F(t) = Q\S(¢) and it is assumed to be connected. Since, we
assume that the structure is a rigid solid, we can describe S(¢) with two functions ¢ — h(t) € R?
and t — f(t) € R through the formulas

S(t) = Suw.pw,  F(t) = Faw.pe)- (1.1)
In the above relations and in what follows, we write for any h € R? and for any 8 € R,
Sh,,B =h+ RgS and ./T"hﬁ = Q\Sh”g, (1.2)

where S is a fixed subset of R? of class C?, compact, simply connected and with non-empty
interior. In (1.2), Rp is the rotation matrix, defined by

_ [cospB —sinp
g = (sinﬁ cos 3 ) ' (1.3)
We assume that there exist hy € R?, 3y € R such that
Sho,ﬁo c Q.

Without loss of generality, we can assume that the center of gravity of S is at the origin. In
that case, h(t) is the position of the centre of mass of the rigid body.

Let O be an open subset with O < . The fluid-rigid body system is controlled by a force
field supported in O and we suppose that O < F(t).

We shall assume that the motion of the fluid is described by the Boussinesq approximation.
The fluid is treated as incompressible when formulating the Navier-Stokes mass and momentum
conservation equations and here the effect of temperature change is taken into account. The
motion of the rigid body is governed by the balance equations for linear and angular momentum.



The equations of motion of fluid-structure are:

ou

o+ (@ V)i~ AL+ V= fes, te(0,T), zeF(t),  (14)

div @ = 0, te(0,T), zeF(t),  (15)

it z) =0, te(0,7), 209,  (16)

a(t,x) = h'(t) + B (t)(z — h(t)), te(0,T), yedS(t), (1.7)

g—f—t—ﬁ-V@—uAé:wO]lo, te(0,7), z € F(t), (1.8)

06

= (t2) =0, te (0,T), z € 0F(t), (1.9)

MR (t) = — f o (@, p)Adr, te (0,7), (1.10)
a5 (t)

78" (t) —J (z — h(t))* - o(@, p)AdT, te (0,T), (1.11)
a5 (t)

9(0,2) = Go(z),  0(0,z) = (), z e F(0), (1.12)

h(0) = ho, B(0) = Bo, W'(0) = by, B'(0) = Go. (1.13)

In the above system, @(t,y) is the velocity field of the fluid, p(¢,y) denotes the pressure of
the fluid and 6(¢,y) is the temperature. Here v > 0 is the kinematic viscosity and p > 0 is the

thermal diffusivity. For all x = 1) ¢ R?, we denote by z*, the vector (_$2). Moreover the

T2 I
boundaries of the rigid body and fluid domain are denoted by 0S(t) and 0F(t) respectively.
The outward unit normal to 0F (t) is denoted by 7n(t,z). The constants M and .J are the mass
and the moment of inertia of the rigid body. For the sake of convenience, we will assume that
the rigid body is homogeneous with a constant density ps € R*% and thus we have

M:mw,J=mﬁW@.
S

The Cauchy stress tensor is defined as:
U(iz?ﬁ) = _ﬁIQ + QVD(a)a

where D(u) is the symmetric gradient:

1 (ou; Jdu;
D(@);,; = = (4 24
(@i =3 (axj - &xi)
The state of system (1.4)-(1.13) is (u, D, é, h,B) and we want to emphasize the fact that the
domains F(t) and S(t) are depending on the state and thus evolve through the dynamics

induced by the system (1.10)-(1.11). This is one of the main difficulties in this problem: we are
working on a non cylindrical domain and the spatial domain is unknown. A standard tool to



handle this difficulty consists in using a change of variables in order to rewrite the system in a
cylindrical domain. We need however to take care that such a change of variables is constructed
from the state and this leads to some technical estimates on the coefficients coming from this
transformation.

Several studies on the existence of weak solutions or strong solutions of fluid-structure in-
teraction system have been published in recent years, usually without the equation on the
temperature. The stationary problem was studied in Serre [39] and in Galdi [23]. An existence
result of strong solutions in two or three dimension was proved in Grandmont and Maday [20]
under the assumption that the inertia of the rigid body is large enough with respect to the
inertia of the fluid. The existence and uniqueness of strong solutions in the case of a bounded
domain has been proved in [40] without the hypothesis of [26] about the inertia of the rigid
body. In the case of whole space, existence and uniqueness of strong solutions in two dimen-
sions have been proved by Takahashi and Tucsnak [41] for an infinite cylinder and a similar
result has been proved in three dimension by Silvestre and Galdi [24] for a rigid body having
an arbitrary form. The question of existence of weak solutions has been investigated by many
authors: [11], [7], [38], [15], [14], [28] etc. We can also mention a result on existence of weak solu-
tions of the case where the fluid motion is modeled by the Boussinesq system: in [35], Nec¢asova
proved the existence of weak solutions in three dimension for the problem of motion of one or
several rigid bodies immersed in an incompressible non-Newtonian and heat-conducting fluid.

The controllability of the Navier-Stokes system has been the objective of considerable work
over the last years. In the case of the two dimensional incompressible Navier-Stokes equations
with the Navier slip boundary conditions, an approximate controllability result for boundary or
distributed controls was proved by Coron in [8] and local exact controllability was established
by Imanuvilov in [30]. In [18] and [31] the authors obtained the local exact controllability
of the 2D or 3D Navier-Stokes equations with Dirichlet boundary condition with distributed
controls supported in a small subset. They established a new Carleman inequality for the
linearized Navier-Stokes system, which leads to null controllability and then they deduced a
local result concerning the exact controllability. Fursikov and Imanuvilov established the local
exact boundary controllability to the trajectories of the N dimensional Boussinesq system with
N + 1 scalar controls acting over the whole boundary and the local exact controllability to the
same trajectories with N + 1 scalar distributed controls when € is a torus in [20], [21], [22] by
deducing a global Carleman estimate for the adjoint system. The techniques in [18] have been
adapted in [27] to obtain the local exact controllability to the trajectories of the N dimensional
Boussinesq systems with N + 1 distributed scalar controls supported in subsets of the domain.
In [25], the authors also establish same result as in [27] but via a method based on applying
fictitious control on the divergence equation.

Here we want to emphasize that there have been many works in the literature where the
authors deal with the controllability problem of Navier-Stokes type systems via reduced number
of controls. In [19], the authors show that the N dimensional Navier-Stokes and Boussinesq
systems can be controlled with only N — 1 scalar controls under some geometrical assumptions
on control domains. In [9], Coron and Guerrero established the null controllability of the N
dimensional Stokes system with internal controls having one vanishing component with no
condition imposed on the control domain. Local null controllability of the N dimensional
Navier-Stokes and Boussinesq system with N — 1 scalar controls in an arbitrary control domain



has been obtained in [6], [5]. Here we want to mention that in [19], [5] for Boussinesq system,
the authors obtained the local exact controllability result with two vanishing components of
velocity control. Let us mention that in [33], Lions and Zuazua showed that three dimensional
Stokes system is not necessarily null controllable with two vanishing components for the control
even if the control is distributed on the entire domain. But in [10], local null controllability of
the three dimensional Navier-Stokes system with a control distributed in an arbitrarily small
nonempty open subset having two vanishing components has been proved by Coron and Lissy
by using the return method and a Gromov method.

There are few articles in the last decade concerning the controllability results on fluid-
structure interaction problem. In a paper of Raymond and Vanninathan [37], they considered
a simplified model in 2D where the fluid equations are replaced by the Helmholtz equations
and the motion of a solid represented by a harmonic oscillator. In that case, the domain is
supposed to be fixed but one of the difficulties comes from the fact that there is no control in
the solid part. They established exact controllability results for this model with an internal
control only in the fluid part. In the work of Doubova and Fernédndez-Cara [12], they proved
the local null controllability by boundary controls for a 1D model where point mass is immersed
in a fluid which evolves in (—1, 1). In that case, the domain is not fixed any more and the proof
of the result is based on the global null controllability of the linearized system (by Carleman
estimates) and on Kakutani’s fixed point theorem. In [29], the authors established exact con-
trollability of a 2D fluid-structure system where the body is a ball. In the paper of Boulakia
and Osses [4], the authors dealt with the same problem as in [29], except that the body can
have more general shape. In [3], Boulakia and Guerrero proved the local null controllability of
a fluid-solid interaction problem in three dimension. Finally, in [34], the authors studied the
local null controllability problem for the simplified one dimensional model considered in [12]
and they managed to reduce the number of controls.

Our aim in this article is to control the fluid-structure system (1.4)-(1.13). More precisely, we
want to control the position of the rigid body, the velocities of the fluid and of rigid body and
the temperature of the fluid at a given time 7" > 0. Our main result can be stated as follows:

Theorem 1.1. Assume T > 0, hy € R?, and Br € R such that
5 N ShTyBT = @
There exists € > 0 such that for every

(@0, B0, ho, €0, Bo, @) € HY (Fhg o) X H' (Fng ) x B2 x R? x R x R

satisfying
div up =0 in Fho,Bos
Ug=0 on 09,
o) = lo + Toly — ho)* for y € 08,5 (1.14)
and

[0y 50 + 100 ] (7o 5) + 1ho = Bl + o] + [6o = Br| + [wo] <&, (1.15)



we can find a control wy € L*(0,T; L*(0)) such that the solution of (1.4)—(1.13) satisfies
w(T,)=0, KW(T)=0, p(T)=0, (1.16)
and
0(T,-) =0, WT)=hr, B(T)=/pr. (1.17)
Observe that by using a translation and a rotation we can always assume that
hr =0 and fr =0, (1.18)

and thus
ShTﬁT =S, ‘FhTﬂT =F.

Therefore in what follows, we assume (1.18).

Our main result consists of the local null controllability of a fluid-structure system in dimen-
sion two by applying a control only on the temperature equation. In our knowledge, there are
no results on the controllability of fluid-structure interaction problems that deal with reduced
number of controls (that is, the number of controls is less that the number of equations). We
use the same change of variables and similar type fixed point argument as in [29]. But, un-
like [29], we have considered the Boussinesq system and we are interested in the controllability
via reduced number of controls. In [5], the author proved the local exact controllability of the
N-dimensional Boussinesq system with internal controls having two vanishing components in
velocity control and the main tool is to use a suitable Carleman inequality. We also prove the
main result by showing a Carleman estimate. In our case, we have to incorporate some terms
due to the presence of rigid body.

This paper is organized as follows. In Section 2, we give the notation used in this paper and
we recall some results. In Section 3, we introduce a change of variables to rewrite the problem
(1.4)-(1.13) in a fixed spatial domain. In Section 4, we study the existence and regularity of
a linearized problem in a fixed domain associated to our problem. Section 5 is devoted to
establish a suitable Carleman inequality of the adjoint system of the linearized problem in a
fixed domain. Then, in Section 6, we first give a link between controllability properties and
Carleman estimates and then prove the controllability of an auxiliary linear system associated
to (1.4)-(1.13). Finally, Section 7 is devoted to the proof of Theorem 1.1 where we use a fixed
point procedure to obtain a solution of the nonlinear system.

2. NOTATION AND PRELIMINARIES

2.1. Notation. We set L?(Q) = L*(Q;R?), H(Q) = H'(;R?) and the same notation con-
ventions will be used for trace spaces. We introduce the following spaces that we use frequently
later on:

[NIE

)

N

Hi2((0,T) x 0F) = Hi(0,T; L*(0F)) n L*(0,T; H2 (0F)),
H"2((0,T) x 0F) = H*(0,T; L*(0F)) n L*(0, T; H*(0.F)),



with the following norms

-

it 3 oy = (1% 0 mmary + 1o rct o)
1
HUHHL?((O,T)xaF) = HuH?ﬂ(O,T;L%a}')) + HUH%Q(O,T;HQ(&F))) C
We also define
={ueL*Q)|divu=0in Q, D(u) =0in S, u-n = 0 on I9}. (2.1)

We recall that (see, for instance, [44, Lemma 1.1, p.18]) for any u € Hj, there exist £, € R?
and w, € R such that

U(y) =Ly + wuyl7 Vyes.
2.2. Preliminaries.

Lemma 2.1. There exists a constant C' > 0 such that J la + by, [>dl = C (|al* + |b]?).
oS

Proof. Let us prove that

2

(a,b) — f la + by | dI’ (2.2)

is a norm of R2. It is enough to show the following implication:
a+by; =0 (y1€0S) = a=0,b=0.
We have
08 < {y1 € Rla+ by, = 0}.

If b # 0, then we obtain that dS is included in the line
a
{yl eR[y = fg},

which is a contradiction. Thus b = 0, which implies a = 0 and consequently, (2.2) defines a
norm of R? and we have

2

f|a+by1|2dl“ > O (|a? + o) .

O

Lemma 2.2. Assume z € Hy, with z = {+wy* in S. Then there exists a constant C independent
of z,l,w such that

|2l 27 = Cle.
If § is not a disk, we also have
|22 = Clul.



Proof. Using Theorem 1.2 p.9 in [43], there exists C' such that
|2 227 = CI (0 + wy™) -l g-12(as). (2.3)

First let us consider the case where S is a disk. Then, using that the center of S is 0, relation

(2.3) writes
|2] 2y = Ol 1| g-11258)- (2.4)
Let us show that
Co |60 -1z 0s)
is a norm of R2. Indeed assume ¢-n = 0 on 0S.
If ¢ # 0, there exists a point of S such that n = ¢/|¢| and thus, £-n = |[¢| # 0. Thus we
conclude from (2.4) that
|2]r27) = Cle).
If S is not a disk, let us prove that
(6,) > 1€+ wyb) -l aas)

is a norm of R?. We want to prove the following implication:

(l+wyt) - n=0 (yedS) = £ =0, w=0.
This is equivalent to show

(a+by)-7=0 (yedS) = a=0,b=0.

Let us introduce f(y) := a-y—i—b%. Then, %(y) = (a+by) -7 forany y € 0S. If (a+by)-7 =0
for any y € 0S, then it implies that there exists ¢ € R such that f(y) + ¢ = 0 for any y € 0S.
This yields

2
oS {yeR2; a-y—l—b%—i—c:O}.
The set in the right-hand side is either empty, a point, a line, a circle or R%2. The last case is

the only one possible and it is equivalent to a = 0 and b = 0.
Thus we conclude from (2.3) that

|2 22y = CQ + ).

3. THE CHANGE OF VARIABLES

3.1. Construction of the change of variables. Assume S(t) is defined by (1.1) and S < Q.
We also take a control region O such that

0nS=g. (3.1)
=

The above assumptions imply that dist(S, O) > dy and dist(S, 0Q) = dy for some dy > 0. Then

we can prove the following result

Lemma 3.1. There exists a constant cy such that if
Al <o, |B] < co, (3.2)
then dist(Sy5,0) = % and dist(Sy5,00) > L.



Taking € < ¢o in (1.15), we deduce that
—. _ do do

dist(Shs,0) = 7, dist(Snp,09) > -

We want to construct change of variables X : Q — Q that transforms F onto F(t) and S onto
S(t). Thus we can define

X(ty) =y+k[h@) + Rswyy —yl, t€(0,T), ye (3.3)
Here £ : 2 — R is a smooth function such that

k(y) = {1 if dist(y,S)

<
0 if dist(y,S) =

The map X is a C* diffeomorphism of €2 onto itself if
Koo (RE) + 1BE)]) < ¢ (3.4)

NS

for ¢ small enough.
With the above choices,
e in a neighborhood of S, X(t,y) = h(t) + Ry, and thus X'(¢,S) = S(1).
e in a neighborhood of 0Q and of O, X (t,y) = y.

Let the inverse of X(t,-) is denoted by Y(t,-). Observe that, in a neighborhood of S(t), we
have

Y(t,x) = R_pw(x — h(t)).

3.2. The system in a cylindrical domain. We set

u(t,y) = Cof (VX (t,y))*u(t, X(t,y)), (3.5)
p(t,y) = p(t, X(t,9)), (3.6)
0(t,y) = 0(t, X(t,y)), (3.7)
U(t) = R_gpyh'(t), w(t) =p'(1). (3.8)

Here Cof(M) is the cofactor matrix of M, which satisfies
M(Cof (M))* = (Cof(M))* M = det(M)1d.

We transform (1.4)-(1.13) by using this change of variables. Such a calculation is already done
in [1] except for the temperature equation. We give here only the part of the calculation that
corresponds to the temperature equation and we refer to [1] for the calculation of the other
equations. From (3.7), we have:

o6 o oy

P %(3}) T VoY), (3.9)
Vo = (VY)*Vo(Y), (3.10)
20 & 0% V.Y, & a0 OV
w a 1 Y10y Y 0x; Ox; - ,;1 a_ykoj)a_x?’ (3'11)

(2

- VO = det(VY) (u(Y) - VO()) . (3.12)
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In order to transform the Neumann boundary condition (1.9), we also need to rewrite the

exterior normal to 0F(t). Let us denote by n the exterior normal to 0 F. Then,
n=n on 09,
and
n(t,x) = Rgpyn(R_pw(x — h(t))) xe€dS(t).
In a neighborhood of S(t),
Y(t, ) = (Rp(z — h(t)))

and in a neighborhood of 02, Y =
Thus on dS(t),

0o . 00
= (1.2) = (VY)"VO) - Ryon(Y) = (),
and on 0§,
00 00
5= 2, Y-

Thus, we can rewrite the system (1.4)-(1.13) as

[Kua—u] + [Myu] + [Nyu] — v[Lyu] + [Gup] = ey, in (0,T) x F,

ot
divu =0, in (0,7) x F,
u(t,y) =0, te(0,T),yedQ,

u(t,y) = 0(t) +w(t)y™, te(0,T),yedS,

@ + [MyO] + [Ny(u,0)] — p[Le0] = wole, in (0,T) x F,

at
—(t,y) =0,te (0, T), ye dF
an 7y Y ) 7y Y

MU'(t J o(u, p)ndl — Mwl* te (0,T),
o8

Jy o(u, p)ndl  te (0,7T),
o8

W(t) = Rst(t) te(0,7),
B(t) =w(t) te(0,1),

u(0,y) = uo(y) and 0(0,y) = Oo(y),y € F,
h(O) = hg, 6(0) = 607 5(0) = ﬁo, w(O) = Wy.

(3.13)

(3.24)
(3.25)

Here we want to underline the fact that the linear and nonlinear operators [KC,],[N.], [£u],
[Gu], [No], [Lo] depend on h and 3 and the operators [M,], [My] depend on h, 3, ¢, w through
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the change of variables X’ and its inverse ). The definitions of the operators are given through
the following formulas:

[C,u] = Cof(VY)* o X)u, (3.26)
[Myu] = a(—}tCof((V)))* o X)u + (Cof(VY)* 0 X)(Vu) (%) o X, (3.27)
Pug OV, 1, OV
[L.ul; J;m Cof (V)i (X) o aymaTj(X o (X)
Ouy, 0,
+ Q;H—Cof (VI)ri(X )6yl o, (X

duy, 0* yz
%Cof(vy)ki(éf)a—w 52 Z;:‘ Cof (V)i (X)ug, (3.28)
[Nou]; = Z Cof(V;)/)/rg-(é\,’)i Cof (V)i (X )upu +Zdet((vy)( ))? é’X ﬁur (3.29)

u]y = 9 6xj [ T ~ ﬁyr ayk .

dp 5yk

Z e (m ), (3.30)
a
(M,0] — ;t’ (X)- Vo, (3.31)
2 2, 0% ayl ayk 00 %Y,
[L40] = ;;1 Z e é’xz é’xi (X) + a—%a—x?(;c) : (3.32)
u- Ve
Wo(u, )] = <% (3.33)
We have set

ug = Cof (VX (0,y))*uo(X(0,y)), 6 :=0(X(0,y)), (3.34)
lo := R_glo, wo =0 (3.35)

4. SOME LINEAR SYSTEMS

In this section we analyze two linear systems associated with (3.14)—(3.25):

a—u—l/AquVp fes+ f, in (0, T) x F,

= (4.1)
dive =0, in (0,7) x F, (4.2)

u(t,y) =0, te(0,T),ye N, (4.3)

ut,y) = £(t) +w(t)y*, te(0.7),yeds, (4.4)
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o0 .
o — Al =G+ wolp, in (0,T) x F,
g—z(t,y) =0, te(0,T),yedF,

MU(t) = —LS o(u, p)ndl + MRY, te (0,T),

Ju'(t) = —J y* - o(u, p)ndl + Jh®, te(0,T),
os
h/(t) = Rig(t)f(t) te (O,T),
B(t) =w(t) te(0,T),
w(0,y) = uo(y) and 6(0,y) = bo(y), yeF,

h(0) = ho, B(0) = Bo,
E(O) = 60 S RQ, U.)(O) =Wy € R,

and

a—u—yAu—i—Vp /. in (0,T7) x F,

ot
divu =0, in (0,7) x F,
u(t,y) =0, te(0,T), ye o,
u(t, y) = £(t) + w(

o(u, pndF+Mh te(0,7),
S

-,
J y* - o(u, p)ndl + Jh?, te(0,T),
oS

u(0,y) = uoly) yeF,
E(O) = 60 € Rz, w(O) =Wy € R,

For both systems, we extend u and ]?to Q2 by setting:

u(t,y) = €(t) +w(t)y™, V(t,y)e(0,T) xS,
flt,y) =W + Byt Y(ty) e (0,7) x S.

tyt, te(0,T),yeds,

4.14

4.15
4.16

4.17

In particular, u is a rigid velocity in S, that is D(u) = 0 in (0,7) x S. We recall that Hj is

defined by (2.1). We set
H = H, x L(F).
We consider the inner product on L*(Q) x L?(F) defined by

<(;)7(;})> =fu'vdy+pgfu-vdy+f0192dy.
1 2]/ L2(Q)xL2(F) A J 3

(4.22)
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The corresponding norm is equivalent to the usual norm in L?*(Q) x L*(F). Moreover, if
u,v € Hy, then we have

<(;),(;}>> :Ju-vdy+]\/[€u-€v+quwv—|—f(9192dy.
1 2]/ L2(Q)xL2(F) A

f
In order to work with (4.1)-(4.13), we use an approach based on semigroups. We define:

D(A)) = {u e HY(Q) | ulr € HA(F), divu=0in Q, D(u) =0 in 3}, (4.23)
D(A,) = {9 e H*(F)| S—Z =0 on 6]—"} (4.24)
and
D(A) = D(A;) x D(A,). (4.25)
For all uw e D(A;), we set
vAu in F
= 2 2 4.2
A i J D(u)ndl’ — i Jyl -D(u)ndl | y* inS (4.26)
M J
B o8

where P is the orthogonal projector from L?(Q) onto Hj.
We also define for 6 € D(Ay),

Age = /LAQ, D09 = P(9621]_‘).
Finally, we define A : D(A) — H by
_ (A1 Dy
A= (0 A2> . (4.28)

It is shown in [42, Proposition 4.2] that A; is a self-adjoint, maximal dissipative operator.
It is also well-known that As is a self-adjoint, maximal dissipative operator. Thus, using a
perturbation argument (see [36, Corollary 2.2, Chapter 3, p. 81]), we deduce the following
result:

Proposition 4.1. The operator (A, D(A)) defined by (4.28) is the generator of an analytic
semigroup on H. Its adjoint is given by D(A*) = D(A) and

A* = (é% ;1)2) : (4.29)
with
Dgo = ¢o 7.
Observe that
D((~A))?) = {u e HY(Q) | divu=0in Q, D(u) =0 in s}, (4.30)
D((—A)?) = D((—A1)?) x H'(F). (4.31)
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As a consequence of Proposition 4.1, and by using the isomorphism theorem (see, for instance, [2,
Theorem 3.1, p. 143]), we have the following result:

Corollary 4.2. Let T > 0 and f € L*(0,T; L*(F)), § € L*(0, T; L*(F)), wo € L*(0,T; L*(0))
hM e L2(0,T;R?), h® e L*(0,T;R), ug € H'(F), 6y € H(F) be such that:
divug =0 in F, uo(y) =0 on dQ, ue(y) = Lo+ woy™ fory e dS.

Then the linear system (4.1)-(4.13) admits a unique solution (u,p,0,l,w) with

ue L*(0,T;H*(F)) n HY(0,T; L*(F)) n C([0, T]; H' (F)),

pe L*(0,T; H(F)/R), £ € H'(0,T;R?), we H(0,T;R),

0 e L*(0,T; H*(F)) n H*(0,T; L*(F)).
Moreover, the solution (u,p,0,(,w) satisfies the following estimate:
|l 220,712 (7)) ~E 07512 (F)) + [Pl 2207 H1 ()

+ M”Hl(O,T;RQ) + HWHHl(O,T;R) + H9”L2(0,T;H2(f))nH1(o,T;LQ(f))

<C (f | 20027y + 19 c20m2207) + |woll 20220y + 12D L2 (0.2

+ [RP | 20,2y + ltollen () + 16017y + o] + |w0|>- (4.32)

In what follows, we also need some properties of the linear system (4.14)-(4.21) that we can
write as

W= Awu+Pf, u(0) = u. (4.33)
Corollary 4.3. Let T > 0 and f € L*(0,T; L2(F)), uo € H'(F) such that:
div ug = 0 in F, ug(y) =0 on 0Q, wug(y) = Lo + woy™ for y € 8.
Then the linear system (4.14)-(4.21) admits a unique solution (u,p,{,w) with
uwe L*(0,T;H*(F)) n HY(0,T; L*(F)) n C([0, T]; H'(F)),
pe LX0,T; H\(F)/R), { € H'(0,T;R?), w e H'(0,T;R).

Moreover, the solution (u,p,l,w) satisfies the following estimate:

HUHL2(0,T;H2(f))mH1(0,T;L2(f)) + Hp||L2(O,T;H1(_7-')) + HEHHl(O,T;R?) + HWHHl(o,T;R)
< C(!fL?(o,T;w(f)) + AW 20, rm2) + AP 201w + \UOHHl(Q))- (4.34)

If
Pfe L*(0,T;D(Ay)) n H'(0,T;Hy)
and

ug € D((—A1)*?),
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then
ue L*(0,T;D((A)?)) n H*(0,T; H,)

Moreover, there exists C' such that
|ull 20,0888 (7))~ E2 0. 722(F)) + €| E200,7:R2) + |Wl|H20,7:R)

<C (IPf |2 0.1:D(A0) AL (0.7, T+ uOD((—A1)3/2)>' (4.35)

5. THE CARLEMAN INEQUALITY

Let us introduce the adjoint system of (4.1)-(4.13):

s a¢

—%—VAqb—i—Vq:f, in (0,7) x F,
div ¢ =0, in (0,7) x F,
o(t,y) =0, te(0,T), ye o,
¢(t7 y) = £¢>(t) + w¢(t)yl7 te (O7T)7 ye 587
_aa_qf_ AY = g+ o, in (0,7) x F,
< ?’Z}(t y) =0, Le (0,T), yedF, (5.1)
—M,( f o(p, gndl' + hW, te (0,7),
oS
—Jw(t) f yt Qndl + h?, te(0,7),
oS
¢(T,y) = ¢" (y) and w(T y) =" (y), yeF,
| Ls(T) =17, wy(T) =

In this section, our aim is to establish a suitable Carleman estimate for the adjoint system
(5.1). Let us introduce the weight functions used for this estimate.
Let us consider n € C?(F) satisfying

n>0inF, |Vnl =c >0in F\Oy, (5.2)

n=0ondF and 2—Z<—01<00n oF, (5.3)

where Oy be a nonempty open subset of R? such that Oy c O. The existence of such a function
is standard (see, for instance, [21, Lemma 1.1, p. 4] or [45, Theorem 9.4.3, p. 299]).
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Let A > 1 and let us consider the following functions defined in (0,7 x F:

e2MnlLeoF) _ pAn(z) e (@)

at,z) = E@F , E(tx) = E@F (5.4)
ap(t) = maxa(t,z), &u(t) =max{(t, ) (5.5)
xeF TeF
an(t) = mina(t,z),  &n(t) = ming(t, ), (5.6)
where E'e C*([0,T]), E > 0in (0,7), E is even, increasing in (0,7"/2) and satisfies E(t) =

in (0,7/4), E(t) =T —t in (37/4,T).
Such functions are standard for Carleman estimates. Let us give some properties that are
used in what follows:

Va = =XV (5.7)

VE = XVn (5.8)

f%@ <C (te(0,7)), (5.9)

Em(t) < Cfm(t) (te(0,7)), (5.10)

€. (D] < CE@)* (te(0,7)), (5.11)

En®] < Cem™® (e (0,7)), (5.12)

(1) < CE@)*® (te (0,T)), (5.13)

s (1) < CEW™* (te (0,7)), (5.14)

aym(t) < 2a,(t) (te(0,7)), (5.15)

sMEmeT2 < O in (0,T) x Fif my < my and s > 1. (5.16)

for some positive constants C' depending on 7" and on .
Now, we can state the following Carleman inequality:

Theorem 5.1. Let T > 0 and O be a nonempty open subset such that O c F. Then there
exists a constant Ao > 0 such that for any X\ = Ay there exist constants C(\) > 0 and so(A\) > 0
such that for all f € L*(0,T;L*(F)), g € L*(0,T; L*(F)), hW e L?(0,T;R?), h® e L?(0,T;R)
and for all o7 € Hy, T € L2(F), (T e R?, wT € R satisfying ¢7 = (T + wTy* in S, the solution
of (5.1) satisfies the inequality:

T
st JJeE’mM En) o2 dy dt + s°
0

O

T
[ o dyde st [ 26, (80P + o)
F 0
T
( f j e+ gyt + j S (W 4 (1) di

T
12JJe4sam saM )?’wﬁdydt)’ (5-17)
0

for all s = s
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Proof. In this proof, we follow similar ideas as in [9] and [5]. Throughout the proof, C' stands
for a positive constant depending only on F, O and 7.
First, the proof of the above estimate is done by density, for more regular solutions. More
precisely, we can assume that
T

(g) € L2(0,T: D(A*)) ~ H'(0,T:H) and (j;T) € D((—A%)2),

where we have as usual extended f and ¢’ in S by respectively h(Y) + Ayt and 7 + wTy*.
In that case, our solution satisfies

(8

Step 1: decomposition of the solution of (5.1).
Let (¢, q, v, s, wy) be the solution to (5.1). We set

(¢) e I2(0, T; D((A*)2)) ~ H2(0, T H).

p = e 2

The function p is C*([0,7]) and for any k € N,
p(0) = p"(T) = 0.
From (5.13) and (5.14), we deduce the following relations

sang

3
pl = _5504\/[:07 ’pl| < Csp<€)9/87 (518>

and
0" < Cs?p(€)*. (5.19)

We then consider the following decomposition

PO =v+2z, pq=qy+q., pP =1,

pls =Ly + L pwg = wy + w;, (5.20)
where (v, py, by, wy), (2,02, 4., w,) and QZ satisfy the following systems :
( —%—VAU—G—qu:pf, in (0,7) x F
div v =0, in (0,7) x F,
v(t,y) =0, te (0,7), ye o,
v(t,y) = Go(t) + woy, te(0,7), yeds,
< — MU (t) = —LS o(v, g)ndl + phY, te (0,7), (5.21)
—Juwl(t) = —L yt o, g)ndl + ph®, te (0,T),
v(T,y) =0, ) yeF,

\ EU(T) =0, WU(T) = 0.



18

( 0z

—%—yAerVqZ:—p’(b, in (0,7) x F,
div z = 0, in (0,7) x F,
z(t,y) =0, te(0,T), ye o,
2(ty) = 6(t) + wy, te(0,T),yedS,
, 5.22
| M0 = [ oGandr - gt e 1), (5:22)
oS
—JWl(t) = —f yL co(z,q,)ndl’ — Jp’w¢,, te(0,7),
oS
2(T,y) =0, yeF,
| 0.(T) = 0, w.(T) = 0.
and
( an Y / .
A A = pg + ppo — p't, in (0,T) x F,
" 5.23
1 Py =0, in (0.7) x 07, (5:29)
on
L (T, y) =0, in F.
Note that since
¢ e L*(0,T; D(A})) n H*(0,T; H,), (5.24)
we have
ze L*(0,T; D(A})) n H*(0, T; Hy). (5.25)

Step 2: Carleman estimates for the heat equation, the Laplace and the Gradient operators

First we apply the divergence operator to the first equation of (5.22) and we deduce that
Aqg, = 0. Then we apply the operator VA = (%A, %A) to the first equation of (5.22)
satisfied by 2o and we obtain

-V AVAL) = V(s (0.T) < F. (5:26)

This means that VAz, satisfies a heat equation with nonhomogeneous boundary conditions.
For such an equation, we have the following Carleman estimates, obtained in [32]: there exists
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C >0, \g >0, sg > 0 such that for any A > Ay, s = 59

T T

1 1

B J f 6_25‘15 IV2Az2dy dt + s J J e IV Az 2 dy dt
0 F 0 F

T
—2sa —L1 —sa -1
<C <SJ f eV Az dy dt + 572 e (6,) TSV Az 720 rym2(08)

0 Og
T

_l. _sa 1 —2sa
b s Hems o (g, ) ET A2 1((0’T)Xaf)+ffe 2 |p’|2|A¢2\2dydt> (5.27)
‘F

H7°2
0

Now by using a Carleman estimate on the gradient operator (see [9, Lemma 3]) on Az, there
exist A1, s1,C such that

T
53 JJ6_25“53|A22]2 dy dt
0 F

T T
<C|s f J e |V Az’ dy dt + s J f e B3| Az’ dy dt | (5.28)
0 F 0 Oy
for A = A\ and s > s;. o o
Let Oy, O; be open subsets of F such that Oy < Oy, O; < F. Then we can use a Carleman

estimate for the Laplace operator (see for instance [3]). We recall the proof of such an estimate
in the appendix (Corollary A.2).

T

T T
A
s° JJ6_25“56|22|2dy dt + s* J J e BV Pdy dt + s° | e 25 gl J | 25|? dI dt
0 F 0 F ; o8

T T
-
<C <$3 f J e B3 Az dy dt + s° J e 250 2| Pdy dt
0 F 0 51

T
02 |2
+ s4fe—25aM§j; J 2 g dt>, (5.29)
or
0 oS
for A = Xy and s = s».
On 08, we have
(322
zg=L, e+ Wy, —— =w.TL.
or

Using Lemma 2.1, we have

J 2T = C(|L. - el + |w]?). (5.30)
oS
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On the other hand, there exists a constant depending only on S such that

J

oS

2
&Zg

dl' < Clw,|?. (5.31)
oT

Combining (5.9), (5.29), (5.30) and (5.31) we deduce

T T T
[ [emeetmpPaye s st [ [ e VaPdyd s [0 (e e + o) d
0 F 0 0

I
T T
<C ( 3 ffe_2sa§3|A22|2dy dt + SGJ f e 20 Pdy dt |, (5.32)
0 F

0 O

for A = A3 and s > s3.

We set
T o 2 T

J(s,0) = sffe_%af ‘a—f + A | dy dt + sgffe_28a§3|V@E|2dy dt
0 F 0 F

T
s5ffe_2so‘§5|zz|2dydt. (5.33)
0 F

We recall a standard Carleman estimate for equation (5.23) (see, for instance [16]). Let O,
O1 be open subsets of F such that Oy < O, O; < F. Then there exist constants A4, k4, C
depending only on F, Oy, Oy such that for s > s4, A = A4,

T
J(s,9) < C<82 e p*(|g1? + |pal?) dy dt
I

T T
+SZJJ6250‘§2\,0']2|p]2\1;\2dydt+s5jfe28”55]15]2dydt). (5.34)
0 F

0 O,



Let us introduce the following quantities

1
[(2)(37 ZQagzawz = -
S

SN

T
1

J e‘zsag\vazQ 2dy dt + s f J e” BV Azy|Pdy dt

F 0 F

T

EJ[

+ &8 e 263 Ao dy dt + s* fe_250‘54\Vz 2dy dt
f

+ 58 ffMémﬁwﬁ+f e 2 (&, )0(1E, - eqf? + |w.|?) dt,

/ I
/ /

T T
=S f J e\ V Az |2 dy dt + s* J f e 2 Ao | dy dt
0

0 Op Oo
T
JJ _2so‘§6|z | dydt + s° JJ _25’1§5|2/1|2dydt
0 01 0 Ol

1l _sa _1 2 -1 _sa 2
By = s72[e”* (&) VA 20 mya2@ry 5 2l M (Em)” VA2 2HH”((OT)X9F)

T T
B [ el Placdyt + s [ [ ool ayas
0 0 F

T
w5t | el Plol #1op dyae.
0 F
Gathering (5.27), (5.28), (5.32), (5.34) and the above definitions, we deduce

T
I3 (s, 29,0, w.) + J(s5,0) < C’(Bl + By + Bs + 82ff6_25a52p2|g|2 dy dt).
0 F

Step 3: recovering z; and £, - ey

21

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

Using that z = 0 on (0,7") x 092 and that the domain € is bounded, we can apply the Poincaré

inequality

T

T
S4JJ‘ —ZSaM é-m |Zl|2 dydt CS4J‘6—23aM<§m)4 J Z 1
1
0 F

0
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Combining the above estimate with the fact that divz = 0, we deduce

T
JJ —2saar (& V2 P dy dt < Cs4ffe_25a£4\Vz2]2 dy dt.
0 F

Using Lemma 2.2, we have

T

T
s [t ar < o5t [ e, e dy e
0 F

0

Step 4: estimate of Bs
Here (5.18) and (5.20) allow us to write

T

T
[ [ersetorpiaopayd = [ [ =120 a0 Py d
0 F

o

T T
< Cs? JJ@‘QSO‘(f)g/ﬂAzQde dt + Cs® JJG_QSQ(§)9/4|AU2|2dy dt.

By applying Corollary 4.3 on system (5.21), we have

%2(O,T;HZ(]-‘))mHl(0,T;L2(}‘)) v %{1(0,T;R2) v %{1(0,T;R)
o] + [ + fwo

C <pr IZ20722(7y + PRV F20,rme) + ‘ph@)”%?(O,T;R))'
Using (5.16) and applying estimate (5.43), we deduce

(
T T
s ffe_Qsa(§)9/4|Avg|2dy dt < C’Jf | Avy |*dy dt
0 F F

0
T T

(5.40)

(5.41)

(5.42)

(5.43)

<C f f IpfPdy dt + f (oh V2 + |ph®P) dt

0 F 0

From the above estimate, (5.9) and (5.42), we obtain

T
f f &% | A 2y dt
0 F

T T
< 052ff6_28°‘§3|AZ2|2dydt+ C Jj|pf|2dydt+f(|ph(1)|2 + [ph® ) dt |, (5.44)
0 F 0
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Similarly, by using (5.9), (5.18), (5.20) and (5.43)

T
SQJJ€28Q£2p2|¢2|2dydt+S
0 F

o%'ﬂ

| e Plol 2P dy a
f

T T
< 052ffe2sa§2]zg\2dydt+0 Jf]pf]Qdde-J (Iph M + |phP|?) dt
0 F 0 F 0

+COs? fff"“e%ahm?dydt. (5.45)
0 F

Adding (5.44) and (5.45), we deduce

T T
|B;| < Cs? JJ625a53’A22|2 dy dt + C's® JJ@QSQ§2|z2]2dy dt
0 0

T T T
JJ]prdde—J(mh(l)]? + [ph?P]?) dt +cs4ff§17/4e28a|i|2dydt. (5.46)
0 F 0 0 F

Step 5: estimate of B
We recall here a technical lemma that is obtained in [6, Step 3, Section 2.1]:

Lemma 5.2. Let Oy, O be open subsets of F such that Oy < Oy, O < F. There exist
constants A5, s5 and C depending on F, Oy, O1 such that for every s = s5, A = A5, € >0

T T
s J J e BV Az 2 dy dt + s f f e~ 23| Ao dy dt
0 Og 0 Oo
T T T
! f J 6_250‘}|V2A22|2dy dt + s f J e BV Az 2 dy dt + s f J e~ 2| Azy |2 dy dt
®3 O . 0 Oy 0 Oy

T
ery f J e 2T | 29| Pdy dt.

0 Oy
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Let us introduce

I(s,2,0,,w,) =

CIJIH
S

T
.
Jezsa—|V2Az2] dydt+ s J e BV Az P dy dt
F 0

J
f
r T
+ s° Je2s°‘§3|AZQ|2 dy dt + s* J J625a54|V222dy dt
0¥ 0¥
T T
+ s° Je2s°‘§6|zz|2dy dt + s* JJGQSO‘M&JZIP dy dt
o F 0 F
T
+ s e~ Zsemed (10,2 + |w,|?) dt.
J
0

Thus by using (5.16), (5.39), (5.40), (5.41), (5.44), (5.46) and Lemma 5.2, we obtain that for
A = )\6, s = Sg

T T
I(s,2,60.) + J(s, D) < O( f j (Iof1? + lpgl?) dydt + j (1phOP + [ph®P?) dt
0 F 0

T T
+5° f J e 2B 2 dy dt + 57 J J e 2| 29| dy dt + Bz> . (547

0 Oy (U@

Step 6: estimate of By
In order to estimate the first term of By, we use a trace theorem and an interpolation result:

Hefson (fm)iévAZZH%,Q(('}f) < CHe*SaM (fm)7%VA22HiI%

—sa -1 —sa _1
< Clle™ (€,) "5V Az L2yl (En) "5V Ao |11 )
= C|le™¥ 52 (£,) 1V Az |ragm) e 572 (€) "2 VAz i )
< € (| sH €tV AlRacr + s (60) VA ).

Now integrating both sides in (0,7") and using (5.9) we obtain

1l e 1
s e (E) TSV Az T2 (0 1yn2(07)
T
1
<Cs2 sfje_2mM£m|VAz2|2 dydt + — JJ _28‘”’ |V Azo|* dy dt
s
0

< Cs’%[(s, 2, 0,,w,). (5.48)



In order to estimate the second term of By, we use that

L2(0,T; H*(F)) n HY(0,T; L*(F)) ¢ HY*(0,T; H*?(F))
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with continuous embedding. In particular, combining this and the trace theorem, we find

S _1 -1 _sa
s 2 e (Gn) TV ARy ooy < O8 2T (Em)” VAz[L, (O.TH!2(F))
1

< Cs72 eV () 1A

i (0,T;H3/2(F))

-1 —sa —1 —sa —1
<Cs 2<II€ M (&m) 1 22l Lo iy + €7 (6n) 422\|311<07T;H2<f)>>-

On the other hand, by using the trace theorem,
—L —san -1 A 2 — L1 —san -1 2
S 2 He (fm) 1V 22HL2(0,T;H1/2(6}')) < (Cs 2 He (gm) 4Z2HL2(O,T;H4(]—'))'

Combining the above estimate and (5.49), we deduce

— 3l o—sanm
e () VAR

-1 —sa -1 —sa -1
<Cs 2<||6 M (&m) 1 22l T2 myma ) + 1€ (6m) 4Z2||%1<0,T;H2<f>>>~

We now estimate the right-hand side of (5.50). Let us write

Do e ML) THz, G = et (6,) g

0, = e M(E,) 700, W = e tM(E,) iw,.

Since (z,q., ., w,) satisfies (5.22), (Z, ¢, EAZ,@) is the solution of the following system

(02

—g—VAz—i—qu—F 4 in (0,7) x F,

div z =0, in (0,7) x F,

Z(t,y) =0, te(0,T), ye o,

2(t,y) = L.(1) + Doy, te(0,T),yeds,
< —M@/(t) = —Lsa(z,q;)ndr + FO), te (0,7),

—JG (t) = —Lsyl-a(z,q;)ndr + FO te(0,T),

E(Tvy) =0, yer,

0:(T) =0, w(T) =0,

(5.49)

(5.50)

(5.53)
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where

1 d 1
FW = == (,) s — 2 (e (gn) ) =

1 d 1
(5) —_ / ,—sang -7 o el —sang -1
FO = Mgl (g) 7ty = M= (7 (6)7F)

)

Note that if we extend F) by F®) + FOy! for y € S, we have from (5.24) and (5.25) that

=

. d
6) — _ 7,/p—5aM -1 N el —sag —
FO = —Jple™ o (€) hwy = J 2 (7 (6)

FW e L20,T;D(Ay)) n HY(0,T; Hy).

We can thus apply Corollary 4.3 and we have the following estimate

HEH%2(O,T;H4(]—"))mH1(O,T;HQ(]-")) + HEZH%-IQ(O,T;RQ) + ”@H%IQ(O,T;R)

<C <||F D0 raee)am o) + IFO i orze + |F (G)Iﬁp(o,m)) : (5.54)
Now

Csar _1

HF(4)H%Q(O,T;HQ(}'))mHl(O,T;LQ(]-')) < e (&m) 4pl(bH%Q(O,T;H2(}'))mH1(0,T;L2(]-'))
d 2
= (e 2

Since |¢'] < Cs(£,)%%p and by using (5.9)-(5.16) we obtain

PN

i (5.55)

L2(0,T;H2(F))nH(0,T;L2(F))

—sa -1 —sa z
le™** (&m) 4pl¢H%2(O,T;HQ(J-'))mHl(O,T;LQ(}')) < C(”SG M(Em)E (2 + U)H%2(O,T;HQ(J-'))mHl(O,T;LQ(J-'))

+ s M€ 230 raimy + 0o rascey )
(5.56)

With the help of (5.9)-(5.16), the second term in right hand side of (5.55) becomes

e

L2(0,T;H2(F))nH(0,T;L2(F))

s 7
< C<H3€ M (&) ZH%Q(O,T;HQ(]-'))mHl(O,T;LQ(]—'))

e M oy ). (557)

Thus, in order to estimate HF(4)||%2(07T;H2(]-'))0H1(O,T;LQ(J_—)), we have to find an estimate on
—sa z
||S€ M(fm)8ZH%Z(O,T;H2(}'))r\H1(07T;L2(]—'))‘ Let us define

Y= sem Mg VEy = sem M (g,) g,

0, = se™M ()50, W, = se " (£,,)Fw,. (5.58)
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From (5.22), we deduce that (Z, ¢, KVZ, &, ) satisfies the following system

f ~N
0z )

—g—I/AZ—i—VqVZ:F , in (0,7) x F,
div Z =0, in (0,7) x F,
Z(t,y) =0, te(0,7), yed,
H(t,y) = L) + Tty te(0,T), yeas,
) -l () = — J o(%, ¢@)ndl + F®, te (0,7), (5.59)

o8
—J& (t) = —LS yto(%,@)ndl + F®, te(0,7),

\Z/(T,y)zo, yefa

C:(T) = 0, w(T) =0,

where

_sa Ly d —saug z
FO =~ (6,)3/ — (57 (60) )2,

7
8

. d
F® = —Mse™ M (&,)5p'ly — M —(se™ >V (&,)%)L,

dt

7
8

FO = Jsemm (£,) oy — T (575 (€)oo

dt
By applying Corollary 4.3 on system (5.59), we have
||5”2L2(o,T;H2(f))mH1(o,T;L?(f)) + ”gZH%Il(O,T;R?) + H"\u;”%l(O,T;R)

< O<F(1)|%2(O,T;L2(]—')) + |FP 220 rmey + |F(3)%2(0,T;R)>' (5.60)

Now we are going to estimate the quantities in the right-hand side of (5.60). Using (5.18),
(5.20) and (5.16), we deduce

—sa 7 —sa
|se M(gm)spl¢||%2(0,T;L2(f)) < OHS2€ Mffn(z + U)H%Q(O,T;LZ(}'))

<C (H326_80‘M§2nz||%2(0,T;L2(f)) + HUHQLQ(O,T;LQ(}'))) . (5.61)

Using (5.13) and (5.11)

2

00|~

)z

d —S
e (e
L2(0,T5L%(F))

<C (H52eisaMgr2nZHi?(o,T;L?(f)) + HSeisaMgmzHi?(o,T;L?(f))) :
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Gathering the above estimate with (5.61) and (5.43), we deduce

HF(I)”%Q(O,T;LQ(]—')) < C’(I(s, 2,0, w,) + HPfH%Q(o,T;L?(f)) + th(l)H%?(O,T;RQ) + th(Q)H%Q(O,T;R) :
(5.62)

Similarly, we obtain
”F(Q)H%Z(O,T;R?) + ||F(3)H%2(0,T;R) < C<I(S, 2, l,w;) + HPfH%?(o,T;L?(f)) + ||Ph(1)H%2(0,T;R2)
+|ph(2)”%2(0,T;R)>' (5.63)

Thus from (5.60), (5.62) and (5.63), we get

12122 0.1y mi ey + 16 w2y + 160215 0 )

< C<I(5, 2,y ws) + |pf 720002y + PPV 32 0082 + ’ph(z)‘%Q(O,T;R)>' (5.64)
Now we go back to (5.56) and by applying (5.43), (5.64) with (5.9), we obtain

_ _1
He saM(gm) 4,O/QbH%2(07T;H2(«7'—))“H1(O’T;LQ(}—))

—S Z —S
<C<H3€ M (Em)® (240) |20 mmz ()i 0.2y + 1 57€ Mgfn'z”%?(O,T;L?(}"))+HUH%2(O,T;L2(}'))>

< C(\Z/’%Q(O,T;HQ(]-'))mHl(O,T;LQ(]-')) + HSze_meng”%2(0,T;L2(f)) + ‘UH%Q(O,T;HQ(]—'))mHl(O,T;LQ(]-'))>
< C<[(S, 2, l,w.) + H:OfH%Q(O,T;LQ(]-‘)) + ”ph(l)H%Q(O,T;RQ) + ’ph@)%?(o,T;]R))‘ (5.65)

Now we look at (5.57) and the second term in right hand side of (5.55) becomes

L2(0,T;H2(F))nH(0,T;L2(F))

—S« Z —Sx
< C(\\Se M (Em)B 2| Lo mm2 (R 0 T2 (F)) T+ 57E Mfﬁﬂ”%?(o,T;m(f)))

< C(‘[(Sa 2,0, w;) + pruiz(O,T;LQ(}')) + th(l)H%Q(O,T;RQ) + ’ph(Q)‘%Q(O,T;]R)>‘ (5.66)
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Similarly we obtain

I F® 130 0.rm2) + 1F O 0.1z
—sa -1 —sayy -1
< ”MP/@ M(&m) 4€¢||§{1(0,T;R2) + M (e M (&) 4)t£ZH§-11(0,T;R2)

—s« -1 —sa _1
+ [ Jp'e™ M (Em) T TwlFnommy + 1M (€7 (Em) ™) w3 0 rmy

< C<I(57 2,4z, w2) + 0f 20020y + 100V 2 0,12y + |ph(2)%Q(O,T;R)>' (5.67)
Thus by using (5.65), (5.66) and (5.67), inequality (5.54) becomes
HEH%Q(O,T;H‘l(}'))mHl(O,T;HQ(}')) + ”é\zHJQLIz(o,T;R?) + H@”%IQ(O,T;]R)
< (J(I(s, 2o, w2) + Ipf 20 raem) + th(l)H%Q(O,T;RQ) + |ph(2)‘%2(0,T;]R)>‘ (5.68)

By definition (5.51) of Z, the above estimate yields

—sa -1 —sa -1
le™M (&) ™7 20 Fo o ey + 1€ (Em) ™ T 22301 0,12 7))

< C<I(57 2, b, w;) + pr”%Z(O,T;L?(]-')) + th(l)H%?(o,T;R?) + ph(Q)”%?(O,T;R))'
Hence by above estimate and (5.48), (5.50), we get
1y sa _1 1y sa _1
By = 5727 (6) VAR T2 rom) + 52l (§n) VAR,

H1'3 ((0,T)x0F)

_1
<Cs™2 <I(Su 2l w;) + pr”%?(O,T;LQ(}')) + th(l)H%%o,T;R?) + ph(2)||%2(0,T;R)>'

Step 7: going back to ¢, £y, we
By taking s large enough, from (5.47) we can conclude that:

T T
I(s, 2, 0y 0.) + J(5,0) < c( f j (IofP + 1ogP) + f (Ioh D + |ph®P?)
0 F 0

T T
+ s° f J e~ 25| dy dt + s7f f e~ 27 pgo | dy dt) . (5.69)

0 Oy 0 01
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Let us introduce

T(s, pib. plg, pusg) = 5°

S

T
|emmeant ayaer st [ [erocavorpayar
F 0

+

»

[ emeesitionpayar + s

T
GJ\
0 F

O

f €250 (6, )| [2 dy dt
f

T
L f e 250 (6,01 (Iplal? + |owel?) dt
0

Again by using (5.16), (5.20), (5.43), (5.58), (5.64) and (5.69), for all A = A7, s > s7, we have

T
52 JJ€23aA4§7/4p2
0 F

2

dy dt + 1(s, po, ply, pus) + J(5,7)

T T
2 2 (1))2 (2))2
c(oumf +rpgr>+0f<\ph 2 4 |ph®P)

T T
+ s° J J 6_2”‘65@\2 dy dt + 37J f e~ 27 pgo | dy dt> , (5.70)

0 Oy 0 01

26
ot

Step 8: removing the local term in ¢o
We are going to estimate the last term of inequality (5.70) by following the same approach
as in [5]:
Let O; < O. Consider a non-negative function y € C?(O) such that x = 1in O;. Now by
using equation (5.23), we get
T

T
r
5" J f e 2 po|* dy dt < Cs” JX€2SQ§7|P¢2|2 dy dt
0 O 6 O

T ~
r P -
=Cs’ fxe‘mf?pcbz (—a—zf — A — pg + p’w> dy dt.
o

O
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Our main aim is to estimate the local integrals of QZ and ¢g. Then via integration by parts and
Young’s inequality, we obtain that for any ¢ > 0, there exists C' > 0 such that

T T
s7ffe‘2w§7lp¢gl2dydt < e(sﬂj (¢, P2 @4 dy dt + 1(s, po, pfqb,p%))

0 O 0

T T
+C (812 ffe‘lsaﬂso‘M{? |1Z|2 dx dt + s° JJeQSQ§8|pg|2> . (5.71)
00 00

Thus finally from (5.70) and (5.71), we get

T
82 JJ€—2SQM£7/4p2
0 F

26

o dydt—&—f(s,pgb,fz,wz) +‘](871;)

T T
2 2 (1))2 (2))2
c(OU(pf +|pg|)+J<ph 2+ |oh®2)

| e2sa§8|pg|2>. (5.72)
O

We have finished the proof of Proposition 5.1. ([l

T
+ 812ffe4sa+2saA1£?|1;|2 dr dt + §8
00

O

6. NULL CONTROLLABILITY OF THE LINEARIZED SYSTEM

In this section, we use the Carleman estimate obtained in Theorem 5.1 to deduce the null
controllability of a linear system associated with (3.14)—(3.25). We recall that H is defined
in (4.22) and the operator A is defined in (4.23)-(4.28). We define the control operator B €
L(L*(O),H) as

Bwy = (0, wole),
and the operator C' € L(H, R?) is defined as

C(u,0) = (by,wy), if u="~, +wy" inS.

Ttweset Z = (|, d = h and Zo = | 20), dy = g , then the linear system (4.1)-(4.13)
0 g 0o Bo

can be written as

Z(t) = AZ(t) + Buo(t) + F(1),

da(t

Z((())) ~ Z, (e>H (6.1)
d(O) = do € R3

with

- (4)
g
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where

WD + h@yt in S,
The adjoint system of (6.1) is given by:
—D(t) = A*B(t) + (1) + C*42, (6.2)
o(T) = 0, ‘

where (71, 72) € L?(0, T; H) x R3.
Let us fix s = sg, A = A\g as in Theorem 5.1 and consider p; for i € {1,2,3} and p in the following
way

£ = {f in ~]:,

0 - s2e 35 (T/2) (¢, (T/2))2 if te (0,T/2), (6.3)
P1 - —Ssa(t) if 3 .
26 (En(1))? if te(T/2,T);
3
e—25am(T/2)  if t e (0,7/2)
t _ 9 ) 64
P2( ) {e—gsaM(t) if te (T/2,T); ( )
866—2sam(T/2)**aM(T/2 T/2))s if te(0,T/2),
p3(t) = 6, —2s0m (t)— ey é / i . (0:)
ste O(En(1))* it te(T/2D),
and
11
e—ssam(T/2) if te (0,7/2)
. 1/2), 6.6
p( ) {e—lglsocM(t) if te (T/Q,T). ( )

Thus p; and p are continuous functions such that
pi(I)=0 and p;, >0 in [0,7),
p(T)=0 and p>0 in [0,7).
We define the following spaces

F
g = {F e L*(0,T;H); — e L*(0,T; H)} ,
P1

Z
3= {Z e L*(0,T;H); = e L*(0,T; H)} ,
P2

U= {wo e L*(0,T; L*(0)); . e L*(0,T; L (O))}

Our main result here is the following
Theorem 6.1. There exists a linear bounded operator
Er HxRxF—u

such that for any (Zy, do, F) € H x R3 x §, the control wy = Er((Zy, do, F)) is such that the
solution (Z,d) to equation (6.1) satisfy Z € 3 and d(T') = 0.
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Moreover, if we assume that Zy € D((—A)z), then we have

Z
= € LX(0,T; D(A)) n C([0,T]; D((~A)2)) n H'(0, T3 H), (6.7)
p
and we have the following estimate:
Z
Z 1 < C (IPls + ldolles + 120l _y1)) - (638)
P 1L2(0,73D(4)AC([0,T]; D((—A) 2 ) A H (0,T5H)

Proof. We use [29, Theorem 4.1]: the existence of Er is obtained from the following observability
inequality for adjoint equation (6.2):

T T T
PP+ 0O + [0l < 0 [ [lon B+ [Improfaga).  ©9)
0 0 0

We thus prove the above estimate and this gives us the existence of Ep and the second part
of the theorem. Indeed, using [29, Corollary 4.3|, this second part comes from the following
relations

(P) p2 Pi ,
e L7(0,T) and 2 er1®(0,T), Vie{1,3 6.10
7)? (0,7) 5 (0,7) {1,3} (6.10)
that can be obtained from the definition of functions (6.3)-(6.6) and from the relations (5.9)-
(5.16).
It remains to prove (6.9). First, we notice that (6.2) can be written in the following form:
(09 ! :
—E—yAqb—i—Vq:yl, in (0,7) x F,
div ¢ = 0, in (0,7) x F,
¢(t,y) =0, te(0,7), y e,
o(t,y) = Lo(t) + we(t)y™, te(0,T),yeds,
0
_a_,ij_ A¢:721+¢27 in(07T)><]:7
0 6.11
| Lty -o. te(0,T),yedF o1
on
—Mﬁ;(t) = —f o(¢, gndl + Ml + MUz, te (0,7),
28
—Jw(t) = —f y- - o(g, qndl + Jwp + Jwez, te(0,T),
28
gb(T,y):Oand ¢(T7y) =0, yE.F,
ls(T) = 0, wy(T) =0,

\

where v' = (71, 73) € Hy x L*(F) and 7* = ({2, w,2) € R?. In particular, we have
Yt y) = La(t) +wa(t)yt te(0,T),yeS.
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With the above notation, the condition (6.9) can be rewritten as

T

V1 + 16(0) L2 + 19022, fllpmﬁllp dt + | |1l 7e )

~N Ot—

<c{ [l s [ [Imopayar). 612

J
0 00

The proof of (6.12) is based on Theorem 5.1. We set

e p(T—1) if te(0,T/2),
p; (t) = {Pi(t) if te(T/2,T).

and then, (5.17) implies that

T T T T
fﬁdﬁmﬁ+ﬁﬁwﬁﬂﬁ<0‘f£W+CWW@@ﬁ+JJMMWWt.®B)
0 0 0 00O

Then by following similar steps as in [5, Lemma 3.2] (using in particular the energy estimates),
we can deduce from the above estimate

T T
[6(0)IE20) + I (0) Iz + J |p16|22(q) dt + f |10 22 ) dt
0 0

T T
[ leats+ et + | gy ). .10
0 00

In order to prove (6.12) from the above estimate, it is sufficient to show the following inequality:
T

<0 [ [lot e d+ [lomdat+ [ [lpPayar ). 619
0 0 00

We argue by contradiction: assume that (6.15) is false. Then there exists a sequence

(772“ 711,117 /y217n7 ¢n7 wn)
such that (6.11) holds and such that

T
[ oty e+ [t eyt + [ [l Py~ 0. 2P =1 ©16)
00

Writing ®,, = (¢n, ¥n), we have

{ gf(zg;)::o%*q)n(t) + 7711(t) + 0*77217 (6.17)
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Let us fix £ > 0. From (6.16), we deduce, up to a subsequence, 72 — 7? in R?® with |y?| = 1
and

v, —0 in L*0,T — & H).
From inequality (6.14), we also have that |(p1¢n, p1¢n)|r2(0,r;m) is bounded. In particular,
up to a subsequence,

(6ns¥n) = (¢,9)  weakly in L*(0,T — &; H),
where (¢, 1)) satisfies the following system

(—(Z—f—yAgb—i—Vq:O, in (0,7 —¢) x F,
div ¢ = 0, in (0,7 —¢) x F,
¢(t7y):07 te(O,T—&?),yeﬁﬂ,
_g_if_ A = ¢o, in (0,7 —¢) x F,
{ ¥(ty) =0, te(0,T—¢), yeoq, (6.18)
¢<t7y) = €¢(t) + w(ﬁ(t)ylv le (OaT - 5)7 ye 887
w(t,y) =0, te(0,T—¢), yeds,
Ml () = —J o6 @ndl + Mls,  te(0,T—e),
8
—Juwj(t) = —J yt - o(p, qndl + Jwye, te (0,7 —c¢),
\ o8
with (0,2, w,2) = 2%
On the other hand, we have from (6.16)
=0 1in (0,7 —¢) x O. (6.19)
Thus from (6.18) and (6.19), we obtain
$po=0 in (0,7 —¢) x O. (6.20)
Now, combining div¢ = 0 and ¢ = 0 in (0,7 — &) x O, we deduce
% =0in (0,7 —¢) x O. (6.21)
On the other hand, ;—i satisfies the system
) 3l0) o\ :
& (a_l‘l) vA <a_1}1> +V (a_l'l> = 0, m (07T 5) X F, (622)
. 00 :
div { =—— | =0, in (0,7 —¢) x F, (6.23)
63:1
9% _ 0 in (0,7 —¢) xO. (6.24)

(9371
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Thus, by using unique continuation property of the Stokes system ( [13]), we obtain that
;—izO in (0,7 —¢) x F. (6.25)
By applying the Poincaré inequality, the above relation yields
»=0 1in (0,7 —¢) x F. (6.26)
In particular, (¢4, w,) = (0,0) in (0,7 —¢) and from last two equations of (6.18), we find
7= (L,w2) = (0,0), (6.27)

which contradicts the fact that [y?| = 1.
Thus we have established inequality (6.15) and combining this inequality with (6.14), we
have proven (6.12). O

7. THE NONLINEAR PROBLEM

This section is devoted to the proof of the main result.

7.1. Estimates of the nonlinear terms. In this section, we give some estimates on the
coefficients appearing in the system (3.14)-(3.25).
We assume here that h and 3 satisfy

h(T) = 0, 5@3:0,(M;”6L%QT)

With our choice of p (see (6.6) and (5.5)), we deduce in particular that

h/ /8/
p L2(0,T) .

o p
Following the proofs of [1, Proposition 12] and [1, Lemma 31], we obtain the following esti-
mates

Lemma 7.1. Assume (3.4). Then, for any (@,p,0) € H3(F) x H'(F) x H?(F), the following
relations holds for a.e. t € (0,T):

+
L2(0,T)

[A()] + 1B()] < TV*5(t) <

= =
+
SIS

> 1@l g2 -
L2(0,T)

) |2 (),
LQ(O,T)

7 () [Tz ),

1(KCw = L)l ) < Cp(2) (

L2(0,T)

+
L2(0,T)
/B/
]

S

(L — Atz < Cp(2) <

= =

h/

~

p

_l’_

L2(0,T) L2(0,T)

/3/
= @] & (),
L2(0,T)

NG|z < C (1 +

+
L2(0,T)

hl
p

|IMt| 27 < Cplt) ( 5
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_ n ﬂ B
1(Gu = V)Dlre(r) < = ~ IVD| L2 (7
P20 T) P liL2(0,1)
= n 5 _
[(Lo = A)0] o) < = = 18] 227,
P L2(0T P li20,1)
l B _
[No(@, 0) 20y < C L%: = [l () 18] 127
P liz20,1) P 20,1
h’ ! _
[ Mo 2 < CR(2) = 6] 21 7y
L2(0, T) P liz2(0,1)

Since we will use the Banach fixed point theorem, we also need to estimate the differences of
coefficients. More precisely, let us consider, for i = 1,2, h® and 8@ that satisfy

oy =0, pomy—o, WEN g gy
P

With our choice of p (see (6.6) and (5.5)), we deduce in particular that
() — K2 (@)] + 18D () — 8P ()]

< T (H—(hm)': bl

(B — B2y

~

p

+
L2(0,T)

LZ(O,T)> ‘

We assume that for all 4, h®) and B satisfy (3.4). In particular we can define the change of
variables X' y@ and the operators
]Cuz) z) N (3) guz : £é1)7 Ng(l)v Mq(f)a Mé@)

defined by (3.26)—(3.33).
Following the proof of [1, Lemma 33|, we obtain the following estimates of the difference of

coeflicients:

Lemma 7.2. For any (u,p,0) € H*(F) x H'(F) x H*(F), the following relations hold for a.e.
€ (0,7):

p

) {1y — hey (B0y - gy )
KD — KOYa ) < CBE) (f g Ca @z,
P 12(0,T) P L2(0,T)
) {1y = hoy (BVy — gy .
1L = L0y < OB ] . g (Chd il [Tl
p L2(0,T) P L2(0,T)

[ (N@El) —Nf)) UlL2(r)

_|_
L2(0,T)

~

(20080
p

) ]| exr 7)1 2 )
L2(0,T)
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N LMY — p@)y
| (M~ M) iz < o) <H%

+
L2(0,T)

NG R
P

~

R

> ]| g1 (),
12(0,7)

) IVD| L2 )
L? (O,T)

) 10] 1r27)
L2(0,T)

) [@lle ()10 27

> 18]l 11 7-
L2(0,T)

7.2. The fixed point argument. We are now in position to prove the main result.

- KDY — p@y
I (G = G2 Dl < CR(t) (H%

L2(0,T)

h(l) 1 h(2) /
Oy —n®y|
L2(0,T)

0080

~

| (N2 =N @0)] 1200

L2(0,T)

_ N AWy — @)y

L2(0,T)

+
L2(0,T)

~

H (BD) — B2

Proof of Theorem 1.1. First, we assume that (hg, fy) satisfies (3.2) and (3.4) so that we can
consider X (0,.), Y(0,.) and define (uq, 6o, £y, wo) by (3.34)-(3.35).
From (1.14), (4.31) and the properties of X and ) (Section 3), we can check that

(0, 00) € D((=A)") and | (o 00)| sy < C1(ao O g syt e (721
where A is defined by (4.23)-(4.25).

The proof of Theorem 1.1 is based on a fixed point argument. If we set Z = <z>7 d= (Z)

and Zy = to , do = then we can write (3.14)—(3.25) as
0o Bo

Z(t) = AZ( ) + Bwo(t) + FI(Z,d),

d(t t
Z((g) =7 <e)]HI (72)
d(0) = dy € R?,
with
n _ Pfy
F2,d) = (‘[Mee] — [N, )] + ul(L - A)e]) ’ (73)
where

—wlt in S.

fzz{—wcu )%~ Ml = [Nl + v[(£, — Al + [(V = G)p) in T,
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Now from Theorem 6.1, we know there exists a control wy = Er(Zy, dy, F’) such that the solution

of

Z(t) = AZ(t) + Bu(t) + F(t),
() = C2(1), -
( ) Zo € H, ( ’ )
d(0) = do € R?,
satisfies (6.7) and (6.8). Let us consider r > 0 (that is fixed later) and let us set
9 F
K.,=<FelL0,T;H) ; |[— <rp. (7.6)
P12 (0,1;m)
If
HZOHD((*A)1/2) <r and ”dOHR3 < T, Fe }Cr, (77)
then we deduce
A
P lL2(0150(4) A C([0,73:D((—4) )~ (0,T53)

We take r small enough so that (3.2) and (3.4) holds true and we can construct the change of
variables X and ) as in Section 3. We can thus define

T(F) = F(Z,d), (7.9)

where F\(Z,d) is given by (7.3)-(7.4). By using Lemma 7.1, (7.8) and Zﬁl e L*(0,T), we can
verify that

T:K, =K, (7.10)
and

< Cr. (7.11)

In particular for r small enough, 7 maps K, to K. Similarly, by using Lemma 7.2 and (7.8),
we deduce that

2(0,T;H)

F —F
P1

< Cr
L2(0,T;H)

H T = T(FR) (7.12)

L2(0,T;H)

and thus for 7 small enough, 7 admits a unique fixed point F in IC,.. The corresponding solution
of (7.5) is the solution of (7.2) and satisfies

Z

~

p

C (I1B(Z, )l + ldols + 1 Zol _p3) - (7:13)

L2(0,T;D(A)) AC([0,T];D((— A) 2 )~ H (0, T;H)

and d(T') = 0. In particular, we obtain (1.16)-(1.17).



40

APPENDIX A. CARLEMAN ESTIMATES FOR THE LAPLACE OPERATOR

In this section, we recall a Carleman estimate for the Laplace equation. We give the proof
of such an estimate for completeness.

Proposition A.1. Let A > 1 and ¢ = exp(An) with 1 given by (5.2)-(5.3). Assume Og, Oy are
open subsets of F such that Oy < Oy, Oy < F. Then there exist constants \1, k1, C' depending
only on F,Oy, Oy such that, for any X = \i, k = k1 and u € H?(F), the following inequality
holds:

PN JeZHCCﬁlude + )\6/£4f62”<C4IVu]2dx + A7K5 J e**|ul*dl
F F oF

2

ou

= (A1)

<C | MK Je%C@Au\zd:v + A%0 J e*COulPdr + Nk J e

F 01 oF

Proof. We follow the same steps as [21] and [17] but here we incorporate the boundary terms.
Let us set f = —Awu and

o= eu and g=e"f.
Then we obtain
Mo + No = g, », (A.2)

where

Mo = 5\'k3(2|Vn|?o, Mo = 2\3k3¢3Vn - Vo

Nyo = —)\4/£%C%|Vn|20, Nyo = —N’k2(2 A0 ;

Mo = Myo + Myo, No = Nio+ Nyo; (A.3)

Grx = )\2/-@%&9 - )\3/£%C2A7]0 + 4)\4/£2C3|V7]|20.
We have from (A.2)

2
HMO-”%Q(]-') + HNUH%Q(}') +2 Z Iij = Hgn,AH%zm, (A4)

i,j=1

where I;; = J(Mia) (N;o) dx . First, we have
f

I = —5)\8/<6f§6|V77|4|0|2d:13. (A.5)
f
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Then
Iy = —2\"K° JCGIanz(Vn -Vo)odx
f

= 6)\8K6JC6|V7]|4|0|2d;1: + )\7/$6JC6An|Vn|2|a|2dx
F F

2 a
+ 2X\7K° Z Jg%m 0ym O |o|Pdr — A\"K® J CG\VU\Qg—HUQdF
i7j=1]__ OF n
=A; + Ay + A3 + Ay (A.6)
Due to the property (5.2) of 1, we have

L+ Ay = A3k Jgﬁvmﬂaﬁ dzx

s
> g \°K° JC6|U|2dx — AR J COlo|?dx . (A7)
F 0o
Ay and Aj satisfy:
Ao + | As] < ONT4® f CSo2dz . (A3)
F

Since n = 0 on 0F, we have Vn = (S—Z) n and ((z) = 1 Yo € 0F. Moreover, 2L < 0 on 0.F, so

2 2 ) on
‘—"! = — 21 Therefore

on on ’

3

n o?dl. (A.9)

A _ )\7 6 f
4 " on
oF

The next term of (A.4) that we estimate is:

Iy = —5>\6/§4JC4\V77\2 (Ac) odx
]_‘

2
= 5/\6/{4JC4|V17|2]V0|2dx + 10A°x* Z JC"Lﬁm 0in (0;0) odx
F ij=1%
+ 20/\7/<;4f(4|Vn|2(V7] -Vo)odr — 5A%4f<;4|vn|2 g—aadF
n
F o0F

=C1+Cy+Cs3+Cy (A.10)
We first estimate the quantities Cy and Cs:

|Cy| < ONBKP J(5|0|2 de + C\K3 J§3|VU|2 dx (A.11)
F F
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and
|C3] < CNKP JC5|U|2 dx + C’)\6I£3JC3]VJ|2 dx.
F F
Since A > 1,
Iy =Ci+Co+ C3+Cy > 5A%4Jg4\vn|2yva|2d:c — O\%° JC5]0|2 dx
F F
— O\°? JC3IVU|2 dx + Cy.
f

We have the following estimate on Cy:

2
oo
—odl
(3n0

0] . [5)\2 K

3
255 K2
o2dl + J 5 i

o

on

_ f [Aé,ﬁ ?7
o0F

on
A K6
<
|5
oF

—Cy = 50! J ¢t Z—UUdF = 5\0k* J
n
oF 0

Nl

-
2 o

on

on

dl’
on

2

on

on

an
on

&_0
on

Finally, we estimate [5s:
122 = —2A5H4f€4(Vﬁ : VO'>AO_CZ[E
f

oo

on
= 2N | =
" on

on
oF

2 2
dl + 2\°k* Z f@ijn ¢t 0;00,0dx
‘F

i,j=1

+ SA%‘*J&yvn -Vo|*dr + A%‘lf&vn -V|Vo|?dx
F F

:D1+D2+D3+D4.

We have

|Dy| < CNk* J ¢YVol|*dx
f

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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and
Dy = A%‘lf&vn -V|Vo|*dx
— APk J UL e J UL 4Jg4|vn| Vo | da
on |on on ot
a
5ﬁ4f§4 An|Vo|? dx. (A.17)
We obtain :
Iy = Dy + Dy + D3 + Dy > — 4)°x* J<4|vn|2|v012 dx — CA%‘*J& \Vol|? dx
@77 oo |? on |do 2
— Mt dl + )\54J—— dr’
8n on on |0t
oF

= —4A%4f§4|vn|2|vo|2 dx — CN°k* Jg‘* |Vo|?dz + By + B, .

(A.18)

Now we look at the boundary terms appearing in the estimates of [; ;, 7,5 € {1,2} and by
using (A.9), (A.14) and (A.18), we deduce:

B=A,+C,+ B, + By

on k5 on 25\5 2 on||do
>\’ 2dT — 2dT — r
)\Hjand ZJ(Bnd 2J8n6nd
oF
on |do 2 on |do 2
%A L2 ar 54J—— r.
/\Kfﬁn(?nd—i_)\ﬁ 8n57’d
oF F
There exists k9 such that for any x > kg, we have
2
B = CO\Ng° fﬁdf—m%‘lf o dr . (A.19)
0T

oF oF
Gathering (A.7),(A.8), (A.13), (A.18), (A.19), we deduce the existence of A3 > 1, k3 = Ko such

that for A > A3, k > ka:
Z I >CJ (AkOCC|o? + Mk Vo]?) da — CJ (A*kOCC|o? + Mk Vo|?) da
i,7=1 on
7 6 2 5 4 oo’
+ ONKS | o2dD — ONk

dl’. A2
or (A-20)
OF OF
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Combining (A.3), (A.4) and the above estimate, we obtain:

INo[Z27 + f (AkOCC|o” + Nk Vo) d + AR fﬁdr
F OF

2

oo T

<C¢ |’gl€,)\H2+ J ()\8/16<6’O"2+)\6/€4<4|VU‘2) d$+)\5//m’4f i

oT

Oo

< C(/\4I€3 f(3|g|2 dr + \°K° fg5|a\2 dz + f (A*kOCC|o]® + AOk*¢H Vo ) da
F F Oo
oo

)\54
+ AR o

oF

2 dP) . (A.21)

The above relation yields the existence of \y = A3, k4 = k3 such that for A > Ay, k = ky:

HNUH%Q(;) + J (A*k°CClo|* + Ak Vo) dz + ATK° J o?dl
F oF

< C<>\4I€3JC3|9|2 dr + f (ARl |” + Mk Vo) do + Nk J
F Oo o0F

8_(7
or

2
dF) . (A.22)
On the other hand, from the definition (A.3) of N, we can check the following relation for x > 1:
N2 J§2|Aa|2 dr < C <|NU||%2(}-) + AB0 f(6|0|2 dx) . (A.23)
F F

Thus we deduce from (A.22)-(A.23) that for A = Ay, k = Ky:

X*K?fc?may?dx + f (A*kOCC|o? + MR Vo|?) da + AR J o?dl
F F oF

2
< C<A4/<:3J(3]g\2 dx + J (MKl |* + Mk Vo) do + Nk J o dF). (A.24)
F 0

oT
O F

To eliminate the term involving Vo in the right hand side of (A.24), let us introduce a function
X € C3(0y), with y = 1in Oy, 0 < x < 1 and Oy < Oy, O; = F. Then for any € > 0, there



exists C' > 0 such that

N f CHVo|*de < \9k* J x| Vol dx
O O1

= — Nkt fx(‘l (Ac)odr — \k* J (Vo -Vx)odr —4\k* J x¢ (Vo - Vn)o dx
O1

01 O

< e)\4/12J(2]Aa\2d:1:+C<A8n6JC6]al2dx>.
(91 Ol
Combining (A.24) and (A.25) yields:

M2 J<2|A012 dz + J (A*k°CClo|® + Ak Vo) dz + ATK° J o?dl
].‘

F oF

2
<C<A4/€3JC3|9|2dx+ J)\8/f6§6|0|2dx+/\5/<¢4f Z—U dF).
T
F 01 oF

Now we can go back to our original function u = e *¢o. Observe that

Vu=e " (Vo —rAVn(o).

Hence,

A%‘lfe?%gﬂvm?dx < CM\%%* f<4|VU|2dx + CN\3KS f{6|a|2dx
F F F
and

f/\8/i6gﬁe2“<|u|2 dx = f)\gfi6§6|a|2 dx.
F F
Thus, we have obtained the estimate (A.1).

From the above proposition, we deduce the following result.
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(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

Corollary A.2. Let Oy, O; be open subsets of F such that Oy < Oy, O; < F. Then
there exist constants sg,C' depending only on X\, F,Ogy, O1 such that, for any s = sy and

we L*(0,T; H*(F)), the following inequality holds:

T T T
50 f f e~ 20 ) dy dt + s* J J e~ e VulPdy dt + s° f J e~ 2sen (¢ Oy |?dl dt
0 F 0 F

0 oF

T T 1z
<o [ [ermgiaupayas s [ [eeetupaya s [ [ oo,y
% 0 O 0 OF

2
ar

(A.30)
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Proof. We take A\ = Ay in Proposition A.1. Then there exists C' = C()\) such that

KO f€2HCC6’u|2d$ + /€4f62”CC4]Vu]2dx + K° J e |u|*dl’
F F oF
2

ou ar |,

T

<C | K f@2”CC3|Au|2dx + K° J 2 COul?dr + K f e
F O o0F

E(St)

for every Kk = k1. We take k = s. For s large enough, we have k > ;. This gives :

s° fezsfffi\uﬁdx + st Je%gf‘l[Vu]de + s° f e?%m (£,,)8 [u|?dl

F F oF
3| 25643 2 6 | 2s¢¢6), 12 4| 2s¢ 4| Ou ’
<O | s | e8| Auldr + 57 | e ul|*dx + s | e (&) 3 ar|, (A.31)
T
F O1 oF
Now if we multiply the above inequality by exp <—25%) and integrate from 0 to 7', we
obtain (A.30). O
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