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Vibrations of an elastic structure with shunted piezoelectric
patches: efficient finite element formulation and

electromechanical coupling coefficients

O. Thomas, J . - F . Deü and J. Ducarne
Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers, 

2 rue Conté, 75003 Paris, France

This article is devoted to the numerical simulation of the vibrations of an elastic mechanical structure 
equipped with several piezoelectric patches, with applications for the control, sensing and reduction of 
vibrations. At first, a finite element formulation of the coupled electromechanical problem is introduced, 
whose originality is that provided a set of non-restrictive assumptions, the system’s electrical state is fully 
described by very few global discrete unknowns: only a couple of variables per piezoelectric patches, 
namely (1) the electric charge contained in the electrodes and (2) the voltage between the electrodes. The 
main advantages are (1) since the electrical state is fully discretized at the weak formulation step, any 
standard (elastic only) finite element formulation can be easily modified to include the piezoelectric patches 
(2) realistic electrical boundary conditions such that equipotentiality on the electrodes and prescribed 
global charges naturally appear (3) the global charge/voltage variables are intrinsically adapted to include 
any external electrical circuit into the electromechanical problem and to simulate shunted piezoelectric 
patches. The second part of the article is devoted to the introduction of a reduced-order model (ROM) of the 
problem, by means of a modal expansion. This leads to show that the classical efficient electromechanical 
coupling factors (EEMCF) naturally appear as the main parameters that master the electromechanical 
coupling in the ROM. Finally, all the above results are applied in the case of a cantilever beam whose 
vibrations are reduced by means of a resonant shunt. A finite element formulation of this problem is 
described. It enables to compute the system EEMCF as well as its frequency response, which are compared 
with experimental results, showing an excellent agreement. 

KEY WORDS: piezoelectric materials; vibration reduction; electric boundary conditions; shunt;
electromechanical coupling
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1. INTRODUCTION

Piezoelectric materials are proposed for many applications, most of the time to couple the vibra-
tions of a structure including the piezoelectric material with an electric circuit. This can lead to
several applications like oscillators for electronic circuits, acceleration sensors and gyroscopes,
sound transducers, vibration monitoring, control or energy harvesting and reduction of structural
vibrations. Both direct and indirect piezoelectric effects can be used, with the piezoelectric element
being used as sensors or actuators, or even both simultaneously. Except for very few applications
where the structure’s geometry—including the piezoelectric elements—is simple and allows an
analytical solution, numerical methods, such as the finite element method (FEM), have to be used
to compute the vibration response and simulate the system electromechanical behavior.

The present study proposes a finite element formulation adapted to elastic structures to which are
attached piezoelectric plate-like patches with electrodes. Its originality lies in the use of only one
pair of electrical variables per piezoelectric patch: the terminal voltage and the charge contained
in one of the electrodes. By essence, this choice of variable is naturally adapted to simulating
the behavior of the structure coupled to any electrical circuit and thus to practical engineering
applications.

A pioneering work on the subject of piezoelectric finite element [1] proposed a formulation of
the coupled problem between mechanical displacement and the electric potential field, taking into
account both direct and inverse effects. If the piezoelectric elements are used either as sensors
or actuators for active vibration control, it is worth remarking that the electrical unknowns can
be condensed so that the problem to solve has the form of a standard elastic vibration problem.
In particular, the actuators action on the system appears as an external forcing proportional to the
applied voltage, whereas the system’s stiffness is purely elastic, without any modifications due to
the electric state of the patches. In the case of sensors, the problem appears with an added stiffness
term due to the open-circuit condition of the piezoelectric patches, whose terminal voltage (the
sensor output) is proportional to the mechanical displacement unknowns. This formulation is the
basis of most numerical studies involving elastic structure with piezoelectric elements [2–10]. For
more references, one can refer to the following review articles [11–13].

However, the need for modeling both sensing and actuation at the same time is required by
applications where a passive (or semi-passive) electric circuit is connected to the piezoelectric
elements. These so-called shunt techniques, proposed in [14], are reviewed in [15] in the case of
vibration reduction. The initial models used for simulating these shunted systems were lumped,
with only two degrees of freedom (d.o.f.) (one mechanical and one electrical, in most cases one
vibration mode and the electric-free charge). On the contrary, richer models can be obtained via
piezoelectric FEM commercial softwares, by simulating the shunt as an active controller with
simultaneous sensing and actuation [16]. This latter technique is often numerically intensive.
A new category of shunts has recently become of interest, often known as switch techniques,
where the electrical circuit impedance is switched periodically between two values [17–19].
In this case, the same distinction between the lumped model, characterized by fast computation,
and the full finite element simulations, more accurate but slower, are found [20]. A good compro-
mise is to use the modal basis to project the problem and reduce the number of variables without
losing the accuracy in the frequency domain [21].

In addition to simulating the vibratory behavior of the mechanical structure coupled to an electric
circuit, a key issue is the optimization of the whole system, in terms of size/shape/location of the
piezoelectric patches as well as the choice of the electric circuit components. In most cases, this
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operation requires a maximization of the effective electromechanical coupling factors (EEMCF).
In the case of passive resistive or resonant shunt techniques, whose purpose is the structural
vibration reduction, the EEMCFs of the targeted vibration modes have to be maximized, as shown
in [14, 22, 23]. Moreover, it is proved in [24, 25] that the EEMCF is the only free parameter of
the optimization, the optimal value of the electric circuit parameters being known as functions of
the EEMCF and the system structural characteristics, and evaluated in a second step. The same
results are also obtained in the case of switch techniques [26].

The first goal of this article is to write a discretized formulation of the dynamics of an elastic
structure of arbitrary geometry with piezoelectric patches, the latter having a thin shape and being
polarized in their transverse direction. The main advantage of our formulation is that provided a
few non-restrictive electrical hypotheses, the system electrical state is defined by very few discrete
global unknowns: on the one hand, the free electric charges contained in the electrodes of the
piezoelectric patches and on the other hand the associated terminal potential differences. This
formulation enables to take into account both the direct and indirect piezoelectric effects, separately
or at the same time, while there is no need to compute the whole electric potential field. Concerning
the system mechanical state, no restrictions are formulated so that it appears in a standard finite
element form in the formulation, with the displacement d.o.fs at the mesh nodes and the associated
generalized forces.

The present problem formulation can be used to simulate the dynamics of the system in any
standard situation of a smart structure connected to an electrical network: a part of the piezoelectric
patches can be sensors and the remaining part actuators. However, this study especially addresses
the simulation of the dynamics of the system coupled to shunted electric circuits, since each
piezoelectric patch appears in the formulation with a pair of global intuitive unknowns, its potential
difference and its electric charge, that can be introduced without restrictions in the evolution
equation of the electrical circuit to which it is plugged. This is an originality of this work, since
most other studies are restricted to piezoelectric elements used either as sensor or as actuators (see
above cited references). Another advantage of our formulation is that realistic electric boundary
conditions on the piezoelectric patches—i.e. on the one hand equipotentiality in the electrodes
and on the other hand a global free electric charge in the electrodes—are naturally imposed and
included in our formulation. This is another originality since classical finite element formulations
of the literature often use local electric variables—the electric potential and displacement—that
are not naturally adapted to the above cited global boundary conditions. The equipotentiality in
the electrodes is often enforced by assigning a single d.o.f. for voltage on all their nodes [27–29].

The second goal of this work is to introduce an efficient manner of evaluating the effective
electromechanical coupling factors (EEMCF) of the system. As stated above, most of the literature
works on the subject show that the EEMCFs are the major parameters that govern, on the one
hand, all the performances of the vibration dampers made with shunted piezoelectric elements,
and on the other hand, all the optimizations procedures of those devices [24–26]. Thus, evaluating
the EEMCF for a given system is crucial when designing its coupling with an electrical circuit.
To do so, a given EEMCF is associated in our study with one system vibration eigenmode and
one piezoelectric patch. The general discretized finite element formulation introduced above is
expanded onto the vibration eigenmodes of the system with all its piezoelectric elements short-
circuited. A modal discretized formulation is obtained, where all the EEMCFs appear naturally.
The latter are known with analytical expressions as functions of the matrices of the finite element
discretization and the short-circuit eigenmodes. This result can be useful in an engineering context,
since the exhibited EEMCFs numerical computation involves only the assembling of the finite
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element matrices and the computation of the system short-circuit eigenmodes, which take the form
of a standard elastic eigenvalue problem. To conclude, the EEMCFs for a given elastic structure
with piezoelectric patches can potentially be computed in post-processing, after a modal analysis
done with a standard finite element elastic code.

The present article is divided into six main parts. After the present introduction, Section 2
recalls the main equation of a standard piezoelectric vibration problem and the associated varia-
tional formulation. Section 3 gives the main electrical hypotheses that lead to introduce the global
electrical variables—the voltage/charge pair associated with each piezoelectric patch—in the vari-
ational formulation and derives the associated general discretized finite element formulation. The
modal expansion of the general finite element formulation is proposed in Section 4, thus, enabling
to introduce and compute the problem EEMCFs. Section 5 exposes the details of a finite element
discretization of a laminated beam with piezoelectric patches. To conclude, Section 6 applies all
the above formulations to a beam with two collocated piezoelectric patches connected to a resonant
shunt circuit. The EEMCFs are numerically evaluated as well as the vibratory response of the beam
with and without the shunt. Experiments are described and an excellent agreement is obtained,
thus, validating the introduced formulations.

2. AN ARBITRARY PIEZOELECTRIC MEDIUM

This section is devoted to the general formulation of the equations that govern the mechanical
and electric state of an arbitrary piezoelectric medium, on their strong form as well as on a weak
form, suitable for a finite element formulation. Standard indicial notations are adopted throughout
the article: subscripts i, j,k, l denote the three-dimensional vectors and tensor components and
repeated subscripts imply summation. In addition, a comma indicates a partial derivative.

2.1. Electro-mechanical local equations

We consider a piezoelectric structure occupying a domain �p at the equilibrium. The structure
is subjected to a prescribed displacement udi on a part �u and to a prescribed surface force
density tdi on the complementary part �t of its external boundary. The electric boundary conditions
are defined by a prescribed electric potential �d on �� and a surface density of free electric
charges qd on the remaining part �q . Thus, the total structure boundary, denoted ��p, is such
that ��p=�u∪�t =��∪�q with �u∩�t =��∩�q =∅. In addition, �p is subjected to prescribed
body forces f di .

The linearized deformation tensor and the stress tensor are denoted, respectively, by εi j and �i j .
Moreover, Di denotes the electric displacement vector components and Ei the electric field vector
components. � is the mass density, ni is the unit normal external to �p and t is the time.

The local equations of the electro-mechanical coupled problem are:

�i j, j + f di = �
�2ui
�t2

in �p (1a)

�i j n j = tdi on �t (1b)

ui = udi on �u (1c)

4



and

Di,i = 0 in �p (2a)

Di ni = −qd on �q (2b)

� = �d on �� (2c)

with appropriate initial conditions.
Equation (1a) corresponds to the elastodynamic equation, Equations (1b) and (1c) are

the prescribed mechanical boundary conditions, Equation (2a) corresponds to Gauss’s law,
Equations (2b) and (2c) are the prescribed electric conditions [30]. One can remark that
Equation (2b) is valid as long as the electric displacement in the medium that surrounds �p can
be neglected with respect to its value inside �p; otherwise, the jump of Dini through ��p would
have appeared in (2b). Moreover, no volume free electric charges are prescribed in �p, since at
the electric equilibrium, for classical homogeneous piezoelectric, dielectric or conducting media,
the free charges are always concentrated on the boundaries, in the form of surface densities [30].

The stress tensor �i j and electric displacement Di are related to the linear strain tensor εkl and
electric field Ek through the converse and direct linear piezoelectric constitutive equations [31, 32]:

�i j = ci jklεkl −eki j Ek (3)

Di = eiklεkl +εik Ek (4)

where ci jkl denote the elastic moduli at constant electric field, eki j the piezoelectric constants and
εik the dielectric permittivities at constant strain. This expression of the constitutive equation is
well suited to finite element approaches.

Moreover, we have the following gradient relations between the linearized strain tensor εkl and
the displacement uk , and between the electric field Ek and the electric potential �:

εkl(u) = 1
2 (uk,l +ul,k) (5)

Ek(�) = −�,k (6)

Equation (6) is justified under the electrostatic approximation (the curl of Ek is zero), that is valid
because the characteristic time of the electric phenomena is much smaller than the one of the
mechanical phenomena, which means that the eventual electromagnetic waves are neglected [32].
In this case, the curl of Ek vanishes, which justifies the existence of � in Equation (6) [30, 32].

2.2. Variational formulation in terms of (ui ,�)

The local equations in the previous section are expressed in terms of the chosen unknown fields
of the boundary value problem, i.e. the mechanical displacement ui and the electric potential �.
In order to obtain the variational formulation associated with the local equations of the coupled
system, the test-function method is applied. We introduce the spaces Cu of sufficiently regular
functions ui defined in �p, C∗

u ={ui ∈Cu |ui =0 on �u} and C� of sufficiently regular functions
� in �p.
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Multiplying Equations (1a) and (2a), respectively, by any time-independent test functions �ui∈C∗
u

and ��∈C�, integrating over �p, applying Green’s formula, taking into account Equations (1b)
and (2b) as well as the constitutive laws (3) and (4) leads to:∫

�p

ci jklεkl(u)εi j (�u)d�−
∫

�p

eki j Ek(�)εi j (�u)d�

+
∫

�p

�
�2ui
�t2

�ui d�=
∫

�p

f di �ui d�+
∫

�t

tdi �ui dS (7)

and ∫
�p

eiklεkl(u)Ei (��)d�+
∫

�p

εik Ek(�)Ei (��)d�=
∫

�q

qd ��dS+
∫

��

qr ��dS (8)

where qr =−Di ni is the reaction free charge density that appears on ��.
The variational formulation of the coupled electro-mechanical problem, equivalent to the strong

form (Equations (1a)–(6)), consists in finding ui ∈Cu such that ui =udi on �u , �∈C� such that
�=�d on �� and the reaction electric free charge density qr on ��, satisfying Equations (7)
and (8) for all �ui ∈C∗

u and for all ��∈C�, with appropriate initial conditions.

3. AN ELASTIC STRUCTURE WITH PIEZOELECTRIC PATCHES

In this section, the general formulation introduced in the previous section is applied to the special
case of an elastic structure equipped with thin piezoelectric patches, either glued on its outer
surface or embedded inside. It allows, with some electrical hypotheses, to replace the local electric
variables � and Di , defined on the whole system domain, by discrete variables, defined on each
piezoelectric patch: on the one hand the electric potential difference between its electrodes and on
the other hand the global charge contained in one of its electrodes.

3.1. General problem and hypotheses

We consider an elastic structure equipped with P ∈N piezoelectric patches (Figure 1). The domain
occupied by the elastic part of the system is denoted by �s . Each piezoelectric patch has the shape
of a plate or a slightly curved shell, with its upper and lower surfaces covered with a very thin
layer of conducting material to obtain electrodes. The pth patch, p∈{1, . . . , P}, occupies a domain
�(p) such that (�s,�(1), . . . ,�(P)) is a partition of the whole domain �. The pth patch upper
and lower electrode surfaces are denoted, respectively, by �(p)

+ and �(p)
− and its lateral surface is

�(p)
0 . In the remaining part of the article, superscript (p) will denote a quantity related to the pth

piezoelectric patch.
A set of hypotheses, that apply to a wide spectrum of practical applications, as it will be seen

in Section 3.4, is now formulated.

1. Only the piezoelectric patches are made of piezoelectric material. Consequently, the piezo-
electric material constants ei jk vanish in �s . However, we can mention that the dielectric
constants εik do not vanish in �s , in general [30].
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Figure 1. Left: an elastic structure with two piezoelectric patches. Right: the pth piezoelectric patch
submitted to the potential difference V (p), with its electrodes containing the free electric charges

Q(p) and −Q(p) on their surface in contact with the patch.

2. The piezoelectric patches are thin, with a constant thickness, denoted h(p) for the pth patch,
smaller than its characteristic longitudinal length (see Figure 1).

3. The thickness of the electrodes is much smaller than h(p) and is thus neglected.
4. The piezoelectric patches are polarized in their transverse direction (i.e. the direction normal

to the electrodes).
5. The piezoelectric patch materials are transverse isotropic, hence, they have the same mechan-

ical and electrical properties in any longitudinal direction.
6. No free charges are localized on the lateral boundary �(p)

0 of the piezoelectric patches.
7. The electric end effects for the piezoelectric patches are neglected.
8. The electric field vector, of components Ek , is normal to the electrodes and its intensity is

uniform in the piezoelectric patch, so that for all p∈{1, . . . , P}:

Ek =−�(p)
+ −�(p)

−
h(p)

nk =−V (p)

h(p)
nk in �(p) (9)

where V (p) =�(p)
+ −�(p)

− is the potential difference between �(p)
+ and �(p)

− and nk is the kth
component of the normal unit vector to the surface of the electrodes (see Figure 1). In this
case, two main couplings can be obtained: a ‘33’ coupling (between the transverse electric
field and the stress/strain components in the same direction) and a ‘31’ coupling (between
the transverse electric field and the membrane stresses/strains). The present hypothesis is
justified by hypotheses 2, 5 and 7.

9. The electric displacement vector of component Di is neglected in the elastic domain �s , as
compared with its value in any of the piezoelectric patches �(p). The justification of this
hypothesis will be discussed in Section 3.4. However, the electric field in �s does not vanish,
in general.
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3.2. Variational formulation in terms of (ui ,V (p))

A variational formulation of the electromechanical problem associated with the system can be
obtained by considering the above hypotheses 1–9 and applying Equations (7) and (8) successively
to each of the P+1 subdomains of �, namely the elastic part �s and the piezoelectric patches
�(p), for p∈{1, . . . , P}.

3.2.1. Mechanical equation. We first apply Equation (7) successively to each subdomain of �.
Then, the P+1 obtained equations are added term by term considering that the integrals over each
subdomain combine themselves to give a single integral on the whole domain:

∫
�

=
∫

�s

+
P∑

p=1

∫
�(p)

(10)

Consequently to the equilibrium of forces and the equality of displacement through each interface
between two subdomains of �, all the surface integrals that are related to the subdomain boundaries
inside � cancel by pair. Then, we redefine �u and �t to be a partition of the boundary �� of �
where the displacements and the forces are prescribed, respectively. We also redefine Cu as the
space of sufficiently regular functions ui defined in the whole � and C∗

u ={ui ∈Cu |ui =0on�u}.
Then, the piezoelectric integral term in Equation (7), with �p replaced by �, can be rewritten as

∫
�
eki j Ek(�)εi j (�u)d�=

P∑
p=1

−V (p)

h(p)

∫
�(p)

eki j nkεi j (�u)d� (11)

where V (p) is the pth piezoelectric patch potential difference, introduced in Equation (9). To prove
the above identity, one has first to consider Equation (10) together with assumption 1, that implies
that ei jk =0 in �s so that the corresponding integral vanishes. Finally, assumption 8 (together with
Equation (9)) leads to the result.

3.2.2. Electrical equation. In a second step, we apply Equation (8) to each piezoelectric patch.
We chose here to prescribe the electrical potential � on all the piezoelectric patches electrodes
�(p)

+ and �(p)
− . Moreover, following hypothesis 6, a zero surface free charge density qd =0 is

prescribed on the lateral boundaries �(p)
0 of the piezoelectric patches. Consequently, the electrical

boundary conditions on the pth piezoelectric patch are defined by �� that coincides with �(p)
+ ∪�(p)

−
and �q that coincides with �(p)

0 .
The piezoelectric term in Equation (8) is processed in the same manner as in Section 3.2.1, so

that one obtains, with �p replaced by �(p):

∫
�(p)

eiklεkl(u)Ei (��)d�=−�V (p)

h(p)

∫
�(p)

eiklεkl(u)ni d� (12)

where �V (p) =��(p)
+ −��(p)

− with ��(p)
+ and ��(p)

− defined as the uniform values of �� on the pth
patch upper and lower electrodes.
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The dielectric term in Equation (8) can be rewritten as, with again �p replaced by �(p):∫
�(p)

εik Ek(�)Ei (��)d�= V (p)�V (p)

(h(p))2

∫
�(p)

εikni nk d� (13)

The above identity has been obtained in the same manner as for Equations (11) and (12), by
considering hypothesis 8.

With assumption 2, the volume of the pth piezoelectric patch is very close to h(p)S(p), with
S(p) the average area of the patch, so that Equation (13) can be further simplified:∫

�(p)
εik Ek(�)Ei (��)d�=C (p)V (p)�V (p) with C (p) = ε33S(p)

h(p)
(14)

the capacitance of the pth piezoelectric patch and ε33=εikni nk the piezoelectric material permit-
tivity at constant strain, in the direction normal to the electrodes.

The surface integral terms in the right-hand side of Equation (8) are now addressed. First, as
explained above, qd =0. Then, considering that �� is uniform on the upper and lower electrode
with values ��(p)

+ and ��(p)
− , the remaining integral corresponds to the sums of all the free charges

contained in the electrodes, named Q(p)
+ and Q(p)

− . Moreover, we apply the integral form of Gauss’s
law to a closed surface � that surrounds the pth patch. It stands that, at the electric equilibrium,∮

�
Dini dS=Q (15)

where Q is the free electric charge contained inside �. In our particular case, � lies in �s and a part
of it can be inside the system surrounding medium. However, in any case, thanks to hypothesis 9,
Di is neglected on �, which means that the left-hand side of Equation (15) vanishes (the electric
displacement in the electric cables that eventually cross � is zero because they are conducting
media). Consequently, the whole charge Q contained inside � is zero, which means that the charge
contained in the piezoelectric patch and its electrodes vanishes. As the free charges are concentrated
in the electrodes, Gauss’s law finally shows that the charge in the upper electrode is the opposite
of the one in the lower electrode (see Figure 1). If Q(p) is the electric charge contained in the
upper electrode �(p)

+ of the pth piezoelectric patch, one obtains:

Q(p)
+ =−Q(p)

− =Q(p) (16)

Finally, the remaining term of the right-hand side of Equation (8) writes, by substituting �� for

�(p)
+ ∪�(p)

− :∫
�(p)

+ ∪�(p)
−

qr ��dS=Q(p)
+ ��(p)

+ +Q(p)
− ��(p)

− =Q(p)(��(p)
+ −��(p)

− )=Q(p)�V (p) (17)

3.2.3. Variational formulation. The variational formulation of the present problem can now
be written, by considering Equations (7) and (8) for each of the P patches, together with
Equations (11), (12), (14) and (17).

The electromechanical problem now consists in finding ui∈Cu such that ui=udi on �u and the
P electric charges Q(p) (p∈{1, . . . , P}), such that the associated potential differences V (p) are
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prescribed, satisfying:∫
�
ci jklεkl(u)εi j (�u)d�+

P∑
p=1

V (p)

h(p)

∫
�(p)

eki j nkεi j (�u)d�

+
∫

�
�

�2ui
�t2

�ui d�=
∫

�
f di �ui d�+

∫
�t

tdi �ui dS ∀�ui ∈C∗
u (18)

and

−
P∑

p=1

�V (p)

h(p)

∫
�(p)

eiklεkl(u)ni d�+
P∑

p=1
�V (p)C (p)V (p) =

P∑
p=1

�V (p)Q(p) ∀�V (p) ∈R (19)

with appropriate initial conditions.

3.3. Finite element formulation

Using any finite element procedure to discretize the mechanical part of Equations (18) and (19)
leads to introduce U, the vector of nodal values of ui . By introducing Q=(Q(1) Q(2) . . .Q(P))T

and V=(V (1) V (2) . . .V (P))T, the column vectors of electric charges and potential differences, one
finally obtains the general finite element formulation of the electromechanical problem:(

Mm 0

0 0

)(
Ü

V̈

)
+
(

Km Kc

−KT
c Ke

)(
U

V

)
=
(
F

Q

)
(20)

In the above equation, Mm and Km are the mechanical mass and stiffness matrices, of size N×N ,
if N is the number of mechanical unknowns. Ke=diag(C (1)C (2) . . .C (P)) is a diagonal matrix
filled with the P capacitances of the piezoelectric patches. Kc is the electromechanical coupling
matrix, of size N×P . F is the column vector of mechanical forcing, of length N .

The above discretized formulation (20) can be used for a wide range of applications of a
mechanical structure associated with piezoelectric patches. It is particularly adapted to the case
where the piezoelectric patches are ‘shunted’, that is to stay connected to a passive electrical
network. In this case, neither V norQ are prescribed by the electrical network but the latter imposes
only a relation between them, that can be written as f(V̈, V̇,V,Q̈,Q̇,Q)=0. As an example, this
additional relation writes, in the case of a resonant shunt connected to the pth patch and composed
of a resistance R and an inductance L [24, 25]:

V (p)−L Q̈(p)−RQ̇(p) =0 (21)

Back to the general case, the problem consists in finding U, V and Q so that:

MmÜ+KmU+KcV=F (22a)

KeV−Q−KT
cU=0 (22b)

f(V̈, V̇,V,Q̈,Q̇,Q)=0 (22c)

It is sometimes convenient to rewrite Equation (22a) in a (U,Q) form, using Equation (22b). One
thus obtains:

MmÜ+(Km+KcK−1
e KT

c )U+KcK−1
e Q=F (23)
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In this latter formulation, the electromechanical coupling effect on the mechanical structure appears
with an added-stiffness term, that depends on the coupling matrix Kc and the patches capacitances
gathered in Ke [33]. This (U,Q) formulation is well suited for switch shunting applications, where
the electric circuit is left open most of the time [26]. It will be used in Section 6.

3.4. Some practical system configurations

The practical system configurations that verify the hypotheses of Section 3.1 must present the
following two characteristics.

• The piezoelectric patches have to be thin. It leads to hypotheses 2 to 8.
• The system has to be such that the dielectric effects of the piezoelectric patches are equivalent
to an electrically independent set of capacitors. This leads to hypotheses 6 and 9.

In the case of the above first item, hypothesis 8 neglects the linear through-the-thickness dependence
of the electric field, associated with flexural deformations of the patch (the so-called ‘induced
electric field’ [34]). This hypothesis is justified if the piezoelectric patches are mainly subjected
to membrane deformations, which is the case if they are thin and associated with a main elastic
structure. This hypothesis has been verified for some simple geometries, by comparison with
three-dimensional solutions [35, 36].

For the above second item, hypothesis 9 stands that the value of the electric displacement Di
can be neglected in �s as compared with its value in the piezoelectric patches. We first recall that
thanks to hypothesis 1, Di =εik Ek in �s so that Di depends only on the medium permittivity εik
and the electric field Ek . Most of the engineering materials, conductors as well as dielectrics, have
their permittivity constants εik of the order of magnitude of 3ε0, a value much smaller than those of
common piezoelectric materials, of the order of 1000ε0 [30] (ε0 is the permittivity of free space).
Consequently, hypothesis 9 is verified if the value of the electric field Ek in �s is of the same order
of magnitude than in the piezoelectric patches. Since Ek is the gradient of the electric potential
in �, its value is of the order of magnitude of the potential difference between two conductors,
divided by the distance that separates them. Consequently, large electric fields are obtained if two
conductors with different electric potentials are situated very close to each other. Thus, in order to
obtain an electrical field in �s of the same order of magnitude than in the piezoelectric patches,
the electrodes of a given piezoelectric patch have to be situated as far as possible from the other
patches electrodes and from the conducting parts of �s of different potentials. Otherwise, one has
to electrically connect all inside conductors, so that they share the same potential.

A common system configuration that leads to large values of Ek in �s is obtained if one wants to
glue a given piezoelectric patch onto a conducting part of �s without imposing the same potential
in �s and in the glued electrode. In this case, a very thin film of dielectric glue is used and
constitutes a very thin condenser, whose capacitance cannot be neglected as compared with the
capacitance of the piezoelectric patches. In this situation, the formulation of Section 3.3 is not
correct, as the thin dielectric capacitance would have to be included in matrix Ke.

However, this situation has to be avoided as much as possible in a practical context, because a
part of the electrical energy associated with the dynamics of the system is stored in �s , since neither
Di nor Ek vanish. This in general reduces the amount of energy that can be exchanged between the
mechanical deformations and the electric circuits connected to the piezoelectric patches and gener-
ally reduces the efficiency of the whole device (in particular, the values of the electromechanical
coupling coefficients, introduced in Section 4, can be significantly reduced).
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(a) (b) (c)

Figure 2. Examples of system configurations that verify the hypotheses of Section 3.1. (a) The elastic
structure �s is made of a dielectric material; (b) the elastic structure �s is made of a conducting material;

and (c) parts of the elastic structure �s are dielectric, others are conductors.

Finally, hypothesis 6 is verified as long as the lateral boundary �(p)
0 of the piezoelectric patches

coincides with a dielectric medium that contains no free charges.
Some practical system configurations, which verify the hypotheses of Section 3.1 and that lead

to efficient systems, are introduced below and sketched in Figure 2.

• If �s is made only of a dielectric material, one has just to verify that its permittivity εik
is small and that the piezoelectric patches are not situated too close to one another. Some
patches can be embedded in �s (Figure 2(a)). This would be the case of a non-conductive
composite structure.

• If �s is made only of a conducting material (this is the case for most of the metallic materials),
one has to connect all the electrodes glued on �s to �s , to impose the same electric potential,
and avoid unwanted capacitive effects of the glue film (Figure 2(b)).

• If some parts of �s are dielectric and other parts are conductors, if possible, one has to impose
the same potential in all the conducting parts of �s (Figure 2(c)).

4. MODAL EXPANSION AND COUPLING COEFFICIENTS

In this section, a reduced-order formulation of the discretized problem obtained in Section 3.3
is introduced, by expanding the mechanical displacement unknown vector onto the short-circuit
eigenmode basis. The main motivation of choosing this particular basis is that it can be computed
with a classical elastic mechanical problem, as it will be seen, whereas open-circuit modes depend
also on the piezoelectric system properties. This basis could be enriched by other functions (like
static modes, for example), which is out of the scope of the present article, that focuses on the
introduction of the coupling coefficients.

4.1. Short-circuit normal modes

The system short-circuit normal modes are solutions of Equation (22a) with V=0 and F=0. The
natural frequencies �i and mode shapes Ui (each Ui is a column vectors of length N ) are the
N eigensolutions of the following problem:

KmU−�2MmU=0 (24)

which depends only on the mechanical properties of the system.
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These modes verify the following orthogonality properties:

∀(i, j), UT
i MmU j =�i j , UT

i KmU j =�2
i �i j (25)

where �i j is the Kronecker delta and � j have been normalized with respect to the mass matrix:

∀i, UT
i MmUi =1 (26)

One can note that the above equation imposes that the mode shapes Ui units are kg−1/2 for
the elements linked to d.o.f. u and w and kg−1/2m−1 for the elements linked to d.o.f. � (see
Equation (A3) for the units of Mm).

4.2. Modal expansion of the general problem

The displacement vector is sought as:

U(t)=
N∑
i=1
Ui qi (t) (27)

By inserting the above equation in Equations (22a), (22b), multiplying the first obtained equation
by UT

i and using the orthogonality properties of Equations (25), the problem writes, for all
i ∈{1, . . . ,N }:

q̈i +�2
i qi +

P∑
p=1

�(p)
i V (p) = Fi ∀i ∈{1 . . .N } (28a)

C (p)V (p)−Q(p)−
N∑
i=1

�(p)
i qi = 0 ∀p∈{1 . . . P} (28b)

where �(p)
i is the coupling coefficient of the i th mode and the pth piezoelectric patch, that is

defined by:

(�(1)
i �(2)

i . . .�(P)
i )=UT

i Kc ∀i ∈{1 . . .N } (29)

and Fi (t)=UT
i F(t) is the external forcing of the i th mode.

One can get another writing of the above problem (28a), (28b) by substituting V (p) as a function
of Q(p) (with Equation (28b)) in Equation (28a), so that the latter is replaced by:

q̈i +�2
i qi +

P∑
p=1

N∑
k=1

�(p)
i �(p)

k

C (p)
qk+

P∑
p=1

�(p)
i

C (p)
Q(p) =Fi ∀i ∈{1 . . .N } (30)

The units of the above introduced parameters/variables are: kg1/2m for qi , Nkg−1/2 for Fi and
kg1/2ms−2V−1 (or in S.I. units kg−1/2m−1 sA) for �i .

The initial finite element formulation introduced in Section 3.3 has been replaced by the modal
formulation of Equations (28a), (28b) or Equations (30), (28b), whose unknowns are the N modal
coordinates qi and the P voltage/charge pairs (V (p),Q(p)) associated with the P piezoelectric
patches. Its major interest, and especially the choice of the short-circuit eigenmodes as the expansion
basis, is that the above computations of the parameters necessitate only a single modal analysis
of the elastic problem. This operation can thus be done by any standard finite elements code.
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To recall, one has to:

• Calculate all matrices of the initial problem (20), that is to say Mm, Km, Kc.
• Calculate the Ñ natural frequencies �i under interest in short circuit as well as the associated

mode shapesUi , by solving problem (24). This is a classical eigenvalues/vectors computation,
that involves only the elastic mass and stiffness matrices Mm and Km.

• Apply the matrix product of Equation (29) to obtain �(p)
i .

4.3. Effective coupling factors

This section aims at showing that the above introduced coupling coefficients �(p)
i are directly linked

to the well-known effective electromechanical modal coupling factor (EEMCF). This parameter
characterizes the energy exchanges between the mechanical structure and the piezoelectric patches.
It is usually defined, for the system i th mode, by [31]:

k2eff,i =
�̂2
i −�2

i

�2
i

(31)

where �i and �̂i are, respectively, the short-circuit and open-circuit i th system natural frequencies
(with all piezoelectric patches, respectively, short circuited or in open circuit).

The set (30) truncated to the i th equation only—namely q j (t)≡0 for all j 	= i—writes:

q̈i +
[
�2
i +

P∑
p=1

(�(p)
i )2

C (p)

]
qi +

P∑
p=1

�(p)
i

C (p)
Q(p) =Fi (32)

In open circuit (Q(p) =0 for all p), the problem reads

q̈i +�̂2
i qi =Fi (33)

so that, by comparing Equations (32) and (33),

�̂i 
�2
i +

P∑
p=1

(�(p)
i )2

C (p)
(34)

The above expression gives an approximation of the system i th mode natural frequency in open
circuit, denoted by �̂i , provided that the above introduced one-mode truncation is valid. As a
consequence, by mixing Equations (31) and (34), the systems i th mode EEMCF is

k2eff,i 

P∑

p=1
(k(p)

i )2 (35)

where k(p)
i , defined by

k(p)
i = �(p)

i√
C (p)�i

(36)

is the i th mode and the pth piezoelectric patch dimensionless coupling factor. By considering
the definitions of �(p)

i , �i and C (p) as a function of the matrices of the initial problem (20), one
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obtains another expression for keff,i stemming from Equation (35):

k2eff,i 

UT

i KcK−1
e KT

cUi

UT
i KmUi

(37)

If only one piezoelectric patch is connected to the structure, one can observe that keff,i is directly
linked to the only coupling coefficient �i :

k2eff,i 
k2i = �2i
C�2

i

(38)

where C is the patch capacitance.
This relation can be generalized to the case of a system with several piezoelectric patches, by

defining a new EEMCF, denoted by k(p)
eff,i , which is associated with the i th mode and the pth

piezoelectric patch, by:

(
k(p)
eff,i

)2=
(
�̂(p)
i

)2−�2
i

�2
i

(39)

In the above equation, �̂(p)
i denotes the i th system natural frequency with the pth piezoelectric

patch in open-circuit condition and all the others short circuited. Under these conditions, all the
voltages but the pth are zero and Q(p) =0. By truncating Equations (28a), (28b) to the i th mode,
one gets the following approximation of �̂(p)

i :

(
�̂(p)
i

)2
�2
i +

(
�(p)
i

)2
C (p)

(40)

so that k(p)
eff,i is found close to the coupling factor defined by Equation (36):

k(p)
eff,i 
k(p)

i = �(p)
i√

C (p)�i

(41)

The above equation shows that the coupling coefficient �(p)
i is directly linked to the EEMCF k(p)

eff,i .

Coupling factor k(p)
i has been previously introduced in [37].

The above calculations have introduced several coupling coefficients and factors, whose main
features are summarized now. The modal coupling factors k(p)

i (defined by Equation (36)) play

the same role as �(p)
i (defined by Equation (29)), but have the advantage of being dimensionless,

which thus gives them a larger relevance. Moreover, they are directly linked to the EEMCF k(p)
eff,i

(defined by Equation (39)), and thus to �̂(p)
i and �i . Finally, observing Equation (35) leads to

remark that the global EEMCF keff,i groups all the contributions of the individual piezoelectric

patches, since k(p)
i is linked to the pth patch only.

As stated in Section 1, the coupling factors have a major importance in practice since they
often constitute the main parameter of the system optimization, especially when considering
shunts [24–26]. In this context, the approximate relation (41), in addition to giving a physical
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interpretation of k(p)
i and �(p)

i , gives a useful practical way, alternative to Equation (29), for

evaluating the coupling factors k(p)
i (and �(p)

i ), provided that the natural frequencies �i and �̂(p)
i

are known. It can be used in two practical cases:

• In an experimental situation, each k(p)
i can be obtained by simply measuring �i and the �̂(p)

i ,
p=1, . . . , P .

• If a given finite element code is able to compute each �̂(p)
i , �i being given by a standard

elastic modal analysis of the whole structure.

However, one must bear in mind that the above formula (41) can be used only if the one-mode
truncation related to Equation (40) is valid, that is to say only if the natural frequencies are widely
spaced. Otherwise, one can define and evaluate the problem EEMCFs with Equations (31) and (39),
but they would have different values than the corresponding k(p)

i .

5. APPLICATION TO A PIEZOELECTRIC LAMINATED BEAM

This section aims at applying the general formulation introduced in Section 3 to a laminated
beam composed of elastic and piezoelectric layers (Figure 3). The main purpose of this section
is to validate the general formulation of Section 3. The beam system has been chosen because it
offers possible comparisons with experiments (see Section 6), even if its basic geometry can be
thought as restrictive as compared with one of the systems considered in the general formulation
of Section 3. Further validations on more complex three-dimensional systems are under study and
will be published in the future.

5.1. Mechanical and electrical field assumptions

In the following, the explicit Voigt notations will be used rather than the tensor (indicial) notations.
The beam is modeled using the classical laminate theory based on Euler–Bernoulli assump-
tions [38]. The mechanical displacement field can then be written as

ux (x, z, t) = u(x, t)+z�(x, t) (42a)

uz(x, z, t) = w(x, t) (42b)

Figure 3. Piezoelectric laminated beam.
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where ux and uz are the axial and transverse displacements; u is the axial displacement of the
center line of the beam, w the transverse displacement, and � the fiber rotation defined by

�=−�w

�x
(43)

From Equations (5) and the above-described kinematics, axial strain can be written as follows:

ε1=e+z	 (44)

where membrane strain e and curvature 	 are defined by

e= �u
�x

and 	=−�2w
�x2

(45)

Concerning the electrostatic aspects, all hypotheses of Section 3.1 are kept so that the electric
field is normal to the electrodes and uniform in the pth patch. The only non-vanishing component
of the electric field is:

E (p)
3 =−V (p)

h(p)
(46)

5.2. Piezoelectric constitutive equations

Following the hypotheses of Section 3.1, the piezoelectric layers of the laminated beam are
poled in the thickness (z,3)-direction with an electrical field applied parallel to this polarization.
Such a configuration is characterized in particular by the electromechanical coupling between the
axial strain ε1 and the transverse electrical field E3. Even if neither plane-strain nor plane-stress
assumption in the width direction are physically justified [27], we consider in this work, for the sake
of simplicity, the classical plane-stress assumptions of beam theories (�2=�3=0). In this case,
the 3D linear piezoelectric constitutive equations (3), (4) (using here a standard Voigt notation)
are restricted to the mechanical axial components only:

�k1 = c̄k11ε1− ēk31E3

Dk
3 = ēk31ε1+ ε̄k33E3

(47)

where �k1 and Dk
3 are the axial stress and the transverse electrical displacement within the kth

layer. c̄k11 is the modified elastic stiffness at constant electric field, ēk31 is the modified piezoelectric
constant and ε̄k33 is the modified dielectric permittivity at constant strain. They are defined by:

c̄k11 = Y k
1 =c11+ c212c33+c213c11−2c12c13c23

�
(48a)

ēk31 = e31− c12c33−c13c23
�

e31− c13c11−c12c23
�

e33 (48b)

ε̄k33 = εk33+ c33e231+c11e233−2c23e31e33
�

(48c)
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with

�=c11c33−c223 (49)

and Y k
1 the kth layer Young’s modulus in the (1,2) plane. The above equations are obtained by

introducing the plane stress hypothesis in Equations (3), (4) together with the material transverse
isotropy in the (1,2) plane.

5.3. Finite elements discretization

Considering a particular axial part of the laminated beam (of length x+−x− and with a
total of K layers including P piezoelectric patches), Equations (18) and (19) of the coupled
electro-mechanical variational formulation can be rewritten in the following form:

K∑
k=1

∫
�k

�k(üx�ux + üz�uz)d�+
K∑

k=1

∫
�k

c̄k11ε1�ε1d�+
P∑

p=1

V (p)

h(p)

∫
�(p)

ē(p)
31 �ε1d�

=
K∑

k=1

∫
�k
t

(tkx �ux + tkz �uz)dS+
K∑

k=1

∫
�k

( f kx �ux + f kz �uz)d� (50)

−
P∑

p=1

�V (p)

h(p)

∫
�(p)

ē(p)
31 ε1d�+

P∑
p=1

V (p)C (p)�V (p) =
P∑

p=1
Q(p)�V (p) (51)

where �k and �k are the mass density and the domain occupied by the kth layer and the pth patch
capacitance is (Equation (14)):

C (p) = bl(p)

h(p)
ε̄
(p)
33 (52)

with b and l(p) are the width of the beam and the pth patch length. Notice that the beam is
subjected to surface axial and transversal forces at the boundaries of each face sublayer (tkx , t

k
z ) and

to body ones ( f kx , f kz ). This variational formulation is discretized using a two node finite element
and the matrix equation (20) is obtained. All details that lead to matrices Mm, Km, Ke and F are
written in the Appendix.

The case of coupling matrix Kc is discussed here. We recall that this matrix, of size N×P ,
couples the N mechanical d.o.f. contained in U to the P electrical potential differences contained
in V. Thus, Kc can be written in the following form:

Kc=(K(1)
c K(2)

c . . .K(P)
c ) (53)

where K(p)
c is a column vector that couples the mechanical d.o.f. to the potential difference of the

pth patch only.
One single patch is generally discretized by more than one finite element such thatK(p)

c is simply
obtained by assembling the elementary vectors Ke(p)

c of size (6×1), whose explicit expression
is given in the Appendix (Equation (A7)). Owing to their particular form, during the assembling
operation, all components of K(p)

c vanish except those associated with the end nodes of the pth
patch. An example is given on Figure 5. It shows that the electromechanical coupling occurs
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between the potential difference V (p) and the mechanical dofs (axial translation ui and rotation �i )
of the first and the last patch’s nodes only. As expected, the piezoelectric effect only produces
localized moments and forces at the patch edges [39, 40].

6. NUMERICAL AND EXPERIMENTAL RESULTS

The purpose of this section is to apply the theoretical developments introduced before to the
vibration reduction of a cantilevered beam, by using two piezoelectric patches and a resonant shunt.

6.1. System under study

A cantilever beam, already used in [24, 26], is partially covered with two collocated piezoelectric
elements, polarized in opposite directions (Figure 4). The electrodes are connected in series to a
passive electrical circuit composed of a resistor R and an inductor L , thus constituting a reso-
nant shunt [14]. We use the ‘31’ coupling of the piezoelectric elements that couple longitudinal
(x-direction) deformations with the electric field in the transverse (z-direction), normal to the
electrodes. Since the polarization directions are opposite in the elements, only the flexural defor-
mations of the beam are coupled to the electric circuit. The beam material is elastic, homogeneous
and isotropic, of density �b and Young’s modulus Yb. The piezoelectric material constants are its
density �p, Young’s modulus Yp, coupling piezoelectric constant ē31 and dielectric constant ε̄33.
The system geometry is defined by the length/thickness of the beam and the piezoelectric patches,
respectively, denoted lb/hb and lp/hp; b denotes their common width (in the y-direction). Finally,
the piezoelectric patches limits are defined by x− and x+, with x+−x− = lp. All numerical values
of the studied system are gathered in Table I.

The piezoelectric material parameters are those of a PIC151 [41]. This reference gives the
following constants: sE11=15×10−12 Pa−1, d31=−210×10−12 C/N and ε�33=2400ε0 corresponding

Figure 4. Beam with two piezoelectric patches.
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Table I. Numerical values of system parameters.

Parameters Beam Values Piezo. Values

Lengths (mm) lb 170 lp 25
Thicknesses (mm) hb 2 hp 0.5
Width (mm) b 20 b 20
Patches position (mm) x− 0.5

Densities (kg/m3) �b 2800 �p 8500
Young’s moduli (GPa) Yb 72 Yp 66.7
Piezoelectric constant (C/m2) ē31 −14
Dielectric constant (F/m) ε̄33 2068ε0

ε0=8.854×10−12 F/m is the free space permittivity [31].

to a constitutive law (�,D) as a function of (ε,E). The following relations have been used to
obtain the parameters of Table I, linked to Equations (47):

Yp= c̄11= 1

sE11
, ē31= d31

sE11
, ε̄33=ε�33− d231

sE11
(54)

For the PIC151, the material coupling factors are [42]:

k231= d231
sE11ε

�
33

, k̃231= ē231
c̄11ε̄33

, 1+ k̃231= 1

1−k231
(55)

In our case, k31=0.372 and k̃31=0.401.

6.2. Problem formulation

The finite element formulation introduced in Section 5 is here applied to the system sketched on
Figure 4. The beam geometry is divided into three regions (Figure 4). Region I (for x ∈[0, x−])
and region III (x ∈[x+, lb]) are composed of one layer of beam material of thickness hb. Region II
corresponds to the piezoelectric patches (for x ∈[x−, x+]); it is symmetric with respect to the
transverse direction and is composed of three layers (two piezoelectric layers of thickness hp and
one beam layer of thickness hb, in the middle). Regions I, II and III are discretized, respectively,
with 1, 5 and 35 beam finite element, so that the total number of elements is Ne=41 and the
total number of node is Nn =42. Because the finite element formulation uses three d.o.f. per node
((u,w,�), see Appendix), the number of mechanical dofs is N =3Nn =126.

The above finite element discretization enables to evaluate the matrices of formula-
tion (22a), (22b), which is reproduced here:

MmÜ+KmU+KcV= F (56a)

KeV−Q−KT
cU= 0 (56b)

In the above equations, U is of size N×1, Mm and Km are of size N×N . The electric d.o.f.,
associated with the two piezoelectric patches, lead to define the voltage vector V=(V1 V2)T and the
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charge vector Q=(Q1 Q2)
T, both of size two, where (V1,Q1) and (V2,Q2) are the voltage/charge

pairs associated, respectively, with the upper and the lower patch. Matrices Ke and Kc write:

Ke=
(
C 0

0 C

)
, Kc=(K1 K2), C= ε̄33blp

hp
(57)

where C is the patches capacitance, identical for both patches, defined either by Equation (14) or
by Equation (52). Kc is a N×2 matrix composed of two column vectors K1=K(1)

c and K2=K(2)
c

(see Equation (53)) of length N . K1 (resp. K2) couples the mechanical d.o.f. to the upper (resp.
lower) piezoelectric patches voltage. By considering the geometry of region II of the beam as well
as the opposite polarization direction of the piezoelectric patches, one obtains G(1)

0 =−G(2)
0 =bē31

and G(1)
1 =G(2)

1 =bē31(hp+hb)/2 in Equation (A7). Consequently, it shows that (i) K1 and K2
are equal in absolute value, (ii) K1 and K2 elements corresponding to d.o.f. u are opposite in sign
and (iii) K1 and K2 elements corresponding to d.o.f. � are equal. It means that if the piezoelectric
patches are subjected to two identical voltages (V1=V2), only the flexural motion is activated;
conversely, two opposite voltages (V1=−V2) activate only the axial motion.

Connecting the piezoelectric patches in series (see Figure 4) leads to impose equal charges in the
piezoelectric patches: Q1=Q2=Q. By defining V =V1+V2 the shunt terminal voltage (Figure 4),
considering Equation (57) and summing up the two scalar equations of (56b), one obtains:

CV −2Q−(KT
1 +KT

2 )U=0 (58)

By considering the RL electrical circuit of Figure 4, one can write:

V =−RQ̇−L Q̈ (59)

Finally, by gathering Equations (56a), (57) and (58) and eliminating V , V1 and V2, one obtains
the following matrix formulation of the electromechanical problem:

MẌ+DẊ+KX= F̃ (60)

with the following notations:

X=
(
U

Q

)
, M=

(
Mm 0

0T L

)
, D=

(
0 0

0T R

)
(61a)

K=
(

K̂m (K1+K2)/C

(KT
1 +KT

2 )/C 2/C

)
, F̃=

(
F

0

)
(61b)

where the stiffness matrix in open circuit—i.e. with Q=0—is:

K̂m=Km+K1KT
1 +K2KT

2

C
(62)

Figure 5 shows the location of non-zero elements of matrices Km, Kc and K. An interesting
feature is that the coupling matrix Kc (and consequently the electromechanical coupling part
of matrix K ) has non-zero elements only in the rows corresponding to the d.o.f. related to the
boundary nodes of the piezoelectric patches. This stems from the electromechanical action of the
piezoelectric patches on the mechanical structure, which is equivalent to concentrated moments
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Figure 5. Sparsity pattern of matrices Km, Kc and K, from left to right.

localized on the boundaries of the patches, when the piezoelectric patches are perfectly bonded to
the structure (see [39, 40]).

Another practical way of connecting the shunt to the structure is to plug the piezoelectric patches
in parallel and not in series. In this case, the systems behavior is similar to the series plugging:
imposing V1=V2 instead of Q1=Q2 leads to the same general formulation of (60). However, the
obtained expressions of matrices K and K̂m as functions of C , K1 and K2 are slightly different.

6.3. Modal formulation and coupling coefficients

The alternative modal reduced-order formulation of Section 4 can also be used. Since we are
interested in the flexural motion of the beam, only the short-circuit flexural beam normal modes
are considered here. They are denoted by (�i ,Ui ) and can be calculated with Equation (24).
By considering Equations (29) and (57), the coupling coefficients �(p)

i , p=1,2, in Equations (28a),
(28b) are

�(p)
i =UT

i Kp, p=1,2 (63)

Then, since Ui are flexural modes, they have zero elements on the lines corresponding to d.o.f. u,
which proves that �(1)

i =�(2)
i =�i .

Then, by eliminating V , V1 and V2 in Equations (28b) and (59), in the same way than in the
previous section, the problem modal formulation truncated to Ñ flexural modes becomes in this
particular case:

U(t)=
Ñ∑
i=1
Ui qi (t) (64a)

q̈i +�2
i qi +

Ñ∑
j=1

2�i� j

C
q j + 2�i

C
Q = Fi ∀i ∈{1 . . . Ñ } (64b)

L Q̈+RQ̇+ 2

C
Q+

Ñ∑
j=1

2� j

C
q j = 0 (64c)
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Table II. Natural frequencies and coupling coefficients, from finite element
computation (FE) and experiments (Exp.).

Short-circuit freq. (Hz) Open-circuit freq. (Hz) Coupling factors

Modes fi FE fi Exp. f̂i FE f̂i Exp. ki FE keff,i FE keff,i Exp.

1 flex. (F1) 48.96 51.64 49.42 52.17 0.143 0.137 0.144
2 flex. (F2) 337.1 337.0 340.7 340.2 0.150 0.145 0.138
1 tors. (T1) — 853.0 — 854.0 — — 0.050
3 flex. (F3) 951.8 936.3 960.6 940.0 0.140 0.137 0.089

The present reduced-order formulation depends only on the Ñ retained short-circuit modes (�i ,Ui ),
the Ñ associated coupling coefficients �i and the patches capacitance C . To apply Section 4.3
results, we can define the following coupling factors:

k2eff,i =
�̂2
i −�2

i

�2
i

, ki =
√

2

C

�i
�i

(65)

where �̂i is the i th system open-circuit natural frequency, i.e with an unplugged shunt that imposes
Q=0 and thus zero electric charges on both piezoelectric patches. Then, Equation (35) shows that:

keff,i 
ki (66)

which gives another way to evaluate �i , provided that the one-mode approximation of Equation (32)
is valid.

Table II gives the frequencies and coupling coefficients numerical values obtained from the
finite element model, for the first three flexural modes of the beam. The natural frequencies (in
Hz) are defined as functions of the angular frequencies (in rad/s) by:

fi = �i

2

, f̂i = �̂i

2

(67)

The short-circuit natural frequencies ( fi , second column) and mode shapes (Ui , Figure 6) have
been calculated by numerically solving the eigenvalue problem of Equation (24). The open-circuit
natural frequencies ( f̂i , fourth column) and mode shapes (Ûi , Figure 6) have been obtained by
solving the same eigenvalue problem, but with K̂m (Equation (62)) as the stiffness matrix. The sixth
column gives the coupling factors ki , evaluated by Equation (65), with C=18.30nF (Equation (57))
and �i obtained with Equation (63). Finally, the seventh column gives the EEMCF keff,i , obtained
with Equation (65). The values obtained for ki and keff,i are very close to each other, proving that
the one-mode approximation that justifies Equation (66) is valid for the present system.

In order to validate the present finite element formulation, experiments have been performed
on a beam similar to the one sketched in Figure 4. All details are written in [24, 25] and only the
main features are recalled here. The beam is clamped with a vice. An non-contact electromagnetic
driving system is used, composed of a small magnet glued on the structure with bees-wax, subjected
to the magnetic field created by a coil, fed by a sine electrical signal. This exciter is fully described
in [43]. The force acting on the beam is estimated by measuring the current intensity in the coil,
proportional to the force. The beam motion is obtained with a laser Doppler vibrometer, that
measures the velocity of the beam in one point.
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Figure 6. First three short-circuit (‘—’) and open-circuit (‘- -’) mode shapes, from the finite element
model, normalized with Equation (26). The piezoelectric patches are displayed by thick lines.

Two modal analyses are performed, the first one with the piezoelectric patches short circuited
with a wire and the second one with unplugged patches. The first four natural frequencies (corre-
sponding to three flexural modes and one torsional mode) are measured, in the above-described
short-circuit ( fi ) and open-circuit conditions ( f̂i ). The corresponding values are gathered in
Table II, together with an estimation of keff,i with Equation (65). The good agreement between
the FE model and the experiments has been obtained by adding a concentrated mass of 4.2g at
the closest node to the magnet location (at the tip), that slightly lowers the natural frequency as
compared with a naked beam and that equally modifies the mode shapes (Figure 6), thus, validating
the present formulation.

One can remark that the torsional mode has a low coupling coefficient as compared with the ones
of the flexural modes. It would be zero in theory, since the extensional motion of the piezoelectric
patches is not activated when the beam undergoes torsion. Moreover, since the FE model does
not include torsion d.o.f., no FE values are available in Table II. Another remark is that for
the first mode, the measured value of the effective coupling coefficient keff,i is higher that the
finite-elements one. One would expect the opposite, for example, because of non-perfect bonding,
as found for the second and third flexural modes. A difference between model and experiments
is the wrapped electrode, used to easily solder the electric wire to the lower electrode on the
piezoelectric patch upper face. It locally modifies the electric field intensity and direction near the
edge of the piezoelectric patch. This may explain the observed increase of coupling coefficient
in the experiments, even if the exact effect of the wrapped electrode is difficult to characterize
without a three-dimensional electromechanical simulation. This is beyond the scope of the present
article.

6.4. Vibratory response

The vibratory response of the system subjected to a harmonic forcing can be evaluated with
the formulation of Equation (60), when F=F0 cos�t . Defining the complex amplitude X by
X(t)=�(Xe j�t ) leads to the frequency formulation of Equation (60):

Z(�)X=F0 (68)
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Figure 7. Beam tip frequency response functions. ‘—’: experimental; ‘- -’: finite element. (a) Short-circuit
FRFs and (b) short circuit and damped FRFs, around mode 2 (F2) resonance.

with the impedance matrix defined by:

Z(�)=−�2M+ j�D+K (69)

The system frequency response function (FRF) at the i th d.o.f. to a forcing at the j th d.o.f. is
then, for each forcing frequency �:

Hi j (�)= Xi

F0 j
= Z−1

i j (�) (70)

where Z−1
i j (�) is the i th line and the j th column term of Z(�) inverse matrix.

Figure 7 shows the driving point FRF modulus (|Hii (�)|) at the tip of the beam (i.e. the response
at the tip for an excitation at the same point), from the present finite element formulation as well
as from the experiments, with the setup described in Section 6.3. Again, an excellent agreement is
obtained between simulations and experiments. The main difference lies in the structural damping
that is not taken into account in the FE model, which leads to infinite responses, in short circuit,
at the beam resonances (Figure 7(a)). Moreover, as announced in the previous section, the torsion
mode, of frequency around 853Hz, is not predicted by the finite element model.

Finally, the effect of the shunt is shown in Figure 7(b), with the values of R=7900� and
L=21.8H tuned to lower the second flexural resonance, around 336Hz. In the experiments, an
attenuation of 25dB is obtained as compared with the short-circuit resonance. Again an excellent
agreement is obtained between the simulated and experimental damped FRFs. As already said, no
agreement is possible around the resonances for the short-circuit FRFs because of the absence of
structural damping in the FE model.

6.5. Reduced-order model

The system vibratory response can also be obtained with the modal ROM defined by Equations (64),
truncated to Ñ modal coordinates. The problem to solve takes the form of Equation (60), where
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the matrices of Equations (61) are replaced by

X= (q1 . . .qÑ Q)T, M=
(

1 0

0T L

)
, D=

(
0 0

0T R

)
(71a)

K=
(

K̂m 2v/C

2vT/C 2/C

)
, F=(F1 . . .FÑ Q)T (71b)

where v=(�1 . . .�Ñ )T and the i th row and j th column component of K̂m is [K̂m]i j =�2
i �i j +

2�i� j/C .
Figure 8 shows the driving point FRF modulus (|Hii (�)|), calculated with the full FE model

(as explained in Section 6.4) as well as with the present modal model, truncated to Ñ =1, 2, 5
and 12 modes. A good convergence is obtained with at least 5 modes at all points (even at the
anti-resonances), except around the attenuated F2 resonance, where convergence is attained with
Ñ =12 modes. The full model is composed of N =126 d.o.f. plus one electrical d.o.f. (charge Q).
As compared with the 13 d.o.f. modal model, a 30 ratio in computation time is gained.

7. CONCLUSION

In this article, a finite element formulation of the coupled electromechanical problem of an elastic
structure equipped with piezoelectric patches has been introduced. Its originality is that provided a
set of non restrictive-assumptions, the system electrical state is fully described by very few global
discrete unknowns: only a couple of variables per piezoelectric patches, namely (1) the electric
charge contained in the electrodes and (2) the voltage between the electrodes.

It has been shown that this formulation has several important features. First of all, the electrical
part of the problem is fully discretized at the weak formulation step, by introducing the above
cited voltage/charge variables, without any restriction on the mechanical part of the problem. As
a consequence, any standard (elastic only) finite element formulation can be easily modified to
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include the piezoelectric patches and thus the effect of an external electrical action. A second
advantage of this formulation is that since global electrical variables are used, realistic electrical
boundary conditions are naturally introduced. First, the equipotentiality in any of the patches
electrodes is exactly satisfied when introducing the potential difference variable. Second, using
the global charge contained in the electrodes as the second electrical variable is realistic since
plugging an external electrical circuit to the electrodes of the patches imposes only the global
charge contained in the electrodes and not a local charge surface density.

The second advantage of using the global charge/voltage variables is that they are intrinsically
adapted to include any external electrical circuit into the electromechanical problem. Thus, the
present formulation can be used to efficiently simulate the system vibratory behavior in any
classical situation and in particular in the field of vibration control, where some of the patches
are used as sensors and the other as actuators. It is also especially adapted to simulate shunt
systems, where a passive (or semi-passive) electrical network is connected to the patches and
where both piezoelectric effects are used at the same time. In this case, one has only to add to the
finite element formulation the equation(s) of the electric network, that link the patches charge and
voltage variables. This last application has been thoroughly illustrated in the article in the case of
a cantilever beam whose vibrations are reduced by means of a resonant shunt. A finite element
formulation of the problem has been described as well as experiment and an excellent agreement
was obtained.

Finally, a reduced-order model (ROM) of the problem has been introduced by expanding the
solution onto the system’s normal mode basis with all patches short circuited. It shows that the
classical efficient electromechanical coupling factors (EEMCF) naturally appear in the ROM as
the main parameters that master the electromechanical coupling. A simple analytical formula is
obtained, so that the EEMCF depend only on the matrices (mass, stiffness and coupling) of the
coupled finite element problem as well as on the short-circuit modes. Since those modes are
solution of a modal analysis of the elastic problem, any standard elastic finite element code can
be used to obtain them. This is an advantage, since the EEMCF is often the main parameter that
influences the efficiency of vibration control systems, especially in the case of shunts. To illustrate
this result, the EEMCF for the first three modes of the cantilever beam, obtained from the finite
element study as well as from the experiments are compared, showing an excellent agreement.

The natural extension of this work is to apply the finite-elements formulation introduced in the
present article to more complex three-dimensional structures. In particular, the simulation and the
optimization of the reduction of turbomachinery blades vibration is under study [44]. Moreover, the
ROM introduced in the present work will also be tested to simulate the behavior of a new category
of shunts, often known as ‘switch’, where the electrical circuit impedance is switched periodically
between two values [17–19]. Since the process is intrinsically non-linear, it specifically requires
the use of direct time integration, over long time periods, to attain the steady state. Full finite
element simulations are possible on systems with a small number of d.o.f. [20]. However, for
systems with a large number of d.o.f., ROMs are essential to obtain the vibratory response within
realistic computation time and to perform optimizations.

APPENDIX A

Details of the stratified beam finite element discretization of Section 5 are specified here, by starting
from the variational formulation of Equations (50) and (51). In the following, a superscript or a
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subscript e refers to elementary quantities. The generalized displacements are discretized using
linear (axial displacement) and cubic (transverse displacement) shape functions. Thus, axial and
transverse displacements are related to the elementary d.o.f. vector Ue by

ue=NuUe and we=NwUe (A1)

where

Ue=(u1 w1 �1 u2 w2 �2)
T

u1, w1 and �1 (respectively, u2, w2 and �2) corresponding to the first (respectively, second) node
of the beam element.

In equation (A1), the interpolation vectors are defined as follows:

Nu =(N1 0 0 N2 0 0)

and

Nw =(0 N3 N4 0 N5 N6)

with, for all x ∈[0, Le]

N1 = 1− x

Le
, N2= x

Le
, N3=

(
1− x

Le

)2(
1+ 2x

Le

)

N4 = x

(
1− x

Le

)2

, N5= x2

L2
e

(
3− 2x

Le

)
, N6= x2

Le

(
x

Le
−1

)

where Le is the length of the considered finite element. Note that Equations (43), (45) and (A1)
lead to the following expression of elementary rotation, membrane strain and curvature:

�e=−N′
wU

e and ee=N′
uU

e and 	e=−N′′
wU

e (A2)

where (·)′ =�(·)/�x .
The various terms appearing in the variational formulation of Equations (50) and (51) are now

successively discussed.

• The kinetic energy variation is:

K∑
k=1

∫
�k

�k(üx�ux + üz�uz)d� =
∫ x+

x−
[I0(ü�u+ẅ�w)+ I1(ü��+ �̈�u)+ I2�̈��]dx

=
∫ x+

x−
(�u �w ��)

⎛
⎜⎝
I0 0 I1

0 I0 0

I1 0 I2

⎞
⎟⎠
⎛
⎜⎜⎝
ü

ẅ

�̈

⎞
⎟⎟⎠ dx

where the zero-, first-, and second-order inertia moments are defined by

[I0,1, I2]=
K∑

k=1
�k[J k0 , J k1 , J k2 ]
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with the zero, first and second moment of area of each sublayer, respectively, defined by

[J k0 , J k1 , J k2 ]=b
∫ zk

zk−1

[1, z, z2]dz=b

[
hk,

z2k −z2k−1

2
,
z3k −z3k−1

3

]

where b and hk are the width of the beam and the thickness of the kth layer. The elementary
mass matrix is then:

Me
m=

∫ Le

0
(NT

u NT
w −N′T

w )

⎛
⎜⎝
I0 0 I1

0 I0 0

I1 0 I2

⎞
⎟⎠
⎛
⎜⎜⎝

Nu

Nw

−N′
w

⎞
⎟⎟⎠ dx

whose explicit expression is:

Me
m = I0Le

420

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

140 0 0 70 0 0

0 156 22 Le 0 54 −13 Le

0 22 Le 4 L2
e 0 13 Le −3 L2

e

70 0 0 140 0 0

0 54 13 Le 0 156 −22 Le

0 −13 Le −3 L2
e 0 −22 Le 4 L2

e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ I1
12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 6 −Le 0 −6 Le

6 0 0 6 0 0

−Le 0 0 Le 0 0

0 6 Le 0 −6 −Le

−6 0 0 −6 0 0

Le 0 0 −Le 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ I2
30Le

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 36 3 Le 0 −36 3 Le

0 3 Le 4 L2
e 0 −3 Le −L2

e

0 0 0 0 0 0

0 −36 −3 Le 0 36 −3 Le

0 3 Le −L2
e 0 −3 Le 4 L2

e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)
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• The mechanical contribution to the internal energy variation is:

K∑
k=1

∫
�k

c̄k11ε1�ε1d� =
∫ x+

x−
[Ae�e+B(	�e+e�	)+D	�	]dx

=
∫ x+

x−
(�e �	)

(
A B

B D

)(
e

	

)
dx

where A is the extensional stiffness, D is the bending stiffness, and B is the bending–
extensional coupling stiffness defined as

[A, B,D]=
K∑

k=1
c̄k11[J k0 , J k1 , J k2 ]

The elementary stiffness matrix is then:

Ke
m=

∫ Le

0
(N′T

u −N′′T
w )

(
A B

B D

)(
N′
u

−N′′
w

)
dx

whose explicit expression is:

Ke
m = A

Le

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ B

Le

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 1

0 0 0 0 0 0

−1 0 0 1 0 0

0 0 1 0 0 −1

0 0 0 0 0 0

1 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ D

L3
e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 12 6 Le 0 −12 6 Le

0 6 Le 4 L2
e 0 −6 Le 2 L2

e

0 0 0 0 0 0

0 −12 −6 Le 0 12 −6 Le

0 6 Le 2 L2
e 0 −6 Le 4 L2

e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

• Work done by the external mechanical forces

K∑
k=1

∫
�k
t

(tkx �ux + tkz �uz)dS+
K∑

k=1

∫
�k

( f kx �ux + f kz �uz)d�

=
K∑

k=1

{[∫
�k

(tkx �u+ tkz �w−ztkx ��)dS

]x+

x−
+
∫

�k
( f kx �u+ f kz �w−z f kx ��)d�

}

=[N�u+T�w−M��]x+
x− +

∫ x+

x−
(n�u+ t�w−m��)dx (A5)
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where �k is the cross-section area of the layer k and where the boundary and distributed (i)
normal resultant, (ii) shear resultant and (iii) bending moment are, respectively, defined by:

[N ,T,M]=
K∑

k=1

[∫
�k

tkx dS,

∫
�k

tkz dS,

∫
�k

ztkz dS

]

and

[n, t,m]=
K∑

k=1

[∫
�k

f kx dS,

∫
�k

f kz dS,

∫
�k

z f kz dS

]

The elementary vector of generalized mechanical forces is then:

Fe=[NNT
u +TNT

w +MN′T
w ]Le

0 +
∫ Le

0
(nNT

u + tNT
w +mN′T

w )dx

whose explicit expression is:

Fe=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

T

M

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x=0

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

N

T

M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x=Le

+ nLe

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t Le

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

6

Le

0

6

−Le

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A6)

• The piezoelectric contributions of the internal energy variation, related to the inverse effect,
are:

P∑
p=1

V (p)

h(p)

∫
�(p)

ē(p)
31 �ε1d� =

P∑
p=1

[∫ x+

x−
G(p)

0 V (p)�edx+
∫ x+

x−
G(p)

1 V (p)�	dx

]

=
P∑

p=1

∫ x+

x−
(�e �	)

⎛
⎝G(p)

0

G(p)
1

⎞
⎠V (p) dx

where G(p)
0 and G(p)

1 are defined by

[G(p)
0 ,G(p)

1 ]= ē(p)
31

h(p)
[J (p)

0 , J (p)
1 ]
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Then, following Equation (53), the elementary coupling vector is:

Ke(p)
c =

∫ Le

0
(N′T

u −N′′T
w )

⎛
⎝G(p)

0

G(p)
1

⎞
⎠ dx=G(p)

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

0

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+G(p)
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

The same matrix is obtained for the direct effect.
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