Rémi Abgrall 
  
About non linear stabilization for scalar hyperbolic problems

come    

About non linear stabilization for scalar hyperbolic problems

Introduction

In this paper, we are interested in the numerical solution of steady scalar hyperbolic equations. It is well known that the equations admit discontinuous solutions that are only bounded in L ∞ , and belongs to L 1 . We are particularly interested in the piecewise smooth solutions. Our focus is on methods that use unstructured conformal meshes with weak Dirichlet boundary conditions. These methods, as well as any of the methods that are devoted to the solution of these non linear problems must incorporate, for stability reasons, some dissipation mechanism, otherwise wild oscillations may develop. There are many classes of high order methods, and in this paper our focus is on the study of particular class called residual distribution schemes. These methods can be seen as some generalizations of classical finite element methods using continuous methods with stabilisation (such as the SUPG method [START_REF] Hughes | A new finite element formulation for CFD: I. symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics[END_REF]), but some variants allow to have a genuinely non linear dissipation mechanism for which one can guaranty L ∞ stability bounds. Unfortunately, straightforward L ∞ stability procedure may lead to methods that admits spurious modes, in some circumstances. The main issue of this paper is two describe two ways of removing these spurious modes while keeping the L ∞ stability property, at least at the experimental level. One such technique is already known, see [START_REF] Abgrall | Essentially non-oscillatory residual distribution schemes for hyperbolic problems[END_REF] for example, the second one is new. Having two methods for the same purpose is, in our opinion, a good thing because it can allow for additional flexibility.

In the following, we focus on steady problems, and to make things simpler, we focus on the scalar problem:

div f (u) = 0 (1a) subject to min(∇ u f (u) • n(x), 0)(u -g) = 0 on ∂Ω (1b) 
In (1b), n(x) is the outward unit vector at x ∈ ∂Ω (thus we assume enough regularity for Ω). We will assume that Ω is bounded for technical reasons only. Extensions to the system case can be found in [START_REF] Abgrall | Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes[END_REF] for the pure hyperbolic case and [START_REF] Abgrall | High-order preserving residual distribution schemes for advection-diffusion scalar problems on arbitrary grids[END_REF][START_REF] Abgrall | Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible navier-stokes equations[END_REF] for the scalar convection diffusion problem and the Navier Stokes equations.

Here the notations are standard: g is a regular enough function, we assume that Ω has a polyhedric boundary, and moreover Ω h = Ω for the chosen family of triangulations T h in order to simplify. These assumptions are by no mean essential. We denote by E h the set of edges/faces of T h that are contained in ∂Ω, and K stands either for an element K or a face/edge e.

In the finite element setting, there exists several variational formulations of this class of problems. The classical ones can be defined in three steps. We are given a family of meshes denoted by (T h ) h∈H . These meshes are made of elements denoted generically by K. The parameter h, as usual, denotes the maximum of the diameters of K, K ∈ T h . The meshes can be geometrically conformal or not. Then we need to define the trial functions space, denoted by U h and a test functions space V h . The last step is to define a bi-linear form a on U h × V h , as well as form defined on V h . As usual, we assume that the spaces U h and V h encode some of the boundary conditions, while the others are encoded in . The problem is to find u h ∈ U h such that a for any v h ∈ V h , we have a(u h , v h ) = (v h ).

The ideal scheme would certainly be the Galerkin method, where the variational formulation is defined by: if f is a consistent upwind numerical flux, we define a Gal and for the variational formulation

a Gal (u h , v h ) = - Ω ∇v h • f (u h ) + e∈E h e v h ( fn (g, u h ) -f (u h ) • n) (v h ) = Ω f v h . (2) 
They are defined for

u h , v h ) ∈ U h × U h where U h = U G h := {u h ∈ H 1 (Ω), ∀K ∈ T h , u h|K ∈ P r (K)} ∩ C 0 (Ω)
. This method can be shown (on linear problems) to be formally accurate (i.e. of order r + 1), but if the boundary conditions are not set in a very precise way (see [START_REF] Abgrall | Entropy stable fem methods[END_REF]), it is also known to be widely unstable. In any case, the nonlinear case is not stable in the case of discontinuous solutions, as those we are expecting here. So the game has been since several decades to find ways to stabilize this operator while keeping its formal accuracy.

A first example is given by the streamline diffusion method [START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF][START_REF] Hughes | A new finite element formulation for CFD: I. symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics[END_REF] for which there are two possible interpretations. In the first one, we consider a Petrov Galerkin formulation, .i.e we take u h ∈ U h = U G h as for (2), but v h ∈ V h where

V h = V S h := {v h ∈ L 2 (Ω), ∀K ∈ T h , ∃w h ∈ U h , v h = w h + h K τ K ∇ u f (u h )∇w h }. The formulation uses a SUPG1 (u h , v h ) = - Ω v h • div f (u h ) + e∈E h e v h ( fn (g, u h ) -f (u h ) • n) (v h ) = Ω f v h . (3a) 
The second interpretation is to take V h = U G h and use, instead of a SUPG1 the form a SUP2 defined by

a SUPG2 (u h , v h ) = - Ω ∇v h • f (u h ) + K h K K ∇ u f (u h )∇v h τ K ∇ u f (u h )∇u h + e∈E h e v h ( fn (g, u h ) -f (u h ) • n) (v h ) = Ω f v h . (3b) 
This can be seen as a Galerkin approximation of a modified equation, namely

div f (u) -div hτ div f (u) = 0 (3c)
In (3), the parameters τ K are positive functions (typically constant per element) and in (3c) the function τ is defined by its restrictions on each element, as well as h.

We can play further with the trial and test spaces. If one removes the continuity assumption, then we have a discontinuous Galerkin formulation, i.e. U h = V h with

U h = U DG h := {u h ∈ L 2 (Ω), ∀K ∈ T h , u h|K ∈ P r (K)} and, for (u h , v h ) ∈ U DG h × U DG h , a(u h , v h ) = K∈T h - K ∇v h • f (u h ) + ∂K v h fn (u h ) |K , (u h ) |K - (v h ) = K∈T h K f v h (4a)
where K -denotes generically the element(s) that are on the other side of the faces of ∂K. Another formulation is, with the same ,

a(u h , v h ) = K∈T h - K ∇v h • f (u h ) + ∂K v h fn (u h ) |K , (u h ) |K - + K h K K ∇ u f (u h )∇v h τ K ∇ u f (u h )∇u h (4b) 
In ( 4), the Dirichlet boundary conditions are set weakly by imposing u h = g on the parts of ∂K which belongs to inflow part of ∂Ω as for (3). Another example of stable method was initially described in [START_REF] Burman | Edge stabilisation for galerkin approximations of convection-diffusionreaction problems[END_REF]. The idea is to stabilize the Galerkin operator [START_REF] Abgrall | A residual method using discontinuous elements for the computation of possibly non smooth flows[END_REF], not by a streamline operator as for the SUPG method (3), but by a jump operator on the internal edges/faces only: here

(u h , v h ) ∈ U G h × U G h , and 
a Burman (u h , v h ) = a Gal (u h , v h ) + e∈E h Γ e h 2 e e [∇u h ][∇v h ]. (5) 
In [START_REF] Abgrall | Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes[END_REF], for any function ϕ which admit traces one each faces of K, [ϕ] = ϕ K +ϕ K -where K + and K -are the two elements that share the face e (remember we assume that the mesh is conformal), h e is the measure of e and Γ is a parameter that has the dimension of ∇ u f (u).

The space U h and V h can be independently chosen, as well as a and , provided the variational problem is consistent with the problem (1), and of course the numerical method is stable. Formal accuracy is obtained via the choice the polynomial degree r, and effective accuracy is related to the stability of the scheme in suitable norm. Hence a natural question is: can we define U h , V h and the forms a and such that in addition with consistency and accuracy, we can also have non oscillatory properties. In the case of the streamline methods, this last property is obtained by modifying the formulation by adding a dissipation operator which is parameter dependent. In the case of the Discontinuous Galerkin method, this property is obtained via a proper choice of the arguments in fn , see [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework[END_REF][START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous finite element method for conservation laws IV: the multidimensional case[END_REF]. We note that only the averages in K are controlled. In both cases this stability property is obtained by introducing some genuine non linearity in the scheme, i.e. even if (1) is a linear problem, the scheme will be non linear.

In this paper, we show that, by introducing a solution-dependent operator χ from U h ∩ C 0 (Ω) to L 2 (Ω), the variational problem with a defined by

a(u h , v h ) = K∈T h K χ h u (v h )div f (u h ) + e∈E e v h ( fn (g, u h ) -f (u h ) • n) (v h ) = K∈T h K χ h u (v h )f (6) 
enables to get all the properties. The rest of this paper is organized as follow: inspired by a rewriting of (3), we introduce the residual distribution schemes. We provide a simple criteria which guaranties a Lax-Wendroff type theorem, provide a simple criteria that guaranties formal accuracy, show how the choice of norms guaranty the effective accuracy, and provide several examples of schemes. One of them is new.

Formulation of residual distribution schemes

These schemes have original been introduced by P.L. Roe in [START_REF] Roe | Approximate Riemann solvers, parameter vectors, and difference schemes[END_REF] in one dimension, and [START_REF] Roe | Characteristic-based schemes for the Euler equations[END_REF] in the multidimensional case. As we see, there are many common points with the streamline method, the difference is that we try to combine ideas from the finite element community and from the finite volume one. The first scheme of this kind was probably designed by R. Ni [START_REF] Ni | A multiple grid scheme for solving the Euler equations[END_REF] where he introduces a particular version of the Lax-Wendroff scheme.

Definition, connection to finite element methods

In what follows, K represents either an internal element or a face.

We make the standard remark that, for any internal degree of freedom σ, if ϕ σ is the Lagrange basis function associated to σ, (3b) can be written as:

a SUPG2 (u h , ϕ σ ) = K - K ∇ϕ σ • f (u h ) + h K K ∇ u f (u h )∇ϕ σ τ K ∇ u f (u h )∇u h + e∈E h e ϕ σ ( fn (g, u h ) -f (u h ) • n).
Since the support of ϕ σ is made of all the elements K that share σ, we have for any degree of freedom σ:

a SU P G2 (u h , ϕ σ ) = K σ - K ∇ϕ σ • f (u h ) + h K K ∇ u f (u h )∇ϕ σ τ K ∇ u f (u h )∇u h + e∈E,σ∈e e ϕ σ ( fn (g, u h ) -f (u h ) • n)
and notice that 1. for any K,

σ∈K K ∇ϕ σ • f (u h ) + h K K ∇ u f (u h )∇ϕ σ τ K ∇ u f (u h )∇u h = ∂K f (u h ) • n, 2. for any e ∈ E h , σ∈e e ϕ σ ( fn (g, u h ) -f (u h ) • n) = e ( fn (g, u h ) -f (u h ) • n).
This is true because σ∈K ϕ σ (x) = 1 and thus σ∈K ∇ϕ σ (x) = 0 for all x ∈ K.

Let us notice that the discontinuous Galerkin schemes can also fit in a similar framework. Looking back at (4a), we see that we can introduce for the degree of freedom σ ∈ K the residual

Φ K σ (u h ) = - K ∇ϕ σ • f (u h ) + ∂K ϕ σ fn (u h ) |K , (u h ) |K -. (7a) 
Then, (4a) is nothing more that

a(u h , ϕ σ ) = σ∈K Φ K σ (u h ). ( 7b 
)
We also have

σ∈K Φ K σ (u h ) = ∂K fn (u h ) |K , (u h ) |K - (7c)
where, again, fn is a consistent flux. This has been exploited in [START_REF] Abgrall | Development of residual distribution schemes for discontinuous galerkin methods[END_REF][START_REF] Abgrall | A residual method using discontinuous elements for the computation of possibly non smooth flows[END_REF].

This set of elementary remarks shows that most if not all known numerical schemes for solving (1) can be set in the Residual distribution setting: Given a tessellation of Ω = ∪ K∈T h K, we consider the approximation spaces

U h = K∈T h P r (K)
or

U h = K∈T h P r (K) ∩ C 0 (Ω) = U G h ,
depending whether we are looking for a global continuous approximation or a piecewise continuous one. 1The elements of P r (K) are defined by a set of unisolvent degrees of freedom, and we denote by Σ the set of all degrees of freedom defining the elements of U h . Throughout the paper, we consider Lagrange approximation, but more general approximation sets can be used, see [START_REF] Abgrall | An example of high order residual distribution scheme using non-lagrange elements[END_REF] for example. This means that U h = U G h = V h throughout the paper. A residual distribution scheme is defined, considering any degree of freedom σ, by the sub-residuals that are "sent" to σ by the elements K (resp. a boundary edge e) that share this degree of freedom. We denote them by Φ K σ (u h |K ) (resp. Φ e σ (u h |e )). We look for u h ∈ U h such that, for any internal degree of freedom σ,

K σ Φ K σ (u h |K ) = 0, (8a) 
and for any degree of freedom on the boundary,

K σ Φ K σ (u h |K ) + e σ Φ e σ (u h |e ) = 0. ( 8b 
)
We assume that the following structure condition holds true:

σ∈K Φ K σ (u h |K ) = ∂K fn (u h K , u h K -) (9a) σ∈e Φ e σ (u h |K ) = e ( fn g, u h ) -f (u h ) • n . (9b) 
We see that the SUPG method (3) and the Burman method [START_REF] Burman | Edge stabilisation for galerkin approximations of convection-diffusionreaction problems[END_REF] are particular cases of such scheme. There is a lot of freedom in defining the sub-residuals Φ K σ (u h |K ) and Φ e σ (u h e ), we will show how we can take advantage of this freedom to achieve our goal. Note that in the definition of the sub-residual, we have implicitly assumed that only the degrees of freedom with K or e are necessary to define these quantities: the stencil of the method is the most possible compact which is a good point for the parallelization of the method.

Another example of sub-residual are the Galerkin residuals defined by: on the element K.2 

Φ G,K σ = K ϕ σ div f (u h ) = - K ∇ϕ σ • f (u h ) + ∂K ϕ σ fn (u h K , u h K -), (10a) 
and on the boundary face e:

Φ G,e σ = e ϕ σ fn (g, u h ) -f (u h ) • n (10b)
We see that both {Φ G,K σ } σ∈K and {Φ G,e σ } σ∈e satisfy (9) with the same value of the total residual. Unfortunately, the scheme (8) with the Galerkin residual ( 10) is widely unstable in the case of continuous elements.

Structure conditions

For any w h (not necessarily a solution of (8) if it exists), and any test function v h , we have (setting

v h σ = v h (σ)): σ ∈∂Ω v h σ T h K σ Φ K σ (w h |K ) + σ∈∂Ω v h σ T h K σ Φ K σ (w h |K ) + E h e σ Φ e σ (w h |e ) = K∈T h σ∈K v h σ Φ K σ (w h |K ) + e∈E h σ∈e v h σ Φ e σ (w h |K ) = K∈T h - K ∇v h • f (u h ) + ∂K v h fn (u h K , u h K -) + K∈T h σ∈K v h σ Φ K σ (w h |K ) -Φ G,K σ (w h |K ) + e⊂∂Ω,e∈E h σ∈e v h σ Φ e σ (w h |K ) -Φ G,e σ (w h |K ) (11) 
thanks to (9) 3 . In [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous finite element method for conservation laws IV: the multidimensional case[END_REF], we have used the following implicit convention: On the boundary edges, u K -= g in order to weakly impose the boundary conditions. Then, since

σ∈K Φ K σ (w h |K ) -Φ G,K σ (w h |K ) = 0, (11) 
becomes, denoting by n K and n e the number of degree of freedom in K and e, with the convention that

w h K-= g on the boundary of Ω σ∈Ω v h σ K σ Φ K σ (w h |K ) = K∈T h - K ∇v h • f (u h ) + ∂K v h fn (u h K , u h K -) + K∈T h 1 n K σ,σ ∈K v h σ -v h σ ) Φ K σ (w h |K ) -Φ G,K σ (w h |K ) + e⊂∂Ω 1 n e σ,σ ∈e v h σ -v h σ Φ e σ (w h |e ) -Φ G,e σ (w h |e ) ( 12 
)
This relation is fundamental in our analysis.

Conservation

In [START_REF] Abgrall | High-order fluctuation schemes on triangular meshes[END_REF], we prove the following result:

Theorem 2.1. Assume the family of meshes T = (T h ) h∈H is shape regular. We assume that the residuals {Φ K σ } σ∈K , for K an element or a boundary element of T h , satisfy:

1. For any M ∈ R + , there exists a constant C which depends only on the family of meshes T h and M such that for any

u h ∈ U h with ||u h || ∞ ≤ C(M ), then | |Φ K σ (u h |K ) | | ≤ C(M ) σ,σ ∈K |u h σ -u h σ | 2.
They satisfy the conservation property [START_REF] Abgrall | An example of high order residual distribution scheme using non-lagrange elements[END_REF].

Then if there exists a constant C max such that the solutions of the scheme (8) satisfy ||u h || ∞ ≤ C max and a function v ∈ L 2 (Ω) such that (u h ) h (or at least a sub-sequence) converges to v in L 2 (Ω), then v is a weak solution of (1)

Proof. The proof can be found in [START_REF] Abgrall | High-order fluctuation schemes on triangular meshes[END_REF], it uses [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework[END_REF] and some adaptation of the ideas of [START_REF] Kröner | A Lax-Wendroff type theorem for upwind finite volume schemes in 2-d[END_REF].

We can also state similar conditions for entropy inequalities:

Proposition 2.2. Let (U, G) be an couple entropy-flux for (1) and Ĝn an upwind numerical entropy flux consistent with G • n. Assume that the residuals satisfy: for any element K,

σ∈K U (u σ ) • Φ K σ ≤ ∂K G(u h |K ) • n (13a)
and for any boundary edge e,

σ∈e U (u σ ) • Φ e σ ≤ e Ĝn (u h |e , g) -G(u h |K ) • n . (13b) 
Then, under the assumptions of the theorem 2.1, the limit weak solution also satisfies the following entropy inequality: for any ϕ ∈ C 1 (Ω), ϕ ≥ 0,

- Ω ∇ϕ • G(u) + ∂Ω ϕ Ĝn (u, g) ≤ 0.
Proof. The proof is similar to that of theorem 2.1.

Accuracy

In most cases, assuming a smooth solution of (1), the formal accuracy analysis is done by checking how large is the error made when plugging the exact solution into the scheme. This is carried out using Taylor expansions, and the geometry of the computational stencil plays an important role. When the mesh has no particular symmetry, this leads to nowhere. Instead of looking to how far the numerical scheme departs from the strong form of the PDE, it is much more flexible to look at how far it departs its weak form, i.e. instead of checking div f (u) = 0, it is better to test, for any ϕ smooth enough, Ω ϕ div f (u) = 0, of course after using the Green formula.

In practice, we define the truncation error

E(u h , v h ) = σ∈Ω v h σ K σ Φ K σ (w h |K ) ,
and consider

E(u h ) = max v h ∈U G h ,||v h || W 1,∞ =1 E(u h , v h ). ( 14 
)
We can then extend the classical definition of accuracy:

Definition 2.3 (Accuracy). We say that the scheme ( 8) is r +1-th order accurate if, for any smooth solution u ex ∈ C r+1 (Ω) of ( 1), E(u h ex ) ≤ C h r+1 . The constant C only depend on the family T , the regularity of f , on the r + 1 derivative of u, and the boundary conditions. Remark 2.4. This definition enables to get bounds on the error u hu ex if a coercivity-like inequality holds true in some adequate norm. This is well known for the SUPG/streamline diffusion method, see [START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF] for example, but we do not have any general result yet.

Since u ex ∈ C r+1 (Ω), there are no jump accross elements. Using [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework[END_REF], we see that, for any v h :

E(u h ex , v h ) = - Ω ∇v h • f (u h ex ) + ∂Ω v h fn (u h ex , g) (15) 
+ K 1 n K σ,σ ∈K v h σ -v h σ ) Φ K σ ((u h ex ) |K ) -Φ G,K σ ((u h ex ) |K ) (16) 
For the steady problem (1), we have the following result:

Lemma 2.5. Let us recall that Ω ⊂ R d and is bounded.

If the solution u ex of the steady problem ( 1) is C r+1 , then

1. Φ G,K σ ((u h ex ) |K ) = O(h r+d ), 2. Φ G,e σ ((u h ex ) |e ) = O(h r+d-1 ) 3. if the numerical flux f is Lipschitz, -Ω ∇v h • f (u h ex ) + ∂Ω v hf n (g, u h ex ) = O(h r+1 ),
Proof. We start by showing the first result. The proof of the second one is similar and is omitted. Since u ex ∈ C r+1 , we have div f (u ex ) = 0 in a strong sense, thus for any K ∈ T h and any σ,

K ϕ σ div f (u ex ) = - K ∇ϕ σ • f (u ex ) + ∂K ϕ σ f (u ex ) • n = 0.
We can subtract this relation to Φ G,K σ (u h ex ) and get:

Φ G,K σ (u h ex ) = - K ∇ϕ σ • f (u h ex ) -f (u ex ) + ∂K ϕ σ fn (u h ex,|K , u h ex,K -) -f (u ex ) • n .
Since the mesh is regular, we have:

|K| = O(h d ), ∇ϕ σ = O(h -1 ), |∂K| = O(h d-1 )
and since the flux

f is C 1 , we have f (u h ex ) -f (u e ) = O(h k+1 ). Last, the numerical flux is consistent so that, fn (u h ex,|K , u h ex,K -) -f (u ex ) • n = O(h k+1 ).
Gathering the pieces together, we get:

Φ G,K σ (u h ex ) ≤ C h d × h -1 × h k+1 + h d-1 × 1 × h k+1 = O(h k+d ).
The third inequality is obtained in a similar manner: From (1), we have for any v h , setting

Γ -= {x ∈ ∂Ω, ∇ u f (u) • n < 0}, - Ω ∇v h • f (u ex ) + Γ - v h f (u ex ) • n = 0.
Since the numerical flux f is upwind, we can rewrite this as:

-

Ω ∇v h • f (u ex ) + ∂Ω v h f (g, u ex ) • n = 0. so that - Ω ∇v h • f (u h ex ) + ∂Ω v h fn (g, u h ex ) = - Ω ∇v h • f (u h ex ) -f (u ex ) + ∂Ω v h fn (g, u h ex ) -f (u h ex ) • n = (I) + (II)
Using again the same arguments, since the numerical flux is Lipschitz continuous, we see that both (I) and (II) are of the order of

O(h k+1 ) × ||v h || W 1,∞ (Ω) .
Then, we have:

Proposition 2.6. Under the assumptions of Lemma 2.5 and assuming that the family of meshes F is regular, the residuals satisfy: for all σ and all K = K or e,

Φ K σ ((u ex ) |K ) = O(h r+D ) ( 17 
)
where D = d for elements K and D = d -1 for e ∈ E. The scheme is formally r + 1 accurate.

Proof.

E(u h ex ) is the sum of - Ω ∇v h • f (u h ex ) + Ω v h fn (g, u h ex )
which is O(h r+1 ) by lemma 2.5 and

K 1 n K σ,σ ∈K v h σ -v h σ ) Φ K σ (w h |K ) -Φ G,K σ (w h |K ) + e⊂Ω 1 n e σ,σ ∈e v h σ -v h σ Φ e σ (w h |K ) -Φ G,e σ (w h |K )
Since the mesh is regular, the number of elements in the mesh is O(h -d ) and the number of boundary elements is O(h d-1 ). Since v ∈ W 1,∞ , its Lagrange interpolant satisfy

v h σ -v h σ ≤ h||v h || W 1,∞
and sup h ||v h || W 1,∞ is bounded by a constant that depends on T and ||v|| 1,∞ . Then we see that

K 1 n K σ,σ ∈K v h σ -v h σ ) Φ K σ (w h |K ) -Φ G,K σ (w h |K ) + e⊂∂Ω 1 n e σ,σ ∈e v h σ -v h σ Φ e σ (w h |K ) -Φ G,e σ (w h |K ) ≤ C h -d × h × h d+r + h -d+1 × h × h r+d-1 ≤ Ch r+1 .
We can estimate the boundary terms in a similar way. This ends the proof.

Construction of monotonicity preserving arbitrary accurate schemes

This section aims at showing how one can combine formal accucary and non oscillatory properties of the solution. This relies on the use of a discrete local maximum principle. By this we mean the following. Considering a scheme which update the degrees of freedom {u m σ } that describe the solution at time t m , m ∈ N. We assume the structure: for any σ,

u n+1 σ = Θ(u n σ , {u n σ , σ ∈ N σ }, Λ σ )
where N σ is the set of neighbors of σ and Λ σ a set of discretisation parameters. The precise definition of N σ depends on the operator Θ. Doing so we have in mind a graph connecting together the degrees of freedom, and the notion of neighbors has to be understood as the degrees of freedom that are connected for this graph to σ. In the RD schemes, this set of neighbors are the degrees of freedom that belong to all the element that share σ. Here Λ describes the geometry of the mesh and takes into account the time increment ∆t. On the set of all possible sets Λ, we also assume there is a total order relation " < ". By local maximum principle, we mean that there exists Λ 0 such that for any σ and Λ σ such that Λ σ < Λ 0 , and for any n,

|u n+1 σ | ≤ max σ ∈Nσ∪{σ} |u n σ |.
In the following, the relation " < " will be made precise for the particular example we are dealing with.

A preliminary remark

We start by a basic remark that goes at least back to A. Harten [START_REF] Harten | On a class of high resolution total-variational-stable finite-difference schemes (with appendix by Peter D. Lax)[END_REF], and we rephrase it in the Residual Distribution framework.

Lemma 3.1. Assume that the residuals (for element and edges) write, for any degree of freedom,

Φ K σ (u h ) = σ K c K σσ (u σ -u σ ), (18) 
then the iterative scheme

u n+1 σ = u n σ -ω σ K σ Φ K σ + e σ
Φ e σ admits a local maximum principle if

• for any σ, σ , c K σσ ≥ 0, • ω σ K σ σ ∈K c K σσ + σ ∈K c σσ ≤ 1
Here, N σ is the set of degrees of freedom that belong to any element sharing σ, and Λ σ = {ω σ }. We say that Λ = {ω} < Λ = {ω } if ω ≤ ω .

Proof. It is clear that:

K σ Φ K σ + e σ Φ e σ = K σ σ ∈K c K σσ + σ ∈K c K σσ u σ - σ σ,σ ∈K c K σσ u σ = d σ u σ - σ ∈Nσ d σ u σ
Here, in order to simplify the notations, we have set c K σ,σ = 0 when σ ∈ K or σ ∈ K.

The results holds true because c K σσ ≥ 0, and

σ ∈Nσ c K σσ ≥ 0 d σ = σ σ,σ ∈K c K σσ ≥ 0 and d σ = 1 -ω σ σ ∈Nσ c K σσ ≥ 0
if and only if the second condition of lemma 3.1 holds true.

The idea is to construct schemes that satisfy the requirement c K σ,σ ≥ 0. It is known since Godunov that one cannot have a scheme that is simultaneously monotonicity preserving, high order accurate and linear (for linear problems). Hence some sort of non linearity must be introduced. Before showing how we can meet the requirements, let us introduce our reference monotone scheme. It is a multidimensional extension of the Rusanov scheme, namely, for any K and σ,

Φ K σ = 1 n K Φ K + α k u σ -u K , u K = 1 n K σ∈K u σ (19) 
In the case of continuous elements, this scheme has the form [START_REF] Kroll | ADIGMA-A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications[END_REF]. It is monotone if

α K ≥ max x∈K ||∇ u f (u h (x)||.
In the discontinuous case, a simple variant can be found, see [START_REF] Abgrall | A residual method using discontinuous elements for the computation of possibly non smooth flows[END_REF].

Other examples can be constructed, starting from any classical monotone finite volume scheme. However, the interesting ones are the residuals for which the condition Φ K (u h ex ) = O(h k+D

K

) holds true because of proposition 2.6.

Explicit construction

The construction is local to an element (or boundary edge) K, so we drop the dependency with respect to the element. We start from a monotone first order scheme, such as the Rusanov or the N scheme, denote the first order residuals in the element as {Φ M σ } σ∈K and the high order residuals (to be constructed) by {Φ H σ } σ . We then make the following formal observation:

for all σ ∈ K, Φ H σ = Φ H σ Φ M σ Φ M σ , so that if Φ M σ = σ ∈K c M σσ (u σ -u σ ), we have φ H σ = Φ H σ Φ M σ σ ∈K c M σσ (u σ -u σ ) = σ ∈K Φ H σ Φ M σ c M σ σ (u σ -u σ ) = σ ∈K c H σ σ (u σ -u σ ) with c H σ σ := Φ H σ Φ M σ c M σ σ . Hence, to have c H σ σ ≥ 0, it is enough that Φ H σ Φ M σ ≥ 0 Introducing the parameters β M σ = Φ M σ Φ and β H σ = Φ H σ Φ
where Φ is the total residual on the element K, we see that:

• Φ H σ Φ M σ ≥ 0 for any σ ∈ K is equivalent to β M σ β H σ ≥ 0 for any σ ∈ K, • the conservation relations translates into: σ∈K β M σ = σ∈K β H σ = 1. ( 20 
)
• In order to guaranty the condition [START_REF] Johnson | Finite element methods for linear hyperbolic problems[END_REF], a sufficient condition is that : for any C, and u h such that

||u h || ∞ ≤ C, there exists C such that |β H σ | ≤ C (C)
, uniformly for all meshes T h . These constraints can easily be interpreted geometrically. Consider an (abstract) simplex S = (a 1 , . . . a N K ) of dimension n K -1 points, i.e. a triangle when n K = 3, a tetrahedron for n K = 4 and so on. These points have nothing to do with the mesh, they are only used to represent easily the constraint [START_REF] Ni | A multiple grid scheme for solving the Euler equations[END_REF]: it is well known that any point M of an affine space of dimension n K -1 can be uniquely described in term of its barycentric coordinates with respect to S :

M = n K -1 i=1 λ i a i , n K -1 i=1 λ i = 1
so thus this suggests to interpret the parameters β M σ and β H σ as barycentric coordinates with respect to the simplex S: we interpret a scheme as a point in this abstract affine space, and finding the mapping (β M σ ) σ∈K → (β H σ ) σ∈K can be interpreted to find a mapping from this affine space onto itself. Then, to make the discussion more visual, we switch to n K = 3, see figure 1. The conditions β H σ β L σ ≥ 0 are interpreted as saying that β H i and β L i must be on the same side of the line λ i = 0. The condition

|β σ | ≤ C is materialized, a 1 a 2 a 3 Yes Yes ✟ ✟ ❍ ❍ No ✟ ✟ ❍ ❍ No Id C
Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich E-mail: remi.abgrall@math.uzh.ch The simplest invariant domain is certainly the simplex (a 1 , . . . , a n K ) for which 0 ≤ λ σ ≤ 1. In that case, the most common formula is [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF][START_REF] Abgrall | High-order fluctuation schemes on triangular meshes[END_REF]:

β H σ = max(β M σ , 0) σ∈K max(β M σ , 0) . (21) 
Note that

σ∈K max(β M σ , 0) ≥ 1 because 1 = σ∈K β M σ = σ∈K max(β M σ , 0) + σ∈K min(β M σ , 0) ≤ σ∈K max(β M σ , 0).
When Φ = 0, we simply set Φ H σ = 0

Filtering

In practice, this method is excellent for computing discontinuous solutions. When computing smoother solutions, we can see "wiggles" appearing, see section 4. They are not a manifestation of any instability since the scheme is perfectly L ∞ stable, but it is too over compressive, i.e. not dissipative enough.

It is quite easy to understand what is going on. We first, let us consider the problem on [0, 1] 2 :

∂u ∂x = 0 (22) 
with the boundary condition u = g on {0} × [0, 1]. grid is made of quadrangles, with vertices (x i , y j ),

x i = i N , y j = j N , 0 ≤ i, j ≤ N .
The function g is piecewise linear, and g(0, y j ) = (-1) j . The exact solution is independent of x.

The scheme is defined by

u n+1 ij = u n ij -ω ij K (xi,yj ) Φ H,K i,j (u n h )
with u 0 ij given, and u n 0j = g(0, y j ). There are many ways of initializing, we consider two initializations: • Initialization with the exact solution: u 0 ij = g(0, y j ) = (-1) j • Check-board mode: u 0 ij = (-1) i+j The solution at the n-th iteration is reconstructed with the Q 1 interpolation. It is easy to see that for both initialization, we have, for any K,

Φ K = ∂K u h n x = 0
so that in both cases, for any i, j, n, u n ij = u 0 ij ! The method as such is not well posed, and there are spurious modes.

To remedy to this serious drawback, there are several possibilities. Here we discuss a solution already described in see [START_REF] Abgrall | Essentially non-oscillatory residual distribution schemes for hyperbolic problems[END_REF], and a new one that is inspired by Burman's variational formulation.

Streamline filtering.

The one discussed in [START_REF] Abgrall | Essentially non-oscillatory residual distribution schemes for hyperbolic problems[END_REF] is inspired by the streamline diffusion method. Namely starting from an unfiltered family of residuals {Φ H,K σ } constructed as in section 3.2, we add a streamline diffusion term:

Φ H,K, σ = Φ H,K σ + θ K h K K ∇ u f (u h ) • ∇ϕ σ N ∇ u f (u h ) • ∇u h ( 23 
)
where N is defined by

N = σ∈K max ∇ u f , 0 + ε -1
with the gradient ∇ u f evaluated at the centroid and ε is a small number to avoid singularity. The choice of where is evaluated the average gradient does not seem to be fundemental. The parameter should be θ K ≈ 0 in discontinuities and θ K ≈ 1 away from discontinuities. When we apply this correction (with θ = 1) to [START_REF] Roe | Characteristic-based schemes for the Euler equations[END_REF] this corrects the problem. By construction, we see that the accuracy requirement of lemma 2.5 are met if they met for the unfiltered scheme To see what is the rational behind [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF], let us first switch to the one dimensional problem:

∂f (u) ∂x = 0 x ∈ [0, 1] u(0) = u 0 u(1) = u 1 . (24) 
The boundary conditions are imposed weakly, and to make things simple, assume f (u 0 ) > 0 and f (u 1 ) < 0 so that the solution is u = u 0 . The interval [0, 1] is discretized with the mesh which elements are [x i , x i+1 ], 0 = x 0 < x 1 < . . . < x n-1 < x n = 1. Whatever the order, the total residual is for

K i+1/2 = [x i , x i+1 ] Φ K i+1/2 = f (u i+1 ) -f (u i )
so that the high order residuals are simply, for any degree of freedom σ ∈ K,

Φ K σ = β K σ f (u i+1 -f (u i ) .
In particular, the internal degrees of freedom play no role. Assume now that k = 1, there is no internal degree of freedom, and let us evaluate the entropy balance for the entropy U (u) = 1 2 u 2 : using the notation γ

K i+1/2 j = β K i+1/2 j -1 2 , we have E = N -1 i=0 u i β K i-1/2 i f (u i ) -f (u i-1 ) + β K i+1/2 i f (u i+1 ) -f (u i ) = 1 0 u h ∂f ∂x (u h ) + N -1 i=0 γ K i+1/2 i u i + γ K i+1/2 i+1 u i+1/2 f (u i+1 ) -f (u i ) = 1 0 u h ∂f ∂x (u h ) + N -1 i=0 γ K i+1/2 i+1 (f (u i+1 ) -f (u i ))(u i+1 -u i ).
with the convention u -1 = u 0 and u N +1 = u N to take into account the boundary conditions. For the scheme to be dissipative, a sufficient condition is that for all i, γ

K i+1/2 i+1 (f (u i+1 ) -f (u i ))(u i+1 -u i ) ≥ 0, i.e. γ K i+1/2 i+1 f (u i+1 ) -f (u i ) u i+1 -u i ≥ 0
with a strict inequality for at least one interval. The evaluation of β

K i+1/2 σ
is done with the only aim of having an L ∞ stable scheme, so that this inequality might not be true 4 . Adding the streamline term, i.e. in this case,

θ(u i+1 -u i ) xi+1 xi N ∂f ∂u 2 ∂ϕ σ ∂x = (u i+1 -u i ) ∂f ∂u ϕ σ (x i+1 ) -ϕ σ (x i ))
will modify the entropy balance into

E = 1 0 u h ∂f ∂x (u h ) + N -1 i=0 γ K i+1/2 i+1 f (u i+1 ) -f (u i ) u i+1 -u i + θ ∂f ∂u (u i+1 -u i ) 2
and E ≤ 1 0 u h ∂f ∂x (u h ) provided that θ ≥ 1.

Jump filtering

The idea is to add to the unfiltered residuals {Φ H,K σ } constructed as in section 3.2, we add a jump term inspired by Burman's construction, namely:

Φ H,K, σ = Φ H,K σ + e∈E h ,e⊂K Γ e h 2 e e [∇u h ][∇ϕ σ ]. (25) 
We first check that the conditions of lemma 2.5 are met if the unfiltered scheme satisfies them too. For this, we only need to check that if the exact solution C r+1 (Ω) and if we are using polynomials of degree at most r, then

e∈E h ,e⊂K Γ e h 2 e e [∇u h ][∇ϕ σ ] = O(h r+d ).
Since [∇u ex ] = 0, we have

e [∇u h ][∇ϕ σ ] = e [∇(u h -u ex )][∇ϕ σ ] = O(h d-1 ) × O(h r ) × O(h -1 ) = O(h d+r-2 )
and thus the conditions are met. We notice that if for any internal face e, e [∇u] 2 = 0, then u is globally a polynomial of degree r. We first show if v is a polynomial of degree q on each element K such that for any face e, e [v] 2 = 0 then v is a polynomial of degree q defined on the whole domain Ω. The second step is to apply this to = ∇u.

Let v ∈ K∈T h P q (K), we define the operator π that maps v The operator π is defined as follow: for any σ,

π(v)(σ) = 1 #{K, σ ∈ K} K,σ∈K v |K (σ) and then π(v) = σ∈Σ h π(v)(σ)ϕ σ .
This definition assumes that the we are using Lagrange interpolation, we have done this for simplicity but this is not essential. Let us have a look at vπ(v) on any

K. Since v -π(v) = σ∈K (v |K (σ) -π(v)(σ))ϕ σ , we look at the difference v |K (σ) -π(v)(σ). We have v |K (σ) -π(v)(σ) = 1 #{K , σ ∈ K } σ∈K (v K (σ) -v K (σ)). If σ is internal to K, v |K (σ) -π(v)(σ) = 0,
so the difference is possibly = 0 only for degrees of freedom on the edges. If the mesh is regular, we can easily see that

K σ∈K (v K (σ) -v K (σ)) ϕ σ 2 ≤ C|K| σ∈∂K [v(σ)] 2 ≤ C e⊂∂K h e e [v] 2
where C and C are constants that depends on the mesh regularity, so that

Ω |v -π(v)| 2 = K K |v -π(v)| 2 = K K 1 #{K , σ ∈ K } σ∈K ∩K (v K (σ) -v K (σ))ϕ σ 2 ≤ C e h e e [v] 2
From this we see that if for any internal face e, e [v] 2 = 0, then v = π(v). If we apply this result to ∇u, we see that π( ∂u ∂x i ) = ∂u ∂x i for any component, so by integration, u is a global polynomial. This a very particular case of much general results, see [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF]. This remark explains the potential role of the jump term: if the solution is smooth, the setting Γ e > 0 will contraint the continuity of the solution across faces, and hopefully will bound ||∇u||. If Γ = 0, this constraint is relaxed. So the idea is, again, to take Γ > 0 where the solution is expected to be smooth, and Γ = 0 where it is expected to be discontinuous. For now, the main justification of these choices is purely heuristic and motivated by numerical experiments.

Numerical examples

In this section, we illustrate the behavior of the method on two examples: a linear transport problem and a non linear one. In Ω = [0, 1] 2 , we consider λ = (y, -x) T and u(x, y) = ϕ 0 (x) if y = 0 (26) with the boundary conditions

ϕ 0 (x) = cos 2 (2πx) if x ∈ [ 1 4 , 3 4 ] 0 else
The isolines of the exact solution are circles of center (0, 0). The form of the Burgers equation is the following:

∂u ∂y + 1 2 ∂u 2 ∂x = 0 if x ∈ [0, 1] 2 u(x, y) = 1.5 -2x on the inflow boundary. (27a) 
The exact solution consists in a fan that merges into a shock which foot is located at (x, y) = (3/4, 1/2). More precisely, the exact solution is

u(x, y) =          if y ≥ 0.5 -0.5 if -2(x -3/4) + (y -1/2) ≤ 0 1.5 else else max -0.5, min 1.5, x -3/4 y -1/2 (27b) 
The mesh displayed on figure 2 is used to obtain the solutions shown on figures 3 and 4. All the meshes used in this paper have been generated by GMSH [START_REF] Geuzaine | A three-dimensional finite element mesh generator with built-in preand post-processing facilities[END_REF]. We see, on figure 3-(a) that without the streamline term in [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF], the solution looks very wiggly. Again, it is not an instability, only a manifestation of spurious modes that are completely eliminated using [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF] or (25). If one makes a convergence study on this problem using P 1 , P 2 and P 3 elements, we recover the expected order of convergence, see table 1.

The figure 4 give the results for the problem (27). The solution is composed of a compressive fan and a discontinuity. The exact solution is plotted as well as what is obtained for the SUPG scheme (3b), the Galerkin scheme with jump stabilisation (5), the orginal non linear RD scheme using [START_REF] Roe | Approximate Riemann solvers, parameter vectors, and difference schemes[END_REF] the schemes when this RD scheme is combined with streamline [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF] and jump filtering (25). As expected the SUPG and Galerkin+jump methods are oscillatory (and the latter one proves to be extremely oscillatory; we have chosen Γ = 0.1 here). The non linear methods behave very well. For the streamline filtering, we have taken θ = 1, and for the jump filtering Γ = 0.1 in the smooth part, 0 elsewhere. We need to improve this, this work is in progress. The jump filtering seems to be less dissipative than the stream line stabilisation. All these results use quadratic reconstruction, the last two figures use linear reconstruction. The same conclusions hold. Strictly speaking, the streamline term in [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF] or the jump term in (25) destroy the maximum preserving nature of the scheme: the operators defined by [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF] or (25) are not, a priori, of the type (18) with positive coefficients. We have not been able, so far, to analyze in full detail the schemes from this point of view, but all the numerical experiments that we have done, including with system case (for [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF], the second solution has not yet been tested for systems), indicate that the streamline term [START_REF] Struijs | Fluctuation splitting schemes for the 2D Euler equations[END_REF] or the jump term (25) act as a filter, and do not spoil the monotonicity preserving properties that we are seeking for. Actually, this property is violated, but the over-and undershoot are negligible, as what occurs for the ENO and WENO schemes.

Conclusions

We have shown a systematic way of constructing high order finite element like methods for scalar hyperbolic problems that preserve, in practice, a local maximum principle. The problems can be linear or not, and the solutions regular or not. We have shown that the accuracy can actualy be reached. This paper present two classes of methods, one of them has already been extended to systems [START_REF] Abgrall | Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes[END_REF] and even to the Navier Stokes equations [START_REF] Abgrall | High-order preserving residual distribution schemes for advection-diffusion scalar problems on arbitrary grids[END_REF][START_REF] Abgrall | Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible navier-stokes equations[END_REF]; the second one has to be extended to systems, and this should be straightforward. Many things remain to be done. The methods are intended to be parameter free. One part of the numerical operator is proved to be maximum principle preserving, without any parameter to tune. Unfortunately, by using only this operator, we can see that the solution may develop spurious modes (while keeping the maximum principle), and we have shown how to cure this. Unfortunately, we had to introduce one tunable parameter. When we filter out by using a streamline filter, we have proposed solutions [START_REF] Abgrall | Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes[END_REF] to monitor the filter, but because of the very writing of the scheme it is difficult to make decisions by looking at the local structure of the solution without violating the structure of the numerical stencil. In the second case, the stabilisation is done via an integral term involving the jump of the first defivative of the solution. This opens new perspectives for a better design of the filtering parameter. An extension to unsteady problems is also in progress. The extension to 3D system is straightforward and has already be done with an extension of the streamline filtering, see [START_REF] Kroll | ADIGMA-A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications[END_REF] for the Euler equations and [START_REF] Abgrall | High-order preserving residual distribution schemes for advection-diffusion scalar problems on arbitrary grids[END_REF][START_REF] Abgrall | Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible navier-stokes equations[END_REF] for the Navier-Stokes ones.
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 1 Figure 1: Geometrical representation of the monotonicity conditions. The invariant domain is materialized by the domain inside of C. on figure 1, by the domain inside curve C. Inside the invariant domain bounded by C, the mapping is the identity, outside of C project the point L = σ β L σ a σ on C without crossing the lines λ σi = 0. Once the β H σ
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 3 Figure 3: Solution of (26) with (21), (23) and (25), P 2 elements. In each figure, 19 isolines form 0.05 to 0.95 are plotted.
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	Figure 2: Mesh for the numerical experiments.
	h		L 2 (P 1 )		L 2 (P 2 )	L 2 (P 3 )
	1/25		0.50493E-02 0.32612E-04 0.12071E-05
	1/50		0.14684E-02 0.48741E-05 0.90642E-07
	1/75		0.74684E-03 0.13334E-05 0.16245E-07
	1/100 0.41019E-03 0.66019E-06 0.53860E-08
			O ls L 2 =1.790	O ls L 2 =2.848	O ls L 2 =3.920

More complex situation can easily been imagined, such as global continous on Ω 1 and possibly discontinuous on Ω

with Ω 1 ∪ Ω 2 = Ω and Ω 1 ∩ Ω 2 of empty interior.2 Of course, in the case of discontinuous approximation, this is nothing more that DG. Since we have a unified presentation, we need to introduce this.

K represents either an internal element or a face

However, in 1D it is very simple to show that the sign condition is true, let us ignore this fact however.
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