
HAL Id: hal-01572439
https://hal.science/hal-01572439v1

Submitted on 7 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining dataflow programming and polyhedral
optimization, a case study

Romain Fontaine, Lionel Morel, Laure Gonnord

To cite this version:
Romain Fontaine, Lionel Morel, Laure Gonnord. Combining dataflow programming and polyhedral
optimization, a case study. [Technical Report] RT-0490, Inria Rhône-Alpes; CITI - CITI Centre of
Innovation in Telecommunications and Integration of services; LIP - ENS Lyon. 2017, pp.40. �hal-
01572439�

https://hal.science/hal-01572439v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
49

0-
-F

R
+E

N
G

TECHNICAL
REPORT
N° 0490
July 2017

Project-Teams SOCRATE and
ROMA

Combining dataflow
programming and
polyhedral optimization,
a case study
Romain FONTAINE, Lionel MOREL, Laure GONNORD

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Combining data�ow programming and

polyhedral optimization, a case study

Romain FONTAINE*, Lionel MOREL �, Laure GONNORD�

Project-Teams SOCRATE and ROMA

Technical Report n° 0490 � July 2017 � 40 pages

Abstract:

Nowadays, parallel computers have become ubiquitous and current processors contain several exe-
cution cores, anywhere from a couple to hundreds. This multi-core tendency is due to constraints
preventing the increase of clock frequencies, such as heat generation and power consumption. A
variety of low-level tools exist to program these chips e�ciently, but they are considered hard to
program, to maintain, and to debug, because they may exhibit non-deterministic behaviors. This
project focuses on adding an abstraction level in order to have as much performance as possible
while not dealing with low-level mechanisms. The approach is based on data �ow programming,
which allows the programmer to specify only the operations to perform and their dependencies,
without actually scheduling them. This project combines this paradigm with the Polyhedral Model,
which allows automatic parallelization and optimization of loop nests, in order to make the pro-
gramming easier by delegating work to the compilers and static analyzers.

Key-words: Parallel Computing, Data Flow Paradigm, Static Data �ow, SigmaC, Polyhedral
Model, Compiler Optimization, OpenMP, Massively Parallel Processor Array.

* INSA de Lyon
� etc
� University of Lyon, LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), F-69000 Lyon, France

Une étude de cas: optimisations polyédriques pour la

programmation �ot de données

Résumé : Dans ce rapport nous étudions la combinaison du paradigme �ot de données statique
avec les optimisations de code �polédriques�, via quelques études de cas.

Mots-clés : Programmation Parallèle, Paradigme Flot de Données, Data�ow Statique, SigmaC,
Modèle Polyédrique, Optimisation de Code, OpenMP, MPPA.

Data�ow & Polyhedral Optimizations 3

1 Introduction

1.1 History

Moore's law states that the number of transistors that can be on a chip doubles every 18 month.
Until 2005, processor designers have raised the clock speed in order to improve performance by
increasing the number of operations completed in a time unit. This raise caused an increase in
power consumption and a greater heat generation.

Since 2005, clock speed could not be increased e�ciently anymore, therefore manufacturers
started to increase the number of execution cores on a single chip. In 2017, most CPUs are
multicore, with typically 2 to 16 cores. Some companies such as Kalray even design Massively
Parallel Processor Arrays, which are chips intended for scienti�c computations, with hundreds
or even thousands of cores.

Most programming languages have a sequential approach and were originally designed to be
executed sequentially, in only one process, on a single core of execution. Their performance was
improved when the clock frequencies were increasing, but since 2005, computer programmers
cannot rely on this anymore to increase their programs performance.

For high performance computing, all of the potential of multicore architectures needs to be
used. Usually, writing programs that can bene�t from the computing power of several processors
is not trivial, and there are many di�erent ways to achieve it.

1.2 Terminology

The following notions are important when thinking about parallelizing sequential programs:

De�nition 1 (Speedup). The speedup is the ratio between the execution time of the sequential
program and the one of the parallelized program. The higher the speedup, the better. If the speedup
is 2, the parallel program runs twice as fast as the sequential one.

S =
TSeq

TPar
(1)

Where:

� S is the speedup

� TSeq is the execution time for the sequential version of the program

� TPar is the execution time for the parallel version of the program.

Note: A super-linear speedup (i.e. a speedup greater than the number of processors used) can
occur. It can happen with certain types of algorithms, where the order of execution is changed
(e.g. when backtracking) or because of cache e�ects; sometimes, the processor's cache is used
more e�ciently in the parallel algorithm, resulting in an additional acceleration.

De�nition 2 (Amdahl's Law). Amdahl's Law states that the maximum theoretical speedup
achievable when parallelizing a program is limited by the inherently sequential part of the program.

Smax =
N

(Pseq ∗N) + 1− Pseq
(2)

Where:

� Smax is the theoretical maximum speedup that can be achieved.

RT n° 0490

4 Fontaine & Morel & Gonnord

� Pseq is the proportion of the program that is sequential (i.e. that cannot be parallelized).

� N is the number of processors used.

De�nition 3 (Throughput). The throughput is the number of operations completed in a �xed
amount of time.

De�nition 4 (Latency). The latency is the time taken to complete one operation.

1.3 Types of parallelism

The three following types of parallelism can be used to improve performance, when parallelizing
algorithms:

� Task parallelism: Running di�erent tasks (i.e. sequences of operations) on the same data.
The amount of parallelism depends on the number of independent tasks to be performed.
Figure 1 shows an example of two independent tasks (tasks 2 and 3), which can be per-
formed at the same time.

� Data parallelism: Running the same task on di�erent pieces of data. The amount of
parallelism depends on the size of the data.

� Pipeline parallelism: Once there is enough data in the pipeline, several stages of com-

putation can be active at the same time. Pipeline parallelism can be seen as an
assembly line: each worker's state depends only on its predecessor(s), and it is either work-
ing or waiting for work to arrive. Pipelining does not reduce the total time of production of
a single input, but it allows to increase the throughput of the production line. In the exam-
ple of Figure 2, when operating on a stream of data, the following can happen (assuming
that each task takes one unit of time to be completed):

� t=1

* Task 1 is performed on D1

� t=2

* Task 1 is performed on D2

* Task 2 is performed on D1

� t=3

* Task 1 is performed on D3

* Task 2 is performed on D2

* Task 3 is performed on D1

Where D1 is the �rst piece of data of the stream, D2 the second one, and D3 the third one.

It is important to note that the application must be composed of a sequence of steps in
order to bene�t from this kind of parallelism. The grain of the pipeline greatly depends on
the nature of the algorithm. An image processing algorithm may only need to process the
image line by line, which allows a relatively �ne-grain pipeline parallelism. On the other
hand, when multiplying a vector and a matrix, all of the input data must be available in
order to compute the result. This grain is signi�cantly coarser than in the previous case,
and the application will need to work on a stream of inputs in order to bene�t from it.

The amount of parallelism depends on the size of the pipeline (i.e. on the number of steps
in the sequence).

Inria

Data�ow & Polyhedral Optimizations 5

Figure 1: Task parallelism example (Tasks 2 and 3)

Figure 2: Pipeline parallelism example

1.4 Hardware

1.4.1 CPU

Central Processing Units are suited for general purpose programming and are optimized for
sequential execution. They often provide several cores, have few constraints, and a large part
of the chip's silicon is focused on branch prediction, out-of-order execution, deep pipelines, and
large cache systems to reduce the impact of memory accesses on performance.

1.4.2 GPU

Graphical Processing Units can be used to do general purpose computing as well, but they
are optimized for highly parallel execution, with thousands of execution cores. They require
writing speci�c code and a signi�cant amount of work is needed to adapt a program to be
executed on a GPU. They also impose hard constraints, such as synchronization at the level of
the instruction. This constraint makes it more powerful but less expressive, strongly limiting the
types of algorithms that can e�ciently be parallelized on those chips.

1.4.3 MPPA

Massively Parallel Processor Arrays, also known as MPPAs, are integrated circuits that contain
hundreds or thousands of processing units and RAM memories. Their highly parallel structure
aims to bring more computing power with a lower energy consumption. MPPAs are often used
in low-latency applications, especially for stream handling, such as video and image processing,
cryptography, and signal processing.

They can usually be programed with standard languages such as C and C++, in order to
reuse source code. However, it is still a considerable investment because work is required to
parallelize algorithms at such a scale. It is worth mentioning that not all algorithms are suited
for an execution on this hardware, because they need to be massively parallelizable.

The company Kalray has designed a MPPA that holds 256 cores, and Adapteva produces a
version with 1024 processing units. One of the main selling point of manufacturers is to provide
an abundance of execution cores that are more �exible and easier to program than GPUs.

RT n° 0490

6 Fontaine & Morel & Gonnord

1.5 Parallelization techniques

There is a variety of techniques used to parallelize algorithms, and the following presents the most
common ones. Some of them require the programmer to explicitly create parallelism (Threads,
Message Passing, OpenMP), some require a change of paradigm (Data Flow), and some oth-
ers rely on static analysis of programs (Polyhedral model), without forcing the programmer to
explicitly handle parallelism or to signi�cantly alter the source code.

Several of the following techniques may be used at the same time, when, for example, pro-
gramming for execution on a cluster. Message Passing can be used for communication between
the nodes of the cluster, and Threads can be used to parallelize the computations of the nodes.

1.5.1 Programming models

1. Threads

A thread contains a sequential program that can be executed and scheduled independently
by the operating system. A process can create threads, which are able to communicate
through shared memory, and can be used to achieve parallelism.

When parallelizing non-trivial algorithms, communication is often needed, and it can be
achieved with shared variables. In order to prevent concurrent accesses from breaking
consistency in the program's memory, synchronization mechanisms are needed. These
mechanisms are not trivial to use; when not used properly, the programs can su�er from
race conditions (i.e. have a non-deterministic behavior). The programs usually have to
be altered signi�cantly to get performance improvements, and by doing so, their ease of
maintenance decreases.

OpenMP is a tool that adds a layer of abstraction above the threads, and allows the
programmer to parallelize programs with only a few compiler directives. Both data and
task parallelism can be achieved, through for loops and the de�nition of independent tasks.
This abstraction allows parallelization and performance improvements without signi�cantly
modifying the source code, which is positive for development costs and maintenance.

2. Message Passing

Message passing is a standard for communication between di�erent processes, which can
be used both in shared memory and distributed memory contexts. This paradigm is widely
used to develop large scale parallel applications, even though its programming costs are still
relatively high, because the source code must be transformed radically to be parallelized.

3. Data Flow Programming

The Data Flow programming paradigm allows the programmer to specify the �ow of data
of programs instead of the �ow of instructions, as it is usually done in most imperative
programming languages.

This programming model is therefore inherently parallel and allows the computation of
several tasks at the same time, without having to use low-level synchronization mechanisms.

The variety of programs that can be expressed in this paradigm is not as important as in
imperative programming with threads, but the constraints allow the compiler to do more
of the work, thus making programs more portable and easier to maintain.

Inria

Data�ow & Polyhedral Optimizations 7

1.5.2 Automatic parallelization

The Polyhedral Model is an approach for automatic program parallelization, which allows to
parallelize programs without any e�ort required from the programmer.

It is a compiler optimization based on integer linear programming and parametric linear
algebra. This mathematical approach provides an abstraction to represent nested for-loops

and their dependencies. This representation can be used to change the order of execution in
order to parallelize and improve data locality, without altering the output of the program.

Some compilers, such as LLVM and GCC are using this approach for optimization and
automatic parallelization. Some external tools based on the Polyhedral Model are also available.
Pluto is one of these optimizers, and works at the source code level, by taking lightly annotated
sequential C code and outputting parallelized and optimized C code. The annotations only
specify the parts of the program (i.e. the loop nests) to be processed.

1.6 Aim of the Project

In this project, two seemingly promising parallelization techniques are combined. On the one
hand, automatic for loop optimization and parallelization through the polyhedral model.
On the other hand, data �ow programming paradigm, with the SigmaC programming lan-
guage.

Since SigmaC is based on the C programming language, source-to-source polyhedral optimiz-
ers such as Pluto can be used to further optimize and parallelize SigmaC source code.

At �rst, the sections of code to optimize will be chosen manually, and the performance will
be evaluated. The performance improvements will be evaluated, on Kalray's MPPA, if possible.
If this proves to be bene�cial, such a tool could be integrated to the SigmaC toolchain in order to
bene�t from both the parallelism from the Data Flow paradigm, but also from data parallelism
found in loop nests.

2 Background

2.1 Data Flow Programming

2.1.1 Motivations

The data �ow paradigm has been designed to focus on data and to make its �ow explicit. It
consists of a directed graph of agents, which perform computations on streams of data. The
dependencies are therefore explicit, and an agent is executed when all of its dependencies are
available. Each agent has an internal state and is independent from the global state of the
application.

This paradigm allows to avoid the need of explicit synchronization, which is error-prone and
hard to debug. It also provides better encapsulation of the state of the program's components
and provides a higher abstraction level, compared to threads or message passing which can be
tedious to implement and maintain.

Data Flow Programming allows the programmer to focus on the computations to do and
their logical order instead of the scheduling of the parallel execution itself.

2.1.2 Principles

The data �ow paradigm allows the programmer to create agents, which are autonomous enti-
ties. They are linked to other agents through queues, these queues being their only means of

RT n° 0490

8 Fontaine & Morel & Gonnord

communication. The agents depend only on their internal state, and their inputs from other
agents. They are independent of the global state of the application. They can be considered as
black boxes, only connected to other agents by a set of well-de�ned inputs and outputs. Since
memory sharing is restricted to queues, a better encapsulation level is achieved, and it is easier
to reason about and maintain the programs.

The programmer creates a directed graph, where the nodes are the agents and the edges
the one-way queues between them. Since communication and dependencies are explicit, the
programmer does not need to handle synchronization manually. An agent starts its operations
as soon as its dependencies are satis�ed. This model is therefore inherently parallel.

The program is expressed at a higher level of abstraction and it allows the programmer to
make a generic program that a compiler will map as e�ciently as possible onto any architecture.
Consequently, the development and maintenance costs are hopefully lower than those for a speci�c
implementation using lower-level mechanisms such as threads, for example.

2.1.3 Types of data �ow paradigms

Several variations of this paradigm are available. Static Data Flow is more restrictive, but
allows more compile-time analysis and optimizations, and o�ers more guarantees. Dynamic

Data Flow, on the other hand, relaxes some constraints, which increases the expressiveness
of the languages, but prevents some compiler optimizations and allows issues to appear, such
as deadlocks and bu�er over�ows. Cyclo-Static Data Flow lies in the middle by combining
features from both sides.

1. Static Data Flow

In static data �ow, there is an important constraint: at compile-time, the number of inputs
and outputs, consumed and produced by an agent must be known and have to be constant.

This allows the compiler to infer useful information for scheduling, such as the size of the
queues in order to avoid deadlocks. This also ensures that a given program will be able to
run with a bounded memory usage.

2. Cyclo-Static Data Flow

As in Static Data Flow, the number of tokens produced and consumed by an agent must
be known at compile-time. But the agent can specify a sequence of behaviors and repeat it
periodically. This allows more complex behaviors than Static Data �ow while still providing
some constraints to the compiler.

The SigmaC programming language belongs to this paradigm [?].

3. Dynamic Data Flow

In this paradigm, the constraint of the �xed number of tokens produced and consumed
is relaxed. This allows to express more programs, such as compression algorithms that
can produce or consume arbitrary numbers of tokens. On the other hand, it allows to
implement programs that may contain deadlocks or that may over�ow the communication
queues.

2.1.4 SigmaC

1. Introduction

Inria

Data�ow & Polyhedral Optimizations 9

SigmaC is a Cyclo-Static Data Flow programming language developed by a French company
called Kalray, based in Grenoble, France. It is built upon the C programming language, in
order to enable partial code reuse between C code and SigmaC [?].

Kalray provides a SigmaC compiler, which is able to compile programs for several archi-
tectures, including its Massively Parallel Processor Array (MPPA). It allows the user to
provide information about the target architecture such as the number of processors, the
memory hierarchy, and the topology, in order for the compiler to map and schedule the
agents on the execution cores as e�ciently as possible.

2. Simple example

An agent is a processing unit that reads data from a queue, processes them, and writes
back data to another queue. In the source code, it is de�ned with the keyword agent. It
can accept compile-time parameters, and de�ne variables as well as functions (in the same
way as objects in an object-oriented language).

A sample agent is de�ned with the code listed in listing 5. This agent has two parameters
(width and height), de�ning the size of the matrix it handles. These parameters must be
known at compile-time.

Listing 1: Declaring an agent

1 agent t ranspose (i n t width , i n t he ight)

It then speci�es an interface, which de�nes the communication behavior of the agent. First,
a list of input and output ports is declared, respectively with the keyword in and out. Each
of these ports have a data type, speci�ed with a template-like notation, and a user-de�ned
name. It is important to note that an agent might have 0 or several input ports, and 0 or
several output ports.

Listing 2: Declaring the agent's ports.

1 i n t e r f a c e
{

3 in<f l o a t > input ;
out<f l o a t > output ;

5 [. . .]
}

Then, the spec block outlines the behavior of the agent, on each iteration. For each channel,
the number of tokens, either consumed or produced is speci�ed. Here, the port called input
will deal with width*height tokens (/�oat/s, in this case). The port called output will have
the same behavior.

Listing 3: Declaring the agent's speci�cation.

i n t e r f a c e
2 {

[. . .]
4 spec { input [width* he ight] ; output [width* he ight] } ;

}

The function start() de�ned inside the agent is its entry point. The C function notation
is extended, with an optional exchange keyword, followed by more parameters. The types
of these parameters must be the names of the ports previously de�ned. The name of the
parameter is de�ned by the user, and the array size must match the one de�ned in spec,
inside the interface block.

RT n° 0490

10 Fontaine & Morel & Gonnord

Listing 4: Declaring the start function.

1 void s t a r t () exchange (input in [width* he ight] , output out [width* he ight
])

The exchange keyword makes a function able to use ports of the agent, for consuming
data, producing data, or both. The ports that a given function can use are speci�ed with
a parameter-like notation, after the exchange keyword.

N.B.: The scheduling pass during compilation will assume that the speci�cation matches
the real behavior of the agent. Therefore, it is the programmer's responsibility to make
sure that it does.

Listing 5: Complete example of a parameterized agent with one input channel and one
output channel.

1

agent t ranspose (i n t width , i n t he ight)
3 {

i n t e r f a c e
5 {

in<f l o a t > input ;
7 out<f l o a t > output ;

spec { input [width* he ight] ; output [width* he ight] } ;
9 }

void s t a r t () exchange (input in [width* he ight] , output out [width*
he ight]) {

11 f o r (i n t i = 0 ; i<he ight ; i++){
f o r (i n t j = 0 ; j<width ; j++){

13 out [j * he ight+i]= in [i *width+j] ;
}

15 }
}

17 }

The entry point of a SigmaC application is the subgraph named root, which is de�ned in
listing 6. Subgraphs are used to encapsulate a composition of agents, to facilitate code-
reuse by only exposing a well-de�ned interface, composed of input and output ports. The
interface of the root subgraph is empty, and its map section instantiates agents with the
keyword new (similarly to Object Oriented Programming), and connects their ports.

In this example, three agents are instantiated: two agents for I/O, reading from and writing
to memory, and one for transposing the data.

Each input (respectively output) port must be connected to one and only one output (resp.
input) port in order for the program to compile. The calls to the function connect are the
ones creating the links in the data �ow graph.

N.B.: When connecting ports, the compiler only checks for coherency in the size of the type,
not for actual type-compatibility. Therefore, an output port of type int can be connected
to an input port of type �oat without warning, if sizeof(int)==sizeof(�oat).

Listing 6: Simple example of a subgraph instianciating and connecting the agents.

2 subgraph root ()
{

Inria

Data�ow & Polyhedral Optimizations 11

4 i n t e r f a c e {}

6 map
{

8 const i n t he ight = 10 ;
const i n t width = 20 ;

10 agent s r = new StreamReader (0 x001 , he ight *width , he ight *width) ;
agent t = new transpose (width , he ight) ;

12 agent sw = new StreamWriter (0 x f f f , he ight *width , he ight *width) ;
connect (s r . output , t . input) ;

14 connect (t . output , sw . input) ;
}

16 }

This example does not bene�t from all of SigmaC's abilities because the speci�cation of
the agent is trivial; it has a static behavior, always consuming and producing the same
amount of data.

3. Advanced example

Listing 8 represents an agent with a more advanced behavior, bene�ting from the Cyclo-
Static Data Flow abilities of SigmaC. Its purpose is to multiply two vectors, value by value.
Combined with other agents organized in a bidimensional grid, this agent communicates
with its neighbors by receiving data, operating on it, and forwarding it, to implement a
matrix-matrix multiplication. Once an agent has repeated this step enough times, it can
output the result, which is a single value of the resulting matrix. This is not how it would
be done in reality, but it is a good example for demonstrating SigmaC's syntax.

Here, the spec section de�nes the behavior of the agent as a circular state machine. This
state machine is de�ned by a sequence of list of ports, inside curly brackets and separated
by semicolons. A list of ports corresponds to a state, called a transition in SigmaC. The
number of tokens produced or consumed on a port can be de�ned between square brackets,
otherwise the default value is one. A given transition can be repeated several times by
specifying the number of repetitions before it, between parentheses.

Listing 7: Spec section de�ning a circular state machine.

1 spec {(SIDE) { iNorth ; iWest ; oSouth ; oEast } ;{ r e s }} ;

In this example, the �rst transition will be repeated SIDE times ((SIDE){iNorth; iWest;
oSouth; oEast}), by consuming one token on iNorth and iWest, and producing one token
on oSouth and oEast. The other transition will produce one output token on the port res
({res}), and will go back to the beginning. One iteration will have been completed.

This behavior must be coherent with the one executed in the start function. Each exchange
function called must match this speci�cation in order for the SigmaC compiler to schedule
the program as well as possible.

In this case, the speci�cation is correct, because the start function calls the function com-
pute() SIDE times, and then the function result(). This is correct because the exchange
parameters of compute matches the �rst transition, and the one of result matches the
second one.

Listing 8: Example of an agent with an advanced behavior. It has a cyclic speci�cation
and two exchange functions.

1 agent Mu l t i p l i c a t o r ()

RT n° 0490

12 Fontaine & Morel & Gonnord

{
3 i n t e r f a c e

{
5 in<int> iNorth ;

in<int> iWest ;
7 out<int> oSouth ;

out<int> oEast ;
9 out<int> r e s ;

spec {(SIDE) { iNorth ; iWest ; oSouth ; oEast } ;{ r e s }} ;
11 }

i n t tmp_result ;
13

void compute () exchange (iNorth n , iWest w, oSouth s , oEast e) {
15 s = n ;

e = w;
17 tmp_result+=n*w;

}
19

void r e s u l t () exchange (r e s r) {
21 r = tmp_result ;

}
23

void s t a r t () {
25 tmp_result = 0 ;

f o r (i n t i = 0 ; i<SIDE ; i++){
27 compute () ;

}
29 r e s u l t () ;

}
31 }

In this case, a SigmaC feature called Implicit Copy could have been used: The exchange
function compute() copies the values of the input ports to the output ports, which can be
automated by SigmaC using the following ! syntax:

. . .
2 spec {(SIDE) { iNorth ! oSouth ; iWest ! oEast } ;{ r e s }} ;

. . .
4 void compute () exchange (iNorth ! oSouth n , iWest ! oEast w) {

tmp_result+=n*w;
6 }

. . .

These values can then be modi�ed and can reduce the syntactic complexity of the function
to implement. However, according to the SigmaC Language Reference [?], this feature is
implemented as a copy, and not as pointer sharing yet. It is therefore syntactic sugar and
does not provide a performance increase.

4. Generic Agents

SigmaC provides the following generic agents for handling data �ow:

� Split: Splits a stream of data in packets of a �xed size, in a round-robin way.

� Join: Merges several streams of data into one, in a round-robin way, for a �xed packet
size.

Inria

Data�ow & Polyhedral Optimizations 13

� Dup: Duplicates a data stream, particularly useful for task parallelism (two di�erent
tasks performed on the same data).

� Sink: Discards the content of a data stream. This agent is useful because every port
must be connected.

� StreamReader: Reads a data stream of a given size from a memory address.

� StreamWriter: Writes a data stream of a given size to a memory address.

2.2 Polyhedral Model

2.2.1 Introduction

As seen in section 1.5.2, the Polyhedral Model is a method for automatically optimizing and
parallelizing sequential programs through static analysis [?].

Its scope is limited to speci�c algorithmic patterns, which are nested for-loops. Inside these
loops, the array accesses and the loop bounds must be a�ne functions of the loop indices, and
they may contain conditional statements.

The polyhedral model represents the program as a parametric polyhedron, which is an ab-
straction that allows a reordering of the loop iterations. This reordering is done to enable as
much parallelism as possible, while optimizing the locality of memory accesses and conserving
the data-dependencies in order to guarantee the same output.

The process of optimizing the locality of memory accesses is called tiling, and it is achieved
by dividing for loops into tiles that can �t in the processors cache, as shown in �gure 3.

Figure 3: Represents the iteration space (circles) of two nested for-loops (indexes i and j). On
the left, the original order of execution is represented. Assuming that there are no dependencies
between iterations, they can be executed in the order shown on the left, which is tiled (squares).
Memory locality is then improved.

This process can also be illustrated with the simple example of matrix transposition, listing
9 representing the initial code and listing 10 representing the tiled code.

Listing 9: Initial code for matrix transposition

1 i n t n = 100 ;
i n t i , j , a [n] [n] , t [n] [n] ;

RT n° 0490

14 Fontaine & Morel & Gonnord

3 f o r (i = 0 ; i < n ; i++) {
f o r (j = 0 ; j < n ; j++) {

5 t [i] [j] = a [j] [i] ;
}

7 }

Listing 10: Tiled code with a tile size of 2*2.

1 i n t n = 100 ;
i n t i , j , x , y , a [n] [n] , t [n] [n] ;

3

f o r (i = 0 ; i < n ; i += 2) {
5 f o r (j = 0 ; j < n ; j += 2) {

f o r (x = i ; x < min (i + 2 , n) ; x++) {
7 f o r (y = j ; y < min (j + 2 , n) ; y++) {

t [x] [y] = a [y] [x] ;
9 }

}
11 }

}

2.2.2 Pluto

Pluto 1 [?] is a loop nest optimizer designed for the C programming language. It is based on
the polyhedral framework and can optimize loop nests through tiling and parallelization with
OpenMP directives.

When tiling, the size of a tile can be speci�ed to Pluto in order to target any speci�c memory
hierarchy. Pluto also allows performance gains by parallelizing for loops with OpenMP, when
the dependencies in the source code allow it.

We chose Pluto because it is a source-to-source tool, taking C source code as input and
outputting C. This is convenient in order to feed the optimized C code back to the SigmaC
compiler, as explained more in depth in Section 3.2.

For example, the following code performs a matrix multiplication, assuming that the array
C, containing the result, is initialized to 0. The area to be optimized by Pluto is delimited by
the directives #pragma scop and #pragma endscop. The array C is assumed to be initialized
for clarity: Pluto could have handled this initialization inside the �rst loop, but it would have
produced a longer code, harder to understand.

#pragma scop
2 f o r (i n t i = 0 ; i<SIZE ; i++){

f o r (i n t j = 0 ; j<SIZE ; j++){
4 f o r (i n t k = 0 ; k<SIZE ; k++){

C[i] [j]+=A[i] [k]*B[k] [j] ;
6 }

}
8 }

#pragma endscop

The following is the previous code, transformed by Pluto, for parallelization and tiling (com-
ments and declarations omitted):

1http://pluto-compiler.sourceforge.net/

Inria

http://pluto-compiler.sourceforge.net/

Data�ow & Polyhedral Optimizations 15

1 lbp=0;
ubp=f l o o r d (SIZE−1 ,32) ;

3 #pragma omp p a r a l l e l f o r p r i va t e (lbv , ubv , t2 , t3 , t4 , t5 , t6)
f o r (t1=lbp ; t1<=ubp ; t1++) {

5 f o r (t2=0; t2<=f l o o r d (SIZE−1 ,32) ; t2++) {
f o r (t3=0; t3<=f l o o r d (SIZE−1 ,32) ; t3++) {

7 f o r (t4=32* t1 ; t4<=min (SIZE−1 ,32* t1+31) ; t4++) {
f o r (t5=32* t3 ; t5<=min (SIZE−1 ,32* t3+31) ; t5++) {

9 lbv=32* t2 ;
ubv=min (SIZE−1 ,32* t2+31) ;

11 #pragma ivdep
#pragma vec to r always

13 f o r (t6=lbv ; t6<=ubv ; t6++) {
C[t4] [t6]+=A[t4] [t5]*B[t5] [t6] ; ;

15 }
}

17 }
}

19 }
}

The constant 32 appears in the generated code because the tile size used was 32*32*32. Pluto
allows to use customized tile sizes, which should be chosen according to the size of the cache and
the amount of parallelism needed.

3 Experiments

3.1 Introduction

It is important to note that the SigmaC compiler does not exploit data parallelism inside an
agent's source code. This seems to be a missed opportunity because there exist tools such as
Pluto, based on the polyhedral model, that allow automatic parallelization and optimization of
sequential source code.

The SigmaC compiler allows to create pipeline parallelism as well as task parallelism auto-
matically. SigmaC could also bring data parallelism and optimize nested for-loops in the code of
individual agents, by integrating a tool like Pluto in the toolchain.

The purpose of these experiments is therefore to combine automatic polyhedral optimization
(with Pluto) with a data �ow compilation (with the SigmaC programming language), with the
goal of, hopefully, increasing even more the level of parallelism achieved.

Three sample programs have been implemented in order to combine Pluto and SigmaC.
The �rst one is the classical matrix-matrix multiplication. The second one is the Deriche Edge
Detector, and the last one is an Arti�cial Neural Network.

Table 1 presents a summary of the di�erent types of parallelism found in the programs
implemented.

Table 1: Summary of the types of parallelism used in the experiments
Algorithm \ Type of parallelism Data Task Pipeline
Matrix - Matrix Multiplication X X

Deriche X X X
Arti�cial Neural Network X X

RT n° 0490

16 Fontaine & Morel & Gonnord

3.2 Pluto and SigmaC

As seen in section 2.2.2, Pluto only processes the source code located between the directives
#pragma scop and #pragma endscop. Therefore, providing that the section contains only C
code and no SigmaC keywords, SigmaC �les can be optimized by Pluto. This is often the case
because SigmaC keywords are found in agent and function de�nitions, which are distinct from
the loops nests to be optimized.

However, SigmaC agents tend to use linearized array because their communication is achieved
by queues (FIFOs). Pluto cannot optimize loop nests accessing to linearized array because it
cannot infer the size of their dimensions. This is a well-known problem in compiler optimization
because, usually, the compiler's intermediate representations are based on linearized arrays, such
as Polly, with LLVM [?] .

The following sections present two solutions that can enable Pluto optimization of SigmaC
loop nests over linearized arrays.

3.2.1 Temporary transformation

This transformation is manual and consists in modifying temporarily the source code in order
to 'delinearize' the array accesses. The source code can then be optimized by Pluto, and Pluto's
output is linearized back by the developer. Figure 4 illustrates this process.

Figure 4: Process of optimizing loop nests in SigmaC code, through temporary modi�cations
of the source code.

This transformation cannot be automated easily in the compilation toolchain and can become
tedious to maintain manually.

Example:

Inria

Data�ow & Polyhedral Optimizations 17

� Initial code:

agent MyAgent ()
2 {

i n t e r f a c e
4 {

in<unsigned char> input ;
6 out<unsigned char> output ;

spec { input [WIDTH*HEIGHT] ; output [WIDTH*HEIGHT] } ;
8 }

10 void
s t a r t (void) exchange (input in [WIDTH*HEIGHT] , output out [WIDTH*HEIGHT

])
12 {

f o r (i n t i = 0 ; i < HEIGHT; i++){
14 f o r (i n t j = 0 ; j < WIDTH; j++){

out [i *WIDTH+j] = myFunction (in [i *WIDTH+j]) ;
16 }

}
18 }

}

� Delinearized code. It can be optimized by Pluto, but not compiled by the SigmaC Compiler.

f o r (i n t i = 0 ; i < HEIGHT; i++){
2 f o r (i n t j = 0 ; j < WIDTH; j++){

out [i] [j] = myFunction (in [i] [j]) ;
4 }

}

� Optimized by Pluto (comments omitted, polycc �le.sc �tile �parallel):

1 /* Inc lude s and d e c l a r a t i o n s omitted f o r space */
i f ((HEIGHT >= 1) && (WIDTH >= 1)) {

3 lbp=0;
ubp=f l o o r d (HEIGHT−1 ,32) ;

5 #pragma omp p a r a l l e l f o r p r i va t e (lbv , ubv , t2 , t3 , t4)
f o r (t1=lbp ; t1<=ubp ; t1++) {

7 f o r (t2=0; t2<=f l o o r d (WIDTH−1 ,32) ; t2++) {
f o r (t3=32* t1 ; t3<=min (HEIGHT−1 ,32* t1+31) ; t3++) {

9 lbv=32* t2 ;
ubv=min (WIDTH−1 ,32* t2+31) ;

11 #pragma ivdep
#pragma vec to r always

13 f o r (t4=lbv ; t4<=ubv ; t4++) {
out [t3] [t4] = myFunction (in [t3] [t4]) ; ;

15 }
}

17 }
}

19 }

RT n° 0490

18 Fontaine & Morel & Gonnord

� Pluto code, linearized manually. This code compiles with the SigmaC Compiler:

// [. . .]
2 i f ((HEIGHT >= 1) && (WIDTH >= 1)) {

lbp=0;
4 ubp=f l o o r d (HEIGHT−1 ,32) ;

#pragma omp p a r a l l e l f o r p r i va t e (lbv , ubv , t2 , t3 , t4)
6 f o r (t1=lbp ; t1<=ubp ; t1++) {

f o r (t2=0; t2<=f l o o r d (WIDTH−1 ,32) ; t2++) {
8 f o r (t3=32* t1 ; t3<=min (HEIGHT−1 ,32* t1+31) ; t3++) {

lbv=32* t2 ;
10 ubv=min (WIDTH−1 ,32* t2+31) ;

#pragma ivdep
12 #pragma vec to r always

f o r (t4=lbv ; t4<=ubv ; t4++) {
14 out [t3 *WIDTH+t4] = myFunction (in [t3 *WIDTH+t4]) ; ;

}
16 }

}
18 }

}

3.2.2 Using a port array

This method permanently modi�es the source code in order to be able to use the double bracket
syntax for array accesses. In order to achieve this, the input must be split, and the output must
be joined. The performance might su�er as a Split agent must be created and several links must
be maintained as well. In this case, each port of the array receives a row of a matrix.

Note: Because this is a 'trick' from the SigmaC data �ow paradigm, this method can only
add one dimension to the array used. Therefore, it generally does not work for linearized arrays
with a dimension greater than or equal to 3.

Example:

� Initial code:

1 agent MyAgent ()
{

3 i n t e r f a c e
{

5 in<unsigned char> input ;
out<unsigned char> output ;

7

spec { input [WIDTH*HEIGHT] ; output [WIDTH*HEIGHT] } ;
9 }

11 void
s t a r t (void) exchange (input in [WIDTH*HEIGHT] , output out [WIDTH*HEIGHT

])
13 {

f o r (i n t i = 0 ; i < HEIGHT; i++){
15 f o r (i n t j = 0 ; j < WIDTH; j++){

out [i *WIDTH+j] = myFunction (in [i *WIDTH+j]) ;

Inria

Data�ow & Polyhedral Optimizations 19

17 }
}

19 }
}

21

subgraph root ()
23 {

i n t e r f a c e
25 {

spec {} ;
27 }

29 map
{

31 agent s r = new StreamReader<unsigned char> (ADDRIN, HEIGHT * WIDTH,
WIDTH) ;

agent sw = new StreamWriter<unsigned char> (ADDROUT, HEIGHT * WIDTH,
WIDTH) ;

33 agent ma = new MyAgent () ;
connect (s r . output , ma. input) ;

35 connect (ma. output , sw . input) ;
}

37 }

� Updated to use a port array: the source code is usable by both Pluto and the SigmaC
compiler.

1 agent MyAgent ()
{

3 i n t e r f a c e
{

5 in<unsigned char> input [HEIGHT] ;
out<unsigned char> output [HEIGHT] ;

7

spec { input [] [WIDTH] ; output [] [WIDTH] } ;
9 }

11 void
s t a r t (void) exchange (input [] in [WIDTH] , output [] out [WIDTH])

13 {
f o r (i n t i = 0 ; i < HEIGHT; i++){

15 f o r (i n t j = 0 ; j < WIDTH; j++){
out [i] [j] = myFunction (in [i] [j]) ;

17 }
}

19 }
}

21

subgraph root ()
23 {

i n t e r f a c e
25 {

spec {} ;

RT n° 0490

20 Fontaine & Morel & Gonnord

27 }

29 map
{

31 agent s r = new StreamReader<unsigned char> (ADDRIN, HEIGHT * WIDTH,
WIDTH) ;

agent sw = new StreamWriter<unsigned char> (ADDROUT, HEIGHT * WIDTH,
WIDTH) ;

33 agent s = new Sp l i t <unsigned char>(HEIGHT, WIDTH) ;
agent ma = new MyAgent () ;

35 agent j = new Join<unsigned char>(HEIGHT, WIDTH) ;
connect (s r . output , s . input) ;

37 f o r (i n t i = 0 ; i<HEIGHT; i++){
connect (s . output [i] , ma. input [i]) ;

39 connect (ma. output [i] , j . input [i]) ;
}

41 connect (j . output , sw . input) ;
}

43 }

3.3 Experiment environments

This section describes the contexts of execution of the experiments. Two radically di�erent
environments have been used in order to evaluate the approach at di�erent scales.

In both cases, the programs were run through the SigmaC runtime (using threads and the
fast mode), which may cause a performance overhead.

3.3.1 Desktop

The �rst experiment machine is a laptop with an Intel Core i5-5200U processor (2.2 GHz),
providing 2 cores and 4 threads.

3.3.2 Cluster

The second experiment machine is from the Grid5000 platform 2. It is a Dell PowerEdge R430,
with two Intel Xeon E5-2620 v4 CPUs (2.10GHz), for a total of 16 cores and 32 threads.

3.4 Matrix-Matrix Multiplication

3.4.1 Introduction

The following describes the implementation of the multiplication operation, for two matrices, in
SigmaC. It contains a loop nest that has been optimized and parallelized by Pluto.

This program computes the dot product C←A·B, where A, B and C are square matrices, of
size N*N. This operation can be described in the following way:

1 i n t N;
i n t A[N] [N] , B[N] [N] , C[N] [N] ;

3 f o r (i n t i = 0 ; i<N; i++){
f o r (i n t j = 0 ; j<N; j++){

5 C[i] [j]=0;

2https://www.grid5000.fr/

Inria

https://www.grid5000.fr/

Data�ow & Polyhedral Optimizations 21

f o r (i n t k = 0 ; k<N; k++){
7 C[i] [j]+=A[i] [k]*B[k] [j] ;

}
9 }

}

3.4.2 Approach

The agents are arranged in a logical 2D grid. Each agent computes a part of the result matrix
(a block). In order to do so, it must have a row of blocks from the matrix A and a row of blocks
from the matrix B. This can be illustrated by the �gures 5 and 6.

Figure 5: In order to compute the value of the cell C33, the third row of matrix A and the third
column of matrix B are needed.

Figure 6: In order to compute the values of the block containing the cells C33, C34, C43, and
C44, the third and fourth rows of A are needed as well as the third and fourth columns of B.

Let:

� N be the size of the matrix (N*N elements in total)

� P be the number of multiplying agents

Assumptions:

� Operating on square matrices of 32 bits signed integers.

� P = n2, n ∈ N (i.e. the agents can be organized in a 2D grid).

� N is divisible by
√
P (i.e. each block has the same size, which is an integer).

RT n° 0490

22 Fontaine & Morel & Gonnord

3.4.3 Overview

1. Create a square matrix of agents of size
√
P ∗
√
P

2. Partition A and B into P blocks each

3. Each agent receives a row-wise stream of blocks from matrix A, and a column-wise stream
of blocks from matrix B.

4. Each agent computes a block of the product with a for-loop nest of depth 3, accumulating
a partial result.

5. Each agent repeats
√
P times the steps 3 and 4, accumulating the results in a temporary

matrix.

6. The results of every agent are joined, and put back in a square matrix format instead of a
stream of blocks.

3.4.4 Parallelism

In this implementation, parallelism is achieved at three di�erent levels. From the �ner granularity
to the coarser:

� Data parallelism: For-loop parallelization inside an agent's local matrix multiplication.

� Data parallelism: The resulting matrix is divided into independent blocks that are com-
puted concurrently.

� Pipeline parallelism: The program can process a stream of matrices to be multiplied to-
gether (e.g. A1*B1, A2*B2, . . . AN*BN).

3.4.5 Topology

The topology of the data �ow graph, when using 9 agents, or a 3*3 agent grid, is shown in �gures
7 and 8.

Figure 7: Agents, subgraphs, and data �ow in this implementation

1. Agents

� MultiplyAccumulate: Handles the local multiplication of a block of the resulting ma-
trix.

� MatrixToHorizontalBlocks: Splits the matrix A into blocks (in a horizontal way).

Inria

Data�ow & Polyhedral Optimizations 23

Figure 8: Agents and data �ow inside the Grid subgraph.

� HorizontalBlocksToMatrix: Joins blocks to recreate matrix C from blocks.

2. Subgraphs

� Grid:

� Contains a 2D-array of MultiplyAccumulate agents.

� Inputs: Two arrays of streams of blocks: One array for each matrix, one stream
for each row/column of agents.

� Outputs: A stream of blocks representing the result matrix.

3.4.6 Choices

Several approaches have been studied for this implementation. The following presents these
approaches.

1. Systolic array

This approach assigns one agent to compute each element of the output matrix. This is not
an e�cient implementation, and it scales poorly (With a matrix size of 30*30, 900 agents
are created).

However, this approach is simple and interesting because of the communication patterns:
agents are arranged in a logical bidimensional grid and they receive information from their
neighbors, work on it, and then forward it.

It is a good starting point for implementing a similar approach, with each agent of the grid
working on a larger part of the matrix.

2. Systolic array - block-wise

RT n° 0490

24 Fontaine & Morel & Gonnord

This approach is similar to the previous one, each agent of the grid communicating with
its neighbors in order to obtain blocks of the matrices. However, every multiplying agent
processes a submatrix instead of processing only one value.

It has been studied because pipeline parallelism appears clearly with this approach. How-
ever, it does not exploit completely data parallelism, as each sumbatrix of the result can
be computed concurrently because of the lack of data dependency.

3. Block-wise

Another strategy fully exploits data parallelism by computing each block of the result
concurrently. This increases the memory complexity, because at a given time, each agent
stores a row and a column of blocks (O(P ∗ N ∗ N)), instead of just storing two blocks
(O(N ∗N)).

This strategy has been chosen because it is simpler to implement and it is the one that
bene�ts the most from data parallelism. It is going to be explained in detail in the following
sections.

3.4.7 Detailed implementation

1. Input

� Read the matrices A and B with StreamReaders, stored in a row-major order, and
coded as 4 bytes signed integers.

2. Dividing the work into blocks

� Split the matrices A and B in streams of blocks (i.e. square sub-matrices).

In the following example, the matrix A of size (4,4) can be split in four blocks (matrix B)
in the following way:

Table 2: Initial Matrix A
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

Table 3: Grid of blocks
B11 B12
B21 B22

Table 4: Elements contained in the block B12
A13 A14
A23 A24

In this case, the matrix A (from the product C←A·B) needs to be converted to a stream
of blocks (row-wise). It needs to output the following sequence of blocks:

B11, B12, B21, B22.

Inria

Data�ow & Polyhedral Optimizations 25

The agent MatrixToHorizontalBlocks does this operation. The result is then Split, in order
to get one stream of block-columns for each block-row.

The matrix B is to be converted to a stream of blocks as well, but column-wise: The
expected order is the following:

B11, B21, B12, B22.

This operation is achieved with a simple Split agent.

The resulting streams are linked to Dup agents that duplicate them in order for each agent
of the multiplication array to get the data it needs.

3. Multiplication array

The multiplication grid is an array of MultiplyAccumulate agents.

Each agent behaves in the following way:

� Initialize the accumulator (matrix with the size of a block - i.e. N ∗N/P) to a zero
matrix.

� For each pair of blocks received (i.e.
√
P iterations):

� Consume two inputs (A block from matrix A and one from matrix B)

� The partial product is computed and stored by the agent.

i n t s i z e = N*N/(P*P) ;
2 f o r (i n t i = 0 ; i<s i z e ; i++){

f o r (i n t j = 0 ; j<s i z e ; j++){
4 f o r (i n t k = 0 ; k<s i z e ; k++){

C[i] [j]+=A[i] [k]*B[k] [j] ;
6 }

}
8 }

� When the result is complete, the agent outputs its part of the result.

N.B.: This behavior is achieved by exploiting the Cyclo Static abilities of SigmaC. On each
iteration, the agent does not necessarily have the same behavior. They cycle through their
speci�cation, with two distinct phases:

� Taking input and accumulating a partial result (repeated
√
P times)

� Producing the output.

4. Result-gathering phase

The result output of each MultiplyAccumulate agent is linked to a Join, which takes P
inputs of the size of the block. Since Join consumes its inputs in a round-robin way (i.e.
in a cyclic-sequential order, from the �rst port to the last), the order of the blocks will be
maintained.

This stream of blocks must be converted back to a matrix, which is exactly the inverse
operation of the one done when converting matrix A to blocks previously. Done by the
agent HorizontalBlocksToMatrix and written back to memory with a StreamWriter.

RT n° 0490

26 Fontaine & Morel & Gonnord

3.4.8 Side tools

1. Data generation

Using Python3 and the Numpy package:

� Initialize a seeded random number generator, to get repeatable results.

� Generate two random square matrices, A and B.

� Multiply them to get the expected output matrix E.

� Write each of these matrices to binary �les, each element coded on 4 bytes signed
integers. The �le does not contain other data than the matrix's values.

� Create a parameter �le for the SigmaC toolchain: It speci�es the addresses to write
to and read from as well as the size of the matrices. This �le is a make�le containing
several de�nitions of variables, which is included in the main make�le. The addresses
have been parameterized in order to allow an arbitrary increase of matrix sizes without
overlapping memory sections.

2. Output checking

Using the command di� in order to compare the result �le and the expected result:

d i f f C E

3.4.9 Results

This implementation, bene�ts from a block-wise partitioning on the side of the data �ow, and
inside these blocks, from tiling and parallelizing for loops.

This experiment consists of multiplying two matrices of size 1000*1000, by a grid of 4 agents
(2*2).

Table 5 shows a slight performance increase when tiling on the cluster, and better improve-
ments when parallelizing as well.

Concerning the Desktop environment, table 6 demonstrates a notable performance increase
when tiling, and a drop when parallelizing. This is due to the fact that 4 agents were doing dense
computations, and no more execution cores were available. The extra context-switching caused
a signi�cant overhead.

Table 5: Experiment run in the Cluster environment.
Implementation Pure Data Flow Tiling Tiling and Parallelizing
Runtime (s.) 3.8 2.9 1.1
Speedup - 1.3 3.45

Table 6: Experiment run in the Desktop environment.
Implementation Pure Data Flow Tiling Tiling and Parallelizing
Runtime (s.) 8.1 5.5 6.2
Speedup - 1.5 1.3

Inria

Data�ow & Polyhedral Optimizations 27

3.4.10 Further improvements

� Because this operation is common, the code could be encapsulated in a subgraph for reuse
in another project.

� In order to bene�t more from pipeline parallelism, a stream of matrices to be multiplied
together could be taken as an input.

� Make the program more generic by accepting non-square matrices and matrices with
�oating-point values.

3.5 Deriche edge detector

This is an optimal edge-detection algorithm for discrete bi-dimensional images. It has been
chosen because it is well suited for parallelization since in contains both independent tasks and
loop nests.

It is composed of 6 major steps. The result of each step is respectively called L1, L2, . . . , L6.

1. Horizontal pass, left to right computations on the image.

2. Horizontal pass, right to left computations on the image.

3. Computing the sum of L1 and L2.

4. Vertical pass, top to bottom computations on L3.

5. Vertical pass, bottom up computations on L3.

6. Adding the two previous results together, and applying a threshold.

Figure 9: Representation of the dependency graph in Deriche's algorithm.

This graph makes this algorithm quite easy to implement in Data �ow, because each step can
be written as an agent, and the links are explicit.

This algorithm can be implemented e�ciently by making agents working on a stream of
rows, computing only one row at a time. However, this eliminates the loop nests that can be
parallelized and optimized by Pluto.

Because the algorithm both needs to read the image vertically and horizontally, it needs to
be transposed. The subject of matrix transposition in SigmaC is treated in section 3.5.1.

RT n° 0490

28 Fontaine & Morel & Gonnord

Figure 10: Representation of the implemented data �ow graph

3.5.1 Transposing a matrix in SigmaC

Matrix transposition is an often-needed operation, and it can be achieved in several ways in
SigmaC.

It is a 'blocking' operation, because the whole matrix is needed to perform it. In Deriche's
algorithm, it represents a bottleneck for pipeline parallelism since the rest of the algorithm
operates on a stream of rows of the array.

1. With Split and Join agents

In SigmaC, a matrix transposition can be done with two agents, as shown in listing 11.

Listing 11: Subgraph of a matrix transposition using two agents Split and Join.

1 subgraph transpose (i n t width , i n t he ight)
{

3 i n t e r f a c e
{

5 in<f l o a t > input ;
out<f l o a t > output ;

7 spec { input [width* he ight] ; output [width* he ight] } ;
}

9 map
{

11 agent s p l i t = new Sp l i t <f l o a t > (width , 1) ;
agent j o i n = new Join<f l o a t > (width , he ight) ;

13 connect (input , s p l i t . input) ;

15 f o r (i n t i = 0 ; i<width ; i++)
{

17 connect (s p l i t . output [i] , j o i n . input [i]) ;
}

19 connect (j o i n . output , output) ;
}

21 }

This method splits the image on every pixel of each row, and joins them in columns.

In order to optimize performance with this approach, the Split agent can be replaced by a
FastSplit agent. It has the same behavior but works in a single transition, instead of width
transitions, in this case [?].

This method is relatively slow when working with large matrices because the number of
links created is linearly proportional to the width of the matrix to transpose.

2. With loop nests

Listing 12 shows an iterative approach, as it would be done in most imperative programming
languages:

Inria

Data�ow & Polyhedral Optimizations 29

Listing 12: Agent achieving a matrix transposition through a loop nest.

1

agent t ranspose (i n t width , i n t he ight)
3 {

i n t e r f a c e
5 {

in<f l o a t > input ;
7 out<f l o a t > output ;

spec { input [width* he ight] ; output [width* he ight] } ;
9 }

void s t a r t () exchange (input in [width* he ight] , output out [width*
he ight]) {

11 f o r (i n t i = 0 ; i<he ight ; i++){
f o r (i n t j = 0 ; j<width ; j++){

13 out [j * he ight+i]= in [i *width+j] ;
}

15 }
}

17 }

It has the advantage of being completed with only one agent, one input link and one output
link. Moreover, it makes nested for loops appear, which can be optimized and parallelized
by Pluto.

3.5.2 Results

In this implementation, several approaches have been used for matrix transposition, and their
performance is evaluated here, on an image of size 7786 ∗ 3000 (23MP).

It is important to note that, when using simple Split and Join agents, the experiment lasted
more than 5 minutes. These results are therefore omitted here.

The tendency of the results are similar in both contexts. Tables 7 and 8 show a notable
performance increase when tiling, and small improvements when parallelizing with Pluto as well.
These results also show that transposition achieved with FastSplit and Join does not scale well
on big matrices, compared to the loop nests.

Table 7: Experiment run in the Cluster environment.
Implementation Loop nest Tiling Tiling and Parallelizing FastSplit and Join
Runtime (s.) 2.8 1.7 1.5 30.5
Speedup - 1.6 1.9 0.1

Table 8: Experiment run in the Desktop environment.
Implementation Loop nest Tiling Tiling and Parallelizing FastSplit and Join
Runtime (s.) 2.8 2.5 2.4 34.1
Speedup - 1.1 1.2 0.1

3.5.3 Further Improvements

1. Merging agents

RT n° 0490

30 Fontaine & Morel & Gonnord

An optimization could be done in order to limit memory needs and remove an agent: One
of them is currently dedicated to casting the unsigned chars to doubles. It could be merged
with the two agents using these values, but there is a transposition agent between them,
operating on doubles.

Templates are deprecated in SigmaC [?], therefore it is not easy to achieve that without
duplicating code.

Performance would be increased because one agent doing little work is removed, and the
size of the data is reduced in one part of the data �ow graph, because the type char is
usually stored on fewer bytes than double.

2. Parameters

The implementation could be parameterized instead of using constant coe�cients for edge
detection.

3. Pipelining

The implementation could take a stream of images as input in order to bene�t more from
pipeline parallelism.

4. Coarser Grain

Each agent could operate on one whole image at a time. The transposition phase would
not be needed, and every agent could be optimized by Pluto for data parallelism.

3.6 Arti�cial Neural Network

3.6.1 Introduction

Arti�cial neural networks are computer programs inspired by nature, and especially by brains.
They are composed of layers of simple computing units, called perceptrons, that are connected
together. Each of these units takes several inputs, and produces an output according to their
input and their con�guration.

During the training process, this con�guration evolves in order to classify data, approximate
a function, or recognize a pattern. The training phase will not be treated here as it is not suited
for data �ow programming. The program implemented here can simulate such a neural network
once it is given the parameters of an already-trained network.

In this section, Arti�cial Neural Networks are introduced in a bottom-up fashion. The most
basic units, the perceptrons, will be presented �rst, then they will be grouped in layers, which,
once grouped, will �nally form neural networks.

1. The Perceptron

The perceptron is the basic processing unit in a neural network, which can be thought of
as a neuron. It has a �xed number of inputs N, and a weight for each of these inputs. It
also has an activation function, and a single output value. The input(s), the weight(s) and
the output are real numbers.

Its output value is the activation function applied to the weighted sum of the input. It
can also be seen as the product of two vectors (the input and the weights), followed by a
function application on the result.

The activation function is used to add non-linear capabilities to such a system, and a
variety of functions can be used, such as the Hyperbolic Tangent and the sign function, for
example.

Inria

Data�ow & Polyhedral Optimizations 31

The graphical representation of a perceptron is shown in �gure 11. Its behavior can be
modeled with the following code:

2 double Perceptron (i n t N, double inputs [N] , double weights [N] , double
(* ac t i va t i onFunct i on) (double))

{
4 double output = 0 ;

f o r (i n t i = 0 ; i<N; i++){
6 output+=inputs [i]* weights [i] ;

}
8 re turn ac t i va t i onFunct i on (output) ;

}

Figure 11: Graphical representation of a perceptron.

However, this simple model is limited to linearly separable problems, and very close to a
linear regression. In order to increase the complexity of the functions that can be approx-
imated, perceptrons can be organized in layers.

2. Neural Networks

A neural network can be created by organizing perceptrons in layers, and by linking the
output of every perceptron of the layer N-1 to every perceptron in the layer N. Such a layer
is said to be fully connected.

The �rst layer (input layer) must contain as many perceptrons as it takes input values. The
last layer (output layer) must contain as many perceptrons as it produces output values.

The computation of a layer is equivalent to a vector-matrix multiplication between the
input vector and the weight matrix.

� I is the input vector, a line vector of size N.

� W is the weight matrix, of size N x M (N rows, M columns).

� O is the output vector, a line vector of size M.

The output of a layer can be computed as follows:

RT n° 0490

32 Fontaine & Morel & Gonnord

(a) O'=I*W, the star symbol representing the dot product, described below.

(b) Each output element should then be transformed by the activation function. O=activation(O')

This algorithm could be written as shown in Listing 13. Figures 12 and 13 show the �ow
of data between entities in this algorithm.

Listing 13: Implementation of a simple neural network with three fully-connected layers.

2 void l ay e r (i n t N, i n t M, double In [N] , double W[N] [M] , double Out [M] ,
double (* a c t i v a t i o n) (double [] , i n t)) {

f o r (i n t i = 0 ; i<M; i++){
4 Out [i]=0;

f o r (i n t j = 0 ; j<N; j++){
6 Out [i]+=In [j]*W[j] [i] ;

}
8 }

a c t i v a t i o n (Out , N) ;
10 }

void a c t i v a t i o n (double Out [N] , i n t N) {
12 // Updates O

}
14

void myNetwork (double In [N] , double Out [N] , i n t N)
16 {

18 double W1[N] [1 0] = { . . . } ;
double W2[1 0] [2 0] = { . . . } ;

20 double W3[2 0] [N] = { . . . } ;

22 double o1 [1 0] ;
double o2 [2 0] ;

24

l a y e r (N, 10 , In , W1, o1 , &a c t i v a t i o n) ;
26 l a y e r (10 , 20 , o1 , W2, o2 , &a c t i v a t i o n) ;

l a y e r (20 , N, o2 , W3, Out , &a c t i v a t i o n) ;
28 }

3. Learning

The learning process will not be treated here as this experiment only focuses on the feed-
forward part of the algorithm. It uses pre-computed weights, and is not meant to be
trained.

3.6.2 Implementation

1. Parallelism

In this case, two kinds of parallelism can be bene�ted from:

� Pipeline parallelism: When executing a batch evaluation (i.e. with a stream of input
vectors), each layer can be executed in a pipelined way: If there are three layers,
three input vectors can be handled at the same time: The �rst input in the last layer,
the second input in the middle layer, and the last input in the �rst layer. The more
layers the network contains, the more pipeline parallelism will have potential. At any

Inria

Data�ow & Polyhedral Optimizations 33

Figure 12: Graphical representation of a single layer.

Figure 13: Graphic representation of a network.

moment, the program can compute as many inputs as its number of layers. This does
not decrease the latency but it increases the throughput of the system.

� Data parallelism: through for loops parallelism during the vector-matrix multiplica-
tion.

Note: Task parallelism cannot be used here because the layer N+1 needs the whole output
vector of the layer N to start its computations.

2. Building the network

The network has to be trained by another program that can export the weights and the set-
tings of the trained network. In this experiment, a Python program has been implemented
based on the library Keras 3.

The speci�cation of the network is written to a plain-text �le, which is parsed, at compile
time, by the root graph of the SigmaC program. It speci�es the number of layers, and for
each layer, its size, its weight matrix, and the activation function to use. This work�ow is
described in �gure 14.

One agent is instantiated for each layer, and it is given the parameters provided in the �le.
The agents (layers) are then linked together as they appear in the text �le.

3. Format of the �le describing the network

On the �rst line of the �le, an integer speci�es the number of layers composing the network.

3https://keras.io/

RT n° 0490

https://keras.io/

34 Fontaine & Morel & Gonnord

Figure 14: Graphic representation of the work�ow of this experiment.

Then, for each layer: There is a new line, containing two integers, I and O, and a string. I
and O represent, respectively, the number of inputs and outputs of the current layer. I is
either the number of neurons in the previous layer, or the number of inputs of the network.
O is the number of neurons in the layer. The string is the name of the activation function.
The SigmaC program will not compile if the activation function is unknown.

Then follow I lines each containing O �oating-point numbers (separated by spaces), which
represent each value of the weight matrix.

A sample description �le is shown in listing 14.

Listing 14: Sample �le describing a network containing two layers with respectively 3 and
2 neurons (for the sake of brevity in the weight matrices).

1 2
4 3 tanh

3 0 .1 0 .2 0 . 3
0 .4 0 .5 0 . 6

5 0 .7 0 .8 0 . 9
1 1 .1 1 .2

7 3 2 softmax
0 .1 0 .2

9 0 .3 0 .4
0 .5 0 .6

It is important to note that the number of inputs of the layer N+1 must match the number
of outputs of the layer N.

4. Runtime

Each agent performs its local vector/matrix multiplication, tiled and parallelized by Pluto
(with OpenMP), executes the activation function on the result, and outputs its result
(either to the next layer or to the StreamWriter).

3.6.3 Results

The program is parallelized both by Pluto for loop nests and by the SigmaC compiler for data
�ow. It takes a stream of input vectors as input, and outputs a stream of output vectors. It
has been successfully able to classify images from the MNIST dataset about Handwritten Digits
Recognition.

The classi�cation's accuracy is not important here, because it mostly depends on the training
phase, which is independent from this implementation.

This experiment consists of classifying 1000 images of 784 pixels by a neural network con-
taining 3 dense layers of 784 neurons each, and an output layer of 10 neurons.

Inria

Data�ow & Polyhedral Optimizations 35

This topology has been chosen in order to have several layer agents pipelined, therefore
bene�ting more from pipeline parallelism and having more computation to perform.

Table 9 shows a slight performance increase when tiling on the cluster, and better improve-
ments when parallelizing with Pluto as well.

On the Desktop con�guration, table 10 shows a small performance increase when tiling, but
it drops when parallelizing with OpenMP. This is due to the fact that the 3 layers are already
keeping most of the cores busy, and managing more threads and context-switching causes too
much overhead.

Table 9: Experiment run in the Cluster environment.
Implementation Pure Data Flow Tiling Tiling and Parallelizing
Runtime (s.) 3.5 3.1 1.7
Speedup - 1.13 2.06

Table 10: Experiment run in the Desktop environment.
Implementation Pure Data Flow Tiling Tiling and Parallelizing
Runtime (s.) 5.8 5.0 7.3
Speedup - 1.2 0.8

In order to push the experiment further on the cluster, a �ner OpenMP con�guration has been
done at run-time, by changing the value of the environment variable OMP_NUM_THREADS.
This allows a �ner control over the number of threads spawned for each loop nest. Table 11
presents the results. The performance steadily increases when increasing the number of threads.
With values greater than 8, the performance decreases because the number of threads exceeds
the number of execution cores (4 agents doing dense computations, using 8 threads each). It is
worth mentioning that the performance of the parallelized version with only one thread per loop
(Table 11) is worse than the one of the version that is only tiled (Table 9), because of OpenMP's
overhead.

Table 11: Experiment run in the Cluster environment, when using di�erent values for the
variable OMP_NUM_THREADS.

Number of threads 1 2 4 8
Runtime (s.) 3.8 2.1 1.2 1.1
Speedup - 1.8 3.2 3.5

3.6.4 Further improvements

� More activation functions could be implemented in order to be able to model more networks.

� Adding support for bias neurons, in order to improve the accuracy of the network and the
variety of supported networks.

� Adding support for convolutional layers, in order to support more networks.

� Encoding weights in binary instead of ASCII characters in the �le describing the network,
for lower space requirements.

� Using lower-precision �oating point numbers, for performance [?].

RT n° 0490

36 Fontaine & Morel & Gonnord

3.7 Results

The results of the previous experiments are quite positive. Depending on the nature of the
loop nests, the only process of tiling provides signi�cant performance improvements, without
any cost apart from the static optimization. Parallelizing the loop nests is not always bene�cial,
especially on processors containing relatively few cores, which may already be busy running
SigmaC agents. The number of threads spawned must be adjusted according to the machine.
Further experimentation should also be done in order to tune more �nely tile sizes, according to
the amount of memory accessed and the processor's cache hierarchy.

In some cases, when parallelizing with OpenMP, the SigmaC runtime ended with a Segmen-
tation Fault, while still providing the correct output. The creation of threads inside agents must
not have been expected by Kalray, and the OpenMP threads may be accessing memory that has
already been cleaned up at the end of the simulation.

It should also be kept in mind that running inside the SigmaC Simulator causes an overhead.
The performance could probably be improved by compiling SigmaC to native machine code. In
order to be able to do so, the source code must not contain any StreamReader or StreamWriter
agents. Therefore, user-de�ned agents should be created using POSIX interfaces, in order to, for
example, read and write from �les. As the documentation encourages to use StreamReader and
StreamWriter agents and this information was obtained late, this modi�cation is left as a further
experiment.

4 Integrating Polyhedral optimizations to SigmaC

This section presents a re�ection about integrating a polyhedral optimizer to the SigmaC toolchain.
In order to integrate a source-to-source polyhedral optimizer such as Pluto, the SigmaC pro-

gramming language should be slightly modi�ed. It would have to allow the conversion of function
parameters that are linearized arrays to N-dimensional arrays, by specifying the dimensions' sizes
in the parameter signature.

This would allow programs to be syntactically correct for both Pluto and SigmaC. For exam-
ple, when doing a matrix transposition, the notations shown in listings 15 and 16 should be able
to be used interchangeably, the second one allowing Pluto optimization. It is important to note
that listing 15 cannot be processed by Pluto and has an error-prone syntax. Listing 15 provides
a syntax that is both easier to understand and compatible with Pluto.

Listing 15: Current way of transposing a matrix in SigmaC

void func t i on () exchange (input in [300*600] , output out [3 00*600])
2 {

f o r (i n t i = 0 ; i <300; i++)
4 f o r (i n t j = 0 ; j <600; j++)

out [j *300+ i]= in [i *600+ j] ;
6 }

Listing 16: Transposing a matrix using a new syntax for array accesses in SigmaC

void func t i on () exchange (input in [3 0 0] [6 0 0] , output out [6 0 0] [3 0 0])
2 {

f o r (i n t i = 0 ; i <300; i++)
4 f o r (i n t j = 0 ; j <600; j++)

out [j] [i]= in [i] [j] ;
6 }

Inria

Data�ow & Polyhedral Optimizations 37

Otherwise, another polyhedral optimizer could be used, working at the level of the Interme-
diate Representation, such as Polly4 with LLVM, which works on linearized arrays. This would
probably require SigmaC to use an LLVM back end, and maybe a compiler such as Clang5.

With Pluto, the programmer has to specify sections of code to process. Only loop nests
containing a signi�cant amount of computation and poor locality are worth optimizing. It is
important to remember that tiling brings some overhead, since it increases the number of loops,
which increases the size of the code (using less e�ciently the instruction cache) and increases the
number of branches to execute (wrong branch prediction causes pipeline stalls).

To take this o� the programmer's shoulders, heuristics could be used in order to determine if
it is worth tiling a given piece of code. The granularity of this element could be at the function
scale, at the loop nest scale, or for each statement inside a for loop.

The tile sizes should also be determined, because they need to vary according to the size
and number of memory accesses inside a given loop nest. The granularity of this should be
determined as well. However, the tile size also depends on the target's memory hierarchy, and it
is certainly a poor idea to add such a low-level dependence to the source code.

Parallelizing should only be done on loop nests containing a signi�cant amount of compu-
tation. The number of threads created on each loop nest should be reasonable according to
the scheduling (i.e. the number of agents running at the same time) in order to avoid creating
more threads than the number of execution cores, which would cause an overhead with context
switches, as seen in section 3.

This could be achieved through annotations from the programmer, specifying which propor-
tion of the available threads should be used on a given loop nest. The SigmaC compiler would
then allocate the available threads (according to the target's speci�cation), if any, to further
parallelize loop nests.

5 Conclusion

Experiments run with the data �ow programming language combined with polyhedral paral-
lelization and optimization have proven to be interesting.

Data Flow provides a higher level of abstraction than Threads or Message Passing, which is
interesting because it allows the programmer to focus on the algorithm and the data dependencies
rather than the explicit parallelization and scheduling of the program. The SigmaC compiler
takes platform independent code and parallelizes it for any given architecture. When using
threads, the programmer has to do this work: the code complexity is increased, and it is often
only speci�c to one architecture.

Bringing polyhedral optimization with Pluto allows to further parallelize these programs
with few e�orts, by automatically optimizing data locality in for loops and by parallelizing them
when possible. Memory latency is often a bottleneck, and tiling helps to reduce this issue. Tiling
provides a signi�cant performance increase when combining SigmaC and Pluto, and parallelism
increases performance even more, if enough execution cores are available.

The combination of these two tools allows an easier translation from C to SigmaC, since for
loops can be kept without increasing execution time.

However, Cyclo-Static Data Flow and Static Data Flow have constraints that make them
less expressive than imperative paradigms, therefore they are not suited for all algorithms. Yet,
they are adapted to many scienti�c computing problems and they are more �exible and easier
to program than GPU's.

4https://polly.llvm.org/
5https://clang.llvm.org/

RT n° 0490

https://polly.llvm.org/
https://clang.llvm.org/

38 Fontaine & Morel & Gonnord

While it is relatively easy to program in the SigmaC language, the compilation and the
execution of SigmaC programs can be complex. The SigmaC toolchain may not be mature enough
and compilation is far from being as easy as it is when compiling C with GCC, for example. It is
important to note that the experiments have been run inside the SigmaC runtime, therefore the
results might not be completely accurate. It also implicates that running experiments requires
the SigmaC toolchain, which is quite heavy to install.

It is also often not trivial to integrate polyhedral optimization with Pluto into SigmaC pro-
grams, mostly because of syntactic issues. It would be simpler for the programmer if such a tool
was integrated to the SigmaC compiler, as Polly is in LLVM. Also, in these experiments, tiling
was performed with a constant tile size, but it heavily depends on the target's memory hierarchy.
Our approach, which consists in manually modifying the source code, forces to update the source
code when changing the target. Integrating such a tool in the compiler would allow to automate
this process and make the source code even less platform-dependent.

A further experiment to this work would be to run SigmaC applications on Kalray's MPPA,
in order to test how well it scales on Many-Core architectures.

Inria

Data�ow & Polyhedral Optimizations 39

Contents

1 Introduction 3

1.1 History . 3
1.2 Terminology . 3
1.3 Types of parallelism . 4
1.4 Hardware . 5

1.4.1 CPU . 5
1.4.2 GPU . 5
1.4.3 MPPA . 5

1.5 Parallelization techniques . 6
1.5.1 Programming models . 6
1.5.2 Automatic parallelization . 7

1.6 Aim of the Project . 7

2 Background 7

2.1 Data Flow Programming . 7
2.1.1 Motivations . 7
2.1.2 Principles . 7
2.1.3 Types of data �ow paradigms . 8
2.1.4 SigmaC . 8

2.2 Polyhedral Model . 13
2.2.1 Introduction . 13
2.2.2 Pluto . 14

3 Experiments 15

3.1 Introduction . 15
3.2 Pluto and SigmaC . 16

3.2.1 Temporary transformation . 16
3.2.2 Using a port array . 18

3.3 Experiment environments . 20
3.3.1 Desktop . 20
3.3.2 Cluster . 20

3.4 Matrix-Matrix Multiplication . 20
3.4.1 Introduction . 20
3.4.2 Approach . 21
3.4.3 Overview . 22
3.4.4 Parallelism . 22
3.4.5 Topology . 22
3.4.6 Choices . 23
3.4.7 Detailed implementation . 24
3.4.8 Side tools . 26
3.4.9 Results . 26
3.4.10 Further improvements . 27

3.5 Deriche edge detector . 27
3.5.1 Transposing a matrix in SigmaC . 28
3.5.2 Results . 29
3.5.3 Further Improvements . 29

3.6 Arti�cial Neural Network . 30

RT n° 0490

40 Fontaine & Morel & Gonnord

3.6.1 Introduction . 30
3.6.2 Implementation . 32
3.6.3 Results . 34
3.6.4 Further improvements . 35

3.7 Results . 36

4 Integrating Polyhedral optimizations to SigmaC 36

5 Conclusion 37

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-0803

	Introduction
	History
	Terminology
	Types of parallelism
	Hardware
	CPU
	GPU
	MPPA

	Parallelization techniques
	Programming models
	Automatic parallelization

	Aim of the Project

	Background
	Data Flow Programming
	Motivations
	Principles
	Types of data flow paradigms
	SigmaC

	Polyhedral Model
	Introduction
	Pluto

	Experiments
	Introduction
	Pluto and SigmaC
	Temporary transformation
	Using a port array

	Experiment environments
	Desktop
	Cluster

	Matrix-Matrix Multiplication
	Introduction
	Approach
	Overview
	Parallelism
	Topology
	Choices
	Detailed implementation
	Side tools
	Results
	Further improvements

	Deriche edge detector
	Transposing a matrix in SigmaC
	Results
	Further Improvements

	Artificial Neural Network
	Introduction
	Implementation
	Results
	Further improvements

	Results

	Integrating Polyhedral optimizations to SigmaC
	Conclusion

