
HAL Id: hal-01572420
https://hal.science/hal-01572420

Submitted on 7 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software architectures to integrate workflow engines in
science gateways

Tristan Glatard, Marc-Etienne Rousseau, Sorina Camarasu-Pop, Reza Adalat,
Natacha Beck, Samir Das, Rafael Ferreira da Silva, Najmeh Khalili-Mahani,

Vladimir Korkhov, Pierre-Olivier Quirion, et al.

To cite this version:
Tristan Glatard, Marc-Etienne Rousseau, Sorina Camarasu-Pop, Reza Adalat, Natacha Beck, et al..
Software architectures to integrate workflow engines in science gateways. Future Generation Computer
Systems, 2017, 75, pp.239-255. �10.1016/j.future.2017.01.005�. �hal-01572420�

https://hal.science/hal-01572420
https://hal.archives-ouvertes.fr


Future Generation Computer Systems 75 (2017) 239–255
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Software architectures to integrate workflow engines in science
gateways

Tristan Glatard a,b,c,∗, Marc-Étienne Rousseau b, Sorina Camarasu-Pop c, Reza Adalat b,
Natacha Beck b, Samir Das b, Rafael Ferreira da Silva e, Najmeh Khalili-Mahani b,
Vladimir Korkhov g, Pierre-Olivier Quirion d, Pierre Rioux b, Sílvia D. Olabarriaga f,
Pierre Bellec d, Alan C. Evans b

a Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
b McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Canada
c University of Lyon, CNRS, INSERM, CREATIS, Villeurbanne, France
d Centre de Recherche de l’Institut de Gériatrie de Montréal CRIUGM, Montréal, QC, Canada
e University of Southern California, Information Sciences Institute, Marina del Rey, CA, USA
f Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Netherlands
g St. Petersburg State University, Russia

h i g h l i g h t s

• We study 6 software architectures to integrate workflow engines in science gateways.
• We describe these architectures in a consistent framework.
• We assess their complexity, robustness, extensibility, scalability and functionality.
• Results provide insights for science gateway architects and developers.

a r t i c l e i n f o

Article history:
Received 16 May 2016
Received in revised form
17 October 2016
Accepted 7 January 2017
Available online 14 January 2017

Keywords:
Workflow engines
Science gateways
Software architectures

a b s t r a c t

Science gateways often rely on workflow engines to execute applications on distributed infrastructures.
We investigate six software architectures commonly used to integrate workflow engines into science
gateways. In tight integration, theworkflow engine shares software componentswith the science gateway.
In service invocation, the engine is isolated and invoked through a specific software interface. In task
encapsulation, the engine iswrapped as a computing task executed on the infrastructure. In the poolmodel,
the engine is bundled in an agent that connects to a central pool to fetch and execute workflows. In nested
workflows, the engine is integrated as a child process of another engine. Inworkflow conversion, the engine
is integrated through workflow language conversion. We describe and evaluate these architectures with
metrics for assessment of integration complexity, robustness, extensibility, scalability and functionality.
Tight integration and task encapsulation are the easiest to integrate and the most robust. Extensibility
is equivalent in most architectures. The pool model is the most scalable one and meta-workflows are
only available in nested workflows and workflow conversion. These results provide insights for science
gateway architects and developers.

© 2017 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
t

∗ Correspondence to: Concordia University, Faculty of Engineering and Computer
Science, Department of Computer Science and Software Engineering, 1455 De
Maisonneuve Blvd. W., EV 3.139, Montreal, Quebec, Canada H3G 1M8.

E-mail address: tristan.glatard@concordia.ca (T. Glatard).

http://dx.doi.org/10.1016/j.future.2017.01.005
0167-739X/© 2017 The Author(s). Published by Elsevier B.V. This is an open access ar
1. Introduction

Several software architectures can be adopted to integrate
workflow engines in the ecosystem of tools and services offered
by science gateways, with important consequences for the devel-
opment effort required and resulting system. This paper describes,
illustrates and compares such architectures, based on system-
independent representations of their main components and inter-

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2017.01.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.01.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:tristan.glatard@concordia.ca
http://dx.doi.org/10.1016/j.future.2017.01.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


240 T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255
actions. It is informed by our experience in the development and
sustained operation of the CBRAIN [1], NSG [2,3] andVIP [4] science
gateways during the past 7 years, aswell as by lessons learned from
several science gateway and workflow projects such as SHIWA1

and ER-flow.2
This analysis is intended for experts of science gateway and

workflow engine design. It is an abstraction effort to identify
and evaluate the fundamental architectural patterns that are
encountered while integrating workflow engines and science
gateways. In real systems, such patterns sometimes coexist due to
the historical and technical context of software projects.

The remainder of this section provides background information
and definitions of workflow engines, science gateways and infras-
tructures. In Section 2, we describe six architectures within a con-
sistent framework that underlines the functional interactions be-
tween their main software components. We illustrate these archi-
tectures on real systems in Section 3. In Section 4, we introduce
metrics that measure integration complexity, robustness, exten-
sibility, scalability and functionality. The metrics are specifically
designed to measure the ability of the architectures to address
workflow-related issues commonly encountered in science gate-
ways. We evaluate the architectures individually in Section 5, and
we compare and discuss them in Section 6. Finally, in Section 7,
we illustrate how our evaluation framework can be used to help
design new systems. Related work is presented in Section 8.

1.1. Workflow engines

In the last decade, the e-Science community has developed
workflow systems to help application developers access dis-
tributed infrastructures such as clusters, grids, clouds andweb ser-
vices. These efforts resulted in tools among which Askalon [5], Hy-
perflow [6], MOTEUR [7], Pegasus [8,9], Swift [10], Taverna [11],
Triana [12], VisTrails [13], WS-PGRADE [14] and WS-VLAM [15].
Such workflow engines usually describe applications using a high-
level language with specific data and control flow constructs,
parallelization operators, visual edition tools, links with domain-
specific application repositories, provenance recording and other
features. An overview of workflow system capabilities is available
in [16].

At the same time, toolboxes have been emerging in various sci-
entific domains to facilitate the assembly of software components
in consistent ‘‘pipelines’’. In neuroimaging, our primary domain of
interest, tools such as Nipype (Neuroimaging in Python, Pipelines
and Interfaces [17]), PSOM (Pipeline System for Octave and Mat-
lab [18]), PMP (PoorMan’s Pipeline [19]), RPPL [20], SPM (Statistical
Parametric Mapping [21]) and FSL (FMRIB Software Library [22])
provide abstractions and functions to handle the data and comput-
ing flow between processes implemented in a variety of program-
ming languages. Such tools were interfaced to computing infras-
tructures, in particular clusters, to execute tasks at a high through-
put. Some of these tools also support advanced features such as
provenance tracking or redundancy detection across analyses to
avoid re-computation. A wide array of workflows have been im-
plemented using these pipeline systems and are now shared across
neuroimaging groupsworld-wide, which represents a tremendous
opportunity for science gateways to leverage. Domain-specific en-
gines nicely complement e-Science systems that aremore oriented
towards the exploitation of distributed computing infrastructures,
in particular grids and clouds.

In this paper, a workflow engine (also abbreviated engine) is a
piece of software that coordinates and submits interdependent

1 http://www.shiwa-workflow.eu.
2 http://www.erflow.eu.
computing tasks to an infrastructure (local server, cluster, grid or
cloud) based on a workflow description (a.k.a workflow), using
input data that may consist of files, database entries or simple
parameter values. Although simplistic, this definition covers both
e-Scienceworkflow engines and domain-specific pipeline systems.
Some workflow engines, usually from the e-Science community,
may transfer data across the infrastructure, and others, usually
domain-specific ones, may leave this role to external processes.
Workflowsmay be expressed in any language, including high-level
XML or JSON dialects such as Scufl or Hyperflow, and low-level
scripting languages such as Bash.

1.2. Science gateways

Science gateways are used to share resources within a commu-
nity and to provide increased performance and capacity through
facilitated access to storage and computing power. They are often
accessible through a web interface that helps users manage access
rights, data transfers, task execution, and authentication on mul-
tiple computing and storage locations. Workflow engines are part
of this ecosystem as core components to implement and execute
applications.

Various science gateways have been developed, including
frameworks such as Apache Airavata [23], the Catania Science
Gateway Framework [24] and WS-PGRADE/gUSE [14]. Numerous
science gateways were built using such frameworks [25,24] or as
standalone systems [1,4].Most of these systems include one or sev-
eral workflow engines.

Integration between workflow engines and science gateways
varies across systems. Some science gateways are tailored to a par-
ticular engine, while others aremore general and host applications
executed by different types of engines.

Extensibility is an important property of the integration. New
workflows are added frequently, different types and versions of
workflow enginesmay be integrated over time, and different kinds
of infrastructure can be targeted.

Scalability is also a crucial concern for such multi-user, high-
throughput systems. For this purpose, science gateways may
balance the load among different instances of the same engine,
start new engines elastically using auto-scaling techniques such
as the ones reviewed in [26], and use advanced task scheduling
policies on the infrastructure to improve performance, fault-
tolerance and fairness among users.

Robustness is highly desirable as well since it is key to a good
user experience. Simple architectures facilitate the implementa-
tion effort towards robust interactions which, in turn, have a posi-
tive impact on characteristics such as gatewaypredictability, trans-
parency, reliability, traceability and reproducibility.

Other specific features may also be available, for instance data
visualization and quality control, workflow edition, debugging
instruments, or social tools among users.

1.3. Infrastructure

An infrastructure consists of the computing and storage re-
sources involved in workflow execution, as well as the software
services used to access these resources. The infrastructure can be
composed of computing or file servers, databases, clusters, grids or
clouds. Someworkflow engines and science gateways may require
specific characteristics, such as the presence of a shared file sys-
tem between the computing nodes, the availability of a global task
meta-scheduler, or the presence of a file catalog. In the analysis
presented hereafter, such specific requirements are not discussed.
Instead, we consider the infrastructure as an abstract system that
can execute tasks and store data regardless of the enabling mech-
anisms.

http://www.shiwa-workflow.eu
http://www.erflow.eu


T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255 241
Table 1
Classification of science gateways based on the architecture used to integrate workflow engines.

Architecture Systems

Tight Gateways based on the Catania Science Gateway Framework [24], Distributed application runtime environment (DARE [27]), LONI Pipeline
Environment [28]

Service Gateways based on Apache Airvata [23], HubZero with Pegasus [29], System in [30], Vine Toolkit [31], Virtual Imaging Platform [4], Gateways based
on the WS-PGRADE/gUSE framework [14], GridSFEA [32]

Task CBRAIN and PSOM [33], CBRAIN and FSL
Pool SHIWA pool [34]
Nested SHIWA Simulation Platform (Coarse-Grained Interoperability [35]), HubZero with Pegasus (via hierarchical workflows) [9], Tavaxy [36].
Conversion SHIWA Simulation Platform (Fine-Grained Interoperability) [37], Tavaxy [36], system in [38].
Fig. 1. Graphical notations.

2. Architectures

Architectures to integrate workflow engines in science gate-
ways are presented in Fig. 2 using the graphical notations de-
fined in Fig. 1. Software components are defined at a granularity
such that two components may potentially be operated by differ-
ent teams on different hardware systems. For instance, the sci-
ence gateway and infrastructure are usually distinct components.
In real systems, software components may exist at a finer granu-
larity, to implement functions such as authentication, data persis-
tence or logging. Such fine-grained components are not covered
by our analysis since we focus on the interactions between the sci-
ence gateway, the infrastructure and the workflow engine. Table 1
summarizes the classification of a few systems by architecture.

2.1. Interactions

The interactions involved in the architectures are described
below and labeled from a to g as in Fig. 2.

(a) Workflow integration: consists in adding a new workflow to
the system so that users can execute it. It is triggered by
an administrator of the science gateway and it results in an
interface, for instance a web form, where users can enter the
parameters of theworkflow to be executed. The interaction has
two steps: (a1) the programs used in theworkflow are installed
on the infrastructure or prepared for on-the-fly deployment,
which may require specific privileges; (a2) the workflow is
configured in the science gateway so that it becomes available
to users. Note that integrating a workflow is not the same
process as integrating a workflow engine.
(b) Task control: operations to manage tasks on the infrastruc-
ture, including authentication, submission, monitoring, termi-
nation, deletion, etc. Controlling tasks requires dealing with
the heterogeneous batch managers and meta-schedulers that
might be available on the infrastructure. When the infrastruc-
ture is a grid or a cloud, control may be achieved for instance
using libraries that implement standards such as SAGA (Simple
API for Grid Applications [39]), DRMAA (Distributed Resource
Management Application API [40]), or OCCI (Open Cloud Com-
puting Interface [41]).

(c) Data control: operations to manage data on the infrastruc-
ture, such as upload, download, deletion, browsing, replica-
tion, caching, etc. Data movements can be triggered by the sci-
ence gateway (c1), e.g., to upload input data or download pro-
cessed data. They can also be performed by the workflow en-
gine (c2), to transfer workflow data (inputs, outputs, or inter-
mediate results) across the infrastructure so that tasks can use
them. The infrastructuremight offer various data storage back-
ends with heterogeneous interfaces. Tools and services such
as JSAGA [42] or Data Avenue [43] can be used to homogenize
these interfaces.

(d) Workflow control: operations to control workflow execution
in an engine, including workflow submission, monitoring, ter-
mination, etc. Workflow control can be coarse-grained (black
box) or fine-grained (white box). In a coarse-grainedmodel, the
various tasks created by a workflow execution are masked and
the user only has a global view of the workflow execution. In
a fine-grained model, user is exposed to the workflow topol-
ogy, i.e., to the outputs of the individual tasks, their statuses,
dependencies and so on.

(e) Sub-task control: operations used by tasks to submit sub-tasks
on the infrastructure, including: submission, monitoring, ter-
mination, deletion, etc. Sub-task control is similar to interac-
tion b, except that information about the parent of a sub-task is
usually available and used for additional control. For instance,
the parent taskmaywait for all its sub-tasks to complete before
finishing, and conversely all the sub-tasks may be terminated
if the parent task is killed.

(f) Pool–agent: specific to the pool architecture. This is an inter-
action used when agents retrieve work from a central pool. It
covers agent registration and de-registration to the pool, pro-
tocols to send work from the pool to the agent, mechanisms to
update work status, and so on. A similar type of interaction is
used in pilot-job systems [44] and other agent-based comput-
ing models.

(g) Workflow conversion: translation from one workflow lan-
guage into another. This interaction may not be available
or possible for every workflow language. It has been devel-
oped mostly for translation between well-structured and rel-
atively simple workflow languages such as GWorkflowDL and
Scufl [45], and for translation among the 5 workflow systems
in the SHIWA project: Askalon, MOTEUR, Taverna, Triana and
WS-PGRADE.



242 T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255
(I) Tight integration. (II) Service invocation. (III) Task encapsulation.

(IV) Pool.

(V) Nested workflows. Left: abstract model. Right: instantiation with service invocation (‘‘Service+Service’’).

(VI) Workflow conversion. Left: abstract model. Right: instantiation with service
invocation.

Fig. 2. Architectures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255 243
2.2. Tight integration

See Fig. 2(I). The workflow engine is tightly integrated with the
science gateway, which means that it is deployed on the same
machine and potentially shares code, libraries and other software
components with the science gateway. For instance, the workflow
engine might be a portlet in a Liferay portal or a model in a
Ruby on Rails application.3 The workflow engine and the science
gateway usually share a database where applications, users and
other resources are stored. In this model, task and data control
are both initiated from the science gateway. Interactions b and
c2 are initiated from the workflow engine, while c1 comes from
other parts of the science gateway, for instance a datamanagement
interface. As in any other model, the installation of newworkflows
in the science gateway (a2) and infrastructure (a1) is done by
an administrator, for security reasons. Tight integration is the
model adopted in the Catania Science Gateway Framework [24]
(see specific documentation on workflows4), in the Distributed
application runtime environment (DARE) [27], in Galaxy [46], and
in the LONI Pipeline Environment [28]. Note that tightly integrated
architectures may provide advanced workflow edition features
which are not covered by our analysis.

2.3. Service invocation

See Fig. 2(II). The workflow engine is available externally to the
science gateway, as a service. The science gateway controls the ser-
vice through a specific interaction (d) that might be implemented
as a web-service call (e.g., RESTful or SOAP), as a command-line
or as any other method that offers a well-defined interface to the
workflow engine. The workflow engine might be invoked either
as a black box that completely masks the infrastructure and tasks,
or as a white box that allows for some interaction with them. The
workflow engine is responsible for controlling the tasks on the in-
frastructure (b) and for performing the required data transfers to
execute them (c2). User data is usually managed through the sci-
ence gateway (c1), although in some variations of the architec-
ture (not represented in Fig. 2) it might as well be delivered by the
workflow engine directly to the user.

This architecture is largely adopted in systems such as the
Apache Airvata framework [23], GridSFEA [32], Vine Toolkit [31],
Virtual Imaging Platform [4], the systems in [30,3] and the
WS-PGRADE/gUSE framework [14]. The integration between the
HubZero science gateway and the Pegasus workflow engine per-
formed in [29] also uses a service architecture, where the d inter-
action is implemented as a set of calls to Pegasus’ command-line
tools (e.g., pegasus-status, pegasus-plan, etc.).

2.4. Task encapsulation

See Fig. 2(III). The workflow engine is wrapped in a particular
task that can submit sub-tasks to the science gateway through in-
teraction e. The workflow engine keeps track of the dependencies
between the sub-tasks, but their execution is delegated to the sci-
ence gateway that executes them on the infrastructure through in-
teraction b. Although the science gateway has no global vision of

3 Note that the particular case of portlets can be a bit ambiguous: when
portlets are deployed remotely, using protocols such as Web Services for Remote
Portlets (WSRP), they become independent software components according to our
definition because they could be operated by different teams on different hardware
systems. In this case, the system should be classified in the service invocation
architecture since the portlets actually become Web Services. The same comment
holds for remote object invocation.
4 https://frama.link/jfzgaEbj.
the workflow, it submits the sub-tasks to the infrastructure and
completely controls them. For instance, it may cancel them when
the workflow is canceled. The science gateway may also imple-
ment mechanisms to facilitate the handling of task dependencies,
for instance lists of tasks that must be completed before a particu-
lar task can be executed.

The science gateway also transfers both user andworkflow data
across the infrastructure, through interaction c1.

2.5. Pool model

See Fig. 2(IV). Workflows are submitted by the science gateway
to a central pool through interaction d. Agents connect to the
pool asynchronously to retrieve and execute workflows through
interaction f. Agents may be started according to various policies,
for instance to ensure load balancing. Workflow engine controls
tasks and data on the infrastructure through interactions b and
c2, science gateway transfers user data through interaction c1, and
administrator installs workflows through interaction a1 and a2.

2.6. Nested workflows

See Fig. 2(V). In nested workflows (Fig. 2(V)-Left), a workflow
engine is integrated as a child process of a parent workflow
engine. Parent and child enginesmight use different languages and
might run on different infrastructures. A parent workflow is also
a meta-workflow. The science gateway communicates with the
parent engine through abstract interaction ∗1. The science gateway
also communicates with the infrastructure to transfer user data
through abstract interactions ∗2 and ∗3. Both workflow engines
communicatewith the infrastructure through abstract interactions
∗4 and ∗5. The parent engine communicates with the child engine
through abstract interaction ∗6. Administrator installs workflows
through interactions a1 and a2.

Nested workflows are abstract architectural patterns that can
be instantiated in the various architectures described previously.
We focus on instantiation with the service invocation model
(Fig. 2(V)-Right) as this is the most used architecture. We call this
instantiation ‘‘Service+Service’’ since both engines are integrated
through service invocation. We assume that the parent and child
workflow engines are distinct pieces of software that require
different workflow services invoked by distinct d interactions. If
this is not the case, then workflow services can be collapsed into
a single one with a d interaction with itself. An example of such
interaction is the use of hierarchical workflows in Pegasus [9].
Workflow engines communicate with infrastructures using b and
c2. Science gateway transfers user data to infrastructures using c1.

Nested workflows have long been available in workflow en-
gines, for instance in the Taverna workbench [11]. They are also
used implicitly in several platforms where workflow engines are
wrapped in workflow tasks as any other command-line tool.
Nested workflows were notably used by the SHIWA Science Gate-
way to implement so-called Coarse-Grained workflow interoper-
ability [35], i.e., to integrate various workflow engines in a consis-
tent platform.

2.7. Workflow conversion

See Fig. 2(VI). This is an abstract model instantiated with the
service invocation architecture for consistency. Workflow conver-
sion is presented here as a pattern to integrate workflow engines
in a science gateway, through workflow format conversion from
a native format to the science gateway format. Workflow conver-
sion is usually an offline process that is not involved in workflow
execution. A few systems have implemented workflow conver-
sion. In the SHIWA Simulation Platform, it is implemented through

https://frama.link/jfzgaEbj


244 T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255
Fig. 3. Architecture of the Catania Science Gateway Framework (tight integration).
Source: Figure adapted from [24] with permission of the first author.

the IWIR language, which provides a common language for porta-
bility across grid workflow systems [37] and allows conversion
among n workflow languages using 2n interactions instead of n2.
Tavaxy [36] enables the import, merging and execution of Tav-
erna [11] and Galaxy [46] workflows; when some workflow parts
cannot be imported, workflows are run by Tavaxy as nested work-
flows using their native engine. The work in [38] describes work-
flow conversion from KNIME [47] to WS-PGRADE/gUSE and from
Galaxy [46] to WS-PGRADE/gUSE.

3. Real systems

This section illustrates the architectural patterns on a few
real systems, using the original architecture diagrams published
by the system developers. To improve readability, we annotated
these diagrams with the interactions and components used in
Fig. 2.

3.1. Tight integration

The architecture of the Catania Science Gateway Framework
(CSGF) is shown in Fig. 3. In CSGF, workflows are integrated
as Liferay portlets, i.e., as part of the science gateway when no
specific protocol is used for remote invocation. A specific portlet
called mi-parallel-portlet allows to create job collections,
parametric jobs and split-and-merge types of workflows. The
science gateway also includes a set of services to manage data and
tasks (jobs) on a wide array of grid middleware systems through
the SAGA API.

3.2. Service invocation

Fig. 4 shows the architecture of the Virtual Imaging Platform
(VIP), where the MOTEUR workflow engine [7] is invoked through
a service. The interactions in the VIP architecture map to the ones
defined by our framework in a straightforward manner, except for
interaction c2 (management of workflow data) which, in VIP, is
triggered by the workflow tasks instead of the workflow engine.
This does not contradict the service invocation architecture since
the tasks are generated by the workflow engine.

3.3. Task encapsulation

Task encapsulation is used in the CBRAIN gateway [1] to
integrate the FSL toolkit [22] and the PSOM workflow engine [18].
The CBRAIN-FSL integration, shown in Fig. 5(I), allows leveraging
FSL pipelines written in low-level workflow languages (Linux
executables and scripts) that submit tasks uniformly through a
specific tool called fsl_sub. The science gateway is actually split
in two services, the CBRAIN portal and the CBRAIN execution
server deployed on a head node of the infrastructure. Themapping
Fig. 4. Architecture of the Virtual Imaging Platform (service invocation). Step 3 corresponds to interaction d in Fig. 2(II), step 2 corresponds to interaction c1 , step 4maps
to interaction b, and steps 7 and 9 map to c2 (in VIP, workflow data transfers are performed by the tasks and embedded in their descriptions).



T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255 245
(a) CBRAIN-FSL integration. (b) CBRAIN-PSOM integration. Figure adapted from [33].

Fig. 5. CBRAIN architecture forworkflow engine integration (task encapsulation). 1: User sends data andworkflow execution request to storage server(s) and CBRAIN portal.
2: CBRAIN portal sends execution request to execution server on cluster. 3: Execution server transfers data from storage server(s). 4–5: Execution server starts workflow
engine (FSL tool or PSOM master) via task scheduler. 6: Workflow engine submits sub-tasks to execution server (FSL tasks or PSOM agents). 7–8: Execution server starts
sub-tasks through task scheduler (FSL sub-tasks or PSOMworkers). FSL sub-taskswill run locally instead of being submitted again to CBRAIN through interaction 6. 8’: (PSOM
only) PSOM master and workers execute workflow. 9. Execution server transfers results to storage server(s). Interaction b in Fig. 2(III) is implemented by steps 4, 5, 7 and
8 (regular interactions with batch manager). Interaction c1 is implemented by steps 3 and 9. Interaction e is implemented by step 6 (for FSL: through a modified version of
the fsl_sub script available in https://github.com/aces/cbrain-plugins-neuro; for PSOM: through a specific development in PSOM).
Fig. 6. Architecture of the SHIWA pool. Circle-terminated arrows indicate messages that are broadcast to all pool clients. Interaction d of Fig. 2(IV) is implemented by 3
different calls to the pool: workflow submission (1 & 2), workflow status retrieval (0 & 3), and workflow retrieval (13 & 14). Interaction f is implemented through 2 types
of calls: workflow instance retrieval (4, 5 and 6), and workflow instance update (11 and 12). Workflow instance retrieval is used by the agents to fetch work from the pool.
Workflow instance update is used by the agents to update workflow statuses. Calls 0, 7, 8 and 9 are used by workflow engine plugins to declare their supported language
and to launch engines, and by workflow engines to report their status to the agent. These calls are specific to the SHIWA Pool implementation of the agent component and
therefore have no corresponding representation in Fig. 2(IV).
Source: Figure adapted from [34].
of interactions b, c1 and e to the CBRAIN-FSL interactions is
straightforward.

The CBRAIN-PSOM integration [33] is shown in Fig. 5(II). The
PSOM workflow engine adopts a pilot-job architecture [44] where
a master coordinates workflow execution by submitting workers
and establishing direct communication channels with them. Note
how this peculiar execution model is well supported by task
encapsulation.

3.4. Pool model

The pool model was implemented in the SHIWA pool [34]
diagrammed in Fig. 6, where agents can wrap different types of
workflow engines to execute workflows expressed with different
languages. The software components map directly to the ones in
our architecture, except that the infrastructure is not represented.
The interactions described in the SHIWA pool are much finer-
grained than in our model, but they can be grouped to match
interactions d and f, as explained in the Figure caption.

3.5. Nested workflows with service invocation

Fig. 7 shows the architecture used in the SHIWA Simulation
Platform for nested workflow execution with service invocation.
The parent workflow engine is WS-PGRADE/gUSE, invoked as
a service in the Science Gateway (interaction d). Ten different
child engines can be used by nested workflows, invoked through
the Submission service (interaction d). Each of these
engines can submit tasks and transfer data to a distributed
computing infrastructure (DCI interactions b and c2). User data
interactions (c1) and interactions between the parent engine and
the infrastructure (b and c2) are not represented.

https://github.com/aces/cbrain-plugins-neuro


246 T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255
Fig. 7. Nested workflow execution through the SHIWA Science Gateway.
Source: Figure adapted from [35] with permission of the first author.
Fig. 8. Architecture of Tavaxy (workflow conversion).
Source: Figure adapted from [36] with permission of the first author.

3.6. Workflow conversion with service invocation

Fig. 8 shows the architecture of Tavaxy where workflows
in various formats (tSCUFL, SCUFL, t2flow and JSON) can be
imported. As detailed in [36], workflow conversion (interaction g)
is implemented through an interactive authoring module where
users can check and edit workflow imports, and a mapper module
that performs some language substitutions. The workflow engine
is a re-engineered version of the Galaxy engine that also includes
some components of Taverna.

4. Evaluation metrics

The architectures are evaluated in Table 2 using five main cri-
teria: integration complexity, robustness, extensibility, scalability
and functionality. Criteria break down into specific metrics where
lower value indicates better performance. Colors in Table 2 represent
normalized scores (see caption). For each criterion, a global score
is computed by summing up the individual scores for each metric.
We ensure that the different metrics used to calculate the global
score for a criterion are comparable, so that they can be combined
meaningfully.

The metrics defined hereafter aim at providing a framework
to evaluate architectures independently from any particular sys-
tem, regardless of any technical constraint such as the use of a
specific programming language or the internal architecture of the
science gateway. The goal is to abstract architectural discussions
from the particular technical context of a real system. Some de-
gree of system-specificity can be introduced in the evaluation by
assigningweights to interactions and components through a public
spreadsheet available at https://frama.link/LrPRsCQp.5 In particu-
lar, sheet ‘‘Components and interactions’’ in this spreadsheet con-
tains the weight assigned to components and interactions, which
can be used to produce new versions of Table 2 that fit the partic-
ular technical context of a real system. For instance, a high weight
could be assigned to the science gateway if its internal architecture
is such that it can hardly be extended in practice.

In addition, all the metrics in a criterion contribute equally to
the global score used for the criterion. Column B of sheet ‘‘Metrics’’
of the public spreadsheet may be used to assign different weights
to each metric to adjust the specific context of a study.

The remainder of this Section defines the metrics in each
criterion.

4.1. Integration complexity

Integration complexity is measured through the number of
software components and their interactions. It breaks down into
the following 2 metrics:

• Total components (I1): total number of components in the
architecture.

• Total interactions (I2): total number of interactions in the
architecture.

5 The spreadsheet may need to be downloaded to be edited.

https://frama.link/LrPRsCQp


T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255 247
Table 2
Architecture evaluation. Lower values (brighter colors) indicate better performance. Cell color is set as follows: (1) on each row, metric values
are normalized between 0 (best value) and 1 (worst value):m′

=
m−mmin

mmax−mmin
wherem is the metric value,mmin andmmax are the minimum and

maximum values for all architectures; (2) the RGB hexadecimal color code of the cell is #99XX99, where X = round(F − 6m′) (round rounds
a number to the nearest integer).
One may wonder whether infrastructure should be counted in
I1, since it is usually an external entity that is not developed
nor maintained by the groups who integrate workflow engines in
science gateway.We support its inclusion here because integrating
an infrastructure into the system usually requires some technical
effort (e.g., account creation, software installation, APIs, etc.),
therefore increasing complexity. The weights given to software
components in I1 and interactions in I2 can be adjusted in the public
spreadsheet to cover the technical peculiarities of a real system.

The two metrics I1 and I2 are summed to obtain a global score
that measures the total number of software pieces affected by
integration.

4.2. Robustness of workflow execution

Robustness of workflow executionmeasures the likelihood that
the workflow execution fails due to errors in the components or in
the interactions of the software architecture. Errors coming from
the infrastructure (e.g., unavailable data or terminated tasks) or
workflows (e.g., wrong user input or application errors) are not
covered, since they do not stem directly from the software archi-
tecture. Robustness is measured here as a consequence of global
complexity, since complex architectures tend to be more prone
to failure, in particular in distributed systems where interactions
between components involvewide-area network communications
betweenmachines that may be operated by different people. More
precisely, robustness is determined by the number of software
components and interactions represented in red in the architec-
ture diagrams in Fig. 2, which are specific to workflow execution.
Two metrics are used:

• Specific components (R1): number of specific components in-
volved in workflow executions. For instance, the workflow ser-
vice is a specific component because its main objective is to ex-
ecute workflows. On the contrary, the science gateway is not
specific to workflow execution since it is used for a variety of
other functions such as user authentication, data transfer, etc.
• Specific interactions (R2): number of specific interactions in-
volved inworkflow executions. For instance, the pool–agent in-
teraction (interaction f) is specific toworkflow executionwhile
data control (interaction c1) is not because it is used by the sci-
ence gateway to transfer user data regardless of a particular
workflow execution.

R1 and R2 are summed to obtain the global score for this criterion,
which measures the total number of software pieces that are
specifically involved in the workflow execution. The weights given
to software components in R1 and interactions in R2 can be
adjusted in the public spreadsheet.

4.3. Extensibility

Extensibility measures the difficulty to replace or add elements
to the architecture. It is determined by the number of interactions
and components that need to be modified when a new element
is added. Modification of a component is required when its code
needs to be updated or recompiled (science gateway or workflow
service), or when a new piece of software has to be installed
(infrastructure only). Modification of an interaction is deemed
necessary when the parameters involved in this interaction are
modified. Extensibility breaks down into 4 metrics depending on
the type of element (engine, workflow or infrastructure) that has
to be added or replaced:

• New engine (E1): number of interactions or components that
need to bemodified to integrate a new type of workflow engine
in the architecture. Workflow engines belong to different types
when they cannot be invoked using the same implementation
of the interactions.

• Engine version upgrade (E2): number of interactions or compo-
nents modified to integrate a new version of a workflow engine
in the architecture, assuming that another version of the same
engine type is already available. Different versions of a work-
flow engine can be invoked using the same interaction imple-
mentation(s). When this is not the case, the different versions



248 T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255
are considered as different engine types. Components are not
treated equally regarding engine version updates. Components
whose only function is to host the workflow engine, i.e., work-
flow services and agents, are not counted in E2 because updates
in such components are assumed to be straightforward. On the
contrary, modifications of components that have other func-
tions than wrapping the engine, i.e., science gateway and in-
frastructure, are counted in E2 because updates in these com-
ponents require more effort, e.g., new release of the science
gateway, gaining administrative privileges on the infrastruc-
ture, etc. In practice, E2 = 0 when the workflow engine is
wrapped in a service or in an agent, and E2 = 1 when it is
wrapped in another component.

• New workflow (E3): number of interactions required to inte-
grate a new workflow in the architecture. Adding a new work-
flow is a very common operation that does not require modi-
fying software components or interactions, assuming that the
engine type and version required to execute this workflow are
already available. In most cases, adding a new workflow re-
quires only interactions a1 and a2, but g is required as well
when workflow conversion is used.

• New infrastructure (E4): number of interactions or components
affected for the integration of a new type of infrastructure in
the architecture. Adding a new infrastructure typically aims at
providing more computing or storage power, enabling access
to specific types of resources (e.g., GPUs, clouds), or enforcing
execution policies (e.g., constrain data to remain in a particular
network domain).

The fourmetrics are summed to obtain a global score thatmeasures
the difficulty to extend the architecture. The weights given to soft-
ware components and interactions in E1−4 can be adjusted in the
public spreadsheet. Note that some extensions may affect several
metrics in practice. For instance, adding a new type of engine may
help integrating new infrastructures when interactions b and c2
are already present for the new engine and the infrastructure.

4.4. Scalability

Scalability corresponds to the ability of an architecture to
cope with high workloads through the following mechanisms:
starting multiple engine instances, distributing engines and task
scheduling. This is measured by assessing the potential scalability
difficulties due to (partial) absence of a given feature in the
architecture. Three different features are identified:

• Multiple engine instances (S1): measures the ability for a
single gateway instance to use more than one engine instance
simultaneously, each workflow being executed by a single engine
instance. Workflow engines may require important amounts
of resources when several workflows, or large workflows, are
executed. At some point, it may be required for the science
gateway to distribute the load among several engines. S1 =

0 means that adding a new engine instance is inherently
supported in the architecture. In this case, elastic engines can be
implemented through some kind of auto-scaling mechanism to
control the number of engine instances in the architecture.S1 =

1 means that supporting multiple engine instances requires
specific developments in the science gateway or workflow
engine. S1 = 2 means that new engine instances cannot be
added.

• Distributed engines (S2): measures the ability to distribute the
execution of a singleworkflow among different engine instances.
In our scope, this feature focuses on the capabilities of the
architecture rather than these of the workflow engine. S2 = 0
means that distributed engines are enabled by the architecture,
and S2 = 1 that they require specific developments in the
workflow engine.
• Task scheduling (S3):measures the complexity added by the ar-
chitecture to implement task scheduling on the infrastructure.
Task scheduling typically dependsmore on the implementation
of specific algorithms in the science gateway, workflow engine
and infrastructure than on the architecture used to integrate the
workflow engine in the science gateway. Some architectures,
however, complicate the task scheduling problem by introduc-
ing additional software layers or creating tasks with specific
characteristics. S3 = 0 means that the architecture does not
add any additional complexity to the scheduling problem, and
S3 = 1 otherwise.

These three metrics are summed to obtain a global measure of the
scalability potential of the architecture.

4.5. Functionality

Functionality includes:

• Meta-workflow (F1): measures the ability to describe meta-
workflows from existing workflows. Meta-workflows offer an
additional level of flexibility to build workflows from reusable
components. F1 = 0 means that meta-workflows are intrinsi-
cally enabled by the architecture (i.e., they can be implemented
using the components and interactions already in place), and
F1 = 1means that theymay be implementedwith some devel-
opment effort.

• Fine-grained debugging (F2): availability of fine-grained debug-
ging information about workflow tasks (white box workflow).
We call ‘‘white box’’ workflow a workflow where detailed in-
formation about individual tasks is available, for instance task
statuses, execution logs and resource consumption. On the con-
trary, a ‘‘black box’’ workflow only displays global informa-
tion such as the workflow status and the logs of the workflow
engine. Fine-grained information about workflow tasks is re-
quired to properly troubleshoot workflow executions. It helps
workflow users (scientists) identify errors, it allows gateway
administrators to troubleshoot executions, and it facilitates de-
bugging by workflow developers. The availability and accuracy
of fine-grained debugging information usually depends on the
number of software layers between the science gateway and the
workflow engine [48]. F2 = 0means that the information is di-
rectly accessible in the science gateway, F2 = 1means that it is
obtained through one or more software interactions.

F1 and F2 are summed to obtain a total number of missing features
in the architecture.

5. Architecture evaluation

The architectures described in Fig. 2 are evaluated hereafter
with the proposed metrics.

5.1. Tight integration

Integration complexity. This architecture does not require any
component in addition to the science gateway and infrastructure
(I1 = 2) and it involves 5 interactions:a1,a2,b,c1 andc2 (I2 = 5).
Robustness. No component is specific to workflow execution (R1 =

0), but interactions b and c2 are (R2 = 2).
Extensibility. Integrating a new type of workflow engine requires
modifying the science gateway as well as interactions b and c2
(E1 = 3). Updating a workflow engine version requires modifica-
tions in the science gateway (E2 = 1). Inserting a newworkflow is
done through interactions a1 and a2 (E3 = 2). Adding a new infras-
tructure generates updates in interactionsa1,b,c1 andc2 (E4 = 4).



T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255 249
Scalability. Adding a new engine instance requires a new instance
of the complete science gateway (S1 = 2). Specific IT setups such as
load-balancing betweenweb server instancesmight be used to cre-
ate new gateway instances, but theywould not allow a single gate-
way instance to use multiple engine instances, which is the point
here. Distributed engines are not available by default (S2 = 1).
The architecture does not add any particular complexity to the task
scheduling problem since the workflow engine may implement
any kind of scheduling policy (S3 = 0).
Functionality. Supporting meta-workflows requires specific devel-
opments in theworkflowengine or science gateway to allowwork-
flows to execute other workflows (F1 = 1). For instance, specific
Java objects may be implemented in the science gateway frame-
work to execute different types of workflows and link them to-
gether. The science gateway can retrieve fine-grained debugging
information from the workflow engine directly (F2 = 0).

5.2. Service invocation

Integration complexity. Service invocation requires a workflow
service in addition to the science gateway and infrastructure (I1 =

3). The architecture involves 6 interactions: a1, a2, b, c1, c2 and d
(I2 = 6).
Robustness. The workflow service is a component specific to
workflow execution (R1 = 1). Workflow execution also involves
3 specific interactions: b, c2 and d (R2 = 3).
Extensibility. Adding a new type of workflow engine requires
implementing the corresponding workflow service, modifying
interaction d, and implementing interactions b and c2. However,
when a new type of workflow engine is added, it is always possible
to reuse either an existing availableworkflow service or interaction
d (when a new workflow service has to be developed). Therefore,
E1 = 3. New engine versions can be added by updating the
workflow servicewithoutmodifying any interaction or component
(E2 = 0). Updating the engine version in a workflow service does
not count in E2 since the only goal of this component is to wrap the
engine. New workflows are added in the science gateway or in the
workflow engine through interactions a1 and a2 (E3 = 2). Adding
a new type of infrastructure requires updates in interactions a1, b,
c1 and c2 (E4 = 4).
Scalability. The service architecture in principle supports multiple
engine instances through multiple workflow services. Adding a
new engine instance, however, requires specific developments in
the science gateway (S1 = 1). Distributing the execution of a single
workflow in multiple engines is usually not possible unless the
workflow engine has specific abilities (S2 = 1).
Functionality. Meta-workflows require specific developments in
the workflow engine or science gateway to allow workflows
to execute other workflows. (F1=1). The science gateway needs
to invoke interaction d to retrieve fine-grained debugging
information from the workflow service (F2=1).

5.3. Task encapsulation

Integration complexity. Task encapsulation requires only 2 compo-
nents (I1 = 2). It involves 5 interactions: a1, a2, b, c1 and e
(I2 = 5).
Robustness. No component is specific to workflow execution (R1 =

0), and only interaction e is necessary (R2 = 1).
Extensibility. Integrating a new type of workflow engine requires
developing interaction e and installing the engine on the infras-
tructure (E1 = 2). Updating an engine version in the architec-
ture shares the samemechanism as version updates of other tasks,
which requires an update on the infrastructure (E2 = 1). New
workflows are integrated by creating a new task in the science
gateway through interactions a1 and a2 (E3 = 2). Adding a new
infrastructure requires updating interactions a1, b and c1 in the
science gateway (E4 = 3).
Scalability. New engine instances are spawned and executed on the
infrastructure as any other task upon user submission (S1 = 0).
This is a major interest of task encapsulation. Distributed engines
are not supported by default (S2 = 1). Task scheduling is slightly
more complex than in the other approaches due to the special
role of the task that executes the workflow engine (S3 = 1).
Indeed, the reliability of this task is critical since all the sub-tasks
in the workflow depend on it and, depending on the recovery
capabilities of the workflow engine, may need to be resubmitted if
theworkflow task fails. Theworkflow task is also longer than all its
sub-tasks, which increases its chances of failure. In addition, task
parameters, for instance estimated walltime, are more difficult
to estimate for the workflow task than for the sub-tasks because
workflows are by definition more complex than their sub-tasks:
errors on sub-task parameter estimations accumulate in the
workflow, and additional control constructs such as tests and loops
may further increase the uncertainty. Such parameter estimation
errors may generate issues such as selection of wrong batch
queues on clusters or task termination due to exceeded quotas.
Finally, the interdependencies between the workflow task and
its sub-tasks may create deadlocks when there is contention. For
instance, if only 1 computing resource is available for the science
gateway and if the workflow task is running on it and submits sub-
tasks, then the sub-tasks could only execute when the resource
is available, which will never happen because the workflow task
will not complete until the sub-tasks complete. This configuration
can be generalized to an infrastructure with n resources where
n workflows are submitted. In practice, however, the number of
submitted workflows usually remains lower than the number of
computing resources available on this infrastructure, whichmakes
such deadlocks unlikely to happen.
Functionality. Task encapsulation does not enable meta-workflows
by default (F1=1). Fine-grained debugging information is obtained
through interaction b (F2=1).

5.4. Pool model

Integration complexity. The pool model requires a workflow pool
and an agent in addition to the science gateway and infrastructure
(I1 = 4). It involves 7 interactions: a1, a2, b, c1, c2, d and f
(I2 = 7).
Robustness. The workflow pool and agent are specific to workflow
execution (R1 = 2). Interactions b, c2, d and f also are (R2 = 4).
Extensibility. Adding a new engine type requires wrapping the
engine into the agent and updating interactions b and c2 (E1 = 3).
Updating the version of an engine is transparent (E2 = 0) since it
only requires updating the agent, which is a component dedicated
to the engine. Integrating a new workflow is done through
interactions a1 and a2 (E3 = 2). Integrating a new infrastructure
requires updates in interactions a1, b, c1 and c2 (E4 = 4).
Scalability. By design, new engine instances only require new
agents, which can be easily automated (S1 = 0). Distributed en-
gines are not available by default (S2 = 1) and the architec-
ture does not add any complexity to the task scheduling problem
(S3 = 0).
Functionality. Meta-workflows require specific developments in
the workflow engine to enable workflow submission (F1=1).
Debugging information is accessed through interactions d and f
(F2=1).



250 T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255
5.5. Nested workflows with service invocation

Integration complexity. Setting up a nested workflow architecture
with service invocation requires a science gateway, 2 workflow
services and 2 infrastructures (I1 = 5). The architecture involves
11 interactions (I2 = 11): a1 (twice), a2, b (twice), c1 (twice), c2
(twice) and d (twice).
Robustness. The two workflow services are specific to workflow
execution (R1 = 2). Interactions b (twice), c2 (twice) and d (twice)
also are necessary (R2 = 6).
Extensibility. Adding a new type of parent engine requires imple-
menting the corresponding service, implementing interactions b
and c2 in the parent engine, and implementing interaction d in the
science gateway and in the parent service (E1 = 5). Adding a new
type of child engine only requires implementing the correspond-
ing service, developing interactions b and c2 in the child engine,
and implementing interaction d in the parent service (E1 = 4).
We use E1 = 4.5 in Table 2 to reflect both conditions. Adding a
new version in the parent or child engine only requires modify-
ing this engine (E2 = 0). Adding a new workflow is done through
interaction a1 and a2 (E3 = 2). Adding a new infrastructure re-
quires re-implementing interactions a1, b and c2 twice, and inter-
action c1 once so that it can be supported by both workflow en-
gines (E4 = 6).
Scalability. As in the service architecture, adding a new engine
instance requires specific developments in the science gateway
(instance of a parent engine), or in the parent engine (instance of
a child engine) (S1 = 1). Similarly, elastic engines are difficult to
achieve. Distributed engines can be implemented through meta-
workflows (S2 = 0). Task scheduling is more complex than in
other architectures though, due to the fact thatworkflowexecution
is split in different engines (S3 = 1).
Functionality. Meta-workflows can be implemented, which is one
of themain interest of this architecture (F1=0). Note, however, that
the complexity of the architecture increases with the number of
engine types involved in meta-workflows: for instance, a meta-
workflow with child workflows executed by 2 different types of
engines would require an additional workflow service and the
corresponding interactions. Debugging information is accessed
through interaction d (invoked twice) (F2=1).

5.6. Workflow conversion with service invocation

Integration complexity. Workflow conversion with service invoca-
tion requires the same components as for service invocation (I1 =

3), and an additional g interaction (I1 = 7).
Robustness. Since workflow conversion is not involved in the
execution (it is an offline process), the scores are the same as for
the service architecture (R1 = 1, R2 = 3).
Extensibility. Since adding a new type of workflow engine aims at
supporting more workflows, we consider that it only requires re-
implementing interaction g in this architecture (E1 = 1). Note,
however, that implementing interaction g can require substantial
work depending on the complexity of the workflow language used
by the new engine. Similarly, adding a new engine version only
requiresmodifying interaction g (E2 = 1). Adding a newworkflow
is done through interactions a1, a2 and g (E3 = 3). As in the
service architecture, interfacingwith a new infrastructure requires
modifications in interactions a1, b, c1 and c2 (E4 = 4).
Scalability. Since workflow conversion is not involved in the
execution (it is an offline process), the score is the same as for the
service architecture (S1 = 1, S2 = 1, S3 = 0).
Functionality. Meta-workflows are available after conversion, by
connecting workflows in the language used in the science gateway
(F1=0). Debugging information is accessible as in the service
invocation architecture (F2=1).
6. Discussion

6.1. Comparison between architectures

Tight integration and task encapsulation are the simplest ar-
chitectures to integrate, followed by service integration, workflow
conversion (with service invocation) and pool. Nested workflows
(with service invocation) require more integration than the other
architectures. Robustness roughly leads to the same ordering of ar-
chitectures, with tight integration and task encapsulation in the
top group, service integration and workflow conversion (with ser-
vice invocation) close behind, pool in a third group, and nested
workflows (with service invocation) at the end. This ordering is
consistent across metrics; it reflects the global complexity of the
architectures.

Regarding extensibility, most architectures are overall compa-
rable, except nested workflows (with service invocation) which
are significantly behind. This is explained by the complexity of the
nested workflow architecture, with 2 infrastructures and 2 work-
flow services. Task encapsulation and workflow conversion (with
service invocation) perform slightly better when integrating new
engines (E1), which makes them useful architectures for science
gateways that do not focus on a particular engine. However, task
encapsulation, workflow conversion (with service invocation) and
tight integration perform worse than the others when adding en-
gine versions (E2), due to the need to update infrastructure (task
encapsulation), science gateway (tight integration), or workflow
converter (workflow conversion). Workflow conversion performs
worse than the others when integrating new workflows (E3) be-
cause of the language conversion step. All architectures except
nestedworkflows are equivalent when integrating new infrastruc-
tures (E4).

The pool architecture is overall the most scalable, which is not
surprising since it is designed precisely for scalability. Tight inte-
gration is the least scalable and all the other architectures perform
the same overall. The global scalability score, however, should not
conceal the unique characteristics of architectures regarding this
criterion. Nested workflows are the only architecture that can eas-
ily accommodate distributed workflow execution, which can be
critical in some cases. At the same time, the scheduling constraints
created by task encapsulation and nested workflows may become
problematic depending on the type of targeted infrastructure. Non-
reliable infrastructures, for example, could hardly copewithwork-
flow engines being wrapped in computing tasks as done in task
encapsulation. The availability of multiple engine instances could
also become a critical feature for science gateways with important
workloads, which would favor task encapsulation and pool.

Differences in functionality should not be neglected. Nested
workflows (with service invocation) and workflow conversion
(with service invocation) are the only architectures that intrin-
sically support meta-workflows. Besides, tight integration is the
only architecture that allows fine-grained debugging, which may
be critical for efficient user support.

Table 3 provides an overall comparison between architectures,
based on the metrics in Table 2. It should be noted that this
analysis is only meant for illustration purposes, since it assumes
that all criteria have equal weights while real systems would favor
some of them. Weights can be adjusted in the public spreadsheet
at https://frama.link/LrPRsCQp (column B of sheet ‘‘Metrics’’) to
produce a custom version of Table 3 if required.

Overall, task encapsulation andworkflow conversion perform a
bit better than the other architectures and nested workflows stand
a bit behind for the reasons mentioned previously.

https://frama.link/LrPRsCQp


T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255 251
Table 3
Overall evaluation. Brighter colors and lower scores indicate better performance. Scores are obtained by summing the normalized
global scores (m′ values) of each criterion in Table 2 and the colors are obtained as in Table 2.
6.2. Limitations

A few limitations should be considered when using the results
of our evaluation. First, our evaluation methods aimed to provide
comparative metrics, however the high-level of abstraction used
to derive these metrics hinders the complexity of real systems
to some extent. In particular, the presented architectures are
abstract patterns that may be mixed together in actual systems.
The distinction between tight integration and service invocation,
for instance, may not always be that clear in practice. Service
invocation may also be combined with task encapsulation in some
cases. Nevertheless, the criteria discussed in this work would still
be applicable for broadly comparing and categorizing such cases of
hybrid architectures.

It should also be noted that all the interactions involved in
the architectures were treated equally, whereas some of them
are obviously more complex than others. For example, interaction
g (workflow language conversion) is clearly more complex than
interaction d (service invocation). However, without entering into
the details of a particular system, quantification of the robustness
or the amount of development associated with each interaction
and software component will hardly be precise. If a particular
system is evaluated, the public spreadsheet can be used to adjust
the weights given to specific components and interactions based
on the technical context.

The particular case of interaction g (workflow language con-
version) requires particular attention when implementing a real
system since this interaction may not be easily generalized to
any workflow language. For instance, converting FSL, PSOM or
Nipype pipelines to any other workflow language is problematic
because these engines rely on general-purpose programming lan-
guages such as Bash, Octave/Matlab and Python, which are much
richer than scientificworkflow languages. If not properly validated,
workflow language conversion could introduce critical errors im-
pacting the robustness and correctness of the execution.

The abstract nested workflows and workflow conversion pat-
terns were instantiated with service invocation so that they can be
analyzed in the same framework as the other architectures. Other
types of instantiation, for instance nested workflows with task en-
capsulation, could also be envisaged. We chose to limit ourselves
to instantiations with service invocation because the resulting ar-
chitectures have already been implemented in real systems, and
because service invocation is largely used. Nevertheless, it could
be interesting to explore other types of instantiations.

The particular technical or historical context of a science gate-
way project may also influence the evaluation of an architecture to
integrate workflow engines. For instance, many workflow engines
are already available as web services, which tends to favor service
invocation (in particular when interactions can be re-purposed),
and other science gatewaysmay have strongly tested task and data
control features (interactions b and c1), which would favor task
encapsulation. Similarly, adding a new type of engine may facili-
tate integration of a new infrastructure when interactions b and
c2 are already available. The migration cost between architectures
has been ignored as well.

Finally, workflow engines are only one of the many aspects in-
volved in the design of a science gateway. Other properties defi-
nitely influence the design of a software architecture, for instance
collaborative features, data visualization, search, authentication,
accounting and so on.

7. Application to systems design

To illustrate how our evaluation framework can be applied to
help design new systems, let us consider a hypothetical system
where the workflow engine is split in two parts: (1) a high-
level part integrated in the science gateway, which submits sub-
workflows to the infrastructure; (2) a lower-level part, executed
on the infrastructure, which executes the sub-workflows. This
scenario came up after the evaluation framework had already been
designed.

We model such a system using a nested workflow architecture
with a ‘‘Tight+Task’’ instantiation, i.e., the parent engine is
tightly integrated in the science gateway and the child engine is
integrated through task encapsulation. Fig. 9 shows the graphical
representation of the system. From this representationwe find that
the sub-tasks submitted by the child engine through interaction e
should be handled by the parent engine rather than by the science
gateway. Indeed, handling the tasks directly in the science gateway
would lead to create a new specific interaction, named, e.g., b1,
while b could be reused. We also find that interaction e allows
running the sub-tasks on the infrastructure(s) supported by the
parent engine with no further development effort required in the
child engine.

The system evaluation is presented in Table 4. The de-
tailed calculations are available in our public spreadsheet at
https://frama.link/LrPRsCQp.We conclude that the studied system
supports nested workflows with a much better performance than
the nested workflow model instantiated with service invocation
(evaluated in Table 2): the integration score is improved by a fac-
tor of 2, robustness is improved by a factor of 2.6, extensibility is
substantially improved, scalability and functionality are not penal-
ized.

8. Related work

There is abundant literature describing specific workflow
engines and systems; some of the main references are cited in
Section 1.1. A few works described the architecture and features
of workflow systems at an abstract level. For instance, the early
work [49] proposes a generic architecture for grid workflow
systems that is based on the workflow reference model defined
by theWorkflowManagement Coalition.6 Deelman et al. [16] have

6 http://www.wfmc.org.

https://frama.link/LrPRsCQp
http://www.wfmc.org


252 T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255
Fig. 9. Nested workflow architecture instantiated with tight integration and task
encapsulation (Tight+Task).

further characterized the features of workflow systems. These two
works, however, do not mention science gateways.

Numerous science gateways have been described, asmentioned
in Section 1.2. However, only a few works focused on science
gateway architectures. Shahand et al. [50] presents the Science
Gateway Canvas, which is a business reference model where the
most relevant functional components are organized into functional
groups. Although workflow management is mentioned as a possi-
ble component to coordinate distributed computations in science
gateways, the paper does not comment on architecture to achieve
this.

Olabarriaga et al. [48] presents a user-centered view of the
ecosystem of science gateways with focus on workflow manage-
ment. Their proposed layered system architecture includes gate-
way, workflow engine and distributed infrastructure components,
similarly to the ‘‘service invocation’’ pattern. However other pat-
terns are not identified.

9. Conclusion

We have systematically reviewed architectures used to inte-
grate workflow engines in science gateways. These architectures
were described in a system-independent framework suitable for
comparison, illustrated on real systems, and evaluated using novel
quantitativemetrics that allow simple comparison across architec-
tures. We have discussed the pros and cons of all the presented ar-
chitectures based on these metrics, and we have shown how our
evaluation framework can be leveraged in the design of new sys-
tems.

To the best of our knowledge, our work is the first to system-
atically review and compare software architectures to integrate
workflow engines into science gateways. So far, the literature on
science gateways and workflow engines has focused on the de-
scription of particular systems, or on the presentation of a par-
ticular architecture. Instead, our analysis abstracts and evaluates
architectural patterns independently from any particular system,
providing general insight aboutways to integrate science gateways
and workflow engines. These insights will be valuable for software
architects when considering alternatives for the architecture and
evaluating the impact of their decisions.

Acknowledgments

We thank the anonymous reviewers for the thorough reviews
and useful comments that greatly contributed to improve the qual-
ity of this paper. This work has been made possible with the
Table 4
Evaluation of the nested workflow architecture instantiated with tight integration
(parent engine) and task encapsulation (child engine).

Nested
Tight+Task

Integration complexity
Total components—I1 2
Total interactions—I2 6
Total 8
Robustness
Specific components—R1 0
Specific interactions—R2 3
Total 3
Extensibility
New engine type—E1 3
New engine version—E2 1
New workflow—E3 2
New infrastructure—E4 4
Total 10
Scalability
Multiple engine instances—S1 1
Distributed engines—S2 0
Task scheduling—S3 1
Total 2
Functionality
Meta-workflow—F1 0
Fine-grained debugging—F2 1
Total 1

support of the Irving Ludmer Family Foundation and the Lud-
mer Centre for Neuroinformatics and Mental Health. The inte-
gration between PSOM and CBRAIN was supported by a Brain
Canada Platform Support Grant, as well as the Canadian Consor-
tium on Neurodegeneration in Aging (CCNA), through a grant from
the Canadian Institute of Health Research and funding from sev-
eral partners. This work is in the scope of the LABEX PRIMES
(ANR-11- LABX-0063) of Université de Lyon, within the program
‘‘Investissements d’Avenir’’ (ANR-11-IDEX-0007) operated by the
French National Research Agency (ANR). This work also falls into
the scope of the scientific topics of the French National Grid Insti-
tute (IdG). The VIP team thanks the site administrators of the Eu-
ropean Grid Initiative and the GGUS support for their help related
to the VIP platform. The CBRAIN team is grateful for the comput-
ing cycles, storage, and support obtained from Compute Canada
(https://computecanada.ca) and platform development program
from CANARIE (http://www.canarie.ca/).We also acknowledge the
Dutch national e-Infrastructure with the support of SURF Cooper-
ative, the Dutch national program COMMIT/ and the High Perfor-
mance Computing and Networking (HPCN) Fund of the University
of Amsterdam for their support to the science gateway activities at
the AMC. We are also grateful to the financial support provided by
FP7 E-INFRASTRUCTURE program for financial support to SCI-BUS,
SHIWA and ER-flow projects.

References

[1] Tarek Sherif, Pierre Rioux, Marc-Etienne Rousseau, Nicolas Kassis, Natacha
Beck, Reza Adalat, Samir Das, Tristan Glatard, Alan C. Evans, CBRAIN: a
web-based, distributed computing platform for collaborative neuroimaging
research, Front. Neuroinf. 8 (54) (2014).

[2] Shayan Shahand, Ammar Benabdelkader, Mohammad Mahdi Jaghoori,
Mostapha al Mourabit, Jordi Huguet, Matthan W.A. Caan, Antoine H.C. Kam-
pen, Sílvia D. Olabarriaga, A data-centric neuroscience gateway: design,
implementation, and experiences, Concurr. Comput.: Pract. Exper. 27 (2)
(2015) 489–506.

[3] Shayan Shahand,Mark Santcroos, Antoine H.C. vanKampen, Sílvia Olabarriaga,
A grid-enabled gateway for biomedical data analysis, J. Grid Comput. 10 (4)
(2012) 725–742.

https://computecanada.ca
http://www.canarie.ca/
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref1
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref2
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref3


T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255 253
[4] T. Glatard, C. Lartizien, B. Gibaud, R. Ferreira da Silva, G. Forestier, F.
Cervenansky, M. Alessandrini, H. Benoit-Cattin, O. Bernard, S. Camarasu-Pop,
N. Cerezo, P. Clarysse, A. Gaignard, P. Hugonnard, H. Liebgott, S. Marache, A.
Marion, J. Montagnat, J. Tabary, D. Friboulet, A virtual imaging platform for
multi-modality medical image simulation, IEEE Trans. Med. Imaging 32 (1)
(2013) 110–118.

[5] Thomas Fahringer, Radu Prodan, Rubing Duan, Francesco Nerieri, Stefan
Podlipnig, Jun Qin, Mumtaz Siddiqui, Hong-Linh Truong, Alex Villazon,
Marek Wieczorek, Askalon: A grid application development and computing
environment, in: Proceedings of the 6th IEEE/ACM InternationalWorkshop on
Grid Computing, IEEE Computer Society, 2005, pp. 122–131.

[6] Bartosz Balis, Hyperflow: A model of computation, programming approach
and enactment engine for complex distributed workflows, Future Gener.
Comput. Syst. 55 (2016) 147–162.

[7] T. Glatard, J.Montagnat, D. Lingrand, X. Pennec, Flexible and efficientworkflow
deployment of data-intensive applications on grids with MOTEUR, J. High
Perform. Comput. Appl. 22 (3) (2008) 347–360.

[8] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good,
et al., Pegasus: A framework for mapping complex scientific workflows onto
distributed systems, Sci. Program. 13 (3) (2005) 219–237.

[9] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip
J. Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron
Livny, Kent Wenger, Pegasus, a workflow management system for science
automation, Future Gener. Comput. Syst. 46 (2015) 17–35.

[10] Yong Zhao, Mihael Hategan, Ben Clifford, Ian Foster, Gregor Von Laszewski,
Veronika Nefedova, Ioan Raicu, Tiberiu Stef-Praun, Michael Wilde, Swift: Fast,
reliable, loosely coupled parallel computation, in: IEEE Congress on Services,
2007, pp. 199–206.

[11] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat,
et al., Taverna: a tool for the composition and enactment of bioinformatics
workflows, Bioinformatics 20 (17) (2004) 3045–3054.

[12] Ian Taylor,Matthew Shields, IanWang, AndrewHarrison, The Trianaworkflow
environment: Architecture and applications, in: Workflows for e-Science,
Springer, 2007, pp. 320–339.

[13] S.P. Callahan, J. Freire, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, Huy T.
Vo, Managing the evolution of dataflows with vistrails, in: 22nd International
Conference on Data Engineering Workshops (ICDEW’06), 2006, pp. 71–71.

[14] Peter Kacsuk, Zoltan Farkas,Miklos Kozlovszky, GaborHermann, Akos Balasko,
Krisztian Karoczkai, Istvan Marton, WS-PGRADE/gUSE generic DCI gateway
framework for a large variety of user communities, J. Grid Comput. 10 (4)
(2012) 601–630.

[15] V. Korkhov, D. Vasyunin, A.Wibisono, V. Guevara-Masis, A. Belloum, C. de Laat,
P. Adriaans, L.O. Hertzberger, WS-VLAM: Towards a scalable workflow system
on the grid, in: Proceedings of the 2nd workshop on Workflows in Support of
Large-Scale Science (WORKS07), 16th IEEE International Symposium on High
Performance Distributed Computing, 2007, pp. 63–68.

[16] Ewa Deelman, Dennis Gannon, Matthew Shields, Ian Taylor, Workflows and
e-Science: An overview of workflow system features and capabilities, Future
Gener. Comput. Syst. 25 (5) (2009) 528–540.

[17] Krzysztof Gorgolewski, Christopher D. Burns, Cindee Madison, Dav Clark,
Yaroslav O. Halchenko, Michael L. Waskom, Satrajit S. Ghosh, Nipype: a
flexible, lightweight and extensible neuroimaging data processing framework
in Python, Front. Neuroinf. 5 (3) (2011).

[18] Pierre Bellec, Sébastien Lavoie-Courchesne, Phil Dickinson, Jason Lerch,
Alex Zijdenbos, Alan C. Evans, The Pipeline System for Octave and Matlab
(PSOM) a lightweight scripting framework and execution engine for scientific
workflows, Front. Neuroinf. 6 (7) (2012).

[19] Y. Ad-Dabbagh, D. Einarson, O. Lyttelton, J.-S. Muehlboeck, K. Mok, O.
Ivanov, R.D. Vincent, C. Lepage, J. Lerch, E. Fombonne, A.C. Evans, The CIVET
image-processing environment: A fully automated comprehensive pipeline
for anatomical neuroimaging research, in: Proceedings of the 12th Annual
Meeting of the Organization for Human Brain Mapping, 2006.

[20] A.P. Zijdenbos, R. Forghani, A.C. Evans, Automatic ’’pipeline’’ analysis of 3-D
MRI data for clinical trials: application to multiple sclerosis, IEEE Trans. Med.
Imaging 21 (10) (2002) 1280–1291.

[21] John Ashburner, SPM: A history, NeuroImage 62 (2) (2012) 791–800.
[22] Mark Jenkinson, Christian F. Beckmann, Timothy E.J. Behrens, Mark W.

Woolrich, Stephen M. Smith, FSL, NeuroImage 62 (2) (2012) 782–790.
[23] Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin,

Marlon Pierce, Chris Mattmann, Raminder Singh, Thilina Gunarathne, Eran
Chinthaka, Ross Gardler, et al., Apache Airavata: a framework for distributed
applications and computational workflows, in: Proceedings of the 2011 ACM
Workshop on Gateway Computing Environments, ACM, 2011, pp. 21–28.

[24] Valeria Ardizzone, Roberto Barbera, Antonio Calanducci, Marco Fargetta, E.
Ingrà, Ivan Porro, Giuseppe La Rocca, Salvatore Monforte, R. Ricceri, Riccardo
Rotondo, et al., The DECIDE science gateway, J. Grid Comput. 10 (4) (2012)
689–707.

[25] Peter Kacsuk, Science Gateways for Distributed Computing Infrastructures,
Springer, 2014.
[26] Tania Lorido-Botrán, José Miguel-Alonso, Jose Antonio Lozano, Auto-scaling
techniques for elastic applications in cloud environments, Tech. Rep. EHU-
KAT-IK-09, 12, Department of Computer Architecture and Technology,
University of Basque Country, 2012.

[27] Sharath Maddineni, Joohyun Kim, Yaakoub El-Khamra, Shantenu Jha, Dis-
tributed application runtime environment (DARE) a standards-based middle-
ware framework for science-gateways, J. Grid Comput. 10 (4) (2012) 647–664.

[28] Ivo D. Dinov, John D. Van Horn, Kamen M. Lozev, Rico Magsipoc, Petros
Petrosyan, Zhizhong Liu, Allan MacKenzie-Graham, Paul Eggert, Douglas S.
Parker, Arthur W. Toga, Efficient, distributed and interactive neuroimaging
data analysis using the LONI pipeline, Front. Neuroinf. 3 (22) (2009).

[29] MichaelMcLennan, Steven Clark, EwaDeelman,Mats Rynge, KaranVahi, Frank
McKenna, Derrick Kearney, Carol Song, HUBzero and Pegasus: integrating
scientific workflows into science gateways, Concurr. Comput.: Pract. Exper. 27
(2) (2015) 328–343.

[30] Wenjun Wu, Thomas Uram, Michael Wilde, Mark Hereld, Michael E.
Papka, Accelerating science gateway development with Web 2.0 and Swift,
in: Proceedings of the 2010 TeraGrid Conference, ACM, 2010, p. 23.

[31] Dawid Szejnfeld, Piotr Dziubecki, Piotr Kopta, Michal Krysinski, Tomasz
Kuczynski, Krzysztof Kurowski, Bogdan Ludwiczak, Tomasz Piontek, Dominik
Tarnawczyk, Malgorzata Wolniewicz, Piotr Domagalski, Jaroslaw Nabrzyski,
Krzysztof Witkowski, Vine Toolkit - Towards portal based production
solutions for scientific and engineering communities with grid-enabled
resources support, Scalable Comput.: Pract. Exp. 11 (2) (2010).

[32] Ekaterina Elts, Ioan Lucian Muntean, Hans-Joachim Bungartz, High Perfor-
mance Computing in Science and Engineering, Garching/Munich 2009: Trans-
actions of the Fourth Joint HLRB and KONWIHR Review and ResultsWorkshop,
Dec. 8–9, 2009, Leibniz Supercomputing Centre, Garching/Munich, Germany,
Springer, Berlin, Heidelberg, 2010, pp. 651–662. (Chapter) GridWorkflows for
Molecular Simulations in Chemical Industry.

[33] T. Glatard, P.O. Quirion, R. Adalat, N. Beck, R. Bernard, B.L. Caron, Q. Nguyen,
P. Rioux, M.-E. Rousseau, A.C. Evans, P. Bellec, Integration between PSOM and
CBRAIN for distributed execution of neuroimaging pipelines, in: Meeting of
the Organization for Human Brain Mapping, Geneva, Switzerland, 2016.

[34] D. Rogers, I. Harvey, T.T. Huu, K. Evans, T. Glatard, I. Kallel, I. Taylor, J.
Montagnat, A. Jones, A. Harrison, Bundle and pool architecture for multi-
language, robust, scalable workflow executions, J. Grid Comput. 11 (3) (2013)
457–480.

[35] Gabor Terstyanszky, Tamas Kukla, Tamas Kiss, Peter Kacsuk, Ákos Balaskó,
Zoltan Farkas, Enabling scientific workflow sharing through coarse-grained
interoperability, Future Gener. Comput. Syst. 37 (2014) 46–59.

[36] MohamedAbouelhoda, Shadi Alaa Issa,Moustafa Ghanem, Tavaxy: Integrating
Taverna and Galaxy workflows with cloud computing support, BMC Bioinfor-
matics 13 (1) (2012) 1–19.

[37] Kassian Plankensteiner, Radu Prodan, Matthias Janetschek, Thomas Fahringer,
Johan Montagnat, David Rogers, Ian Harvey, Ian Taylor, Ákos Balaskó, Péter
Kacsuk, Fine-Grain interoperability of scientific workflows in distributed
computing infrastructures, J. Grid Comput. 11 (3) (2013) 429–456.

[38] Luis de la Garza, Johannes Veit, Andras Szolek, Marc Röttig, Stephan Aiche,
Sandra Gesing, Knut Reinert, Oliver Kohlbacher, From the desktop to the grid:
scalable bioinformatics via workflow conversion, BMC Bioinformatics 17 (1)
(2016) 1–12.

[39] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer,
Gregor Von Laszewski, Craig Lee, AndreMerzky, Hrabri Rajic, John Shalf, SAGA:
A simple API for grid applications. High-level application programming on the
grid, Comput. Methods Sci. Technol. 12 (1) (2006) 7–20.

[40] Peter Tröger, Roger Brobst, Daniel Gruber, Mariusz Mamonski, Daniel
Templeton, Distributed resource management application API Version 2
(DRMAA), in: Technical report, Open Grid Forum, January 2012. Also available
online: http://www.ogf.org/documents/GFD.194.pdf, 2012.

[41] Andy Edmonds, Thijs Metsch, Alexander Papaspyrou, Alexis Richardson,
Toward an open cloud standard, IEEE Internet Comput. 16 (4) (2012) 15–25.

[42] Sylvain Reynaud, Uniform access to heterogeneous grid infrastructures with
JSAGA, in: Production grids in Asia, Springer, 2010, pp. 185–196.

[43] Ákos Hajnal, Zoltán Farkas, Péter Kacsuk, Data avenue: remote storage
resource management in WS-PGRADE/gUSE, in: 6th International Workshop
on Science Gateways, (IWSG), IEEE, 2014, pp. 1–5.

[44] Matteo Turilli, Mark Santcroos, Shantenu Jha, A comprehensive perspective on
the pilot-job abstraction. preprint arXiv:1508.04180, 2015.

[45] S. Olabarriaga, T. Glatard, A. Hoheisel, A. Nederveen, D. Krefting, Crossing
healthgrid borders: Early results in medical imaging, in: HealthGrid’09, pages
62–71, Berlin, jun 2009.

[46] Jeremy Goecks, Anton Nekrutenko, James Taylor, et al., Galaxy: a comprehen-
sive approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences, Genome Biol. 11 (8) (2010) R86.

[47] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias
Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, Bernd
Wiswedel, Data Analysis, Machine Learning and Applications: Proceedings of
the 31st Annual Conference of the Gesellschaft für Klassifikation e.V., Albert-
Ludwigs-Universität Freiburg, March 7–9, 2007, Springer Berlin, Heidelberg,
Berlin, Heidelberg, 2008, pp. 319–326. (Chapter) KNIME: The Konstanz
Information Miner.

http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref4
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref5
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref6
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref7
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref8
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref9
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref11
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref12
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref14
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref16
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref17
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref18
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref20
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref21
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref22
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref23
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref24
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref25
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref26
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref27
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref28
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref29
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref30
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref31
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref32
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref34
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref35
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref36
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref37
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref38
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref39
http://www.ogf.org/documents/GFD.194.pdf
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref41
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref42
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref43
http://arxiv.org/1508.04180
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref46
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref47


254 T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255
[48] Silvia Olabarriaga, Gabrielle Pierantoni, Giuliano Taffoni, Eva Sciacca, Mahdi
Jaghoori, Vladimir Korkhov, Giuliano Castelli, Claudio Vuerli, Ugo Becciani,
Eoin Carley, et al., Scientific workflow management–for whom ? in: 2014
IEEE 10th International Conference on e-Science, (e-Science), IEEE, 2014,
pp. 298–305.

[49] J. Yu, R. Buyya, A taxonomy of workflow management systems for grid
computing, J. Grid Comput. 3 (3–4) (2005) 171–200.

[50] Shayan Shahand, Antoine H.C. van Kampen, Sílvia D. Olabarriaga, Science
gateway canvas: A business reference model for science gateways, in:
Proceedings of the Science of Cyberinfrastructure: Research, Experience,
Applications and Models, SCREAM’15, Portland, OR, USA, 2015.

Tristan Glatard obtained a Ph.D. in Computer-Science
from the University of Nice Sophia-Antipolis in 2007.
In 2008, he spent a year as a post-doctoral fellow at
the University of Amsterdam, working in the Virtual-
Lab for e-Science project. From 2008 to 2016, he was
a researcher at CNRS in Lyon, working on distributed
systems for medical imaging. From 2013 to 2016, he was
also a Visiting Scholar at theMcGill University inMontreal,
working in the CBRAIN team. He is nowAssistant Professor
in the Department of Computer Science and Software
Engineering at Concordia University in Montreal.

Marc-Étienne Rousseau since 2008 is the technical
manager for the CBRAIN Platform Team hosted in the
Montreal Neurological Institute, McGill University. Before
joining Dr. Evans’ group, M. Rousseauwas the Coordinator
of Scientific IT at the McGill Life Sciences Complex, after
a few crucial formative years within the West Coast
Biotechnology Industry and the IBM Pacific Development
Center. His dual formation in both Life Sciences &
Computer Science, allow him to renew the often fragile
links between the two scientific communities.

Sorina Camarasu-Pop received her Engineering degree
in Telecommunications in 2007 and her Ph.D. degree (on
exploiting heterogeneous distributed systems for Monte-
Carlo simulations in the medical field) in 2013, both
from the National Institute for Applied Sciences of Lyon
(INSA-Lyon, France). Since 2007 she is a CNRS research
engineer at Creatis in Lyon, France. Her activity is focused
on optimizing the execution of medical image processing
applications on heterogeneous distributed systems.

RezaAdalathas over 27 years of experience as theDirector
of the Operations for Academia and Telecommunications
industry and before that as a precision systems architect
and design engineer for Aerospace industry. During his
tenure at McGill University, he has been involved as
Director of the Operations and the Senior Programs
Manager in projects related to neuroinformatics and
information technologies for automated neuroimaging
research in large-scale clinical and developmental studies.
Among these projects are large multi-center, multi-
million dollars, brain imaging research studies, funded

by US National Institute of Health (NIH), International consortium for Brain
Mapping (ICBM), Neuroimaging InFormatics Technology Initiative (NIFTI), US
Autism Centers of Excellence (ACE) Network, Canadian Institute of Health Research
(CIHR), Canada Foundation for Innovation (CFI), Canada’s Advanced Research and
Innovation Network (CANARIE), Canadian Brain Research And Informatics Network
(CBRAIN), Helmholtz Association of German Research Centers, Canada Networks
of Centers of Excellence (NeuroDevNet), National University of Singapore (NUS),
The Irving Ludmer Family Foundation, Jean Coutu Family Foundation, European
Commission Human Brain Project (HBP) and Brain Canada Foundation. Reza Adalat
is a multilingual, highly organized, dynamic and goal-oriented team leader, with
successful interpersonal communication skills.
Natacha Beck has been a software developer at MCIN
since 2011; she has a formation and background in
bioinformatics. She previously worked at the University
of Montreal on some genetic annotation pipeline and she
used to annotate mitochondrial genome. At the MCIN
she works on the CBRAIN platform and a web-based
software that allows neuroimaging researchers to perform
computationally intensive analyses on data by connecting
them to High-Performance Computing (HPC).

Samir Das began working at the Montreal Neurological
Institute in 2002 and currently serves as Software Man-
ager for the McGill Centre for Integrative Neuroscience.
He is also the system architect for the LORIS data plat-
form (www.loris.ca), which stewards and curates sev-
eral data initiatives, such as the longitudinal NIH MRI
Study of Normal Brain Development (Evans et al., 2006),
the IBIS autism network (Wolff et al., 2012), BigBrain
(www.bigbrain.loris.ca) and numerous international lon-
gitudinal studies. His background is in Mathematics and
Computing Science (University of Alberta), and has dedi-

cated a great deal of time to various neuroimaging efforts and collaborations, both
in terms of pipeline processing as well as neuroimaging analysis.

Rafael Ferreira da Silva is a Computer Scientist in the
Collaborative Computing Group at the USC Information
Sciences Institute. His research interest include scientific
workflows, cloud and grid computing, data science, dis-
tributed computing, reproducibility, and machine learn-
ing. He received his Ph.D. in Computer Science from INSA-
Lyon, France, in 2013. In 2010, he received hisMaster’s de-
gree in Computer Science from Universidade Federal de
Campina Grande, Brazil, and his B.S. degree in Computer
Science fromUniversidade Federal da Paraiba, in 2007. See
http://www.rafaelsilva.com for further information.

Najmeh Khalili-Mahani, Neuroscientist specializing in
pharmacological neuroimaging, currently research asso-
ciate at MCIN, McGill University, bioinformatics advisor at
PERFORM Centre, Concordia University, and Adjunct Pro-
fessor in the Department of Psychology, Concordia Univer-
sity, Montreal, QC.

Vladimir Korkhov is an associate professor at the Com-
puter Modeling and Multiprocessor Systems department,
Faculty of Applied Mathematics and Control Processes, St.
Petersburg State University, Russia. He received Ph.D. de-
gree from the University of Amsterdam in 2009 with the
thesis on hierarchical resource management in Grid com-
puting; he participated in a number of national and in-
ternational projects on distributed and grid computing, in
particular Virtual laboratory (2001–2004, NL), VL-e: Vir-
tual laboratory for e-Science (2004–2009, NL), High per-
formance simulation on the Grid (2004–2006, NL-RU),

SHIWA: Sharing Interoperable Workflows for large scale scientific simulations on
Available DCIs (2010–2012, EU FP7), ER-flow (2012–2014, EU FP7). As a post-
doctoral researcher he worked at the Academic Medical Center of the University of
Amsterdam and at Charité—Medical University of Berlin on applying grid technol-
ogy to bioinformatics and medical applications. Research interests include parallel,
distributed, grid and cloud computing, resource management, workflows. Dr. Ko-
rkhov has published around 70 scientific papers in international journals and con-
ference proceedings.

Pierre-Olivier Quirion completed a Ph.D. in Astrophysics
in 2006. In all, he spent about ten years studying evolution
and seismology of white dwarfs and solar like stars. He
followed this period with a two years stint in the film
industry, working has a Technical Director in charge of
distributed computing in the dynamic environment of
Computer Graphic Image (CGI) production. It is with this
eclectic background, always lined with high performance
computing, that Dr. Quirion joined the CRIUGM in 2015 as
a member of the SIMEXP, Neuropoly and UNF labs where
he develops software for MRI analysis and distributed

computing and act as a goto specialist for all things computer related.

http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref48
http://refhub.elsevier.com/S0167-739X(17)30024-9/sbref49
http://www.loris.ca
http://www.bigbrain.loris.ca
http://www.rafaelsilva.com


T. Glatard et al. / Future Generation Computer Systems 75 (2017) 239–255 255
Pierre Rioux is a computer scientist who has worked in
brain imaging for the past 7 years, and was previously
involved in genomics research in different organizations
in and around Montreal, Canada, and Palo Alto, USA. He
is particularly crazy when he writes about himself at the
third person.

Sílvia D. Olabarriaga after being active in various fields
and organizations, since 2009, is Assistant Professor of
the Department of Clinical Epidemiology, Biostatistics and
Bioinformatics of the Academic Medical Center of the
University of Amsterdam. She leads the e-science research
line, supervises Ph.D. students, and teaches courses
at the AMC Graduate School and Medical Informatics
Bachelor and Master Programs. Silvia is mainly interested
in the usage of advanced information technology for
scientific biomedical research, such as e-infrastructures, in
particular through usable science gateways. Her research

covers a broad range of topics including distributed computing and research
data management for medical applications. Currently Silvia is also advisor to the
president of the Hospital de Clinicas de Porto Alegre, Brazil, on topics related to
data-driven research in biomedicine and clinical datamanagement. Google Scholar:
http://scholar.google.nl/citations?user=TQIIXtkAAAAJ&hl=en&oi=ao.
Pierre Bellec is an assistant Professor at the Computer
Science and Operations Research (DIRO) department and
the Institute of Geriatrics (CRIUGM) at University of
Montreal, Canada, since 2010. Previously, he was a post-
doctoral Fellow at the McConnell Brain Imaging Centre,
Montreal Neurological Institute, Canada (2006–2010). He
received a Ph.D. degree in medical imaging (physics),
from University Paris XI, Orsay, France (2006) and a M.Sc.
in mathematics, vision and learning at Ecole Normale
Supérieure, Cachan, France (2002). His main research
interest is to develop image processing and data mining

algorithms for the identification of neuroimaging biomarkers in Alzheimer’s
disease.

Alan C. Evans is James McGill Professor of Neurology
and Psychiatry at McGill University. His research covers
multi-modal brain imaging, structural network modeling
and neuroinformatics (www.mcin.ca). He is co-Director
the Ludmer Centre for Neuroinformatics and Mental
Health, where he uses high-performance computing to
integrate imaging, behavior, genetics and epigenetics data
in brain research. He has 534 peer-reviewed papers (ISI h-
index = 118; Google Scholar h-index = 163). In 2014,
he received the Vezina Prize for Quebec Neuroradiology,
the national Margolese Human Brain Disorders Prize and

was a Highly Cited Scientist (top 1%) for Neuroscience and Behavior. He is a Fellow
of the Royal Society of Canada and 2016 Chair of the Organization for Human Brain
Mapping.

http://scholar.google.nl/citations?user=TQIIXtkAAAAJ%26hl=en%26oi=ao
http://www.mcin.ca

	Software architectures to integrate workflow engines in science gateways
	Introduction
	Workflow engines
	Science gateways
	Infrastructure

	Architectures
	Interactions
	Tight integration
	Service invocation
	Task encapsulation
	Pool model
	Nested workflows
	Workflow conversion

	Real systems
	Tight integration
	Service invocation
	Task encapsulation
	Pool model
	Nested workflows with service invocation
	Workflow conversion with service invocation

	Evaluation metrics
	Integration complexity
	Robustness of workflow execution
	Extensibility
	Scalability
	Functionality

	Architecture evaluation
	Tight integration
	Service invocation
	Task encapsulation
	Pool model
	Nested workflows with service invocation
	Workflow conversion with service invocation

	Discussion
	Comparison between architectures
	Limitations

	Application to systems design
	Related work
	Conclusion
	Acknowledgments
	References


