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The goal of the paper is twofold. Firstly we study sufficient conditions of convergence for random series of eigenfunctions in L ∞ . The eigenfunctions are considered with respect to a reference elliptic operator like the Laplace-Beltrami operator or a Schrödinger operator with growing potential on the Euclidean space. That is a generalization of an old result due to Paley and Zygmund. Secondly, we obtain a few optimal L p bounds of eigenfunctions including a generalization of the Bernstein inequality. We show that the previous two themes are intimately linked.

Résumé. -Le but de cet article est double. Premièrement, nous étudions des conditions suffisantes de convergence pour des séries aléatoires de fonctions propres dans L ∞ . Les fonctions propres sont considérées par rapport à un opérateur elliptique de référence tel que l'opérateur de Laplace-Beltrami ou un opérateur de Schrödinger avec un potentiel confinant de l'espace euclidien. Cela constitue une généralisation d'un vieux résultat de Paley et Zygmund. Dans un deuxième temps, nous obtenons quelques estimées L p optimales de fonctions propres incluant une généralisation de l'inégalité de Bernstein. Nous montrons que ces deux thèmes sont intimement liés.
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Introduction

This paper studies the closed relation between the following two themes i) obtaining sufficient conditions for the almost sure convergence in L ∞ of random series of eigenfunctions of some elliptic operators (the Laplace-Beltrami operator on a boundaryless compact Riemannian manifold and similarly the quantum superquadratic oscillator -∆ + |x| 2α on R d , with (α, d) ∈ N × N ). Such results extend the classical Paley-Zygmund theorem (see below Theorem 1.1). Moreover, our results are universal with respect to the randomization. ii) obtaining sharp L p estimates, with p ∈ [1, +∞) ∪ {+∞}, of eigenfunctions of the above mentioned elliptic operators (or more precisely functions that are spectrally localized). In particular, we will be interesting in Bernstein inequalities involving gradients of eigenfunctions.

It will appear that several elements of the proof of one of those themes are used to study the other one. As a by-product, we complete and simplify some results proven in [Tzv09, IRT16, dS14, BT14, BL13] in a unified framework. Although our new results are essentially concerned with random series in L ∞ , we also make a comparison with the L p theory (with finite p) and, maybe more striking, with the almost sure convergence in one point (see Theorem 2.3, Theorem 4.1 and Theorem 4.5). Almost all proofs of our results are technically possible thanks to our previous paper [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF]. About the L p estimates, we shall get new and optimal estimates dealing with -∆ + |x| 2α . We thus complete some results proved in [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF][START_REF] Imekraz | On random Hermite series[END_REF][START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF]. Those results are shortly resumed at the end of this introduction but the interested reader may directly go to Section 5.

Let us begin by recalling the known literature. For any set I, we denote by (ε n ) n∈I a sequence of i.i.d. Rademacher random variables, in other words P(ε n = 1) = P(ε n = -1) = 1 2 . Denoting by T the unidimensional torus, the classical Paley-Zygmund theorem for random Fourier series in L ∞ (T) is the following (see [START_REF] Paley | On some series of functions, (1) (2) (3)[END_REF]page 347] or [START_REF] Zygmund | Trigonometric series[END_REF]page 219]).

Theorem 1.1. -For any complex sequence (a n ) n∈Z satisfying

(1) ∃γ > 1 n∈Z |n|≥2 |a n | 2 ln γ (|n|) < +∞,
the random Fourier series n∈Z ε n a n e inx almost surely converges in the Banach space L ∞ x (T).

The assumption (1) is fulfilled if the function n∈Z a n e inx belongs to H s x (T) for some small s > 0. Hence, the Paley-Zygmund theorem ensures that a function belongs, in probability, in L ∞ (T) with a weaker condition than the one given by the Sobolev embedding H s (T) ⊂ L ∞ (T) (that needs the inequality s > 1 2 ). In modern probability theory, a natural question is the universality of such a phenomenon. Let us recall that an asymptotic probability result involving a sequence of independent random variables is called universal if its conclusion remains unchanged whenever each of the random variables is replaced with another one (with some necessary but quite general normalizations). See for instance [START_REF] Tao | Topics in random matrix theory[END_REF][START_REF] Tao | Random matrices: The distribution of the smallest singular values[END_REF][START_REF] Angst | Universality of the nodal length of bivariate random trigonometric polynomials[END_REF] for several modern examples. In our context, one may reformulate this problem as follows : "is it possible to replace the Rademacher law of the random variables ε n in ε n a n e inx with other laws ?". This question was completely solved by Marcus and Pisier (see [START_REF] Marcus | Random Fourier Series with Applications to Harmonic Analysis[END_REF] or [LQ04, page 527, théorèmes III.5 et III.6]). Their result claims that for any sequence of independent centered real random variables (X n ) n∈Z satisfying

(2)

0 < inf n∈Z E[|X n |] and sup n∈Z E[|X n | 2 ] < +∞.
the following equivalence holds true

(3) ε n a n e inx a.s. converges in L ∞ x (T) ⇔ X n a n e inx a.s. converges in L ∞ x (T).

We stress that the previous equivalence holds true even if the random variables X n have not the same law ! The implication ⇐ is quite classical in the theory of Banach spaces (see [ It is not necessary to give a precise definition of the cotype since we will not need it. For our purpose, we only need to know that L q (T d ) has finite cotype if and only if q is finite. Hence, L ∞ (T d ) is not expected to satisfy (4). The equivalence (3) however implies, if X n are Gaussian, that (4) remains true for the trigonometric functions in B = L ∞ (T). Such a fact is astonished because L ∞ (T d ) is the typical Banach space that has not finite cotype. The key of this observation is that the last sentence merely means that there is a sequence (f n ) n∈N in B = L ∞ (T) for which (4) is false. In other words, the trigonometric functions e inx have somehow a special behavior in the Banach space L ∞ (T). The following implications summarize the previous results

n∈Z ε n a n e inx ∈ L ∞ x (T) a.s. n∈Z X n a n e inx ∈ L ∞ x (T) a.s. ∃γ > 1 n∈Z |n|≥2 |a n | 2 ln γ (n) < +∞ (UPZ) (PZ) (3) 
Our main sequence of results extend the universal Paley-Zygmund implication (UPZ), with a moment condition sup E[|X n | 2 ] < +∞, if the trigonometric functions on T d are replaced with eigenfunctions in the following two multidimensional settings :

• for the Laplace-Beltrami operator ∆ on a compact Riemannian manifold X without boundary, • for superquadratic oscillators -∆ + |x| 2α on R d , with (α, d) ∈ N × N .

We briefly recall that, for the first setting, the Laplace-Beltrami operator ∆ acts from the space C ∞ (X) to itself (see [START_REF] Berger | Le spectre d'une variété riemannienne[END_REF] or the introduction of [START_REF] Tzvetkov | Riemannian analogue of a Paley-Zygmund theorem[END_REF]) and there is a natural measure on X (the Riemannian volume) that is invariant under isometries of X and allows to consider the Banach spaces L p (X) for any p ∈ [1, +∞) ∪ {∞}. Moreover, there is a Hilbert basis (φ n ) n∈N of L 2 (X) that diagonalizes ∆ :

∆φ n = -λ 2 n φ n , λ 0 = 0 < λ 1 ≤ λ 2 ≤ • • • → +∞.
Although the sequence (φ n ) n∈N may not be unique (if there are multiple eigenvalues), the sequence of eigenvalues (λ n ) n∈N of √ -∆ is completely determined by the Riemannian structure of X. In the specific case X = T, one recovers λ n = k associated to the eigenfunctions x → e ±ikx . It is thus natural to try to extend Theorem 1.1 for random linear combinations of eigenfunctions and thus to improve the usual Sobolev embeddings. Such results appear in [START_REF] Tzvetkov | Riemannian analogue of a Paley-Zygmund theorem[END_REF]. More precisely, [Tzv09, Corollary 6] states the following : for any complex sequence (c n ) n∈N satisfying (5) ∃γ > 1

n≥1 |c n | 2 λ dim(X)-1 n ln γ (λ n ) < +∞,
the random series ε n c n φ n converges almost surely in the Banach space L ∞ (X). Moreover, if one looks at the universality given by the proof of [START_REF] Tzvetkov | Riemannian analogue of a Paley-Zygmund theorem[END_REF]Theorem 5], one sees that one may replace the Rademacher random variables ε n with any nonzero sequence of i.i.d. subgaussian random variables (we recall that a centered random variable Y is subgaussian if it satisfies the large deviations estimate P(|Y | ≥ t) e -Ct 2 as t → +∞, another equivalent definition is the bound E[|Y | p ] 1/p √ p as p → +∞). Furthermore, the way of randomization in [START_REF] Tzvetkov | Riemannian analogue of a Paley-Zygmund theorem[END_REF] highly depends on the sequence of the chosen Hilbert basis (φ n ) n (that is not unique). Intrinsic ways of randomization have been studied in the following two settings : i) the paper [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF] makes use of a randomization around the unit balls of a sequence of subspaces of L 2 (X) (with increasing dimensions) if X is a sphere or more generally a Riemannian compact manifold.

The proofs however involve subgaussian random variables (or more generally random variables that satisfy Gaussian deviation estimates, see [BL13, Appendice C.1]). ii) in [IRT16, PRT15, PRT14], another intrinsic randomization is used by selecting again a sequence of subspaces of L 2 (R d ) (with increasing dimensions). The models studied were the quantum harmonic oscillator -∆ + |x| 2 on R d or more generally -∆ + |x| 2α on R d in [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF]. Unfortunately, the proofs needed a technical condition called a squeezing condition and specific distributional spaces (denoted by Z s φ (R d )). We refer to [IRT16, lines (1.5) and (1.9) and part 1.1.2] or [RT15, lines (1.8) and (1.9)]). It is not necessary to recall the precise above definitions but the reason why such technicalities were useful is the following : they forced unidimensional random series of eigenfunctions to behave as if they were multidimensional. Hence, estimates of eigenfunctions are replaced with estimates of spectral functions. Again, as in [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF], the L ∞ (R d ) results involve probability measures that satisfy the Gaussian concentration of measure property (see [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF]). In the both previous frameworks, the independent random variables have finite moments of all order and it is not clear if one can reach a universal moment condition of order two as explained above. The paper [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF] introduced other random series (involving random matrices without any squeezing conditions) we think are the most fitting for multidimensional settings (see below (7)). The idea was to take advantage of the multidimensional Kahane-Khintchine inequalities (proven by Marcus and Pisier in [START_REF] Marcus | Random Fourier Series with Applications to Harmonic Analysis[END_REF], see (27)). Such inequalities allow to overcome the use of large deviations estimates or the famous phenomenon of concentration of the measure (that both need subgaussian random variables). All results in [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF] were concerned by the Banach space L p with finite p. The present work aims to study the L ∞ case with those new random series. It is now worthwhile to recall why the L ∞ case is much difficult than L p with finite p. The Maurey theorem states that for any p ∈ [1, +∞), any N ∈ N and any (f 1 , . . . , f N ) ∈ L p (R) N , the following holds true

E   N n=1 ε n f n L p (R)   N n=1 |f n | 2 L p (R)
.

The previous equivalence obviously transfers the study of unidimensional random series (at least with Rademacher laws) to a deterministic question. The multidimensional case is done in [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF] and is summarized in Theorem 12.1. To our knowledge, such a result does not exist for p = +∞.

The plan of the paper is the following :

• In Section 2, we define more precisely the way of randomization we use and we state three multidimensional Paley-Zygmund results on Riemannian compact manifolds without boundary. In particular, we will see the role of the BM O space on compact manifolds (thus extending known results on the torus, see [START_REF] Sledd | Random series which are BMO or Bloch[END_REF]) and a somehow strange property of spatial universality (see (11)). Those results are proved in sections 8, 9,10, 11 and 12.

• In Section 3, we motivate our new random series (seen as random initial data) by giving a modest application to the cubic wave equation ∂ 2 t w -∆w + w 3 = 0 on a three-dimensional compact manifold. The proof was initially discovered by Burq and Tzvetkov for the torus T 3 in [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF] and modified by de Suzzonni for the three-dimensional sphere S 3 in [dS14]). We explain in Section 15 and 16 how our version of the Paley-Zygmund theorem allows to modify this proof to reach any boundaryless compact manifold (without any geometric restriction). Our approach avoids to search specific eigenbasis (by comparison with [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF][START_REF] De Suzzoni | Consequences of the choice of a particular basis of L 2 (S 3 ) for the cubic wave equation on the sphere and the Euclidian space[END_REF]) but has to be connected with the study of the critical semi-linear wave equation in [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF].

• In Section 4, we state Paley-Zygmund theorems for -∆ + |x| 2α on R d and explain the differences with Section 2. Those results are proved in sections 13, 14, 18, 19, 20 and 21.

• In Section 5, we state several sharp L p bounds for the superquadratic oscillators -∆ + |x| 2α . Those bounds complete those of [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF][START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF][START_REF] Imekraz | On random Hermite series[END_REF]. At first sight, such bounds have a marginal relevance with our study of random linear combinations. But the connection is the following : the optimality of such bounds will be a consequence of a specific use of the multidimensional Kahane-Khintchine inequalities. In the other side, our Paley-Zygmund theorems need L 2 → L ∞ bounds and a weak Bernstein inequality L ∞ → ∇L ∞ . We shall also prove a Bernstein inequality, see below (24), in a stronger form that has it own interest. For instance, the strong Bernstein inequality will allow for an enlightenment of the same turning point 2d

d-1 appearing in several models peaking at a point (without any computation involving orthogonal polynomials). The proofs are developed in sections 22, 23. Among those inequalities, the strong Bernstein inequality is the most intricate but follows a more or less classical way. For that reason, we have decided to postpone the proof in Appendix D. The main steps of the proof are :

a parametrix for the Weyl-Hörmander pseudo-differential calculus (see Appendix A), an asymptotic development via the Helffer-Sjöstrand formula (see Appendix B), several L r → L r homogeneous estimates of pseudo-differential operators (see Appendix C).

• In sections 6 and 7, we state and prove an abstract, universal and multidimensional Paley-Zygmund theorem, that is Theorem 6.1, that will be used for compact manifolds and for -∆ + |x| 2α .

• In Section 17, we show an exponential decaying property of the spectral function of -∆ + |x| 2α . Such a proprety plays a role in the proof of the Paley-Zygmund theorems and for every L 2 → L p bounds of Section 5.

• Finally, Appendix E contains a simple lemma about unitarily invariant random vectors.

From now, (X n ) n∈N will everywhere denote a sequence of independent random variables on a probability space Ω endowed with a probability measure P. For a given sequence of positive integers (d n ) n∈N , we denote by (E n ) n∈N a sequence of random matrices such that the law of E n : Ω → U dn (C) is the normalized Haar measure of the unitary group U dn (C). Finally, all the variables and random matrices that appear in a same statement will be assumed to be mutually independent and defined on the same probability space Ω (it will be however useful to replace Ω with Ω 2 in some proofs).

Paley-Zygmund theorems on Riemannian compact manifolds

In this section X is a boundaryless Riemannian compact manifold of dimension d, and we denote by ∆ its negative Laplace-Beltrami operator. Without any precision, the Hilbert space L 2 (X) is considered with respect to the Riemannian measure of X. For any function g ∈ L 2 (X) we define its spectrum sp(g) by sp(g

) := {λ ∈ [0, +∞), ∃φ ∈ L 2 (X) X gφdx = 0 and ∆φ = -λ 2 φ}.
For any κ > 0 and n ∈ N we also define the subspace (6)

E n := {g ∈ L 2 (X), sp(g) ⊂ [κn, κn + κ)}.
The subspaces E n are orthogonal. It is well known that if κ is large enough then d n := dim(E n ) is positive and behaves like n d-1 as n → +∞ (this is a consequence of the Weyl law with remainder, see below Lemma 8.1). We thus may consider a Hilbert basis (φ n,1 , . . . , φ n,dn ) of E n where d n n d-1 . Now consider a sequence (f n ) n∈N with f n ∈ E n and assume that f = n∈N f n is a distribution on X (which practically means that the sequence ( f n L 2 (X) ) n≥0 has a polynomial growth). We choose to randomize the distribution f by considering the random series

(7) n∈N X n (ω)f ω n with f ω n := dn i=1 dn j=1 E n,i,j (ω) f n , φ n,j φ n,i .
In [Ime17, Théorème 1.8], more general random matrices than X n E n are studied in L p (X), with finite p. But we believe that the notation n∈N X n (ω)f ω n is much explicit and simple. We stress that the random part f ω n is much relevant than X n (ω) (and we may even choose X n = 1 in our paper). Also note that the law of ω → f ω n merely depends on f n L 2 (X) . Before stating any result, let us point out that Gaussian measures on E n are often studied, in other contexts, because explicit computations are possible (see for instance [START_REF] Anantharaman | Topologie des hypersurfaces nodales de fonctions aléatoires gaussiennes[END_REF][START_REF] Zelditch | Real and complex zeros of Riemannian random waves[END_REF]). It turns out that Gaussian measures are indeed particular cases of (7). To see this point, consider a sequence (g n,k ) 1≤k≤dn of i.i.d. N C (0, 1) Gaussian random variables that are mutually independent with the random matrix E n . The main property of the random vector (g n,1 , . . . , g n,dn ) is its unitary invariance. Standard computations or more generally Lemma E.1 allow to check the following law equivalence :

dn k=1 g n,k (ω)φ n,k ∼ |g n,1 (ω)| 2 + • • • + |g n,dn (ω)| 2 (φ n,1 ) ω .
Let us now state our generalization of Theorem 1.1 on L ∞ (X).

Theorem 2.1. -Assume that the random variables

(X n ) satisfy sup n∈N E[|X n | 2 ] < +∞. Consider a sequence (f n ) n∈N satisfying f n ∈ E n for any n ∈ N and (8) ∃γ > 1 n≥2 f n 2 L 2 (X) ln γ (n) < +∞.
Then, for almost every ω ∈ Ω, the random series

X n (ω)f ω n converges in L ∞ (X)
The previous result improves [ [START_REF] Tzvetkov | Riemannian analogue of a Paley-Zygmund theorem[END_REF]Corollary 6] in two ways : firstly, one has a probabilistic universality, in particular we do not need to force any assumption of large deviation estimates on each random variable X n . Secondly, the assumption (8) is much less demanding (see (5)). Let us add that our proof is spectral whereas the proof of Tzvetkov is spatial.

Just after stating [Tzv09, Corollary 6], Tzvetkov asked if the condition γ > 1, that appears in (8), is sharp in a Paley-Zygmund theorem on a Riemannian compact manifold of dimension d ≥ 2 (e.g. a sphere). For X = T, the answer is positive and comes from the existence of Sidon sets [START_REF] Paley | On some series of functions, (1) (2) (3)[END_REF]page 350]. Unfortunately, the author is not aware of such a notion on a general compact Riemannian manifold. For γ < 1, we shall overcome this difficulty by using the fact that the dimensions d n = dim(E n ) tend to +∞ (a property that is specific to the case d ≥ 2). Our result needs to introduce the space of functions of bounded mean oscillation on the boundaryless compact manifold X. The original BM O space had been introduced for the Euclidean space in [START_REF] John | On functions of bounded mean oscillation[END_REF] and, though slightly larger than L ∞ , is usually considered as a good substitute. A function f ∈ L 1 (X) belongs to BM O(X) if and only if the following semi-norm (vanishing for constants) is finite

(9) f BM O(X) := sup 0<ε<r0(X) x∈X 1 Vol(B(x, ε)) B(x,ε) |f (y) -f B(x,ε) |dy,
where r 0 (X) is a positive number called the injectivity radius of X and f B(x,ε) is the average of f on the geodesic ball B(x, ε) (that definition is studied in [START_REF] Brezis | Degree theory and BMO; part I: Compact manifolds without boundaries[END_REF]). It turns out that BM O(X) allows for a satisfactory enlightenment of the almost sharpness of Theorem 2.1.

Theorem 2.2. -Assume that the random variables (X n ) n∈N satisfy sup n∈N E[|X n | 2 ] < +∞ and consider a sequence (f n ) n∈N , with f n ∈ E n for any n ∈ N, satisfying (10 
) n≥2 f n 2 L 2 (X) ln(n) < +∞.
Then, for almost every ω ∈ Ω, the random series

X n (ω)f ω n converges in BM O(X). Conversely, in the case dim(X) ≥ 2, there is a sequence (f n ) satisfying ∀γ ∈ [0, 1) n≥2 f n 2 L 2 (X) ln γ (n) < +∞
and such that the random series f ω n almost surely diverges in BM O(X) (and also in L ∞ (X) because of the trivial inequality

• BM O(X) ≤ 2 • L ∞ (X) ).
The first sentence of Theorem 2.2 is known on the torus X = T for analytic versions of BM O(T) (see [START_REF] Sledd | Random series which are BMO or Bloch[END_REF]). Roughly speaking, Theorem 2.2 shows that γ = 1 is the limit logarithmic exponent for the almost sure convergence in BM O(X) or L ∞ (X). Our proof needs to understand the Littlewood-Paley theory of BM O(X). This is done by adapting a strategy used by Burq-Gérard-Tzvetkov in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] that transfers a Littlewood-Paley theory on the Euclidean space to a boundaryless compact manifold.

As explained in the introduction, the L ∞ case and the L p case, with finite p, have a completely different approach. It is therefore interesting to compare Theorem 2.1 and the following optimal result. Theorem 2.3. -Let us consider

• a sequence (f n ) n∈N , with f n ∈ E n for each n ∈ N,
• a sequence of random variables (X n ) n∈N satisfying for some p ∈ [1, +∞) the following conditions

0 < inf n∈N E[|X n |]
and

sup n∈N E[|X n | max(2,p) ] < +∞,
• a Borel probability measure ν on X.

Then the following assertions are equivalent :

i) the series f n 2 L 2 (X) is convergent, namely n∈N f n belongs to L 2 (X),
ii) the random series X n (ω)f ω n almost surely converges in L p (X, ν), iii) there is x ∈ X such that, the random series X n (ω)f ω n (x) almost surely converges in C. One may also add the following (apparently stronger) statement iv) for every x ∈ X, for almost every ω ∈ Ω, the random series

X n (ω)f ω n (x) converges in C.
Let us make a few remarks about Theorem 2.3 :

• Assuming p belonging to [2, +∞), ν being the normalized Riemannian volume of X and the random variables X n satisfying uniform large deviations estimates, the author considers that the implication i) ⇒ ii) essentially appears in [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF] in a different form. • Whereas we were primarily interested in the universality with respect to the random variables X n , we see that Point ii) of Theorem 2.3 also shows a spatial universality : for any two Borel probability measures ν 1 and ν 2 with disjoint supports on X, the following equivalence holds true :

(11) X n (ω)f ω n a.s. converges in L 1 (X, ν 1 ) ⇔ X n (ω)f ω n a.s. converges in L 1 (X, ν 2 ).
That fact is not surprising if ν 2 is an isometric pushforward of ν 1 but seems to be new if ν 1 and ν 2 are singular and if X is a general Riemannian compact manifold. • We stress that the condition iii) is very weak because the (almost sure) convergence holds true on one point x ∈ X (one can see it as Point ii) with a Dirac measure ν = δ x ). Note now that a simple use of the Fubini-Tonelli theorem on the product space X × Ω shows that iv) and iii) are equivalent to "for almost every ω ∈ Ω, for almost every x ∈ X, the random series X n (ω)f ω n (x) converges in C". Hence, Theorem 2.3 seems to be a satisfactory generalization of the setting of random Fourier series [START_REF] Kahane | Some random series of functions[END_REF]page 46] to the Riemannian setting. Similarly to Theorem 2.2, Theorem 2.3 also motivates the study of the random series looking like X n (ω)f ω n . • The proof of Theorem 2.3 will be a short consequence of a sharp bound of Hörmander of the spectral function (see Section 12) and a result previously obtained in [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF] (namely Theorem 12.1 whose proof relies on the Kahane-Khintchine-Marcus-Pisier inequalities).

As explained in the beginning of the introduction, a Paley-Zygmund theorem should be considered as a probabilistic improvement of a Sobolev embedding. Remember that a spectral definition of H s (X), for any s ∈ R, is given by 

(12) ∀(f n ) ∈ n∈N E n n∈N f n ∈ H s (X) ⇔ n≥1 f n 2 L 2 (X)
(X) ⊂ L ∞ (X), ∀s > d 2 , H d/2 (X) ⊂ BM O(X)
(see [START_REF] Brezis | Degree theory and BMO; part I: Compact manifolds without boundaries[END_REF] page 210]).

3. An application to the cubic wave equation with random initial data

In the series of papers [BT08, BT08, BT14], Burq and Tzvetkov introduced new ideas to solve nonlinear wave equations with rough initial data (namely that belong to H s (X), see (12), for small values of s). They cleverly use the probabilistic gain of integrability to solve equations that are deterministically ill-posed. We go on as in the last section. The cubic wave equation

(∂ 2 t -∆)v + v 3 = 0, (t, x) ∈ R × X. is 1 2 -critical in dimension 3 so it is interesting to construct solutions in H s (X) × H s-1 (X) for s ∈ (0, 1 
2 ) (see the introductions of [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF][START_REF] De Bouard | Construction de solutions pour des edp sur-critiques à données initiales aléatoires[END_REF]). The previous equation was studied for the three-dimensional torus X = T 3 in [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF] and for the three-dimensional sphere X = S 3 in [dS14]. The previous two cases use that the Laplace-Beltrami opertators on T 3 and on S 3 admit a Hilbert basis of eigenfunctions that are uniformly bounded on any L p (X) space (for 2 ≤ p < +∞). That fact is true on T d thanks to the trigonometric functions but is not obvious at all on S d (see a probabilistic proof in [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF][START_REF] De Suzzoni | Consequences of the choice of a particular basis of L 2 (S 3 ) for the cubic wave equation on the sphere and the Euclidian space[END_REF]). To the knowledge of the author, such a property is not known to be true on any compact manifold X. We shall overcome this issue thanks to a quantitative version of our Paley-Zygmund result (Theorem 6.1) that holds true without any geometric assumption on X. Although our approach is different from [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF], we use a "spectral trick" (Lemma 8.1) that we learn from the latter paper. The first thing to do is to define the random initial data. For any n ∈ N, we consider E n : Ω → U dn (C) and E n : Ω → U dn (C) two random matrices whose laws are the normalized Haar measures. We also consider two sequences of complex random variables (X n ) and (X n ). As above, all the considered random variables and matrices are assumed to be mutually independent. For any s ∈ R,

any (v 0 , v 1 ) ∈ H s (X) × H s-1 (X) we first decompose v 0 = n∈N v 0,n and v 1 = n∈N v 1,n following
the Hilbert sum L 2 (X) = ⊕E n and we then define the following two initial data

∀ω ∈ Ω v ω 0 := n∈N X n (ω)   dn i=1 dn j=1 E n,i,j (ω) v 0 , φ n,j φ n,i   = n∈N X n (ω)v ω 0,n , (13) 
v ω 1 := n∈N X n (ω)   dn i=1 dn j=1 E n,i,j (ω) v 1 , φ n,j φ n,i   = n∈N X n (ω)v ω 1,n .
We claim that v ω 0 and v ω 1 almost surely admit the same regularity than v 0 and v 1 .

Proposition 3.1. -We keep the above notations and assume

(14) 0 < inf n∈N E[|X n |] and sup n∈N E[|X n | 2 ] < +∞.
then the following two assertions are equivalent : i) v 0 belongs to H s (X), ii) for almost every ω ∈ Ω, the random series defining v ω 0 converges in H s (X).

We now can use the analysis of [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF] (more precisely Theorem 16.1) to get the following result.

Theorem 3.2. -Assume dim(X) = 3. Consider consider a real number s ∈ (0, 1 2 ) and two sequences of independent random variables X n and X n such that

(15) 0 < inf n∈N E[|X n |], 0 < inf n∈N E[|X n |], sup n∈N E |X n | 3 + |X n | 3 < +∞.
For any (v 0 , v 1 ) ∈ H s (X) × H s-1 (X), for almost every ω ∈ Ω, the random function (v ω 0 , v ω 1 ) belongs to H s (X) × H s-1 (X) and the cubic wave equation

(∂ 2 t -∆)v + v 3 = 0, v(0, •) = v ω 0 , v(0, •) = v ω 1 ,
admits a unique global solution v that satisfies

v(t) -cos(t √ -∆)v ω 0 - sin(t √ -∆) √ -∆ v ω 1 ∈ C 0 t (R, H 1 (X)) ∩ C 1 t (R, L 2 (X)).
Proposition 3.1 has to be compared with [BT08, Lemma B.1] that uses the apparently weaker assumption

(16) ∃C > 0 inf n∈N P(|X n | ≥ C) > 0.
But we believe that ( 14) is more natural in the framework of random series (see [START_REF] Marcus | Random Fourier Series with Applications to Harmonic Analysis[END_REF] 

E[|X n | 2 ] < +∞.
Our proof of Proposition 3.1 is however different of that of [START_REF] Burq | Random data Cauchy theory for supercritical wave equations I: local theory[END_REF] since we do not use the same random series for initial data.

Paley-Zygmund theorems for the superquadratic oscillator

Before entering into details, we present two results that give a real contrast with the setting of compact manifolds. In the latter setting, the almost sure convergence in one point is equivalent to the probabilistic L p convergence for any finite p (see Theorem 2.3), and also to the deterministic L 2 convergence. The next two results show that the lack of compactness of R d forbids a similar property for the harmonic oscillator -∆ + |x| 2 . We moreover emphasize the need to avoid x = 0 in the next statement. 

• a sequence (f n ) n∈N , with f n ∈ E n ,
• a real number p ∈ [1, +∞) and a sequence of random variables (X n ) n∈N satisfying

0 < inf n∈N E[|X n |]
and

sup n∈N E[|X n | max(2,p) ] < +∞,
• a Borel probability measure ν on R d \{0}.

Then the following assertions are equivalent i) the series

f n 2 L 2 (R d ) n -d 2 converges (which means that n∈N f n belongs to H -d 2 1 (R d ), see below (20))
ii) for almost every ω ∈ Ω, the random series

X n (ω)f ω n (as in (7)) converges in L p (R d , ν), iii) there is x ∈ R d \{0} such that, for almost every ω ∈ Ω, the random series X n (ω)f ω n (x) is convergent in C.
As above, we may add the (apparently stronger) assertion : iv) for every x ∈ R d , for almost every ω ∈ Ω, the random series

X n (ω)f ω n (x) converges in C.
Proposition 4.2. -There exists a sequence of functions (f n ) n∈N , with f n ∈ E n for any n ∈ N, and that satisfies i),ii),iii),iv) but the random series

f ω n almost surely diverges in L p (R d ) for any p ∈ [1, +∞).
Let us give a few comments about Theorem 4.1 :

• The complete solution of the almost sure convergence in L p (R d ), for finite p, is given in [Ime17, Théorème 1.4]. But the latter result is useless to prove Proposition 4.2 because we need to deal with an uncountable set of p. We shall overcome this issue in Section 14 by introducing a simple Banach space that embeds in any L p (R d ) for any p ∈ [1, +∞). • Remembering that any function in E 2n+1 is odd, we obviously have f ω 2n+1 (0) = 0. That fact explains why we cannot choose x = 0 in iii).

We now present similar results for the operators -∆ + |x| 2α on L 2 (R d ) where d ≥ 2 and α ≥ 1 are two integers (such operators are sometimes referred as quantum superquadratic oscillators [YZ01, [START_REF] Yajima | Local smoothing property and Strichartz inequality for Schrödinger operator with potentials superquadratic at infinity[END_REF][START_REF] Robbiano | Remark on the Kato smoothing effect for Schrödinger equation with superquadratic potentials[END_REF]). Due to the fact that the spectral analysis of such operators is not explicit, our results are slightly weaker than those of the case α = 1 and we merely concentrate our efforts in obtaining sufficient conditions of almost sure convergence. From now, we denote by V 2α a positive 2α-homogeneous polynomial, where "positive" means that V 2α is positive on R d \{0}. We recall that L 2 (R d ) admits a Hilbert basis (ϕ j ) j≥0 made of eigenfunctions of -∆ + V 2α and let (λ j ) j≥0 be the associated sequence of eigenvalues which is nondecreasing, positive and tends to +∞. Thanks to the paper [START_REF] Helffer | Proprietes asymptotiques du spectre d operateurs pseudo-differentiels sur Rn[END_REF], it is well understood that -∆ + V 2α should not be considered as a differential operator of order 2 but as a pseudo-differential operator of order 2α α+1 . For α = 1, this consideration means that the quantum harmonic oscillator -∆ + |x| 2 should be seen as an operator of order 1 ! Such unintuitive sentences will be clarified thanks to the Weyl-Hörmander symbolic calculus (see the computation (86) of the λ-function associated to a natural metric for -∆ + V 2α ). Therefore, a good choice of clusters for -∆ + V 2α is given by the sequence of intervals (17)

I n := (κn 2α α+1 , κ(n + 1) 2α α+1 ]
and I 0 := [0, κ] for some fixed constant κ > 0. This is perfectly coherent with the harmonic oscillator -∆ + |x| 2 whose spectrum is d + 2N. We then introduce

∀n ∈ N E n :=    f ∈ L 2 (R d ), f = λj ∈In f, ϕ j ϕ j    .
We clearly have the Hilbert decomposition

L 2 (R d ) = n∈N E n .
As above, it will be more convenient to denote by (φ n,1 , . . . , φ n,dn ) a Hilbert basis of E n with d n := dim(E n ). By comparison with the two settings of Riemannian compact manifolds and the harmonic oscillator, the following gives another reason to consider the clusters I n :

(18) ∀κ 1 ∃C ≥ 1 ∀n ≥ 1 1 C n d-1 ≤ dim(E n ) ≤ Cn d-1 .
The proof of (18) is detailed in Section 18 as a consequence of a Weyl formula with remainder obtained by Helffer-Robert [HR82, Théorème 6-4, page 840].

As for the setting of compact manifolds, we aim to study random series of functions of E n . The case α = 1, namely random linear combinations of Hermite functions, has been already studied in [IRT16, Theorem 2.6] but the proofs involve squeezing conditions, specific distributional spaces and subgaussian random variables. The case α ≥ 2 does not appear in the known literature. We can now state a Paley-Zygmund theorem for -∆ + V 2α without any squeezing condition or specific distributional spaces (and we thus improve [IRT16, Theorem 2.6] for α = 1). Moreover, the following statement merely needs a moment condition of order 2.

Theorem 4.3. -Assume d ≥ 2 and consider a sequence (f n ) n∈N , with f n ∈ E n for each n ∈ N. We moreover assume that the supremum

sup n∈N E[|X n | 2 ]
is finite and that the following holds true

(19) ∃γ > 1 n≥2 f n 2 L 2 (R d ) n -d α+1 ln γ (n) < +∞.
Then, for almost every ω ∈ Ω, the random series

X n (ω)f ω n converges in L ∞ (R d ) (where f ω n is defined as in (7)).
As a direct consequence, we obtain the following "Paley-Zygmund" phenomenon that does not occur for compact manifolds (see the second assertion of Theorem 2.2). Proof. With probability 1, the series f ω n converges in L 2 (R d ) because the functions f ω n are orthogonal and fulfill

f ω n L 2 (R d ) = f n L 2 (R d ) .
The convergence in L ∞ (R d ) comes from (19). We conclude by interpolation.

Although Theorem 2.1 looks like Theorem 4.3, the proof of the latter is much difficult because R d is not compact. We shall overcome this issue by proving a precise decaying property (see Proposition 17.1) of the associated spectral function. As for compact manifolds, it is worth comparing with the L p theory, for finite p. By using estimates proven in the papers [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF][START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF] (see details in sections 20 and 21), one may prove the next two results. Remark that one almost recovers (19) as p tends to +∞ in Theorem 4.6.

Theorem 4.5. -Assume d ≥ 2 and consider a sequence (f n ) n∈N , with f n ∈ E n for each n ∈ N. We moreover assume

∃p ∈ [2, +∞) sup n∈N E[|X n | p ] < +∞ and n≥1 f n 2 L 2 (R d ) n -d α+1 < +∞, then i) for every Borel probability measure ν on R d , the random series X n (ω)f ω n almost surely converges in L p (R d , ν), ii) the random series X n (ω)f ω n almost surely converges in L p loc (R d ), iii) for every x ∈ R d , the random series X n (ω)f ω n (x) almost surely converges in C, iv) the random series X n (ω)f ω n (x) almost surely converges in C for almost every x ∈ R d . Theorem 4.6. -Assume d ≥ 2 and consider a sequence (f n ) n∈N , with f n ∈ E n for each n ∈ N. We moreover assume ∃p ∈ [2, +∞) sup n∈N E[|X n | p ] < +∞ and n≥1 f n 2 L 2 (R d ) n -d α+1 (1-2 p ) < +∞.
Then the random series

X n (ω)f ω n almost surely converges in L p (R d ).
Let us now make a comparison with deterministic results. We need to recall the Sobolev spaces associated to -∆ + V 2α : for any s ∈ N one defines the subspace

H s α (R d ) of the functions f ∈ L 2 (R d ) satisfying (-∆ + V 2α ) s/2 f ∈ L 2 (R d ). From [YZ04, Lemma 2.4 with p = 2]), we have (20) (-∆ + V 2α ) s/2 f L 2 (R d ) f H s (R d ) + R d (1 + |x|) 2αs |f (x)| 2 dx.
The definition of the clusters (17) leads to the equivalent spectral definition

f ∈ H s α (R d ) ⇔ n≥1 n 2αs α+1 f n 2 L 2 (R d ) < +∞.
Forgetting the logarithmic term in (19), Theorem 4.3 roughly means that if f belongs to

H -d 2α α (R d ) then the randomized series X n (ω)f ω n associated to f almost surely belongs to L ∞ (R d ).
This "probabilistic Sobolev embedding" should be compared to the inclusion

H s α (R d ) ⊂ H s (R d ) ⊂ L ∞ (R d ) that holds true for any s > d 2 .
In other words, the probability theory allows a gain of almost d 2 1 + 1 α derivatives. A similar discussion is possible for Theorem 4.5 and Theorem 4.6.

Three optimal L 2 → L p bounds and a Bernstein inequality

We keep the notations of the last part. Our first result proves the sharpness of

L 2 → L ∞ bounds of Robert-Thomann [RT15, Proposition 2.4, δ = 1, θ = 0, r = ∞] and Koch-Tataru [KT05, Corollary 3.2, p = ∞]
for the harmonic oscillator.

Proposition 5.1. -Let us assume d ≥ 2 and fix κ 1 large enough (in the sense of (18)), then the following estimate holds true

(21) ∀n 1 sup f ∈En f =0 f L ∞ (R d ) f L 2 (R d ) n 1 2 ( αd α+1 -1)
,

where E n is the subspace of functions of L 2 (R d ) that are spectrally localized in (κn

2α α+1 , κ(n + 1) 2α α+1 ] with respect to -∆ + V 2α .
It is interesting to note that Proposition 5.1 interpolates the optimal results for the harmonic oscillator α = 1 and for Riemannian compact manifolds α = +∞. Although Proposition 5.1 has its own interest, its optimality and the equivalence d n n d-1 show that our abstract Paley-Zygmund result (see below Corollary 6.2) cannot provide a better assumption in (19).

Our contribution in Proposition 5.1 is the lower bound in (21). The upper bound is proved in [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF]. It turns out that Robert and Thomann also proved lower bounds but for larger spectral windows. Let us explain this point. Let h be the usual semiclassical parameter that tends to 0 + and set

[ a h h , b h h ] a spectral window associated to (-∆ + V 2α ) α+1 2α
and we assume for some δ ∈ (0, 1]

lim h→0 + a h ≤ lim h→0 + b h and b h -a h h δ .
Lemma 3.7 of [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF] proves an optimal two-side estimate of the L p norm of the spectral function of

(-∆ + V 2α ) α+1 2α on [ a h h , b h h ]
but the lower bound needs the assumption δ < 2 3 . For our purpose, one has

[ a h h , b h h ] = [κ α+1 2α n, κ α+1 2α (n + 1)] with h = 1 n , a h = κ α+1 2α and b h = κ α+1 2α (1 + h).
Therefore, we are in the case δ = 1 which is not covered by [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF]. We overcome this pseudo-differential issue by proving a decaying property of the so-called spectral function of -∆ + V 2α (see Proposition 17.1 for a precise statement).

Let us present another application of this decaying property combined with a probabilistic argument. It is known that large deviations estimates or the concentration measure phenomenon both allow to obtain sharp L p estimates (see [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF][START_REF] Poiret | Random weighted Sobolev inequalities on R d and applications to Hermite functions[END_REF]) but the case p ∈ [1, 2] is not studied and we give here an alternative point of view based on the multidimensional Kahane-Khintchine inequalities.

Proposition 5.2. -Assume d ≥ 2 and also fix κ 1 large enough (in the sense of (18)), then the following estimates hold true

(22) ∀p ∈ [2, +∞) ∀n 1 inf f ∈En f =0 f L p (R d ) f L 2 (R d ) n -d α+1 ( 1 2 -1 p ) , ( 23 
) ∀p ∈ [1, 2] ∀n 1 sup f ∈En f =0 f L p (R d ) f L 2 (R d ) n d α+1 ( 1 p -1 2 ) .
where E n is the subspace of functions of L 2 (R d ) that are spectrally localized in (κn

2α α+1 , κ(n + 1) 2α α+1 ] with respect to -∆ + V 2α .
Our final result is a Bernstein inequality that we will use (at least in a weaker form) to prove our L ∞ Paley-Zygmund theorem for -∆ + V 2α (Theorem 4.3).

Theorem 5.3. -For any dimension d ≥ 1, there is C > 0 (that depends on d and V 2α ) such that for any real number ρ ≥ 1 and any function f ∈ L 2 (R d ) that is spectrally localized in [0, ρ] with respect to -∆ + V 2α (in particular f is smooth), the following Bernstein inequality holds true

(24) ∀r ∈ [1, +∞) ∪ {+∞} ∇f L r (R d ) ≤ C √ ρ f L r (R d ) .
To the knowledge of the author, the paper [START_REF] Filbir | A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel[END_REF] gives a general strategy, via gradient estimates of heat kernels, to prove Bernstein inequalities like (24). Although there is a wide literature on heat kernels and their gradient estimates, we have not find suitable bounds for -∆ + |x| 2α . Our proof of Theorem 5.3 is of pseudo-differential nature and is explained in several appendices.

We stress that the proofs of Proposition 5.1 and Proposition 5.2 do not give any explicit example of f ∈ E n that optimizes the considered bounds. Let us now recall that a concentration phenomenon of eigenfunctions is usually expected to have an impact on the L p estimates. For instance, the lower bound (22) will come from the exponential decay outside a ball B(0, c n 1/(α+1) ) (see Section 22). Let us explain another concentration phenomenon that is known for explicit examples but is enlightened by the Bernstein inequality. Consider a sequence of functions f n ∈ E n that optimize the L 2 → L ∞ bounds (21). For any sequence (x n ) n≥0 of R d , one may use (24) with r = +∞ to get

∀x ∈ R d |f n (x)| + |x -x n |n α α+1 f n L ∞ (R d ) |f n (x n )|. Now choose x n ∈ R d satisfying |f n (x n )| ≥ 1 2 f n L ∞ (R d ) .
Hence, the function f n must concentrate in a small ball centered in x n :

|x -x n | n -α α+1 ⇒ |f n (x)| f n L ∞ (R d ) n 1 2 ( αd α+1 -1) f n L 2 (R d ) .
Such a concentration around a point implies the following bound from below

∀p ≥ 2 f n L p (R d ) n 1 2 ( αd α+1 -1)-d p α α+1 f n L 2 (R d ) = n dα α+1 ( 1 2 -1 p )-1 2 f n L 2 (R d ) .
By comparison with (22), the last bound is of interest only if

dα α + 1 1 2 - 1 p - 1 2 > - d α + 1 1 2 - 1 p , that is p > 2d d-1 .
In other words, the exponent p := 2d d-1 is the smallest exponent above which the peaking concentration is relevant for the L p bounds. This interpretation is well-known in the following settings :

• The sphere S d can be seen as a limit model corresponding to the case α = +∞. Let (Z n ) n≥1 be a sequence of zonal harmonics with

Z n L 2 (S d ) = 1 and write ∆Z n = -ρ n Z n with ρ n = n(n + d -1).
The following estimates are known (see for instance [Ime17, line (6)]) :

1 ≤ p < 2d d-1 ⇒ Z n L p (S d ) 1, 2d d-1 < p ≤ ∞ ⇒ Z n L p (S d ) n d-1 2 -d p .
It is moreover known that each Z n concentrates on a ball B(℘, c √ ρn ) for some c > 0 and where ℘ is a pole of S d . It also optimizes the

L 2 → L ∞ bound (21), the L 2 → L p bounds (22) and (23) for p ∈ [1, 2d d-1
). Note that a more reasonable limit model would be the unit ball of R d with Dirichlet boundary conditions but similar observations are true (see [AT08, Lemma 2.5]).

• For the harmonic oscillator -∆ + |x| 2 on L 2 (R d ), it has been recently remarked in [IRT16, Proposition 2.4] that the optimal L 2 → L ∞ bounds (21) are reached for the radial eigenfunctions we denote by ψ n . We still write (-∆ + |x| 2 )ψ n = ρ n ψ n with ρ n = 4n + d. Similarly, it turns out that ψ n concentrates on a ball

B(0, c √ ρn ) ⊂ R d . Combined with [IRT16, Proposition 2.4, Point iii)]
, it also appears that the functions

ψ n have optimal L 2 → L p bounds (22) for p ∈ [2, 2d d-1
). An intriguing remark is that the same turning point 2d

d-1 appears in those limit models whereas it is usually computed with intricate properties of Jacobi polynomials, Bessel functions or Laguerre polynomials. Although the boundary case needs further investigations, the Bernstein inequality shows that this is not an accident for the boundaryless case.

An abstract and multidimensional Paley-Zygmund theorem

Here we want to state an abstract Paley-Zygmund theorem that will encompass the last settings. So we choose to denote by X a Riemannian manifold (not necessarily compact). We also consider a sequence

(E n ) n∈N of nonzero finite dimensional subspaces of L 2 (X) ∩ L ∞ (X) ∩ C 0 (X). We write d n := dim(E n ). A fundamental object in our study is the so-called spectral function of E n : (25) ∀x ∈ X e n (x) := |φ n,1 (x)| 2 + • • • + |φ n,dn (x)| 2 ,
where φ n,1 , . . . , φ n,dn is a Hilbert basis of E n . An easy but crucial property of the function the function x → e n (x) is that it does not depend on the specific choice of the latter Hilbert basis. In other words, the function e n merely depends on the subspace E n . We now consider the following assumptions that will be satisfied in our examples :

(A1) there is a constant S ∈ R such that ∃C > 0 ∀n 1 e n L ∞ (X) dim(E n ) ≤ Cn S .
We now recall that e n L ∞ (X) admits the following expression

(26) e n L ∞ (X) = sup x∈X sup (a1,...,a dn )∈C dn \{0} |a 1 φ 1 (x) + • • • + a dn φ dn (x)| 2 |a 1 | 2 + • • • + |a dn | 2 = sup un∈En\{0} u n 2 L ∞ (X) u n 2 L 2 (X)
.

Hence, (A1) is equivalent to (A1') there is a constant S ∈ R such that

∃C > 0 ∀n 1 ∀u ∈ E n \{0} u 2 L ∞ (X) u 2 L 2 (X) ≤ Cn S dim(E n ).
We also need a finite subset concentration assumption : (A2) for any N ∈ N , there are a constant C > 1 and a finite set

X N ⊂ X of cardinal Card(X N ) ≤ CN C such that ∀u ∈ E 0 + • • • + E N u L ∞ (X) ≤ 2 max x∈X N |u(x)|.
The assumption (A2) roughly means that a function belonging to E 0 +• • •+E N is essentially concentrated in a finite subset of X (independent of the function). The following theorem is a multidimensional and quantitative Paley-Zygmund theorem for L ∞ . Theorem 6.1. -We assume that (A2) holds true and that the sequence of random variables

(X n ) n∈N satisfies ∃p ∈ [2, +∞) sup n∈N E[|X n | p ] < +∞.
Consider now a sequence of matrices 

(b n ) n∈N , with b n ∈ M dn (E n ), satisfying ∃γ > 1 n≥2 ln γ (n) sup x∈X b n (x)
E ω   N n=2 X n (ω) d n tr(E n (ω)b n ) p L ∞ (X)   ≤ C(X, p, γ) sup n≥2 E [|X n | p ]   n≥2 ln γ (n) sup x∈X b n (x) 2 HS   p/2
, where all random variables are assumed to be mutually independent. ii) The random series

n∈N X n (ω) √ d n tr(E n (ω)b n (x)) converges in L p ω (Ω, L ∞ x (X))
, and almost surely converges in L ∞

x (X). At a first glance, only Point ii) seems to be of interest. But we will see that Point i) will be used in the proof of Theorem 3.2 dealing with the cubic wave equation ∂ 2 t w -∆w + w 3 = 0. Before proving Theorem 6.1, we state its main corollary. Corollary 6.2. -Assume (A1) (with a real number S) and (A2). Consider a sequence (f n ) n∈N of L 2 (X), with f n ∈ E n for each n ∈ N, and we also assume the following condition

∃γ > 1 n≥2 f n 2 L 2 (X) n S ln γ (n) < +∞.
We define f ω n as in (7) and we moreover consider a sequence of independent random variables

(X n ) n∈N satisfying sup n∈N E[|X n | 2 ] < +∞. Then the random series n∈N X n (ω)f ω n almost surely converges in L ∞ (X). Proof. We choose b n (x) = 1 √ dn f n , φ n,j φ n,i (x). Hence, we have b n (x) 2 HS = en(x) dn f n 2 L 2 (X) and X n (ω)f ω n = X n (ω) √ d n tr(E n (ω)b n
). Theorem 6.1, with p = 2, directly gives the conclusion.

Proof of Theorem 6.1

We first recall the multidimensional Kahane-Khintchine inequality proven by Marcus and Pisier (see [MP81, Page 81, line (2.1) and Page 91, Corollary 2.12]).

Proposition 7.1. -For any real numbers p > q ≥ 1, there is a constant K p,q ≥ 1 such that, for any complex Banach space B, for any integer N ∈ N and for any sequence of matrices b n ∈ M dn (B), one has

(27) E N n=0 tr(E n b n ) q B 1 q ≤ E N n=0 tr(E n b n ) p B 1 p ≤ K p,q E N n=0 tr(E n b n ) q B 1 q .
Moreover, there is an absolute constant

K ≥ 1 such that K p,q ≤ K p,1 ≤ K √ p.
We stress that the inequalities are stated in [START_REF] Marcus | Random Fourier Series with Applications to Harmonic Analysis[END_REF] with the random series d n tr(E n b n ) but one can consider each integer d n as a part of the matrix b n (so we are reduced to (27)). In the specific case B = C (or more generally if B is a Hilbert space), one can compute the moment of order two thanks to the Hilbert-Schmidt norms.

Proposition 7.2. -For any integer N ∈ N and for any sequence of matrices b n ∈ M dn (C), the following equality holds true :

E   N n=0 d n tr(E n b n ) 2   = N n=0 b n 2 HS . Proof. See [Ime17, Lemme 2.9].
We now write a simple " √ ln lemma" that allows to estimate the expectation of a supremum of random variables.

Lemma 7.3. -Let us consider two integers α ≥ 2 and N ≥ 0. For any integers β ∈ [1, α] and n ∈ [0, N ] one also considers a matrix b (n,β) ∈ M dn (C). Then the following estimate holds true

E ω sup 1≤β≤α N n=0 d n tr(E n (ω)b (n,β) ) ≤ C ln(α) sup 1≤β≤α N n=0 b (n,β) 2 HS .
Proof. For any real number p ∈ [1, +∞), one makes use of the Hölder inequality, the multidimensional Kahane-Khintchine inequalities (27) and Proposition 7.2 :

E sup 1≤β≤α N n=0 d n tr(E n b (n,β) ) ≤ E      α β=1 N n=0 d n tr(E n b (n,β) ) p   1 p    ≤ E   α β=1 N n=0 d n tr(E n b (n,β) ) p   1 p ≤   α β=1 E N n=0 d n tr(E n b (n,β) ) p   1 p ≤ α 1 p sup 1≤β≤α E N n=0 d n tr(E n b (n,β) ) p 1 p ≤ Kα 1 p √ p sup 1≤β≤α E   N n=0 d n tr(E n b (n,β) ) 2   1 2 ≤ Kα 1 p √ p sup 1≤β≤α N n=0 b (n,β) 2 HS .
In the case α ≥ 3, one may choose p = ln(α) ≥ 1. For the remaining case α = 2, the choice p = 1 is convenient.

We shall need a generalization of the Salem-Zygmund inequality that holds true on a quite general framework. This type of inequality is usually presented as an estimate of a probability ([Kah68, Chapter 6], [IRT16, Theorem 2.5] or [BL13, Théorème 2]). But it will be much more efficient to estimate expectations because we want to reach a sharp moment condition.

Proposition 7.4. -Assume (A2) and let us consider

N + 1 matrices (b n ) 0≤n≤N with b n ∈ M dn (E n ).
Then the following Salem-Zygmund inequality holds true :

(28) E   N n=0 d n tr(E n b n (x)) L ∞ x (X)   ≤ C ln(N ) N n=0 b n (x) 2 HS L ∞ x (X)
.

Proof. This is a straightforward consequence of the finite subset concentration property (A2) and the previous lemma :

E   N n=0 d n tr(E n b n (x)) L ∞ x (X)   ≤ 2E sup x∈X N N n=0 d n tr(E n b n (x)) ≤ C ln(Card(X N )) sup x∈X N N n=0 b n (x) 2 HS .
We now have all the ingredients to prove Theorem 6.1. Proof of Point i) ⇒ Point ii). By considering Cauchy sequences, it is clear that Point i) implies that the random series

X n (ω) √ d n tr(E n (ω)b n ) converges in the Banach space L p (Ω, L ∞ (X)) to a random variable U : Ω → L ∞ (X)
. The Markov inequality thus implies that the random series Theorem 7.5. -[Paul Lévy] Consider a sequence (U n ) of independent random variables that take value in a Banach space B. Then the following statements are equivalent : i) there is a random variable U : Ω → B such that the series U n converges in probability to U :

X n (ω) √ d n tr(E n (ω)b n ) converges in
∀ε > 0 lim n→+∞ P ( U 1 + • • • + U n -U B > ε) = 0.
ii) for almost every ω ∈ Ω, the series

U n (ω) converges in B.
Proof of Point i). We now make use of a well-known trick in the theory of random series. One can change the probability space Ω by Ω 2 without any effect on our expectations. Using that all the involved random variables and random matrices are mutually independent, we see the following formula

(29) E ω   N n=2 X n (ω) d n tr(E n (ω)b n ) p L ∞ (X)   = E ω E ω   N n=2 X n (ω ) d n tr(E n (ω)b n ) p L ∞ (X)   .
By invoking the multidimensional Kahane-Khintchine inequalities (27) in the Banach space L ∞ (X), we get

E ω   N n=2 X n (ω) d n tr(E n (ω)b n (x)) p L ∞ x (X)   ≤ CE ω   E ω   N n=2 X n (ω ) d n tr(E n (ω)b n (x)) L ∞ x (X)   p   , (30) 
where C may depend on p. We now freeze the variable ω and work on the last expectation E ω . Choose N of the form 2 2 k with k ∈ N and apply the Salem-Zygmund inequality (28) :

E ω    2 2 k ≤n<2 2 k+1 X n (ω ) d n tr(E n (ω)b n (x)) L ∞ x (X)    ≤ C ln(2 2 k+1 ) 2 2 k ≤n<2 2 k+1 X n (ω )b n (x) 2 HS L ∞ x (X) ≤ C2 k 2 2 2 k ≤n<2 2 k+1 |X n (ω )| 2 sup x∈X b n (x) 2 HS ≤ C 2 (γ-1)k/2 2 2 k ≤n<2 2 k+1 |X n (ω )| 2 ln γ (n) sup x∈X b n (x) 2 HS ,
where the constant C is independent of ω . Using the assumption γ > 1 and the Cauchy-Schwarz inequality, we obtain

k∈N E ω    2 2 k ≤n<2 2 k+1 X n (ω ) d n tr(E n (ω)b n (x)) L ∞ x (X)    ≤ C n≥2 |X n (ω )| 2 ln γ (n) sup x∈X b n (x) 2 HS .
Let us now explain why the following inequality holds true for any integer N ≥ 2 and any ω ∈ Ω :

(31) E ω   N n=2 X n (ω ) d n tr(E n (ω)b n ) L ∞ (X)   ≤ C n≥2 |X n (ω )| 2 ln γ (n) sup x∈X b n (x) 2 HS .
From the previous analysis, if N is of the form 2 2 k -1, then (31) is just a consequence of the triangular inequality. To see that (31) still holds true for any N ≥ 2, we just have to check the monotonicity in N :

E ω   N n=2 X n (ω ) d n tr (E n (ω)b n ) L ∞ (X)   ≤ E ω   N +1 n=2 X n (ω ) d n tr (E n (ω)b n ) L ∞ (X)   .
The last inequality is a consequence of the independence of the random matrices E 0 , . . . , E N +1 and of the Jensen inequality (by integration with respect to the last d 2 N +1 variables of the random matrices E N +1 that are all centered : E[E N +1,i,j ] = 0). Hence, (31) is proved.

We are closed to conclude. We recall that the constant C in (31) is independent of the variable ω . Combining (30) and (31) gives us

E ω   N n=2 X n (ω) d n tr(E n (ω)b n ) p L ∞ (X)   ≤ CE ω   +∞ n=2 |X n (ω )| 2 ln γ (n) sup x∈X b n (x) 2 HS p 2   .
As we assumed the inequality p ≥ 2 in the assumption of Theorem 6.1, one may apply the triangular inequality in L p/2 ω (Ω) :

E ω   N n=2 X n (ω) d n tr(E n (ω)b n ) p L ∞ (X)   ≤ C +∞ n=2 E ω [|X n (ω )| p ] 2 p ln γ (n) sup x∈X b n (x) 2 HS p 2 .
The last inequality clearly shows Point i) of Theorem 6.1.

Proof of Theorem 2.1

It suffices to prove (A1), (A2) and to apply Corollary 6.2. Here E n is defined by ( 6) and e n is its spectral function (see ( 25)). We shall need the following result that proves (A1) with S = 0. Lemma 8.1. -There is a constant κ(X) > 0 such that for any κ ≥ κ(X) and (n, x) ∈ N × X, one has

1 C(X, κ) (1 + n) d-1 ≤ e n (x) ≤ C(X, κ)(1 + n) d-1 , 1 C(X, κ) (1 + n) d-1 ≤ dim(E n ) ≤ C(X, κ)(1 + n) d-1 .
Proof. We use the same idea of that of [BL13, page 923] with b h = κ(n + 1)h, a h = κnh and h

1 n . Remark that the L 2 (X)-normalized function 1 √ Vol(X)
belongs to E 0 . Consequently, one has e 0 (x) ≥ 1 Vol(X) and dim(E 0 ) ≥ 1. The continuity of e 0 and the compactness of X make obvious the case n = 0.

We deal the case n ≥ 1 with an accurate estimate with remainder of the spectral function (see [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF]) and with the Weyl formula (obtained by integration on X) :

e 0 (x) + • • • + e n (x) = (2π) -d Vol(B d (0, 1))(κn + κ) d + (κn + κ) d-1 O (1) , dim(E 0 ) + • • • + dim(E n ) = (2π) -d Vol(B d (0, 1))Vol(X)(κn + κ) d + (κn + κ) d-1 O (1) .
where the bound of the remainder O (1) is uniform with respect to x and κ > 0. We thus get

e n (x) = (2π) -d Vol(B d (0, 1))κ d (n + 1) d -n d + κ d-1 n d-1 O (1) , dim(E n ) = (2π) -d Vol(B d (0, 1))Vol(X)κ d (n + 1) d -n d + κ d-1 n d-1 O (1) . Choosing κ = κ d κ d-1 large enough, we get the conclusion. It remains to check (A2). Let us consider u ∈ E 0 + • • • + E N and write u := N n=0 dn i=1 u, φ n,i φ n,i .
Hence, the following inequality holds true

| u, φ n,i | ≤ u L ∞ (X) φ n,i L 1 (X) ≤ Vol(X) u L ∞ (X) φ n,i L 2 (X) ≤ Vol(X) u L ∞ (X) , which implies ∀(x, y) ∈ X 2 |u(x) -u(y)| ≤ Vol(X) u L ∞ (X) N n=0 dn i=1 |φ n,i (x) -φ n,i (y)|.
Remember now the Sobolev embedding H τ (X) ⊂ W 1,∞ (X) that holds true for any τ > 1 + d 2 . We consequently control the Lipschitz constant of each φ n,i by a polynomial bound in N . The asymptotics d n n d-1 (see Lemma 8.1) gives a weak Bernstein inequality

(32) ∃c 1 (X) > 0 ∃c 2 (X) > 0 ∀(x, y) ∈ X 2 |u(x) -u(y)| ≤ c 1 (X)N c2(X) u L ∞ (X) dist(x, y).
The compactness of X ensures that there is a maximal finite subset X N := {x 1 , . . . , x α } ⊂ X for the following property : the open balls centered in x 1 , . . . , x α and of radius r = 1 4c1(X)N c 2 (X) are disjoint. Each of those balls has a volume greater or equal to Cr dim(X) . Remarking that the volume of the disjoint union of those balls is bounded by Vol(X), we infer α ≤ C(X)N c2(X) dim(X) . The weak Bernstein inequality (32) and the maximal property of {x 1 , . . . , x α } ensure that, for any x ∈ X, one may find

x β such that d(x, x β ) ≤ 1 2c1(X)N c 2 (X) holds and hence |u(x) -u(x β )| ≤ c 1 (X)N c2(X) u L ∞ (X) dist(x, x β ) ≤ 1 2 u L ∞ (X) . By choosing x ∈ X satisfying |u(x)| = u L ∞ (X) , we get u L ∞ (X) ≤ 1 2 u L ∞ (X) + |u(x β )|.
The assertion (A2) is then proved.

Littlewood-Paley theory for BM O(X)

Once and for all, we consider a dyadic partition of the unity

θ ∈ C ∞ c (R + , R) and θ ∈ C ∞ c (R + \{0}, R), in the sense of Littlewood-Paley : (33) ∀λ ≥ 0 θ(λ) + j≥1 θ(2 -2j λ) = 1.
In view to make a functional calculus with two-order elliptic operators, we prefer writing θ(2 -2j λ) in (33) instead of the usual scaling θ(2 -j λ). The goal of this part is to prove the following result that roughly says that BM O(X) is between the two Besov spaces B 0 ∞,∞ (X) and B 0 ∞,2 (X).

Theorem 9.1. -Consider a smooth function σ ∈ C ∞ c (R + \{0}, R). Then for any distribution f of the Riemannian boundaryless compact manifold X, the following holds true

(34) sup 0<h≤1 σ(-h 2 ∆)f 2 L ∞ (X) f 2 BM O(X) θ(-∆)f 2 L ∞ (X) + j≥1 θ(-2 -2j ∆)f 2 L ∞ (X) ,
where ∆ stands for the negative Laplace-Beltrami operator of X.

An essential ingredient of the proof of Theorem 9.1 is the Littlewood-Paley theory of the space bmo(R d ) (see [START_REF] Triebel | Theory of function spaces[END_REF] page 93, Theorem 2]).

Proposition 9.2. -Let bmo(R n ) be the space of the locally integrable functions f : R d → C for which the following norm is finite :

(35) f bmo := sup Q⊂R d Vol(Q)≤1 1 Vol(Q) Q |f -f Q |dx + sup Q⊂R d Vol(Q)≥1 1 Vol(Q) Q |f (x)|dx,
where we denote by Q a cube of R d and by f Q the average of f on Q. Then bmo(R n ) is exactly the subspace of the tempered distributions f ∈ S (R d ) that can be written

(36) f = θ(-∆)f 0 + j≥1 θ(-2 -2j ∆)f j , ∀j ∈ N f j ∈ L ∞ (R d ),
with sup

x∈R d j∈N |f j (x)| 2 < +∞. Finally, f bmo is equivalent to inf (fj ) sup x∈R d j∈N |f j (x)| 2
where (f j ) runs over all admissible representations (36).

We now need the following flat but pseudo-differential version of Theorem 9.1.

Theorem 9.3. -For any smooth symbol σ : R d × R d → C with compact support included in a ring α ≤ |ξ| ≤ β for some β > α > 0, then the following holds true for any distribution f on R d :

sup 0<h≤1 σ(x, hD)f 2 L ∞ (R d ) f 2 bmo(R d ) θ(-∆)f 2 L ∞ (R d ) + j≥1 θ(-2 -2j ∆)f 2 L ∞ (R d ) ,
where we set σ(x, hD)f

(x) = R d e i x,ξ σ(x, hξ) f (ξ) dξ (2π) d .
Proof. Let W 2s,1 ξ (R d ) be the usual Sobolev space for some integer s > d 2 . It is easy to check an inequality of the form (37) sup

0<h≤1 σ(x, hD)f L ∞ (R d ) σ L ∞ x (R d ,W 2s,1 ξ (R d )) f L ∞ (R d ) .
More precisely, it is sufficient to get an adequate bound of the kernel K h (x, y) of σ(x, hD) :

σ(x, hD)f (x) = R d K h (x, y)f (y)dy, K h (x, y) = R d e i x-y,ξ σ(x, hξ) dξ (2π) d ,
a change of variable and an integration by part gives

R d |K h (x, y)|dy = 1 h d R d R d e i x-y,ξ (1 + h -2 |x -y| 2 ) s (1 -∆ ξ ) s σ(x, ξ)dξ dy ≤ C(d, s) σ L ∞ x (R d ,W 2s,1 ξ (R d )) ,
which proves (37).

To prove the first inequality, we assume that f belongs to bmo(R d ) and we consider a decomposition of f as in (36). We then write

(38) ∀j ≥ 1 σ(x, hD)θ(-2 -2j ∆)f j (x) = R d e i x,ξ σ(x, hξ)θ(2 -2j |ξ| 2 ) f j (ξ) dξ (2π) d .
For convenience, we assume that the support of θ is included in [a 2 , b 2 ] with b > a > 0. Let Ξ(h) be the set of j ∈ N satisfying α b ≤ h2 j ≤ β a . We note that passing to the logarithm shows that the cardinal of Ξ(h) is bounded with respect to h ∈ (0, 1] (this is the crucial property that comes from the assumption on the support of σ). For any j ∈ Ξ(h) the two intervals [ α h , β h ] and [a2 j , b2 j ] are disjoint and the symbol (x, ξ) → σ(x, hξ)θ(2 -2j |ξ| 2 ) identically vanishes. Coming back to (36) and (38), we get

(39) σ(x, hD)f = σ(x, hD) θ(-∆)f 0 + j∈Ξ(h) σ(x, hD)θ(-2 -2j ∆)f j .
Note that the inequality (37) shows that that the operators θ(-∆) and θ(-h 2 ∆) are also uniformly bounded from

L ∞ (R d ) to L ∞ (R d ) with respect to h ∈ (0, 1]. Hence we get σ(x, hD)f L ∞ (R d ) f 0 L ∞ (R d ) + j∈Ξ(h) f j L ∞ (R d ) (1 + Card(Ξ(h))) sup j∈N f j L ∞ (R d ) j∈N |f j (x)| 2 L ∞ (R d )
.

Since this last estimate is independent of the sequence (f j ), Proposition 9.2 finally proves the inequality

sup 0<h≤1 σ(x, hD)f L ∞ (R d ) f bmo(R d ) .
It remains to prove the second inequality

f 2 bmo(R d ) θ(-∆)f 2 L ∞ (R d ) + j≥1 θ(-2 -2j ∆)f 2 L ∞ (R d ) . Let Θ ∈ C ∞ c (R + , R) (respectively Θ ∈ C ∞ c (R + \{0}, R
)) be a function that identically coincides with 1 on the support of θ (respectively θ). Hence, we have θ Θ = θ and θΘ = θ. So the Littlewood-Paley decomposition of f allows to set a natural sequence of (f j ) in (36) :

f = θ(-∆)f + j≥1 θ(-2 -2j ∆)f (40) = θ(-∆) Θ(-∆)(f ) =f0 + j≥1 θ(-2 -2j ∆) Θ(-2 -2j ∆)f =fj .
Thanks to Proposition 9.2, we obtain

f 2 bmo(R d ) Θ(-∆)f 2 L ∞ (R d ) + j≥1 Θ(-2 -2j ∆)f 2 L ∞ (R d ) .
By a standard argument (indeed almost the same than that of (39)), if one plugs (40) in each f of the righthand side and if we invoke that the operators Θ(-∆) and Θ(-h 2 ∆) are uniformly bounded from L ∞ (R d ) to L ∞ (R d ), we easily get the conclusion.

Similarly to (35), we recall the definition of the BM O semi-norm on R d :

(41) f BM O(R d ) := sup Q⊂R d 1 |Q| Q |f -f Q |dx.
And we have the simple inequalities

(42) f BM O(R d ) ≤ 2 f bmo(R d ) ≤ 2 f BM O(R d ) + 2 f L 1 (R d ) .
As we will work on compact manifolds, we need a few tools to transfer local estimates. The first one is the following result proved by Brezis and Niremberg.

Proposition 9.4. -For any p ∈ [1, +∞) and any χ ∈ C 1 (X), one may find C > 0 such that for any g ∈ BM O(X) the following inequality holds true

(43) g L p (X) + χg BM O(X) ≤ C g BM O(X) + X g(x)dx .
Proof. This inequality may be deduced from Lemma A.1, Lemma B.3 and Lemma B.8 of [START_REF] Brezis | Degree theory and BMO; part I: Compact manifolds without boundaries[END_REF].

With a small modification of Lemma A.10 of [START_REF] Brezis | Degree theory and BMO; part I: Compact manifolds without boundaries[END_REF], we also have the following intuitive result.

Proposition 9.5. -Let U be a bounded open subset of R d and V be a open subset of the boundaryless compact manifold X. Now consider a diffeomorphism : U → V that extends as a diffeomorphism from a neighborhood of U to a neighborhood of V . Then there is a constant C ≥ 1 such that, for any function g ∈ L 1 (X) with support in V , the following holds true

(44) 1 C g BM O(X) ≤ g • BM O(R d ) ≤ C g BM O(X) .
where g • is extended by 0 outside U .

Proof. We shall explain the strategy for the second bound in (44) but the first one is similar. All the ideas are in [START_REF] Brezis | Degree theory and BMO; part I: Compact manifolds without boundaries[END_REF] but we have to carefully increase U and choose small balls. In view to bound g

• BM O(R d ) ,
we recall that we obtain an equivalent definition of g • BM O(R d ) by replacing cubes in (41) with Euclidean balls. So we have to prove the following inequality

(45) ∀x ∈ R d ∀r > 0 B(x,r) |g • (y) -(g • ) B(x,r) | dy V ol R d (B(x, r)) g BM O(X) .
Let us choose R > 0 small enough such that extends as a diffeomorphism from the following bounded open subset

U R := {x ∈ R d , dist(x, U ) < R}
to an open subset of X. Since the definition (9) of the BM O semi-norm on X involves the injectivity radius r 0 (X), it will be convenient to assume that R is also small enough so that KR 4 < r 0 (X) holds true. We also notice that there is a constant K > 0 such that the following holds true ∀x ∈ U R/2 ∀r ∈ (0, R/4) (B(x, r)) ⊂ B( (x), Kr) ⊂ X.

Case 1 : r < R 4 and x ∈ U R/2 . We then use the second argument given in [BN95, page 243]. More precisely, by writing (g • ) B(x,r) as an integral, we see that the left-hand side of (45) is bounded by

B(x,r) B(x,r) |g • (y) -g • (y )| dydy V ol R d (B(x, r)) 2 .
Although we have agreed to extend g • by 0 outside U in our statement, it is clear the formula (U ) = V shows that the equalities g • (x) = 0 = g( (x)) still hold true for any x ∈ U R \U . So we can make a change of variables to change the last double integral as (46)

(B(x,r)) (B(x,r)) |g(z) -g(z )| J(z)J(z )dzdz V ol R d (B(x, r)) 2 ,
where J is a Jacobian function. Since we have B(x, r) ⊂ U 3R 4 and U 3R/4 is a relatively compact subset of U R on which is a diffeomorphism, the function J appears to be bounded on (U 3R/4 ). We finally notice the obvious bounds Vol R d (B(x, r)) r d Vol X (B( (x), Kr)), The combination of the last facts allows us to control (46) by

B( (x),Kr) B( (x),Kr) |g(z) -g(z )| dzdz Vol X (B( (x), Kr)) 2 .
Since Kr is less that the injectivity radius r 0 (X), it turns out that the last term is bounded by g BM O(X) (see [START_REF] Brezis | Degree theory and BMO; part I: Compact manifolds without boundaries[END_REF]page 202]).

Case 2 : r < R 4 and x ∈ U R/2 . The function g • has support in U so vanishes over the ball B(x, r). Consequently, the left-hand side of (45) vanishes.

Case 3 : r ≥ R 4 . We merely bound the left-hand side of (45) by 2 Vol(B(x, r)

) B(x,r) |g • (y)|dy ≤ C Vol(B(0, R/4)) X |g(z)|dz
which is controlled by g BM O(X) + X g(z)dz thanks to (43). Remembering that BM O semi-norms vanish on constant functions, we could have added from the beginning the assumption X g(z)dz = 0 so that we get the wanted conclusion.

We now have all the tools to prove Theorem 9.1. Let us adapt the technique of the semi-classical functional calculus developed in [BGT04, part 2.1]. Due to the compactness of the manifold X, we may assume that X admits coordinate patches similar of those of Proposition 9.5. Let :

U ⊂ R d → V ⊂ X be one of them and consider χ 1 , χ 2 ∈ C ∞ 0 (V ) such that χ 2 = 1 near the support of χ 1 . From [BGT04, Proposition 2.1], if one fixes a symbol σ ∈ C ∞ c (R + \{0}, R) and an integer N ∈ N large enough such that H N (R d ) embeds in L ∞ (R d
) then one can find several smooth symbols σ 0 , . . . , σ N with compact support in R d × R d such that the following holds true for any h ∈ (0, 1] and any f ∈ L 2 (X) :

(47) (χ 1 σ(-h 2 ∆)f ) = N j=0 h j σ j (x, hD) (χ 2 f ) + R N,h (f ),
where the remainder satisfies

R N,h (f ) H N (R d ) h f L 2 (X) uniformly in h ∈ (0, 1]. Our assumption on N even gives (48) R N,h (f ) L ∞ (R d ) h f L 2 (X) .
Coming back to the symbols σ k , we have σ 0 (x, ξ) = χ 1 ( (x))σ(℘(x, ξ)) where ℘ is an elliptic symbol behaving like |ξ| 2 . We then note the important following fact that comes from the construction of the symbols :

σ 0 (x, ξ)
is supported in a ring with respect to ξ and the same property is shared by σ 1 , . . . , σ N thanks to more sophisticated expressions involving the Cauchy formula and the Helffer-Sjöstrand formula (see [BGT04, page 577]).

Proof of the first inequality in (34). Noting the equality σ(-h 2 ∆)1 = 0, we see that the first inequality in (34) is consistent with the fact that the semi-norm • BM O(X) vanishes for constant functions. So we can assume that X f (x)dx equals 0. It is now sufficient to prove the inequality

(49) (χ 1 σ(-h 2 ∆)f ) L ∞ (R d ) f BM O(X) .
In (47), the contribution of R N,h (f ) is directly controlled with (43) and (48). We now turn to the pseudodifferential operators σ j (x, hD). Since N is fixed, on can use Theorem 9.3 and the three inequalities (42), ( 43) and (44) to get

N j=0 h j σ j (x, hD) (χ 2 f ) L ∞ (R d ) (χ 2 f ) bmo(R d ) := (χ 2 f ) • bmo(R d ) (χ 2 f ) • BM O(R d ) + (χ 2 f ) • L 1 (R d ) χ 2 f BM O(X) + χ 2 f L 1 (X) f BM O(X) .
The inequality (49) is achieved.

Proof of the second inequality in (34). All the ideas are in [BGT04, Corollary 2.3] but we must play here with BM O(X), L ∞ (X), BM O(R d ) and bmo(R d ) instead of the mere two spaces L p (X) and L p (R d ). Writing f as a sum of functions χ 1 f (with a partition of unity localized in charts of X), we see that it is sufficient to prove the inequality

(50) χ 1 f 2 BM O(X) θ(-∆)f 2 L ∞ (X) + k≥1 θ(-2 -2k ∆)f 2 L ∞ (X) .
Following (33), we write a Littlewood-Paley decomposition of the distribution f of X :

(χ 1 f ) = (χ 1 θ(-∆)f ) + k≥1 (χ 1 θ(-2 -2k ∆)f ).
Thanks to the semi-classical functional calculus of θ(-h 2 ∆) (as in (47) but replacing σ with θ), we infer

(51) (χ 1 f ) = (χ 1 θ(-∆)f ) + k≥1 N j=0 2 -kj θ j (x, 2 -k D) (χ 2 f ) + R θ N,2 -k (f ) .
We finish in several steps.

Step 1. The inequality

• bmo(R d ) ≤ 3 • L ∞ (R d ) is obvious thanks to (35). So we have (χ 1 θ(-∆)f ) bmo(R d ) ≤ 3 (χ 1 θ(-∆)f ) L ∞ (R d ) = 3 χ 1 θ(-∆)f L ∞ (X) θ(-∆)f L ∞ (X)
.

Step 2. Using (48), one easily get rid of the remainders :

k≥1 R θ N,2 -k (f ) bmo(R d ) ≤ 3 k≥1 R θ N,2 -k (f ) L ∞ (R d ) f L 2 (X) .
Step 3. In this step, we fix j once for all and we remark each θ j (x, 2 -k ξ) has support in a ring 1 C 2 k ≤ |ξ| ≤ C2 k . As a consequence, θ j (x, 2 -k ξ) is bounded by 2 -k for any semi-norm in the Hörmander pseudodifferential class S 1 1,0 : (52)

∀(α, β) ∈ N d × N d ∀k ∈ N sup (x,ξ)∈R d ×R d (1 + |ξ|) -1+|β| |∂ α x ∂ β ξ {θ j (x, 2 -k ξ)}| 2 -k .
Similarly, the symbol θ(2 -2 |ξ| 2 ) has support in a ring 1 C 2 ≤ |ξ| ≤ C 2 and we can write (53)

∀(α, β) ∈ N d × N d sup (x,ξ)∈R d ×R d (1 + |ξ|) -1+|β| |∂ α x ∂ β ξ {θ(2 -2 |ξ| 2 )}| 2 -.
Now we choose ν large enough such that if | -k| ≥ ν holds true then θ(2 -2 |ξ| 2 ) and θ j (x, 2 -k ξ) have disjoint supports. Consequently, their symbolic calculus ensures that the operator θ(-2 -2 ∆)θ j (x, 2 -k D) is smoothing (see [Ler10, Theorem 1.1.20]). In particular, if we stop that symbolic calculus at the order N + 2, it appears that the symbol of θ(-2 -2 ∆)θ j (x, 2 -k D) belongs to S -N 1,0 . From the proof of Theorem 1.1.20 of [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF] and from the Calderon-Vaillancourt Theorem, we may bound, up to a multiplicative constant independent of and k, the norm

θ(-2 -2 ∆)θ j (x, 2 -k D) L 2 (R d )→H N (R d )
by a product of two semi-norms of θ(-2 -2 |ξ| 2 ) and θ j (x, 2 -k ξ) in S 1 1,0 . Then (52) and (53) give us

(54) θ(-2 -2 ∆) k≥1 |k-|>ν 2 -kj θ j (x, 2 -k D) (χ 2 f ) L ∞ (R d ) 2 - (χ 2 f ) L 2 (R d ) 2 -f L 2 (X) .
Similarly, up to increase ν ∈ N, we have

(55) θ(-∆) k>ν 2 -kj θ j (x, 2 -k D) (χ 2 f ) L ∞ (R d ) f L 2 (X) .
We may also assume that the same ν is chosen for each j ∈ {0, . . . , N }.

Step 4. Thanks to (42) and (44), we first connect the three BM O spaces :

χ 1 f BM O(X) (χ 1 f ) 2 BM O(R d ) ≤ 2 (χ 1 f ) 2 bmo(R d ) .
Looking at (51) and using Step 1 and Step 2 allow us to write

χ 1 f 2 BM O(X) f 2 L 2 (X) + θ(-∆)f 2 L ∞ (X) + k≥1 N j=0 2 -kj θ j (x, 2 -k D) (χ 2 f ) 2 bmo(R d )
.

We now use Theorem 9.3 and the two inequalities (54) and (55) to get the bound from above

f 2 L 2 (X) + θ(-∆)f 2 L ∞ (X) + θ(-∆) 0≤k≤ν N j=0 2 -kj θ j (x, 2 -k D) (χ 2 f ) 2 L ∞ (R d ) + ≥1 θ(-2 -2 ∆) k≥1 |k-|≤ν N j=0 2 -kj θ j (x, 2 -k D) (χ 2 f ) 2 L ∞ (R d ) .
As seen in the proof of Theorem 9.3, the Fourier multipliers θ(-∆) and θ(-2 -2 ∆) are uniformly bounded from L ∞ (R d ) to L ∞ (R d ). And if we plug the remainders of (47), we get

χ 1 f 2 BM O(X) f 2 L 2 (X) + θ(-∆)f 2 L ∞ (X) + k≥1 χ 1 θ(-2 -k ∆)f -R θ N,2 -k (f ) 2 L ∞ (R d )
.

We again make use of (48) in order to write

χ 1 f 2 BM O(X) f 2 L 2 (X) + θ(-∆)f 2 L ∞ (X) + k≥1 θ(-2 -k ∆)f 2 L ∞ (X)
.

Since L 2 (X) is a Hilbert space, the following Littlewood-Paley inequality holds true

f 2 L 2 (X) θ(-∆)f 2 L 2 (X) + k≥1 θ(-2 -k ∆)f 2 L 2 (X) θ(-∆)f 2 L ∞ (X) + k≥1 θ(-2 -k ∆)f 2 L ∞ (X)
.

Finally, (50) is proved.

Proof of Theorem 2.2, part 1

We need the following consequence of Theorem 9.1.

Proposition 10.1. -Consider a sequence (f n ) n≥1 of L 2 (X), such that f n ∈ E n for any n ≥ 1 (see (6)).

Then there is a constant C ≥ 1 such that the following inequality holds true :

(56) n≥1 f n 2 BM O(X) ≤ C k∈N 2 k ≤n<2 k+1 f n 2 L ∞ (X)
.

Proof. Let us assume that the right-hand side of (56) is finite. The inclusion L ∞ (X) ⊂ L 2 (X) ensures that the series n≥1 f n is well-defined as an element of L 2 (X). Now we want to apply Theorem 9.

1 to f = n≥1 f n .
Let b > a > 0 be two real numbers such that Supp(θ) ⊂ (a 2 , b 2 ). By using that each f n is spectrally localized in [κn, κ(n + 1)] with respect to √ -∆, we see that there is ν ∈ N such that the following holds true for any positive integers j and k :

|j -k| > ν ⇒ [κ2 k , κ(2 k+1 + 1)] ∩ [a2 j , b2 j ] = ∅, ⇒ θ(-2 -2j ∆) 2 k ≤n<2 k+1 f n = 0.
We now invoke the fact that the operators θ(-h 2 ∆) are uniformly bounded from L ∞ (X) to L ∞ (X) with respect to h ∈ (0, 1] (see [BGT04, Corollary 2.2]). Hence, we can write

θ(-2 -2j ∆)f L ∞ (X) = θ(-2 -2j ∆) k∈N |j-k|≤ν 2 k ≤n<2 k+1 f n L ∞ (X) ≤ C k∈N |j-k|≤ν 2 k ≤n<2 k+1 f n L ∞ (X) θ(-2 -2j ∆)f 2 L ∞ (X) ≤ C 2 (2ν + 1) k∈N |j-k|≤ν 2 k ≤n<2 k+1 f n 2 L ∞ (X)
. By using that θ has support in [0, b 2 ] for some b > 0, we can choose ν ∈ N satisfying κ2 ν > b and we similarly find

θ(-∆)f L ∞ (X) ≤ θ(-∆) L ∞ →L ∞ 1≤k≤ ν 2 k ≤n<2 k+1 f n L ∞ (X) θ(-∆)f 2 L ∞ (X) ≤ ν θ(-∆) 2 L ∞ →L ∞ 1≤k≤ ν 2 k ≤n<2 k+1 f n 2 L ∞ (X)
.

Straightforward computations lead to

θ(-∆)f 2 L ∞ (X) + j≥1 θ(-2 -2j ∆)f 2 L ∞ (X) k∈N 2 k ≤n<2 k+1 f n 2 L ∞ (X)
.

We can begin the proof of the first sentence of Theorem 2.2. Remembering that BM O(X) is a Banach space (once we identify functions differing by a constant), we have to prove that the random series X n f ω n satisfies the Cauchy convergence test for almost every ω ∈ Ω. Thanks to Proposition 10.1, it is enough to prove that the following finiteness almost surely holds :

(57) k∈N 2 k ≤n<2 k+1 X n (ω)f ω n 2 L ∞ (X) < +∞.
We follow the same strategy than that of Theorem 6.1. We introduce a new variable ω that we momentarily freeze, then we invoke the Salem-Zygmund inequality (28) and the same computations we made in the proof of Corollary 6.2 :

E ω 2 k ≤n<2 k+1 X n (ω )f ω n L ∞ (X) √ k 2 k ≤n<2 k+1 |X n (ω )| 2 f n 2 L 2 (X) e n (x) dim(E n ) L ∞ (X)
.

But we have already seen that, in the compact manifold setting, the function en dim(En) is essentially constant (see Lemma 8.1). The Kahane-Khintchine-Marcus-Pisier inequalities then give

E ω 2 k ≤n<2 k+1 X n (ω )f ω n L ∞ (X) 2 k ≤n<2 k+1 ln(n)|X n (ω )| 2 f n 2 L 2 (X) E ω 2 k ≤n<2 k+1 X n (ω )f ω n 2 L ∞ (X) 2 k ≤n<2 k+1 ln(n)|X n (ω )| 2 f n 2 L 2 (X) .
To get rid off ω , we invoke (29)

E ω 2 k ≤n<2 k+1 X n (ω)f ω n 2 L ∞ (X) = E ω E ω 2 k ≤n<2 k+1 X n (ω )f ω n 2 L ∞ (X) sup n≥2 E[|X n | 2 ] 2 k ≤n<2 k+1 ln(n) f n 2 L 2 (X) .
The assumptions of Theorem 2.2 finally give

k∈N E ω 2 k ≤n<2 k+1 X n (ω)f ω n 2 L ∞ (X)
< +∞, which in turn gives (57) for almost every ω ∈ Ω.

Proof of Theorem 2.2, part 2

We need the following result giving a necessary condition of almost sure convergence.

Lemma 11.1. -Assume d ≥ 2 and consider a sequence (f n ) n∈N of L 2 (X) such that f n belongs to E n for each n ∈ N. If the random series f ω n almost surely converges in BM O(X), then the following limit holds true

lim n→+∞ ln(n) f n L 2 (X) = 0.
Proof. Thanks to the formula (7) and [MP81, Page 92, Theorem 2.14, i) ⇒ iv)] (see also [Ime17, Théorème 2.8]), we know that the almost sure convergence of the random series

f ω n in BM O(X) is equivalent to that in L 1 (Ω, BM O(X)). As a consequence, we get lim n→+∞ E[ f ω n BM O(X) ] = 0. Remember that each random function f ω n is spectrally localized in [κn, κ(n + 1)] ⊂ [ 1 h , √ 2 
h ] with h = 1 κn provided that n 1. Now choose σ ∈ C ∞ c (R + \{0}, R) that identically coincides with 1 over [1, 2], so we have σ(-h 2 ∆)f ω n = f ω n . The first inequality of (34) then gives lim n→+∞ E[ f ω n L ∞ (X) ] = 0. But [BL13, Théorème 5, page 930] ensures that the previous sequence is almost equivalent to | ln(h)| f n L 2 (X) ln(n) f n L 2 (X) .
We can finish the proof of Theorem 2.2. Let (n k ) k∈N be an increasing sequence of positive integers such that the series

1 ln ln(n k ) is convergent. Consider now a sequence of functions (f n ), with f n ∈ E n , such that f n L 2 (X) = 1 √ ln(n k )
holds true if n = n k for some k, and 0 either. Lemma 11.1 ensures that the random series f ω n does not almost surely converge in BM O(X) (and in fact almost surely diverges due to the Kolmogorov's zero-one law). But the series

n∈N f n 2 L 2 (X) ln γ (n) = k∈N 1 ln 1-γ (n k ) is convergent for any γ < 1.

Proof of Theorem 2.3

We need a result proved in [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF] (that may be compared to Theorem 6.1).

Theorem 12.1. -Let (X, ν) be a σ-finite measure space, (d n ) n∈N be a sequence of positive integers, (b n ) n∈N be a sequence of matrices with b n ∈ M dn (L p (X, ν)) for some p ∈ [1, +∞), and a sequence (X n ) n≥0 of independent random variables satisfying

0 < inf n∈N E[|X n |]
and

sup n∈N E[|X n | max(2,p) ] < +∞.
Then the following assertions are equivalent : With the above notations and those of Theorem 2.3, set b n,i,j (x) = 1 √ dn f n , φ n,j φ n,i (x) for any x ∈ X (as in the proof of Corollary 6.2). Let us now begin the proof of Theorem 2.3. i) ⇔ ii). This equivalence is indeed already contained in [Ime17, Théorème 2.2]. We write it because it involves a computation that we will use in the sequel of the proof. Note that ii) is nothing else than the condition b) of Theorem 12.1. It remains to check that i) is the condition a) of Theorem 12.1 :

(58) dn i=1 dn j=1 |b n,i,j (x)| 2 = f n 2 L 2 (X) d n dn i=1 |φ n,i (x)| 2 = f n 2 L 2 (X) e n (x) d n ,
which is equivalent to f n 2 L 2 (X) , uniformly in x, thanks to the accurate estimate of the spectral function on a boundaryless Riemannian compact manifold (see Lemma 8.1). Since ν is assumed to be a probability measure in Theorem 2.3, the condition a) means that the series f n 2 L 2 (X) converges. iii) ⇒ i) and i) ⇒ iv). Look at Theorem 12.1 in the very particular case X = {x} and p = 2. Hence, L 2 (X) is just the unidimensional space of functions that send x to a constant. We thus can identify L 1 (X) and L 2 (X) with C. Again, (58) gives the conclusion. iv) ⇒ iii). Obvious.

Proof of Theorem 4.1

For pedagogical reasons, we prove here Theorem 4.1. We follow the same strategy of that of Theorem 2.3. We merely explain the slight modifications with the needed inequalities of the spectral function (proved in [Ime17, Proposition 4.1]). We first recall that it is well known that d n := dim(E n ) is a polynomial of degree d -1 with respect to n.

i) ⇒ iv). We need to know the following bound

e n L ∞ (R d ) n d 2 -1 . Therefore, one may use ∀x ∈ R d f n 2 L 2 (R d ) e n (x) d n f n 2 L 2 (R d ) n -d 2 .
iv) ⇒ iii). Obvious. iii) ⇒ i). We need to use that there is a universal constant σ ∈ (0, 1) and a constant C(d) > 0 such that for any n 1 and any x ∈ R d \{0} one has

(59) C(d) √ n ≤ |x| ≤ σ √ 2n + 1 ⇒ e n (x) n d 2 -1 .
We finish as in the proof of Theorem 2.3 by taking account the following

∀x ∈ R d \{0} ∃n x ∈ N ∀n ≥ n x f n 2 L 2 (R d ) e n (x) d n f n 2 L 2 (R d ) n -d 2 .
i) ⇔ ii). From Theorem 12.1 and (58), we know that ii) is equivalent to the condition

n≥1 f n 2 L 2 (R d ) e n (x) d n ∈ L p x (R d , ν).
By using the inequality e n (x) n d 2 -1 and the fact that ν is a Borel probability measure on R d \{0}, one immediately gets the implication i) ⇒ ii). For the other side, we remark that ii) implies that the series

f n 2 L 2 (R d ) en(x)
dn converges at least at one point x ∈ R d \{0}. Then (59) gives i). Remark 13.1. -The proof of (59) relies on very specific properties of Hermite functions. It is maybe possible to get a more interesting proof of (59) by looking at the details of [HZZ15, Lemma 10]. Note however that the Bernstein inequality (24) and the equality e 2n+1 (0) = 0 forbids to replace C(d) √ n in (59) with a better bound like C(d) n θ and θ > 1 2 .

Proof of Proposition 4.2

Let us explain a little probabilistic issue in the statement of Proposition 4.2 by considering the following two assertions : a) for any fixed p ∈ [1, +∞), the random series

f ω n almost surely diverges in L p (R d ), b) the random series f ω n almost surely diverges in L p (R d ) for any p ∈ [1, +∞
). The assertion a) means that for any p ∈ [1, +∞), one may find an event Ω p ⊂ Ω of probability 1 such that for any ω ∈ Ω p the concerned random series diverges in L p (R d ). It is not clear at all that one may deduce b) from a) since the uncountable intersection of the events Ω p has no reason to be of probability 1 and, even worse, to be an event. We shall overcome this difficulty be considering a weighted Lebesgue space that continuously embeds in any L p (R d ) for p ∈ [1, +∞). Before introducing this Banach space, we begin by the following result that will also play a fundamental role in the proof of Proposition 5.2. Proposition 14.1. -Let X be a σ-finite measure space. For any p ∈ [1, +∞) and any positive measurable function W : X → (0, ∞), we denote by L p (X, W (x)dx) the weighted Lebesgue space defined by the norm

∀f ∈ L p (X, W (x)dx) f L p (X,W (x)dx) := X |f (x)| p W (x)dx 1/p .
Consider now a nonzero finite-dimensional subspace E ⊂ L 2 (X) ∩ L p (X, W (x)dx) and let (φ 1 , . . . , φ δ ) be a Hilbert basis of E. For any f ∈ E satisfying f L 2 (X) = 1, the following holds true

E    δ i=1 δ j=1 E n,i,j (ω) f, φ j φ i (x) L p x (X,W (x)dx)    |φ 1 (x)| 2 + • • • + |φ δ (x)| 2 √ δ L p x (X,W (x)dx)
where p means that the quotient belongs to

[ 1 C(p) , C(p)] for some C(p) ≥ 1.
Proof. Thanks to (27), it is sufficient to compute the following expectation

E ω    δ i=1 δ j=1 E n,i,j (ω) f, φ j φ i (x) p L p x (X,W (x)dx)    .
Applying the Fubini theorem, the previous estimate is nothing else than

X E   δ i=1 δ j=1 E n,i,j (ω) f, φ j φ i (x) p   W (x)dx.
Again, (27) shows that the previous is equivalent, up to a multiplicative loss merely depending on p, to the following

X E    δ i=1 δ j=1 E n,i,j (ω) f, φ j φ i (x) 2    p/2 W (x)dx.
Using Proposition 7.2 and the equality f L 2 (X) = 1, we easily conclude.

We now need the following variant of Lemma 11.1.

Lemma 14.2. -With the same notations than those of Theorem 4.1. If the random series f ω n almost surely converges in the weighted Lebesgue space L 1

x R d , dx 1+|x| d , then

lim n→+∞ n -d 4 ln(n) f n L 2 (R d ) = 0.
Proof. Remembering the proof of Lemma 11.1, we know that

E f ω n L 1 (R d , dx 1+|x| 
d ) tends to 0. Thanks to Proposition 14.1 and (59), we may write for n 1

E f ω n L 1 (R d , dx 1+|x| d ) f n L 2 (R d ) √ |φn,1(x)| 2 +•••+|φ n,dn (x)| 2 √ dn L 1 x (R d , dx 1+|x| d ) f n L 2 (R d ) 1 n d-1 2 R d e n (x) 1 + |x| d dx f n L 2 (R d ) n d 4 -1 2 n d-1 2 σ √ 2n+1 1 r d-1 dr 1 + r d f n L 2 (R d ) n -d 4 ln(n).
The end of the proof of Proposition 4.2 is now easy. Consider an increasing sequence of integers (n k ) k≥0 , with n k ≥ 2, such that the series

1 ln 2 (n k ) converges. Choose now a sequence (f n ) n∈N , with f n ∈ E n , such that n ∈ {n 0 , n 1 , . . . } ⇒ f n = 0, ∃k ∈ N n = n k ⇒ f n L 2 (R d ) n -d 4 = 1 ln(n) .
Hence, the sequence

f n 2 L 2 (R d ) n -d 2 is convergent.
Due to the previous lemma, there is an event Ω 0 ⊂ Ω, of positive probability, such that for any ω ∈ Ω 0 the series f ω n diverges in L 1 (R d , 1 1+|x| d ). By independence of the random functions f ω n , the Kolmogorov's zero-one law ensures that P(Ω 0 ) indeed equals 1. But the Hölder inequality gives :

∀p ∈ [1, +∞) ∀ϕ ∈ L p (R d ) R d |ϕ(x)| 1 + |x| d dx R d |ϕ(x)| p dx 1/p .
As a consequence, for any ω ∈ Ω 0 and for any p ∈ [1, +∞) the series

f ω n diverges in L p (R d ).
15. Proof of Proposition 3.1

We need the following corollary of Theorem 12.1. Proof. By considering a closed subspace that contains the elements b n,i,j , one may assume that H is separable and hence equals L 2 (ν) for a σ-finite measure ν. Theorem 12.1 therefore ensures that b) is equivalent to

n∈N dn i=1 dn j=1 |b n,i,j | 2 ∈ L 1 (ν).
By integrating over ν, one recovers a).

The proof of Proposition 3.1 is now straightforward. Thanks to Proposition 15.1, the series (13) defining the random initial data v ω 0 almost surely converges in the Hilbert space H s (X) if and only if the following holds

n∈N dn i=1 dn j=1 1 d n | v 0 , φ n,i | 2 φ n,j 2 H s (X) < +∞ n∈N v 0,n 2 L 2 (X) d n dn j=1 φ n,j 2 H s (X) < +∞. ( 60 
)
Remember now that φ n,j is spectrally localized, with respect to √ -∆, in [κn, κn+n] (see ( 6)). So φ n,j H s (X) behaves like n s as n tend to +∞ and it turns out that (60) means that v 0 belongs to H s (X). Thus, the proof of Proposition 3.1 is achieved.

Proof of Theorem 3.2

We essentially combine our Paley-Zygmund theorem with the analysis of [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF].

Theorem 16.1. -[Burq-Tzvetkov] Consider s > 0 a real number and X a boundaryless Riemannian compact manifold of dimension 3. Also consider a function

Ω → H s (X) × H s-1 (X), ω → (v ω 0 , v ω 1 ), ( 61 
)
that satisfies the following property for almost every ω ∈ Ω :

(62) cos(t √ -∆)v ω 0 (x) + sin(t √ -∆) √ -∆ v ω 1 (x) ∈ L 3 t,loc (R, L 6 x (X)) ∩ L 1 t,loc (R, L ∞ x (X)).
Then, for almost every ω ∈ Ω, the cubic wave equation on X with initial data

(v ω 0 , v ω 1 ) (∂ 2 t -∆)v + v 3 = 0, v(0, •) = v ω 0 , v(0, •) = v ω 1 ,
admits a unique global solution satisfying

v(t) -cos(t √ -∆)v ω 0 - sin(t √ -∆) √ -∆ v ω 1 ∈ C 0 t (R, H 1 (X)) ∩ C 1 t (R, L 2 (X)).
Proof. This is the meaning of the proofs of Proposition 2.1 and Proposition 2.2 of [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF].

Let us write some comments about the previous result. The fact that X is of dimension 3 is used for the local existence [BT14, Proposition 2.1] thanks to the Sobolev embedding H 1 (X) ⊂ L 6 (X). The proof of Theorem 16.1 is deterministic and the main interest of the probability theory is that it provides a random process (61) that almost surely fulfills (62). This property is proved for X = T 3 in [BT14, Appendix A] and for the sphere X = S 3 in [dS14]. In both cases, the crucial fact is that the torus and the sphere admit a Hilbert basis of eigenfunctions that are uniformly bounded in all L p (X) spaces, for any p ∈ [1, +∞).

Let us comment the part L 1 t,loc (R, L ∞ x (X)) of (62). It is usually proved thanks to the Sobolev embedding W s,p (X) ⊂ L ∞ (X) (that holds true for any p > 3 s ). From a probability point of view, this embedding forces to consider random variables that have a p-th moment (so p > 3 s 1 if s is near 0 + ). Our quantitative Paley-Zygmund theorem (see Theorem 6.1) allows to consider random variables that merely have a third moment (this is probably sharp since this moment is directly linked to the cubic nonlinearity).

Proposition 16.2. -Consider a real number s > 0, a couple of function (v 0 , v 1 ) ∈ H s (X) × H s-1 (X) and a sequence of independent random variables

X n : Ω → R satisfying sup n∈N E |X n | 3 < +∞. Then for almost every ω ∈ Ω one has cos(t √ -∆) n∈N X n (ω)   dn i=1 dn j=1 E n,i,j (ω) v 0 , φ n,j φ n,i (x)   ∈ L 3 t,loc (R, L ∞ x (X)). (63) sin(t √ -∆) √ -∆ n∈N X n (ω)   dn i=1 dn j=1 E n,i,j (ω) v 1 , φ n,j φ n,i (x)   ∈ L 3 t,loc (R, L ∞ x (X)).
Consequently, the latter two random series almost surely belong to the space

L 3 t,loc (R, L 6 x (X))∩L 1 t,loc (R, L ∞ x (X)).
Proof. We merely consider (63) but the first random series is easier. Let us fix T ∈ N and N ≥ 2 and then use the Fubini-Tonelli theorem:

E ω    sin(t √ -∆) √ -∆ N n=2 X n (ω)   dn i=1 dn j=1 E n,i,j (ω) v 1 , φ n,j φ n,i (x)   3 L 3 t ([-T,T ],L ∞ x (X))    (64) = T -T E    N n=2 X n (ω)   dn i=1 dn j=1 E n,i,j (ω) v 1 , φ n,j sin(t √ -∆) √ -∆ φ n,i (x)   3 L ∞ x (X)    dt.
As in (13), we denote by v 1,n the orthogonal projection of v 1 on E n . By invoking Point i) of Theorem 6.1 for any choice of γ (for instance γ = 1) and

b n,i,j (x) = 1 √ d n v 1 , φ n,j sin(t √ -∆) √ -∆ φ n,i (x),
we see that the last expectation (inside the integral) is controlled by

(65) sup n≥2 E[|X n | 3 ]   n≥2 ln(n) v 1,n 2 L 2 (X) d n sup x∈X dn i=1 sin(t √ -∆) √ -∆ φ n,i (x) 2   3/2 .
Using a similar argument as that of (26), we get

sup x∈X dn i=1 sin(t √ -∆) √ -∆ φ n,i (x) 2 = sup un∈En un L 2 (X) =1 sin(t √ -∆) √ -∆ u n 2 L ∞ (X)
.

We now use the Sogge L 2 → L ∞ bound :

sup x∈X dn i=1 sin(t √ -∆) √ -∆ φ n,i (x) 2 n d-1 sup un∈En un L 2 (X) =1 sin(t √ -∆) √ -∆ u n 2 L 2 (X) n d-1 n 2 .
Note that the last bound is uniform with respect to t. Remembering the asymptotic d n n d-1 , we can bound (65) by

sup n≥2 E[|X n | 3 ]   n≥2 ln(n) n 2 v 1,n 2 L 2 (X)   3/2 sup n≥2 E[|X n | 3 ] v 1 3 H s-1 (X) . Hence, (64) is controlled by T sup n≥2 E[|X n | 3 ] v 1 3 H s-1 (X)
. By considering Cauchy sequences, such a bound easily shows that the random series in (63) converges in the Banach space

L 3 ω (Ω, L 3 t ([-T, T ], L ∞ x (X)
)), so converges in probability in the Banach space L 3 t ([-T, T ], L ∞ x (X)). Then Theorem 7.5 ensures that (63) almost surely converges in

L 3 t ([-T, T ], L ∞ x (X)
). Since T runs over the countable set N , one can conclude that (63) almost surely converges in L 3 t,loc (R, L ∞ x (X)).

Exponential decay of the spectral function

The goal of this part is to prove Proposition 17.1 that will play a role in the proofs of Theorem 4.3, Proposition 5.1 and Proposition 5.

2. It is well-known that if V : R d → [0, +∞[ is a smooth potential satisfying lim |x|→+∞ V (x) = +∞ then any eigenfunction ψ ∈ L 2 (R d ) of -∆ + V tends to 0 at infinity (see [BS91, Corollary 3.1, page 169 
]). In the specific case V (x) = |x| 2α with α ∈ N , note that the latter property can be seen as a consequence of the description (20) of the Sobolev spaces of -∆ + |x| 2α and of a classical Sobolev embedding. We explain here how to modify the proofs of [START_REF] Berezin | The Schrödinger Equation[END_REF] to obtain a precise asymptotic behavior for spectral functions.

Proposition 17.1. -Consider a real number ρ > 1 and a smooth potential V : R d → R satisfying V (x) ≥ m|x| 2α for any x ∈ R d and for some m > 0. There is a constant C ≥ 1 that merely depends on (d, α, ρ, m) such that the following holds true. For any T ∈ N and any eigenfunctions ψ 1 , . . . , ψ T of -∆ + V (x), whose largest eigenvalue is µ, then the following holds true

(66) |x| ≥ ρm -1 2α µ 1 2α ⇒ T k=1 |ψ k (x)| 2 ≤ C T k=1 |ψ k | 2 L ∞ (R d ) exp - 1 C |x| α+1 .
We stress that the eigenfunctions ψ 1 , . . . , ψ T in (66) are neither assumed to be L 2 (R d )-normalized or associated to successive eigenvalues. The previous result gives a precise statement of the following wellknown fact in mathematical physics : an eigenfunction ψ of -∆ + V associated to an eigenvalue µ is essentially concentrated in the allowed region {x ∈ R d , V (x) µ}. Note that the particular case α = 1 explains the Gaussian tail of the Hermite functions (see [Muc70, line (2.3)]). More generally, we refer to [PRT15, Lemma 3.2], [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF] and [START_REF] Karadzhov | Riesz summability of multiple hermite series in L p spaces[END_REF]Theorem 4]. The proofs of [START_REF] Poiret | Random weighted Sobolev inequalities on R d and applications to Hermite functions[END_REF][START_REF] Karadzhov | Riesz summability of multiple hermite series in L p spaces[END_REF] seem to be quite specific to the harmonic oscillator since they use for instance a Mehler formula. The proof of [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF] is based on the work [START_REF] Koch | Semiclassical Lp estimates[END_REF] and involves estimates of the Schwartz kernel of the spectral function. By comparison with the previous works, our assumption on the potential is merely V (x) |x| 2α and our sub-exponential remainder in (66) has not exactly the same form (it is independent of the largest frequency). Our proof is quite elementary and is inspired from the maximum principle technique used in [BS91, Theorem 3.3, page 173]. The main idea is that [START_REF] Berezin | The Schrödinger Equation[END_REF] contains estimates on eigenfunctions ψ whose proofs are convex with respect to ψ 2 . For this reason, we succeed to consider in (66) several eigenfunctions. Our proof needs two preliminary results.

Lemma 17.2. -Consider a smooth function Θ : (0, +∞) → R satisfying lim t→+∞ Θ(t) = 1. Then there is a solution h ∈ C ∞ ((0, +∞), R) of the differential equation (67) -h + Θh = 0 such that for any σ > 1 one may find C > 1 such that

∀t 1 1 C e -σt ≤ h(t) ≤ Ce -t σ .
Proof. From [BS91, Theorem 3.2 and Theorem 3.3, pages 59-61], we know that (67) admits a unique solution h which is positive in a behavior of t = +∞ and that satisfies lim t→+∞ h(t) = 0. To get the end of the statement, we slightly shorten the proof of [BS91, Theorem 3.4, page 62]. Consider t 0 > 0 such that, for any t ≥ t 0 , the inequalities 0 < Θ(t) ≤ σ 2 hold true. So we have the following differential inequality

∀t ≥ t 0 - d 2 dt 2 (e -σt ) + Θ(t)e -σt ≤ 0. Fix now C > 1 large enough such that 1 C e -σt0 -h(t 0 ) ≤ 0. From (67), we get - d 2 dt 2 1 C e -σt -h(t) + Θ(t) 1 C e -σt -h(t) ≤ 0.
Remembering that the second derivative of a smooth function on a maximum is non-positive, one sees that the function t → 1 C e -σt -h(t) cannot have a positive local maximum on [t 0 , +∞). Combining that fact with the limit lim

t→+∞ 1 C e -σt -h(t) = 0, one necessarily gets ∀t ≥ t 0 1 C e -σt -h(t) ≤ 0.
We similarly prove the inequality h(t) ≤ Ce -t σ by assuming 1 σ 2 ≤ Θ(t) for t 1.

The previous lemma allows us to prove the following result (in which "radial" means "even" for d = 1). 

|x| ≥ R ⇒ 1 C exp - √ b α + 1 σ|x| α+1 ≤ |x| α+d-1 2 E d,α,b (x) ≤ C exp - √ b (α + 1) |x| α+1 σ .
Proof. We shall make several changes of variables and functions f, g and h summarized by the following equalities

E d,α,b (x) = f (r) = g(t) = t -γ/2 h(t), r = |x|, t = √ b α + 1 r α+1 , γ := α + d -1 α + 1 .
Reducing the radial equation ( 68) of E d,α,b , we get the following equation on f :

∀r > 0 -f (r) - d -1 r f (r) + br 2α f (r) = 0.
We now compute the derivatives, with respect to r, of f (r) = g(t) :

f (r) = g (t) √ br α , f (r) = g (t)br 2α + g (t)α √ br α-1 .
Hence, the equation in g is

∀t > 0 -g (t) - γ t g (t) + g(t) = 0.
Let us compute the derivatives, with respect to t, of g(t) = t -γ/2 h(t) for any t > 0. We get

g (t) = -γ 2 t -γ 2 -1 h(t) + t -γ 2 h (t), g (t) = γ 2 γ 2 + 1 t -γ 2 -2 h(t) -γt -γ 2 -1 h (t) + t -γ 2 h (t)
. and so h satisfies an equation without the first order term :

∀t > 0 -h (t) + h(t) 1 + 1 t 2 γ 2 γ 2 -1 = 0.
We then apply Lemma 17.2 and may conclude by coming back to E d,α,b :

E d,α,b (x) = √ b α + 1 -γ 2 |x| -γ(α+1) 2 h √ b α + 1 |x| α+1 .
Proof of Proposition 17.1. For simplicity, we assume m = 1. The reader will easily check that there is no loss in the proof. Consider a real-valued eigenfunction ψ of -∆ + V associated to the eigenvalue µ. Then one easily writes

∆(ψ 2 ) = 2ψ∆ψ + 2|∇ψ| 2 , -∆(ψ 2 ) = -2(V -µ)ψ 2 -2|∇ψ| 2 .
For any ρ > 1, we consider the real number b ∈ (0, 2) such that ρ -α = 1 -b 2 holds true. We can write

(-∆ + b|x| 2α )(ψ 2 )(x) = -2 V (x) - b 2 |x| 2α -µ ψ(x) 2 -2|∇ x ψ| 2 .
As we assumed the inequality V (x) ≥ |x| 2α , we get

V (x) - b 2 |x| 2α -µ ≥ ρ -α |x| 2α -µ.
So the choice of b ensures the following implication

|x| ≥ √ ρµ 1 2α ⇒ (-∆ + b|x| 2α )(ψ 2 )(x) ≤ 0.
Note that the previous implication is still true if one fixes the eigenfunction ψ but changes the eigenvalue µ by any greater number. Consider now ψ 1 , . . . , ψ T as in the statement of Proposition 17.1. Using the fact the real and imaginary parts of each ψ k are real-valued eigenfunctions of -∆ + V and the relation

|ψ k | 2 = (Re(ψ k )) 2 + (Im(ψ k )) 2
, we see that is is sufficient to prove (66) if each ψ k is real-valued. Assume now that µ is the largest eigenvalue among those of ψ 1 , . . . , ψ T . By summing several eigenfunctions and going beyond the largest eigenvalue µ, one clearly has

(69) |x| ≥ √ ρµ 1 2α ⇒ (-∆ + b|x| 2α ) ψ 2 1 + • • • + ψ 2 T (x) ≤ 0. We now fix a real number σ satisfying the condition (70) 1 < σ < ρ α+1 4 .
The relevance of this condition will appear at the end of the proof. Given b and σ as above, we can introduce the function E d,α,b , the constants R and C of Proposition 17.3. In the sequel, we shall need the following number

M := 1 E d,α,b (max( √ ρµ 1 2α , R)) T k=1 ψ 2 k L ∞ (R d )
.

Note that (69) is equivalent to

(71) |x| ≥ √ ρµ 1 2α ⇒ (-∆ + b|x| 2α ) ψ 2 1 + • • • + ψ 2 T -M E d,α,b (x) ≤ 0. Moreover, the definition of M and the fact that E d,α,b is radial give us |x| = max( √ ρµ 1 2α , R) ⇒ ψ 1 (x) 2 + • • • + ψ T (x) 2 -M E d,α,b (x) ≤ 0.
Remember now that the function E d,α,b and each eigenfunction ψ k tend to 0 if |x| tends to +∞ (see Proposition 17.3 and the discussion above the statement of Proposition 17.1), so we get the following limit

lim |x|→+∞ ψ 1 (x) 2 + • • • + ψ T (x) 2 -M E d,α,b (x) = 0.
We shall make the same reasoning of that of the end of Lemma 17.2. We claim that the continuous function , R) and hence we can show the following inequality by a local analysis around x 0 in all directions :

ψ 2 1 + • • • + ψ 2 T -M E d,
∆(ψ 2 1 + • • • + ψ 2 T -M E d,α,b )(x 0 ) ≤ 0 and we thus get 0 < (-∆ + b|x| 2α )(ψ 2 1 + • • • + ψ 2 T -M E d,α,b )(x 0
). This contradicts (71). In other words, we have just proved the implication

|x| ≥ max( √ ρµ 1 2α , R) ⇒ ψ 1 (x) 2 + • • • + ψ T (x) 2 -M E d,α,b (x) ≤ 0.
Provided that |x| ≥ max( √ ρµ 1 2α , R) holds, the definition of M , the inequality α + d -1 ≥ 0 and Proposition 17.3 ensure that

T k=1 ψ k (x) 2 is bounded from above by C 2 T k=1 ψ 2 k L ∞ (R d ) max √ ρµ 1 2α ,R |x| α+d-1 2 exp - √ b α+1 |x| α+1 σ -σ max( √ ρµ 1 2α , R) α+1 ≤ C 2 T k=1 ψ 2 k L ∞ (R d ) exp - √ b α + 1 |x| α+1 σ -σ max( √ ρµ 1 2α , R) α+1 .
We indeed can simplify the previous bound thanks to our choice of σ. The condition (70) indeed implies the existence of a constant K(α, ρ, σ) ∈ (0, 1) such that the following implication holds true for any y ∈ R d :

|y| ≥ √ ρ ⇒ |y| α+1 -σ 2 ≥ K(α, ρ, σ)|y| α+1 , K(α, ρ, σ) := 1 - σ 2 ρ (α+1)/2) .
We now choose y = |x| max( √ ρµ 1/2α ,R) and we see that there is a constant ξ > 0 that merely depends on (d, α, ρ, σ) such that

(72) |x| ≥ √ ρ max √ ρµ 1 2α , R ⇒ T k=1 ψ k (x) 2 ≤ C 2 T k=1 ψ 2 k L ∞ (R d )
exp -ξ|x| α+1 .

To get the conclusion, we consider three cases :

Case R ≤ √ ρµ 1/2α . The condition |x| ≥ √ ρ max √ ρµ 1 2α , R is reduced to |x| ≥ ρµ 1 2α
. So we get the wanted conclusion (66).

Case √ ρµ 1/2α ≤ R and √ ρR ≤ |x|. Again, (72) gives the conclusion.

Case

√ ρµ 1/2α ≤ R and ρµ 1/2α ≤ |x| ≤ √ ρR. This is the only case which is not covered by (72). We can however easily conclude since everything takes place in a fixed compact. Let us consider a constant C > 1 such that

1 ≤ inf |x|≤ √ ρR C exp - 1 C |x| α+1 .
Hence, we have

T k=1 ψ k (x) 2 ≤ C T k=1 ψ 2 k L ∞ (R d ) exp - 1 C |x| α+1 .
Hence, (66) is proved in all the cases and the proof of Proposition 17.1 is finished.

Proof of (18)

From [HR82, Théorème 6-4, page 840] we know that the spectral counting function of (-∆ + V 2α )

α+1 2α
behaves as that of the operator √ -∆ on a compact Riemannian manifold. Namely, for a suitable constant C > 0, one has

∀µ ≥ 1 Card{ ∈ N, λ α+1 2α ≤ µ} = Cµ d + O(µ d-1 ).
For any K > 0 (to be chosen below) and any n 1, we have

Card{ ∈ N, λ α+1 2α ∈ (Kn, Kn + K]} = K d-1 CK[(n + 1) d -n d ] + O(n d-1 ) .
Using the inequalities

dn d-1 ≤ (n + 1) d -n d ≤ (2 d -1)n d-1
, one sees that K may be chosen large enough such that Card{ ∈ N, λ

α+1 2α ∈ (Kn, Kn + K]} n d-1 .

Proof of Theorem 4.3

We have to fulfill the assumptions of Corollary 6.2. Thanks to (18) and Proposition 5.1, we see that (A1) holds true with

S = αd α + 1 -1 -(d -1) = -d α + 1 .
Note that we merely need the bound from above of Proposition 5.1 that has been proved by Robert-Thomann. We now use the exponential decay of the spectral function to prove (A2) in two steps.

Step 1. We will show that if N is large enough then, for a suitable constant K > 0, we have

(73) ∀u ∈ E 0 ⊕ • • • ⊕ E N u L ∞ (R d ) = u L ∞ (B(0,KN 1/(α+1) )) .
Consider ψ 1 , . . . , ψ T a Hilbert basis of E 0 ⊕ • • • ⊕ E N made of real-valued eigenfunctions of -∆ + |x| 2α and we still denote by e 0 , . . . , e N the respective spectral functions of E 0 , . . . , E N . The Cauchy-Schwartz inequality allows us to write for any

u ∈ E 0 ⊕ • • • ⊕ E N : u(x) = T k=1 R d ψ k (y)u(y)dy ψ k (x) = R d T k=1 ψ k (y)ψ k (x) u(y)dy |u(x)| ≤ ψ 1 (x) 2 + • • • + ψ T (x) 2 R d ψ 1 (y) 2 + • • • + ψ T (y) 2 |u(y)|dy ≤ e 0 (x) + • • • + e N (x) √ e 0 + • • • + e N L 1 (R d ) u L ∞ (R d ) .
Applying (66), we get for a suitable constant K > 0 and for any x ∈ R d :

e 0 (x) + • • • + e N (x) ≤ e 0 + • • • + e N 1 2 L ∞ (R d ) 1 |x|<KN 1 α+1 + √ C exp -1 2C |x| α+1 1 |x|≥KN 1 α+1
From this inequality, we get for any N 1

e 0 (x) + • • • + e N (x) L 1 (R d ) N d α+1 e 0 + • • • + e N 1 2 L ∞ (R d ) .
Combining the last three inequalities, we obtain for N 1 uniformly in x :

|x| ≥ KN 1 α+1 ⇒ |u(x)| u L ∞ (R d ) N d α+1 e 0 + • • • + e N L ∞ (R d ) exp - K α+1 2C N .
Using the triangular inequality

e 0 + • • • + e N L ∞ (R d ) ≤ e 0 L ∞ (R d ) + • • • + e N L ∞ (R d )
and a polynomial bound of e N L ∞ (R d ) (this is nothing else than (A1)), one may exploit the decaying exponential to get the following implication provided that N 1

|x| ≥ KN 1 α+1 ⇒ |u(x)| ≤ 1 2 u L ∞ (R d ) .
In other words, (73) is proved.

Step 2. Thanks to (73) and a Bernstein inequality for -∆ + V 2α (see Theorem 5.3 that we can admit for the moment), we can prove (A2) by the same "mesh strategy" on the closed ball B(0, KN 1/(α+1) ) as in the setting of Riemannian compact manifolds (see the end of Section 8).

Proof of Theorem 4.5

We follow exactly the same ideas than those of the proofs of Theorem 2.3 and Theorem 4.1 (see sections 12 and 13). More precisely, Theorem 12.1 and the inequality e n L ∞ (R d ) n αd d+1 -1 (see below (75)) easily imply the conclusion. The sentence iv) needs using the Fubini-Tonelli theorem on Ω × R d .

Proof of Theorem 4.6

Thanks to the last sentence of Theorem 12.1, we know that the almost sure convergence in L p (R d ) of the random series n≥0 X n (ω)f ω n is a consequence of the deterministic condition

(74) n≥0 e n (x) d n f n 2 L 2 (R d ) ∈ L p/2 (R d ).
The conclusion of Theorem 4.6 will come from the implication

n≥1 n -d α+1 (1-2 p ) f n 2 L 2 (R d ) < +∞ ⇒ (74).
At this point, we need the following accurate estimate of the L p/2 norm of the spectral function of

-∆ + V 2α (75) ∀p ∈ [2, +∞) ∪ {+∞} e n L p/2 (R d ) n d α+1 (α+ 2 p )-1 .
Such inequalities are proved in [RT15, Proposition 2.4, δ = 1, θ = 0] by interpolating the trivial case p = 2 and the much difficult case p = +∞. The triangular inequality in L p 2 (R d ) finally gives :

n≥1 e n (x) d n f n 2 L 2 (R d ) L p 2 x (R d ) n≥1 e n L p/2 (R d ) n d-1 f n 2 L 2 (R d ) n≥1 n -d α+1 (1-2 p ) f n 2 L 2 (R d ) .
22. Proof of Proposition 5.1

Thanks to (26) and (75), it is sufficient to prove the inequality e n L ∞ (R d ) n αd α+1 -1 . As explained below the statement of Proposition 5.1, the proof of the lower bounds in [START_REF] Robert | Random weighted Sobolev inequalities and application to quantum ergodicity[END_REF] does not cover the cases we are concerned with. The exponential decay of the spectral function and an elementary interpolation argument allow to reverse (75) and complete it below 2.

Proposition 22.1. -With the above notations, for any p ∈ [1, +∞) ∪ {+∞}, we have

(76) ∀n 1 √ e n L p (R d ) n d 2(α+1) (α+ 2 p )-1 2 .
Proof. Let us introduce the exponent Θ(p) := d 2(α+1) α + 2 p -1 2 and we assume for a moment that there is M ≥ 1 such that for any n 1 the following three inequalities hold

(77) √ e n L ∞ (R d ) ≤ M n Θ(∞) , √ e n L 2 (R d ) ≥ n Θ(2) M , √ e n L 1 (R d ) ≤ M n Θ(1) .
Since Θ(p) is affine in 1 p , one may prove by interpolation that the last inequalities would imply the stronger ones :

∀p ∈ [1, +∞) ∪ {+∞} n Θ(p) M 3 ≤ √ e n L p (R d ) ≤ M n Θ(p) .
As .

By integration, we get

R d e n (x)dx n 1 2 αd α+1 -1 2 n d α+1 = n Θ(1)
.

Proof of Proposition 5.2

For any f ∈ E n \{0}, one may decompose f on a Hilbert basis φ n,1 , . . . , φ n,dn of E n made of eigenfunctions, and thus use the Cauchy-Schwartz inequality to get

∀x ∈ R d |f (x)| 2 ≤ f 2 L 2 (R d ) dn k=1 |φ n,k (x)| 2 = f 2 L 2 (R d ) e n (x).
We again use the exponential decay (78) with K = αd α+1 -1 :

(79) ∀n 1 ∀x ∈ R d |x| ≥ cn 1 α+1 ⇒ |f (x)| 2 ≤ Cn K f 2 L 2 (R d ) exp -1 C |x| α+1 .
Case p ∈ [2, +∞). Use now the Hölder inequality :

R d |f (x)| 2 dx = |x|<cn 1 α+1 |f (x)| 2 dx + |x|≥cn 1 α+1 |f (x)| 2 dx ≤ Vol(B(0, cn 1 α+1 )) 1-2 p f 2 L p (R d ) + Cn K f 2 L 2 (R d ) |x|≥cn 1 α+1 exp - 1 C |x| α+1 dx.
The remainder can be controlled as follows for n 1 :

Cn K |x|≥cn 1/(α+1) exp - 1 C |x| α+1 dx ≤ 1 2 . So we have 1 2 f 2 L 2 (R d ) ≤ Vol(B(0, cn 1 α+1 )) 1-2 p f 2 L p (R d ) which implies (80) n -d α+1 ( 1 2 -1 p ) inf f ∈En f =0 f L p (R d ) f L 2 (R d ) .
Case p ∈ [1, 2]. We write similarly thanks to the Hölder inequality and (79) :

R d |f (x)| p dx = |x|<cn 1 α+1 |f (x)| p dx + |x|≥cn 1 α+1 |f (x)| p dx ≤ Vol(B(0, cn 1 α+1 )) 1-p 2 f p L 2 R d ) + C p 2 n Kp 2 f p L 2 (R d ) |x|≥cn 1 α+1 e -p 2C |x| α+1 dx.
And by the same idea, the last term is much smaller than the first one for n 1. So we get (81) sup

f ∈En f =0 f L p (R d ) f L 2 (R d ) n d α+1 ( 1 p -1 2 ) .
The probabilistic argument for any p ∈ [1, +∞). We now have to reverse (80) and (81). We make use of a standard idea of randomization [BL13, PRT15, PRT14, RT15] but our approach is slightly different. Instead of large deviations estimates or the principle of the concentration of the measure, we will use Proposition 14.1 with W = 1 (whose proof relies on the multidimensional Kahane-Khintchine inequalities). Fix any element f ∈ E n with f L 2 (R d ) = 1. As the random matrix E n is unitary, one has

∀ω ∈ Ω dn i=1 dn j=1 E n,i,j (ω) f, φ n,j φ n,i L 2 (R d ) = 1.
As a consequence of the two-side bound given by Proposition 14.1, one sees that there are a constant C(p) ≥ 1 and two functions

f 1 ∈ E n and f 2 ∈ E n , with f 1 L 2 (R d ) = f 2 L 2 (R d ) = 1, such that f 1 L p (R d ) C(p) ≤ |φ n,1 | 2 + • • • + |φ n,dn | 2 √ d n L p (R d ) ≤ C(p) f 2 L p (R d ) .
The middle bound can easily be controlled thanks to the asymptotic d n n d-1 and (76) :

|φ n,1 | 2 + • • • + |φ n,dn | 2 √ d n L p (R d ) = √ e n √ d n L p (R d ) n d 2(α+1) ( α+ 2 p ) -1 2 n d-1 2 = n d α+1 ( 1 p -1 2 ) .
Finally, the function f 1 allows to reverse (80) whereas f 2 reverses (81). The proof of Proposition 5.2 is finished. 

A

(83) ∀(x, ξ) ∈ R 2d ∀(T 1 , . . . , T k ) ∈ (R 2d ) k |∂ T1 . . . ∂ T k σ(x, ξ)| ≤ C k M (x, ξ) k j=1 g x,ξ (T j ),
where ∂ T1 . . . ∂ T k σ equals is the differential expression (d k σ)(T 1 , . . . , T k ). Note that the symmetry of the multilinear map d k σ allows to replace (83) with

(84) ∀(x, ξ) ∈ R 2d ∀T ∈ R 2d |∂ k T σ(x, ξ)| ≤ C k M (x, ξ)g x,ξ (T ) k/2 . If C k is the best constant in (83), then one defines σ (k) S(M,g) = max(C 0 , . . . , C k ).
There is a special function, denoted λ : R d × R d → (0, +∞), that is associated to the metric g (see [Ler10, Part 2.2.3]). To define λ, we recall that the classical symplectic classification of metrics (see also [START_REF] Hofer | Symplectic invariants and Hamiltonian dynamics[END_REF]Part 1.7]) states that there is a symplectic basis B x,ξ of R d × R d in which the metric g can be written (85)

d j=1 dx 2 j + dξ 2 j λ j (x, ξ) , 0 < λ 1 (x, ξ) ≤ • • • ≤ λ d (x, ξ),
where the numbers λ 1 (x, ξ), . . . , λ d (x, ξ) are uniquely determined by g x,ξ and the canonic symplectic structure of R d × R d . We then define λ(x, ξ) = λ 1 (x, ξ).

To get a symbolic calculus, the theory needs to assume that g is an admissible metric, namely that is slowly varying, is temperate and satisfies the uncertainty principle. We also assume that M is admissible with respect to g. It is not necessary for us to recall the precise above definitions. It is however important to give the main example we will use in Appendix B. For any α ∈ N , we introduce the following admissible metric and admissible weight

g x,ξ = d j=1 dx 2 j M (x, ξ) 1/α + dξ 2 j M (x, ξ) , M (x, ξ) := 1 + |ξ| 2 + |x| 2α .
Then the smooth symbol |ξ| 2 + |x| 2α belongs to S(M, g) and is associated, in the Weyl-Hörmander pseudodifferential calculus, to the superquadratic oscillator -∆+|x| 2α . The symplectic map (x, ξ)

→ (M -1 4 (1-1 α ) x, M 1 4 (1-1 α ) ξ) of R 2d
puts the latter metric to the form (85) so that the corresponding function λ

= λ 1 = • • • = λ d reads (86) λ(x, ξ) = (1 + |ξ| 2 + |x| 2α ) α+1 2α .
Consequently, the Weyl-Hörmander symbolic calculus (see below (87)) give an enlightenment of the reason why (-∆ + |x| 2α ) α+1 2α

is usually considered as an operator of order 1 (see [START_REF] Helffer | Proprietes asymptotiques du spectre d operateurs pseudo-differentiels sur Rn[END_REF]). We can now state the fundamental symbolic calculus [Hör85, Theorem 18.5.4] or [Ler10, Theorem 2.3.7] : for any admissible weights M and M with respect to an admissible metric g, for any symbols a ∈ S(M, g) and b ∈ S(M , g), for any integer N ∈ N, one has

(87) a#b - N n=0 T n (a, b) ∈ S(M M λ -N -1 , g),
where T n (a, b) is the bilinear differential operator defined by

T n (a, b)(x, ξ) := i n n!2 n ( D ξ1 , D x2 -D x1 , D ξ2 ) n a(x 1 , ξ 1 )b(x 2 , ξ 2 )| (x1,ξ1)=(x2,ξ2)=(x,ξ) , (88) = 1 (2i) n (s,t)∈N d ×N d |s+t|=n (-1) |s| s!t! (∂ s x ∂ t ξ a(x, ξ))(∂ s ξ ∂ t x b(x, ξ)),
where D ξ1 , D x2 -D x1 , D ξ2 is the differential operator of (R d ×R d ) 2 that can be written as One can check that λ is an admissible weight for g. The previous symbolic calculus gives a motivation to state the following heuristic rule :

d j=1 ∂ 2 ∂ ξ 2,j ∂x 1,j - ∂ 2 ∂ ξ 1,j ∂x 2,j in any symplectic coordinates (x, ξ) of R d × R d .
"the class S(λ, g) can be considered as the class of symbols of order 1."

It will be convenient to set the following convention : for any a ∈ S(1, g) and any sequence (a j ) j≥0 of symbols satisfying a j ∈ S(λ -j , g), we write a symbolic expansion as follows

(90) a ∼ j≥0 a j ⇔ ∀k ∈ N a - k j=0 a j ∈ S(λ -k , g).
From this point, Γ will denote the open subset {z ∈ C, 0 < |Im(z)| < 1}. The following result, whose scheme of proof is classical, gives the parametrix of the resolvent of an "elliptic" symbol.

Proposition A.1. -Consider an admissible weight M 1 for an admissible metric g. Consider also an integer N ≥ 2 and a real symbol p ∈ S(M, g) satisfying 1 + p M . Then there are • a symbol r N (•, •, z) ∈ S(λ -N , g) that depends of z ∈ Γ, • an integer N ≥ 2 and symbols q 2 , . . . , q N where q k belongs to S(M k λ -2 , g) for each k, such that the following equality holds

∀z ∈ Γ (z -p)# 1 z -p + q 2 (z -p) 3 + • • • + q N (z -p) N +1 = 1 + r N
where the remainder r N moreover satisfies the following estimates :

(91) ∀ ∈ N ∃m ∈ N ∀z ∈ Γ r N (•, •, z) ( ) S(λ -N ,g) ≤ C(p, N, ) (1 + |z|) m |Im(z)| m .
For N = 2, one may choose N = 2 and q 2 = 0.

In the next lemma, we define for any integer N ∈ N a subfamily Υ -N of (meromorphic) symbols of S(λ -N , g) that appear in the construction of a parametrix. 

: R d × R d × Γ → C of the form (92) σ(x, ξ, z) = N j=2 σ j (x, ξ) (z -p(x, ξ)) j , N ≥ 2, σ j ∈ S(M j λ -N , g).
Then for any integer n ≥ N , one has

∀σ ∈ Υ -N T n-N z -p, σ z -p ∈ Υ -n ,
where T n-N is defined in (88).

Proof. -It is sufficient to check the following for any integer j ≥ 2 :

∀σ j ∈ S(M j λ -N , g) T n-N z -p, σ j (z -p) j+1 ∈ Υ -n .
The case n = N is obvious so we may assume that n ≥ N + 1 holds. Using (88), one sees that the following formula

T n-N z -p, σ j (z -p) j+1 = T n-N -p, σ j (z -p) j+1 = (s,t)∈N d ×N d |s+t|=n-N C s,t ∂ s x ∂ t ξ p ∂ s ξ ∂ t x σ j (z -p) j+1 , (93) 
for suitable complex constants C s,t . Applying the Leibniz rule rises to a formula like

T n-N z -p, σ j (z -p) j+1 = N J=j+1 σ j,J (z -p) J .
where N is an integer and each symbol σ j,J is a product of p, σ j and their derivatives. We now have to explain why σ j,J indeed belongs to S(M J λ -n , g). To see this point, it is much interesting to fix (x, ξ) and Using (89), for any ∈ N there is m ∈ N such that

(z -p)# 1 z -p -1 - K-1 n=2 T n (z -p, 1 z -p ) ( ) S(λ -K ,g) = -p# 1 z -p + p z -p - K-1 n=2 T n (-p, 1 z -p ) ( ) S(λ -K ,g) ≤ C(p, K, ) 1 z -p (m) S(M -1 ,g)
.

We now adapt the argument of [Ler10, Lemma 2.2.22, page 80 with f (t) = 1/t] by using the Faà di Bruno formula. For any k ∈ N and T ∈ R 2d , we get

∂ k T 1 z-p = k! k1+•••+kr=k 1≤r≤k,kj ≥1 1 r! d r (1/t) dt r t=z-p 1 k 1 ! . . . k r ! ∂ k1 T (z -p) . . . ∂ kr T (z -p) = k!(-1) k k1+•••+kr=k 1≤r≤k,kj ≥1 (-1) r (z -p) r+1 1 k 1 ! . . . k r ! ∂ k1 T (p) . . . ∂ kr T (p) ∂ k T 1 z-p k r=1 |z -p(x, ξ)| -(r+1) M (x, ξ) r+1 g x,ξ (T ) k/2 M (x, ξ) .
Thanks to (84), we obtain

1 z -p (m) S(M -1 ,g) sup (x,ξ)∈R d ×R d 1≤k≤m+1 M (x, ξ) k |z -p(x, ξ)| k .
Then we clearly have

M (x, ξ) |z -p(x, ξ)| 1 + p(x, ξ) |Im(z)| + |Re(z) -p(x, ξ)| 1 + |Re(z) -p(x, ξ)| |Im(z)| + |Re(z) -p(x, ξ)| + |Re(z)| |Im(z)| + |Re(z) -p(x, ξ)| .
We finally get

M (x, ξ) |z -p(x, ξ)| max 1, 1 |Im(z)| + |Re(z)| |Im(z)| 1 + |z| |Im(z)| , 1 z -p (m) S(M -1 ,g) (1 + |z|) m+1 |Im(z)| m+1 . ( 96 
)
Proof of H(N ) ⇒ H(N + 1). We consider A -N that appears in (94). The classical idea to recursively construct the parametrix is to consider the symbolic expansion given by the symbolic calculus of z -p and

-A -N z-p (z -p)# -A -N z -p ∼ -A -N + n≥N +1 B -n , B -n := T n-N (z -p, -A -N z -p ) ∈ S(λ -n , g).
Lemma A.2 ensures that B -n indeed belongs to Υ -n . By summing (94) and the previous symbolic expansion, we infer the following one

(z -p)# 1 z -p + σ -A -N z -p ∼ 1 + n≥N +1 A -n + B -n .
Remember that one has σ ∈ Υ -2 and A -N ∈ Υ -N . So σ -A -N belongs to Υ -2 . The general form predicted by the induction is checked.

To get the good estimates on the semi-norms, one may use the trick, used in the proof of H(2), to eliminate the constant z in the first factor z -p. We indeed remark the equality T n-N (z -p, A -N z-p ) = T n-N (-p, A -N z-p ) and the obvious exact symbolic calculus

z# A -N z -p = zA -N z -p .
Then we write as above for any integer

K ≥ N (z -p)# A -N z -p -A -N + K n=N +1 B -n = -p# A -N z -p + pA -N z -p + K n=N +1 B -n .
This relation and the remainder estimate (89) give us for any any ∈ N and some integer m ∈ N an inequality of the form

(z -p)# A -N z -p -A -N + K-1 n=N +1 B -n ( ) S(λ -K ,g) A -N z -p (m) S(M -1 λ -N ,g)
.

To bound the last term, we write A -N like the right-hand side of (92). For suitable symbols σ j ∈ S(M j λ -N ), we have

A -N z -p (m) S(M -1 λ -N ,g) ≤ N j=2 σ j (z -p) j+1 (m) S(M -1 λ -N ,g) .
Using the Leibniz rule with (96), we get

(97) (z -p)# A -N z -p -A -N + K-1 n=N +1 B -n ( ) S(λ -K ,g) (1 + |z|) m+1 |Im(z)| m+1 N +1
.

Note that 1 + |z| is larger than |Im(z)|. Hence, the bounds from above still remain true if one increases m and m in both ( 95) and ( 97) such that m = (m + 1)(N + 1). A trivial triangular inequality with (95) and (97) finally gives the expected estimates of the remainders. The assumption H(N + 1) is proven.

B An asymptotic development via the Helffer-Sjöstrand formula

We shall use the classical idea of functional calculus of a pseudo-differential operator based on the Helffer-Sjöstrand formula (see [BGT04, Proposition 2.1], [DS99, Theorem 8.7], [Bou11, Theorem 1.5] or [Bon13, Theorem 4]). Let us fix an integer α ≥ 1 and a positive 2α-homogeneous polynomial V 2α on R d . We want to apply Proposition A.1 with

(98) p(x, ξ) = |ξ| 2 + V 2α (x), M (x, ξ) = 1 + |ξ| 2 + |x| 2α , g = d j=1 dx 2 j M 1/α + dξ 2 j M .
We have checked in (86) that the λ-function associated to the metric g is given by λ = M α+1 2α . We now recall the following easy lemma. 

s α (R d ) ⊂ L r (R d ) ⊂ H -s α (R d ) and H s+1 α (R d ) ⊂ W 1,r (R d ),
where W 1,r (R d ) stands for the usual Sobolev space.

Proof. Looking at (20), we have already remarked that the Sobolev embedding H

s (R d ) ⊂ L ∞ (R d ) implies the inclusion H s α (R d ) ⊂ L ∞ (R d ). Now remark for any s > d 2α that the inclusion H s α (R d ) ⊂ L 1 (R d ) holds true : ∀u ∈ L 1 (R d ) R d |u(x)|dx ≤ R d (1 + |x|) -2αs dx R d (1 + |x|) 2αs |u(x)| 2 dx u H s α (R d ) .
As a consequence, we obtain (99)

H s α (R d ) ⊂ L 1 (R d ) ∩ L ∞ (R d ) ⊂ L r (R d ).
The other side is obtained by duality. To prove the inclusion involving W 1,r (R d ), we first remark that for any j ∈ {1, . . . , d}, the pseudo-differential operator ∂ ∂xj • (1 -∆ + |x| 2α ) -1/2 admits a symbol belonging to S( √ M M -1/2 , g) = S(1, g). Hence, ∂ ∂xj • (1 -∆ + |x| 2α ) -1/2 is bounded on any Sobolev space and we infer the following

∂ ∂xj H s+1 α (R d ) = ∂ ∂xj • (1 -∆ + |x| 2α ) -1/2 • (1 -∆ + |x| 2α ) 1/2 H s+1 α (R d ) ⊂ H s α (R d ). Using twice (99), we get the inclusion H s+1 α (R d ) ⊂ W 1,r (R d ).
We are ready for the Helffer-Sjöstrand formula.

Proposition B.2. -Let us consider a smooth function Ψ : R → R, with compact support. There are an integer N ≥ 2 and symbols q 2 , . . . , q N , where q k belongs to S(M k λ -2 , g) for any k, such that for any r ∈ [1, +∞) ∪ {+∞) and any u ∈ L r (R d ) the following estimate holds true uniformly in h ∈ (0, 1] :

Ψ(-h 2 ∆ + h 2 V 2α )u -Op w Ψ(h 2 p) u - N k=2 h 2k Op w Ψ (k) (h 2 p)q k u W 1,r (R d ) u L r (R d ) .
Before proving Proposition B.2, we point out two things : • Proposition B.2 is not semi-classical because the parameter h 2 is also in front of V 2α . This is the reason why the symbols appearing are not of the form q k (x, hξ), • it is not necessary to show that Ψ(-h 2 ∆ + h 2 V 2α ) is a pseudo-differential operator. However, the proof needs that some powers of -∆ + V 2α are pseudo-differential operators (as in the proof of Corollary B.1). The proof of Proposition B.2 is divided in the following steps.

Step 1. We need the notion of "almost analytic extension" for which we refer for instance to [DS99, Chapter 8]. We recall that the function Ψ : R → R of the statement of Proposition B.2 admits an almost analytic extension Ψ : C → C in the following sense :

(100) ∀m ∈ N ∃C m > 0 ∀z ∈ C ∂Ψ ∂z ≤ C m |Im(z)| m .
Moreover, such an extension Ψ : C → C can be constructed such that its support is as closed as wanted to the one of Ψ : R → R. As a consequence, we can assume that the support of Ψ :

C → C is included in the strip Γ = {z ∈ C, |Im(z)| < 1}. The Helffer-Sjöstrand formula then reads (101) Ψ(-h 2 ∆ + h 2 V 2α ) = -1 π C 2 ∂ ∂z Ψ(h 2 z) (z + ∆ -V 2α ) -1 dL(z),
where dL(z) stands for the Lebesgue measure on C. We now need a parametrix of the resolvent of -∆ + V 2α as in Proposition A.1. For any integer N ≥ 2 (to be chosen below at the end of Step 2), we get the following formula for a suitable integer N ≥ 2 and suitable symbols q 2 , . . . , q N :

(102) ∀z ∈ Γ (z -∆ + V 2α ) -1 = Op w   1 z -p + N k=2 q k (z -p) k+1   -R N (z), with R N (z) := (z -∆ + V 2α ) -1 • Op w (r N (z))
where the symbol r N (z) belongs to S(λ -N , g) for any z ∈ Γ and satisfies (91).

Step 2. We now explain how to bound the norm R

N (z) L ∞ (R d )→L ∞ (R d ) with respect to z. We recall that (1 -∆ + V 2α ) N (α+1) 2α
is a pseudo-differential operator (see for instance [START_REF] Helffer | Proprietes asymptotiques du spectre d operateurs pseudo-differentiels sur Rn[END_REF] or [Bon13, Theorem 4]) and

(1

-∆ + V 2α ) N (α+1) 2α ∈ Op w S(M N (α+1) 2α , g) (1 -∆ + V 2α ) N (α+1) 2α
∈ Op w S(λ N , g).

As a consequence, we get

(1 -∆ + V 2α ) N (α+1) 2α • Op w (r N (z)) ∈ Op w S(1, g).
And thus, the last operator is bounded on any Sobolev space based on -∆ + V 2α . Let us fix a real number s > d 2 and use the classical estimates of the norm operator of a pseudo-differential operator with (91), we get for a suitable integer m 0 the following estimate

(1 -∆ + V 2α ) N (α+1) 2α • Op w (r N (z)) H -s α (R d )→H -s α (R d ) (1 + |z|) m0 |Im(z)| m0 .
The behavior of the last bound with respect to s (both in the multiplicative loss and the exponent m 0 ) is not relevant and we are merely interested in its dependence with respect to z. Writing

Op w (r N (z)) = (1 -∆ + V 2α ) -N (α+1) 2α • (1 -∆ + V 2α ) N (α+1) 2α • Op w (r N (z)),
we also obtain Op w (r N (z)) Step 3. We come back to the almost analytic extension Ψ : C → C and we assume that Ψ has support in {z ∈ C, |z| ≤ ρ}. We now choose m = m 0 + 1 in (100) to get, uniformly in h ∈ (0, 1], the following bounds Combining the Helffer-Sjöstrand formula (101) and (102), we can finish the proof of Proposition B.2. C About L r → L r estimates of pseudo-differential operators A pseudo-differential of order 0 on R d , in a suitable setting, is expected to be bounded on L 2 (R d ). The case L p (R d ), with finite p, has also been studied in the literature. We have not find known estimates of the case L ∞ (R d ) that can be appropriate for our needs. For this reason, we prove elementary results that covers this extremal case. Before stating our results, we make a remark that will motivate the sequel. Consider r ∈ [1, +∞) ∪ {+∞} and a symbol σ ∈ C ∞ (R d × R d , C). We expect to bound Op w (σ) L r (R d )→L r (R d ) by a suitable norm on σ (and certainly its derivatives). For any λ > 0, consider now the following linear isometry of L r (R Proof. Let us assume that Ψ has a support in [-R, R] for some real number R > 0. For any x ∈ R d and h ∈ (0, 1], we can write

H -s α (R d )→H N ( 
R d |Ψ(h 2 V 2α (x) + h 2 |ξ| 2 )q(hξ)|dξ = h -d R d |Ψ(h 2 V 2α (x) + |ξ| 2 )q(ξ)|dξ ≤ h -d Vol R d (B(0, √ R)) Ψ L ∞ (R d ) q L ∞ (B(0, √ R)) = O(h -d ).
Fix now an integer s > d 2 and let us write

R d (-∆ ξ ) (s) {Ψ(h 2 V 2α (x) + h 2 |ξ| 2 )q(hξ)} dξ = h 2s-d R d
(-∆ ξ ) (s) {Ψ(h 2 V 2α (x) + |ξ| 2 )q(ξ)} dξ, For the next result, we stress that we consider cut-off functions whose support is far from 0. This is a little trick that will allow to deal with the terms h 2k Op w (Ψ (k) (h 2 p)q k ), k ≥ 1, of Proposition B.2 under the reasonable additional assumption that Ψ is identically constant near 0.

which
Corollary C.3. -As above, we consider an integer α ≥ 1, a positive 2α-homogeneous polynomial V 2α on R d . Consider as above the symbol p, the weight M and the admissible metric g associated to -∆ + V 2α defined in (98). Let Φ : R → R be a smooth function whose support is compact and included in (0, +∞). Fix η ∈ R and let q be a symbol belonging to the class S(M η , g). Then the following holds ∀r ∈ [1, +∞) ∪ {+∞} ∀h ∈]0, 1] Op w (Φ(h 2 p)q) L r (R d )→L r (R d ) h -2η .

Proof. As for Corollary C.2, we aim to use Proposition C.1. For any x ∈ R d and h ∈ (0, 1], we begin by writing

R d |Φ(h 2 V 2α (x) + h 2 |ξ| 2 )q(x, ξ)|dξ R d |Φ(h 2 V 2α (x) + h 2 |ξ| 2 )|(1 + |x| 2α + |ξ| 2 ) η dξ.
Since the support of Φ is far from 0, one has V 2α (x) + |ξ| 2 h -2 in the last integral. As h belongs to (0, 1] and V 2α is 2α-homogeneous, we also have the equivalence 1 + |x| 2α + |ξ| 2 h -2 . Whatever the sign of η is, a similar argument than that of the proof of Corollary C.2 gives us

R d |Φ(h 2 V 2α (x) + h 2 |ξ| 2 )q(x, ξ)|dξ h -2η R d |Φ(h 2 V 2α (x) + h 2 |ξ| 2 )|dξ h -2η-d R d |Φ(h 2 V 2α (x) + |ξ| 2 )|dξ.
O(h -2η-d ).

Choose now an integer s > d 2 and make use of the Leibniz rule : We now use the gain of derivatives in ξ of the symbol q ∈ S(M η , g) (see ( 98)). We then get 

D Proof of Theorem 5.3

We shall first prove the following result.

Theorem D.1. -Consider an integer α ≥ 1 and a positive 2α-homogeneous polynomial V 2α on R d . For any smooth function Ψ : R → R, with compact support, and that is identically constant near 0, there is C > 0 such that for any r ∈ [1, +∞) ∪ {+∞} and any f ∈ L r (R d ) the following holds true

(105) sup 0<h≤1 Ψ(-h 2 ∆ + h 2 V 2α )f L r (R d ) ≤ C f L r (R d ) .
(106) sup

0<h≤1 ∇{Ψ(-h 2 ∆ + h 2 V 2α )f } L r (R d ) ≤ C h f L r (R d ) .
It is easy to check that Theorem D.1 implies Theorem 5.3. We firstly remark that any f ∈ L 2 (R d ) that is spectrally localized in [0, ρ] (with respect to -∆ + V 2α ) automatically belongs to any Sobolev space H s α (R d ), with s 1, so belongs to L r (R d ) (see Lemma B.1). Choose now a function Ψ ∈ C ∞ 0 (R, R) such that Ψ ≡ 1 on [0, 1] and set h = 1 √ ρ , we immediately obtain the equality ψ(-h 2 ∆ + h 2 V 2α )f = f . Hence, (106) implies the conclusion of Theorem 5.3. The inequality (105) is useless for us but its proof is easier than that of (106) and may be useful for further developments.

Let us now explain the proof of Theorem D.1. We use the same notations of those of Appendix B (in particular (98)) and we apply Proposition B.2. We shall merely invoke that each symbol q k belongs to S(M k , g) instead of S(M k λ -2 , g).

Proof of (105). Corollary C.2 (with q = 1) and Corollary C.3 (with Φ = Ψ (k) and q k ∈ S(M k , g)) respectively give us sup h∈(0,1] Op w (Ψ(h 2 p) L r (R d )→L r (R d ) < +∞, ∀k ∈ {2, . . . , N } sup h∈(0,1] h 2k Op w (Ψ (k) (h 2 p)q k L r (R d )→L r (R d ) < +∞.

Proof of (106). It is sufficient to prove for any j ∈ {1, . . . , d} :

(107) ∂ ∂x j Op w (Ψ(h 2 p)) 

L r (R d )→L r (R d ) ≤ C j h , ( 
1 h + h 2 h -2(1-1 2α ) 1 h .
Proving the inequality (108) is essentially similar because ∂ ∂xj h 2k Op w (Ψ (k) (h 2 p)q k ) equals h 2k Op w (iξ j Ψ (k) (h 2 p)q k ) + h 2k Op w h 2 2 Ψ (k+1) (h 2 p)q k ∂ xj p + h 2k Op w Ψ (k) (h 2 p)

1 2 ∂ xj q k .
Note that ξ j q k = ∂M 2∂ξj q k clearly belongs to S(M k+ 1 2 , g), that q k ∂ xj p belongs to S(M k+1-1 2α , g) and ∂ xj q k belongs to S(M k-1 2α , g). Thanks to Corollary C.3, we obtain

∂ ∂x j h 2k Op w (Ψ (k) (h 2 p)q k ) L r (R d )→L r (R d ) 1 h + h 2 h -2(1-1 2α ) + h 2× 1 2α 1 h .

E About unitarily invariant random vectors

In the sequel, we denote by • the Euclidean norm of C d .

Lemma E.1. -Let Υ : Ω → C d be a random vector that almost surely never vanishes and whose law is unitarily invariant, then a) Υ and Υ Υ (which is almost surely well defined) are independent, b) the law of Υ Υ is the normalized volume measure of the sphere S 2d-1 ⊂ C d .

  Theorem 4.1. -Assume d ≥ 2 and denote by E n the eigenspace of -∆ + |x| 2 in L 2 (R d ) associated to the eigenvalue d + 2n. Now consider

  Corollary 4.4. -Assume d ≥ 2 and consider a function

n∈N f n

  belonging to L 2 (R d ) with f n ∈ E n for each n ∈ N. Then the random series f ω n almost surely converges in L p (R d ) for any p ∈ [2, +∞) ∪ {+∞}.
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  HS < +∞, where • HS stands for the Hilbert-Schmidt norm : b n (x) i,j (x)| 2 . Then the following statements hold true i) For any integer N ≥ 2, one has

  probability to U . The following classical result of Paul Lévy ([LQ04, Théorème II.3, page 119] or [LT91, Theorem 2.4]) ensures that the random series is almost surely convergent in L ∞ (X).

  i,j (x)| 2 belongs to L p 2 (X, ν), b) for almost every ω ∈ Ω, the random series X n (ω) √ d n tr (E n (ω)b n ) converges in the Banach space L p (X, ν).Finally, if one merely assumes sup n∈N E[|X n | max(2,p) ] < +∞, then the implication a) ⇒ b) holds true. Proof. Apply [Ime17, Théorème 2.1] with M n = X n E n . Finally, the last sentence comes from [Ime17, Corollaire 2.14].

  Proposition 15.1. -Let H be a Hilbert space, (d n ) n∈N be a sequence of positive integers, (b n ) n∈N be a sequence of matrices with b n ∈ M dn (H). For any sequence (X n ) n∈N of independent random variables satisfying 0 < inf n∈N E[|X n |] and sup n∈N E[|X n | 2 ] < +∞, the following assertions are equivalent : almost every ω ∈ Ω, the random series n≥0 X n (ω) √ d n tr(E n (ω)b n ) converges in H. If one merely assumes sup n∈N E[|X n | 2 ] < +∞ then a) implies b).

  Proposition 17.3. -For any α ∈ N and any b > 0, there exists a radial solution E d,α,b ∈ C ∞ (R d \{0}) of the equation (68) (-∆ + b|x| 2α )E d,α,b = 0 such that for any σ > 1 there are R = R(d, α, b, σ) > 0 and C = C(d, α, b, σ) > 1 such that the following implication holds true

  α,b cannot have a positive maximum on the domain {|x| ≥ max( √ ρµ 1 2α , R)}. Assume the contrary and call x 0 such a point on which the maximum is attained. One necessarily has |x 0 | > max(

  Parametrix for the Weyl-Hörmander pseudo-differential calculus The goal of this part is to extend the classical construction of an arbitrary precise parametrix to the Weyl-Hörmander pseudo-differential calculus (see for instance the strategy in [HR81, Proposition 2.5] or [DS99, Part 8]).Let us begin by setting the notations of the Weyl-Hörmander pseudo-differential calculus (see [Hör85, Parts 18.4,18.5,18.6] or[START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF]). For any Schwartz function σ ∈ S(R d × R d ), one can give a sense to the following Weyl quantization(82) ∀u ∈ S(R d ) ∀x ∈ R d Op w (σ)u(x) = R d R d e i x-y,ξ σ x + y 2 , ξ u(y) dydξ (2π) d .On can still give a sense to the previous expression for any tempered distribution σ ∈ S (R d × R d ) as an operator Op(σ) w : S(R d ) → S (R d ). If σ 1 and σ 2 are two symbols, for instance belonging to S(R d × R d ), then there is a unique symbol σ 1 #σ 2 such that Op w (σ 1 #σ 2 ) = Op w (σ 1 ) • Op w (σ 2 ). The Weyl-Hörmander pseudo-differential calculus now needs • a Riemannian metric g on the phase space R d × R d (more precisely, a measurable map from R d × R d into the cone of positive-definite quadratic forms onR d × R d ), • a function M : R d × R d → (0, +∞) called a weight.The class of symbols S(M, g) is then defined as the vectorial subspace of symbols σ ∈ C ∞ (R d × R d , C) such that for any k ∈ N there is C k > 0 for which the following estimates holds true :

  For instance, the first two terms are T 0 (a, b) = ab and T 1 (a, b) = 1 2i {a, b} where {•, •} is the Poisson bracket. Moreover, for any N ∈ N and ∈ N, there is m ∈ N such that

  Lemma A.2. -Consider an admissible weight M 1 for an admissible metric g and a real symbol p ∈ S(M, g) satisfying 1 + p M . For any integer N ∈ N, we define Υ -N the vectorial space of symbols σ

  Lemma B.1. -For any s > d 2 and any r ∈ [1, +∞) ∪ {+∞}, one has the continuous embeddings H

  α+1) α -s α (R d ) (1 + |z|) m0 |Im(z)| m0 .If one considers -∆+V 2α as an operator of the Hilbert space HN (α+1) α -s α (R d ) with domain H N (α+1) α -s +2 α (R d ),then one clearly gets a self-adjoint operator. One consequently obtains∀z ∈ C\R (z -∆ + V 2α ) |z|) m0 |Im(z)| m0+1 .Thanks to Lemma B.1, one may choose N large enough so that the inclusion HN (α+1) α -s α (R d ) ⊂ W 1,r (R d) holds true. As we have chosen s > d 2 , we finally get R N (z) L r (R d )→W 1,r (R d ) (1 + |z|) m0 |Im(z)| m0+1 .

  2 z) R N (z)dL(z) L r (R d )→W 1,r (R d ) |h 2 z|≤ρ h 2 ∂{Ψ} ∂z (h 2 z) (1 + |z|) m0 |Im(z)| m0+1 dL(z) ρ 2 h 4 sup |z|≤h -2 ρ h 2 |Im(h 2 z)| m0+1 (1 + |z|) m0 |Im(z)| 1+m0 ρ 2 sup |z|≤h -2 ρ h 2m0 (1 + |z| m0 ) 1.A classical computation, as used for instance in [DS99, Page 103] or [BGT04, page 577], based on the Cauchy formula and the fact that 1 πz is a fundamental solution of the Cauchy-Riemann operator ∂ ∂z , shows the following equality∀k ∈ N -1 π C 2 1 (z -p) k+1 ∂ ∂z Ψ(h 2 z) dL(z) = h 2k k! Ψ (k) (h 2 p).

  d ) : U λ,r : L r (R d ) → L r (R d ) f → (x → λ d r f (λx)). Due to the definition (82) of the Weyl quantization, one easily checks the formula U λ,r Op w (σ)U -1 λ,r = Op w σ λx, ξ λ .This remark implies that any reasonable bound from above of Op w (σ) L r (R d )→L r (R d )should be scaleinvariant by replacing σ with σ λx, ξ λ . This is the purpose of the following result relying on the Schur test. Proposition C.1. -For any integer s > d 2 , there is C(d, s) > 0 such that for any symbol σ ∈ C ∞ (R d × R d , C) with compact support, for any r ∈ [1, +∞) ∪ {+∞}, the following bound holds true Op w(σ) L r (R d )→L r (R d ) ≤ C(d, s) sup x∈R d R d |σ(x, ξ)|dξ 1-d 2s sup x∈R d R d |(-∆ ξ ) s σ(x, ξ)|dξ d 2s .Proof. By interpolating, one merely has to prove the cases r = 1 and r = +∞. From (82), the Schwartz kernel of Op w (σ) is clearly given byK(x, y) = R d e i x-y,ξ σ x + y 2 , ξ dξ (2π) d .Hence, the bounds L ∞ → L ∞ and L 1 → L 1 will respectively come from the bounds of (103) supx∈R d R d|K(x, y)|dy and supy∈R d R d |K(x, y)|dx.Since σ has a compact support, we may integrate by parts with the differential operator I + (-∆ ξ ) s to get|K(x, y)| = R d e i x-y,ξ 1 + |x -y| 2s (I + (-∆ ξ ) s )σ |x -y| 2s sup X∈R d R d |σ(X, ξ)| + |(-∆) s σ(X, ξ)| dξ (2π) d ≤ (2π) -d 1 + |x -y| 2s sup X∈R d R d |σ(X, ξ)|dξ + sup X∈R d R d |(-∆) s σ(X, ξ)|dξ .As a result, the two suprema in (103) are bounded byC(d, s) sup X∈R d R d |σ(X, ξ)|dξ + sup X∈R d R d |(-∆) s σ(X, ξ)|dξ .From the remark made in the beginning of this part, we may improve the last bound byC(d, s) inf λ>0 sup X∈R d R d |σ λ (X, ξ)|dξ + sup X∈R d R d |(-∆) s σ λ (X, ξ)|dξwhere we denote by σ λ the symbol σ(λx, ξ/λ). This reduces toC(d, s) inf λ>0 λ d sup X∈R d R d |σ(X, ξ)|dξ + λ -(2s-d) sup X∈R d R d |(-∆ ξ ) s σ(X, ξ)|dξ .The conclusion comes from the easy fact∀A, B ≥ 0 inf λ>0 λ d A + λ -(2s-d) B A 1-d 2s B d 2s .The previous result allows to prove two corollaries needed to deal with the pseudo-differential operators appearing in Proposition B.2.Corollary C.2. -Consider an integer α ≥ 1 and a positive 2α-homogeneous polynomial V 2α on R d . Set now p(x, ξ) = |ξ| 2 + V 2α (x). For any smooth function Ψ : R → R, with compact support, and any smooth function q : R → C, the following estimate holds true ∀r ∈ [1, +∞) ∪ {+∞} sup 0<h≤1Op w (Ψ(h 2 p)q(hξ)) L r (R d )→L r (R d ) < +∞.

  is uniformly bounded with respect to x, with a similar argument, by O(h 2s-d ). Proposition C.1 gives us the expected bound for any r ∈ [1, +∞) ∪ {+∞} : (104)Op w (Ψ(h 2 p)q(hξ)) L r (R d )→L r (R d ) ≤ O (h -d ) 1-d 2s (h 2s-d ) d 2s= O(1).

  ξ ) (s) {Φ(h 2 |x| 2α + h 2 |ξ| 2 )q(x, ξ)} dξ ≤ C(s) (s1,s2)∈N d ×N d |s1|+|s2|=2s R d |D s1 ξ {Φ(h 2 |x| 2α + h 2 |ξ| 2 )}||D s2 ξ {q(x, ξ)}|dξ.

  JM75, Corollary 5.2] or [IRT16, Theorem 5.2]). Let us now give a deep reason that convinces the reader that the weak conditions (2) and the converse implication ⇒ in (3) are remarkable. Let us denote by g n a sequence of i.i.d. N C (0, 1) Gaussian random variables. The Maurey-Pisier theorem [MP76, corollaire 1.3] states that there is a geometric property, called the finite cotype, that characterizes the Banach spaces B for which the following equivalence holds true for any sequence (f n ) n∈N of B

	(4)	ε

n f n a.s. converges in B ⇔ g n f n a.s. converges in B.

  recalled in (75), Robert and Thomann have already obtained the upper bound of √ e n L ∞ (R d ) . The middle bound in (77) is obvious because √ e n L 2 (R d ) equals √ d n n

				d-1 2 . The last bound in (77) now needs
	the exponential decay of the spectral function. From (66) with µ n	2α α+1 , there is c > 0 and C ≥ 1 such that
	(78)	∀x ∈ R d e n (x) ≤ n	αd α+1 -1 1 B(0,cn 1/(α+1) ) (x) + C exp -	1 C	|x| α+1

  (-∆ ξ ) (s) {Φ(h 2 V 2α (x) + h 2 |ξ| 2 )q(x, ξ)} dξ {Φ(h 2 V 2α (x) + h 2 |ξ| 2 )}|(1 + |x| 2α + |ξ| 2 ) η-|s 2 | 2 dξ {Φ(h 2 V 2α (x) + h 2 |ξ| 2 )}|dξ {Φ(h 2 V 2α (x) + |ξ| 2 )}|dξ, which is O(h -2η+2s-d ).Again, Proposition C.1 gives the conclusion with the same computation made in (104).

	R d	
	(s1,s2)∈N d ×N d |s1|+|s2|=2s ξ (s1,s2)∈N d ×N d R d |D s1 |s1|+|s2|=2s h -2η+|s2| ξ (s1,s2)∈N d ×N d R d |D s1 h -2η+|s2|+|s1|-d R d	|D s1 ξ
	|s1|+|s2|=2s	

  108) ∀k ∈ {2, . . . , N } ∂ ∂x j h 2k Op w Ψ (k) (h 2 p)q k L r (R d )→L r (R d )For any u ∈ S(R d ), the definition (82) ensures that ∂ ∂xj Op w (Ψ(h 2 p))u(x) equalsR d ×R d iξ j e i x-y,ξ Ψ h 2 p Op w (Ψ(h 2 p)) = Op w iξ j Ψ(h 2 p) + Op w h 2 2 Ψ (h 2 p)∂ xj p .Notice that the last formula is predicted by the exact symbolic calculus (87) and (88). For the metric

											≤	C k,j h	.
							x + y 2	, ξ		u(y)	dydξ (2π) d
				+	R d ×R d	e i x-y,ξ h 2 2	Ψ h 2 p	x + y 2	, ξ	∂ xj p	x + y 2	, ξ u(y)	dydξ (2π) d .
	In other words, we have					
					∂					
					∂x j					
	g =	d =1	dx 2 M 1/α +	dξ 2						

M , the symbol ∂ xj p belongs to S(M 1-1 2α , g). Corollary C.2 (with q(hξ) = ihξ 1 ) and Corollary C.3 allow us to get (107) :

∂ ∂x j Op w (Ψ(h 2 p)) L r (R d )→L r (R d )

to compute the differential expression D ξ1 , D x2 -D x1 , D ξ2 in the symplectic basis B x,ξ (see (85)) that diagonalizes the metric g x,ξ . One still has a formula like (93) but the main advantage is that each derivative at (x, ξ) with respect to any direction of an element of B x,ξ gives 1 √ λ(x,ξ) as a multiplicative gain. Hence (93) gives 1 λ(x,ξ) n-N as a global multiplicative gain. Moreover, each symbol σ j,J (z-p) J comes from the Leibniz rule in in (93), so belongs to S(λ -n , g). By fixing z, one sees that σ j,J belongs to S(M J λ -n , g) as announced above.

We can now prove Proposition A.1. For any N ≥ 2, we denote by H(N ) the following induction hypothesis : there are σ ∈ Υ -2 (see Lemma A.2) and a sequence (A -j ) j≥N of symbols satisfying A -j ∈ Υ -j for any integer j ≥ N such that the following symbolic expansion, in the sense of (90), holds true

We moreover assume that for any integers K ≥ N and ≥ 0, one may find an integer m > 0 such that the following estimates hold true for any

Note that the conclusion of Proposition A.1 is merely the case K = N (for which K-1 j=N A -j vanishes) but our proof needs to consider any integer K ≥ N in the induction hypothesis.

Proof of H(2). We choose σ = 0. Remember that for any functions u ∈ C 1 (R 2d , C ) and F ∈ C 1 (C , C), the Poisson bracket {u, F (u)} = 0 vanishes. Notice now that the elliptic assumption on 1 + p M ensures that (z -p) -1 belongs to S(M -1 , g). Hence, the beginning of the symbolic calculus of z -p ∈ S(M, g) and (z -p) -1 ∈ S(M -1 , g) gives

By using (93), one gets a formula like

for a suitable integer N ≥ 2 and symbols σ j ∈ S(M j λ -n , g). In other words, T n (z -p, 1 z-p ) belongs to Υ -n . The adequate estimates on the semi-norms of the remainders will be a consequence of the following two observations :

• the obvious relation T n (z -p, 1 z-p ) = T n (-p, 1 z-p ) kills the constant symbol z, • one has z# 1 z-p = z z-p (this is a consequence of the definition of the operation #). Hence, for any integer K ≥ 2, one has

Proof. The law of the random vector Υ Υ is a unitarily invariant Borel probability measure on the sphere S 2d-1 , hence b) is proved. It remains to prove a). Considering two measurable subsets A ⊂ [0, +∞) and B ⊂ S 2d-1 , we want to show the equality Let us now explain that we indeed have

If Υ(ω) does not belong to A then pΥ(ω) does not belong to AB and hence the two sides of (111) vanish.

If Υ(ω) belongs to A then we have

. Whatever is a fixed point x ∈ S 2d-1 , it is known that the pushforward measure of ν d via the map p ∈ U d (C) → px ∈ S 2d-1 is the normalized volume measure of S 2d-1 and so also equals the law of Υ Υ . Choosing x = Υ(ω) Υ(ω) , it appears that (111) is completely proved. Finally, (110) and ( 111) imply (109).