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Abstract—The purpose of this article is to study behavior of
the electromagnetic field in 3D in and near composite material.
For this, time-harmonic Maxwell equations, for a conducting
two-phase composite and the air above, are considered. This
paper is considered a first part in two parts study. In this
part we give the setting of the problem, and we propose a
rescaling of time-harmonic Maxwell system. then with a view
to the homogenization, we demonstrate the uniqueness and the
existence of a solution as well as an estimate.

Index Terms—Harmonic Maxwell Equations; Electromag-
netic Pulses, Electromagnetism; Homogenization; Asymptotic
Analysis; Asymptotic Expansion; Two-scale Convergence; Ef-
fective Behavior; Frequencies; Composite Material.

I. INTRODUCTION

We are interested in the time-harmonic Maxwell equations
in and near a composite material with boundary conditions
modeling electromagnetic field radiated by an electromag-
netic pulse (EMP). An electromagnetic pulse is a short
burst of electromagnetic energy. It may be generated by a
natural occurrence such like a lightning strike. We study
the electromagnetic pulse caused by this lightning strike and
what happens over a period of time of a millisecond during
the peak of the first return stroke.

EMP interference is generally damaging to electronic
equipment. A lightning strike can damage physical objects
such as aircraft structures, either through heating effects or
disruptive effects of the very large magnetic field generated
by the current. Structures and systems require some form
of protection against lightning. Every commercial aircraft is
struck by lightning at least once a year in average. With
the increasing of use of composite materials, up to 53%
for the latest Airbus A350, and 50% for the Boeing B787,
aircrafts offer increased vulnerability facing lightning. Earlier
generation aircrafts, whose fuselages were predominantly
composed of aluminum, behave like a Faraday cage and offer
maximum protection for the internal equipment. For these
reasons, aircraft manufacturers are very sensitive to lightning
protection and pay special attention to aircraft certification
through testing and analysis.

We evaluate the electromagnetic field within and near a
periodic structure when the period of this microstructure is
small compared to the wavelength of the electromagnetic
wave. Our model is composed by air above the composite
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fuselage and we study the behavior of the electromagnetic
wave in the domain filled by the composite material, rep-
resenting the skin aircraft, and the air. We build the 3D
model, under simplifying assumptions, using linear time-
harmonic Maxwell equations and constitutive relations for
electric and magnetic fields. Composite materials consist of
conducting carbon fibers, distributed as periodic inclusions in
a matrix (epoxy resin). We impose a magnetic permeability
µ0 uniform and an electrical permittivity ε = ε0ε

?, where ε?

is the relative permittivity depending of the medium.
We account for some characteristic values, we focus on

the boundary conditions as we consider them as the source.
Then, we use on the upper frontier, the magnetic field
induced by the peak of the current of the first return stroke

Hd =
I

2πr
, (1)

with current intensity I = 200 kA and r the radius of
the lightning strike, this is the worst aggression that can
suffer an aircraft, and we deduce a characteristic electric
field E = 20 kV/m. In our model we consider that we
have very conductive - but not perfect conductors - carbon
fibers and an epoxy resin whose conduction depends on
its doping rate. The conductivity of the air is non-linear.
Air is a strong insulator [1] with conductivity of the order
of 10−14 S.m−1 but beyond some electric solicitation, the
air loses its insulating nature and locally becomes suddenly
conductive. The ionization phenomenon is the only cause
that can make the air conductor of electricity. The ionized
channel becomes very conductive.

On of the parameter we account for in our model: δ =
1√
ω σµ0

, where σ is the characteristic conductivity and ω

the order of the magnitude of the pulsation shares much
with the definition of theoretical thickness skin δ =

√
2

ωσµ0
.

The thickness skin is the depth at which the surface current
moves to a factor of e−1. Indeed, at high frequency, the
skin effect phenomenon appears because the current tends to
concentrate at the periphery of the conductor. On the other
side, at low frequencies, in our case, the penetration depth
is much greater than the thickness of the plate which means
that a part of the electric field penetrates the composite plate.

A. Notations and setting of the problem

We consider set Ω̃ = {(x̃, ỹ, z̃) ∈ R3, ỹ ∈ (−L, d)} for
L and d two positive constants, with two open subsets Ω̃a
and P̃ . The air fills Ω̃a and we consider that the composite
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material, with two materials periodically distributed, stands
in domain P̃ .

We assume that the thickness L of the composite material
is much smaller than its horizontal size. We denote by e the
lateral size of the basic cell Ỹ e of the periodic microstructure
of the material. The cell is composed of a carbon fiber
in the resin. We define now more precisely the material,
introducing:
P̃ = {(x̃, ỹ, z̃) ∈ R3/−L < ỹ < 0}, which is the domain

containing the material. Now we describe precisely the basic
cell. For this we first introduce the following cylinder with
square base:
Z̃e = [− e2 ,

e
2 ] × [−e, 0] × R, We consider α such that

0 < α < 1, and R̃e = α e2 . We set
D̃e = {(x̃, ỹ) ∈ R2/(x̃2 +(ỹ+ e

2 )2) < (R̃e)2}. We define
the cylinder containing the fiber as:
C̃e = D̃e ×R. Then the part of the basic cell containing

the matrix is Ỹ eR = Z̃e \ C̃e, and by definition, the basic
cell Ỹ e is the couple ( Ỹ eR, C̃

e).
The composite material results from a periodic extension

of the basic cell. More precisely the part of the material
that contains the carbon fibers is Ω̃c = P̃ ∩ {(ie, je, 0) +
C̃e, i ∈ Z, j ∈ Z−}, where the intersection with P̃ limits
the periodic extension to the area where stands the material.
Set {(ie, je, 0) + C̃e, i ∈ Z, j ∈ Z−} is a short notation for
{(x̃, ỹ, z̃) ∈ R3,∃i ∈ Z,∃j ∈ Z−,∃(xb, yb, zb) ∈ C̃e; x̃ =
xb+ie, ỹ = yb+je, z̃ = zb}. In the same way the part of the
material that contains the resin is Ω̃r = P̃ ∩ {(ie, je, 0) +
Ỹ eR}, or equivalently Ω̃r = P̃ ∩ {(ie, je, 0) + Z̃e \ C̃e} =

(R× (−L, 0)×R)\Ω̃c.
So the geometrical model of our composite material is

couple (Ω̃c, Ω̃r). Now, it remains to set the domain that
contains the air: Ω̃a = {(x̃, ỹ, z̃)/0 ≤ ỹ < d}. We
consider that d is of the same order as L and we introduce
the upper frontier Γ̃d = {(x̃, ỹ, z̃)/ỹ = d} of domain Ω̃.
On this frontier we will consider that the electric field and
magnetic field are given. We also introduce the lower frontier
Γ̃L = {(x̃, ỹ, z̃)/ỹ = −L} with those definitions we have
Ω̃a ∩ P̃ = ∅, Ω̃c ∩ Ω̃r = ∅, P̃ = Ωr ∪ Ωc, Ω̃ = Ωa ∪ P̃ =
Ωa ∪ Ωr ∪ Ωc, and for any (x̃, ỹ, z̃) ∈ ∂Ω̃ = Γ̃d ∪ Γ̃L and,
we write ñ, the unit vector, orthogonal to ∂Ω̃ and pointing
outside Ω̃. We have : ñ = e2 on Γ̃d
ñ = −e2 on Γ̃L.
In the following we need to describe what happens at the
interfaces between resin and carbon fibers, and resin and air.
So we define Γra = {(x̃, ỹ, z̃) / ỹ = 0} and Γcr the interface
between the resin and the carbon fiber.

B. Time-harmonic Maxwell equations

We consider the harmonic version of the Maxwell equa-
tions which describe the electromagnetic radiation, they are
written:

∇×H̃ − iω̃ε0ε?Ẽ = σẼ, Maxwell - Ampere equation
∇×Ẽ + iω̃µ0H̃ = 0, Maxwell - Faraday equation
∇·(ε0ε?Ẽ) = ρ̃,

∇·(µ0H̃) = 0,
(2)

where Ẽ(t, x̃, ỹ, z̃) = <e(Ẽ(x̃, ỹ, z̃) expiω̃t) and
H̃(t, x̃, ỹ, z̃) = <e(H̃(x̃, ỹ, z̃) expiω̃t), ∀t ∈ R+,

(x̃, ỹ, z̃) ∈ Ω̃, µ0 and ε0 are the permeability and
permittivity of free space. ε? is the relative permittivity of
the domains defined by

ε?
|Ω̃a

= 1, ε?
|Ω̃r

= εr, ε
?

|Ω̃c
= εc, (3)

where εr and εc are positives constants. And σ is the electric
conductivity. Its value depends on the location: σ|Ω̃a

=

σa, σ|Ω̃r
= σr, σ|Ω̃c

= σc, where Ω̃a, Ω̃r and Ω̃c were

defined in the first paragraph. The magnetic field H̃ can be
directly computed from the electric field Ẽ

H̃ = − 1

iωµ0
∇×Ẽ. (4)

Inserting ∇×H̃ in Maxwell - Faraday equation we get the
following equation for the electric field:

∇×∇×Ẽ + (−ω̃2µ0ε0ε
? + iω̃µ0σ)Ẽ = 0 in Ω̃. (5)

Taking the divergence of the equation Maxwell - Ampere
equation yields the natural gauge condition:

∇·[(iω̃ε0ε? + σ)Ẽ] = 0inΩ̃. (6)

Notice that iω̃ε0+σ is equal to iω̃ε0+σa in Ω̃a, to iω̃ε0εr+σr
in Ω̃r and to iω̃ε0εc + σc in Ω̃c, those quantities being all
nonzero. Then (6) is equivalent to:

∇·Ẽ|Ωa = 0 in Ω̃a, ∇·Ẽ|Ωr = 0 in Ω̃r, ∇·Ẽ|Ωc = 0 in Ω̃c.
(7)

with the transmission conditions{
(iω̃ε0 + σa)Ẽ|Ω̃a

.ñ = (iω̃ε0εr + σr)Ẽ|Ω̃r
.ñ on Γ̃ra,

(iω̃ε0εr + σr)Ẽ|Ω̃r
.ñ = (iω̃ε0εc + σc)Ẽ|Ω̃c

.ñ on Γ̃cr.

(8)
Summarizing, we finally obtain the PDE model:

∇×∇×Ẽ + (−ω̃2µ0ε0ε
? + iω̃µ0σ)Ẽ = 0 in Ω̃. (9)

We have to set boundary conditions on Γ̃d and Γ̃L. On Γ̃d we
will write conditions that translate that Ẽ and H̃ are given
by the source located in ỹ = d. The way we chose consists
in setting:

Ẽ × ñ = Ẽd × ñ; H̃ × ñ = H̃d × ñ onΓ̃d,
(10)

where Ẽ?d , H̃?
d are functions defined on Γ̃d for any t ∈ R.

On Γ̃L, we chose something simple, i.e :

∇×Ẽ × ñ = 0 onΓ̃L, (11)

that translate that Ẽ does not vary in the ỹ-direction near Γ̃L.
According to the tangential trace of the Maxwell-Faraday
equation (2) we obviously obtain that using boundary con-
dition (10), is equivalent to using:

∇×Ẽ × e2 = −iω̃µ0H̃d(x̃, z̃)× e2 onΓ̃d. (12)

And on Γ̃L we have the following boundary condition:

∇×Ẽ × e2 = 0 onΓ̃L. (13)

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



C. Scaling

In this subsection we propose a rescaling of system ((9)-
(13)), we will consider a set of characteristic sizes related to
our problem. Physical factors are then rewritten using those
values leading to a new set of dimensionless and unitless
variables and fields in which the system is rewritten. The
considered characteristic sizes are : ω the characteristic pul-
sation, σ the characteristic electric conductivity, E the char-
acteristic electric magnitude, H the characteristic magnetic
magnitude. We also use the already introduced thickness L of
the plate P̃ . We then introduce the dimensionless variables:
x = (x, y, z) with x = x̃

L
, y = ỹ

L
, z = z̃

L
and fields E, H

and σ that are such that
E(ω,x) = 1

E
Ẽ(ωω,Lx, Ly, Lz),

H(ω,x) = 1

H
H̃(ωω,Lx, Ly, Lz),

σ(x) = 1
σ σ̃(Lx,Ly, Lz),

(14)

Taking (I-B) into account, σ also reads:
σ(x) = σa

σ if 0 ≤ Ly ≤ d,
σ(x) = σr

σ if (Lx,Ly, Lz) ∈ Ω̃r,

σ(x) = σc
σ if (Lx,Ly, Lz) ∈ Ω̃c.

(15)

Doing this gives the status of units to the characteristic
sizes. Since, for instance:

∂E
∂x (ω,x) = L

E

∂Ẽ

∂x̃
(ωω,Lx, Ly, Lz), (16)

using those dimensionless variables and fields and
taking (15)-(15) into account, equation (9) gives:

E ∇×∇×E(ω,x)−
(
L

2
ω2

c2 ε?ω2

+iσ ω ωL
2
µ0σ(x, ω)

)
EE(ω, x, y, z) = 0,

(16)

for any (ω, x) such that (ωω,Lx, Ly, Lz) ∈ Ω̃. Now we
exhibit

λ = 2πc
ω , (17)

which is the characteristic wave length and

δ =
1√

ω σµ0
, (18)

which is the characteristic skin thickness. Using those quan-
tities equation (I-C) reads, for any (ω, x) ∈ Ω:

∇×∇×E(ω,x) + (− 4π2L
2

λ
2 ω2 + iL

2

δ
2
σa
σ ω)E(ω,x) = 0

when 0 ≤ Ly ≤ d,
∇×∇×E(ω,x) + (− 4π2L

2

λ
2 εrω

2 + iL
2

δ
2
σr
σ ω)E(ω,x) = 0

when (Lx,Ly, Lz) ∈ Ω̃r,

∇×∇×E(ω,x) + (− 4π2L
2

λ
2 εcω

2 + iL
2

δ
2
σc
σ ω)E(ω,x) = 0

when (Lx,Ly, Lz) ∈ Ω̃c.
(19)

In the following expressions, L
λ

and L

δ
appearing in the equa-

tions above will be rewritten in terms of a small parameter
ε.

The boundary conditions are written
∇×E(ω,x)× e2 = −iωωµ0

L

E
H̃d(Lx,Lz)× e2

when (Lx,Ly, Lz) ∈ Γ̃d,

∇×E(ω,x)× e2 = 0 when (Lx,Ly, Lz) ∈ Γ̃L.
(20)

The characteristic thickness of the plate L is about 10−3m
and the size of the basic cell e is about 10−5m. Since e is
much smaller than the thickness of the plate L, it is pertinent
to assume the ratio e

L
equals a small parameter ε:

e

L
∼ 10−2 = ε. (21)

The lightning is seen as a low frequency phenomenon.
Indeed, energy associated with radiation tracers and return
stroke are mainly burn by low and very low frequencies (from
1kHz to 300kHz). Components of the frequency spectrum
are however observed beyond 1GHz see [2]. In our study
we will consider ω = 106rad/s), for medium frequency
we set ω = 1010 rad/s and for high frequency phenomena
ω = 1012 rad/s. Then, concerning the characteristic electric
conductivity it seems to be reasonable to take for σ the
value of the effective electric conductivity of the composite
material. Yet this choice implies to compute a coarse estimate
of this effective conductivity at this level.

For this we take into account that the composite material is
composed of carbon fibers and epoxy resin. In our model, the
resin can be doped, which increases strongly its conductivity.
We also account for the fact there is not only one effective
electric conductivity but a first one in the fiber direction :
the effective longitudinal electric conductivity , and a second
effective electric conductivity, in the direction transverse to
the fibers. In this context, we consider the basic model which
is based on the electrical analogy and the law of mixtures. It
corresponds to the Wiener limits: the harmonic average and
the arithmetic average. The effective values are the extreme
limits of the conductivity of the composite introduced by
Wiener in 1912 see S. Berthier p 76 [3].
The effective longitudinal electric conductivity correspond-
ing of the upper Wiener limit is expressed by the equation:

σ = σlong = fc σc + (1− fc) σr, (22)

where fc = πα
2

4 is the volume fraction of the carbon fiber.
The effective transverse electric conductivity correspond-

ing of the lower Wiener limit is expressed by

σ = σtrans =
1

fc
σc

+ (1−fc)
σr

. (23)

For the computation, we take values close to reality. We
consider composite materials with similar proportions of
carbon and resin, this means that α is close to 1

2 . When
the resin is not doped σr ∼ 10−10S.m−1 is much smaller
than σc ∼ 40000S.m−1. Then, σ = σlong is close to

πα
2

4 σc ∼ σc and σ = σtrans is close to σr
(1−π α2

4 )
∼ σr.

Now, we express the electric conductivity of the air in
terms of σ.We consider a situation with a ionized channel, so
σa being σlightning = 4242S.m−1 for an ionized lightning
channel see [4]. In our model we perform the study for ω =
106 rad.s−1, which corresponds to the air ionized, a resin
doped and the effective longitudinal electric conductivity of
the carbon fibers.

Now, we will discuss on the values of E and ρ. It seems
that the density of electrons in a ionized channel is about
1010 part.m−3. Hence we take ρ = 1010. When the air is not
ionized, the charge density is much smaller, and we choose:
ρ = 1.
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For the boundary conditions, in our context, we consider
the peak of the current of the first return stroke. Then the
magnetic field magnitude H is Hd given by (1).

Then the dimensionless boundary conditions (12) writes:

∇×E(x, ω)× e2 = −iωωµ0
L

E
HdHd(x, z)× e2, (24)

where HdHd(x, z) = H̃d(Lx,Lz) and where ωµ0
L

E
Hd

being of order 1, with the characteristic electric field E = 20
kV/m.

From the physical spatial coordinates (x̃, ỹ, z̃) ∈ Ω̃ we
define y = (ξ, ν, ζ) with ξ = x̃

e , ν = ỹ
e , ζ = z̃

e or
equivalently ξ = x

ε , ν = y
ε , ζ = z

ε . And we now introduce
Y , the basic cell. It is built from: Z = [− 1

2 ,
1
2 ]× [−1, 0]×R

and the set C = D ×R with the disc D defined by:

D = {(ξ, ν) ∈ R2 /ξ2 + (ν +
1

2
)2 < R2}, (25)

and R = α
2 . The set Ωc is then defined as:

Ωc = {(i, j, 0) + C, i ∈ Z, j ∈ Z−}. (26)

We denote Yr as Yr = Z\C and then the set

Ωr = {(i, j, 0) + Yr, i ∈ Z, j ∈ Z−}. (27)

Then unit cell Y is defined as Y = (Yr, C). Finally, we
define the domain Ωa:

Ωa = {y = (ξ, ν, ζ) / ν > 0}. (28)

Using this, we will give a new expression of the sets in which
the variables range in equations (19). We see the following:

(Lx,Ly, Lz) ∈ Ω̃r ⇔

{
(Lx,Ly, Lz) ∈ P̃ ,
(Le x,

L
e y,

L
e z) ∈ Ωr,

(29)

i.e.

(Lx,Ly, Lz) ∈ Ω̃r ⇔
{

(Lx,Ly, Lz) ∈ P̃ ,
(xε ,

y
ε ,

z
ε ) ∈ Ωr.

(30)

In the same way:

(Lx,Ly, Lz) ∈ Ω̃c ⇔
{

(Lx,Ly, Lz) ∈ P̃ ,
(xε ,

y
ε ,

z
ε ) ∈ Ωc,

(31)

and:
0 ≤ Ly ≤ d⇔

{
y ∈ R2

Ly ≤ d, (32)

or
(Lx,Ly, Lz) ∈ Ω̃a ⇔

{
Ly ≤ d
(xε ,

y
ε ,

z
ε ) ∈ Ωa.

(33)

We define:

Σε(y) = Σε(ξ, ν, ζ) =

 Σεa in Ωa,
Σεr in Ωr,
Σεc in Ωc,

(34)

where Σεa = σa
σ
L

2

δ
2 ,Σεr = σr

σ
L

2

δ
2 and Σεc = σc

σ
L

2

δ
2 have their

expressions in term of ε. The detail of this expressions are
in the article [5]. The model that we present is the case
ω = 106 rad.s−1, η = 5, Σεa = ε, Σεr = ε4 and Σεc = 1.

Defining also mapping

ψε : R3 → R3

(x, y, z) 7→ (xε ,
y
ε ,

z
ε ),

(35)

we can set Ωεa as ψ−1
ε (Ωa) ∩ (R × [0, d

L
] × R), Ωεr as

ψ−1
ε (Ωr) ∩ P̃ and Ωεc as ψ−1

ε (Ωc) ∩ P̃ . We also define the
boundaries Γd = {x ∈ R3, y = d

L
} and ΓL = {x ∈

R3, y = −L} and interfaces Γra = {x ∈ R3, y = 0} and
Γεcr = ∂Ωc. Hence equation (19) reads:

∇×∇×Eε+(−ω2εηε?+i ω σε(x, y, z))Eε = 0 in Ω, (36)

where Ω = Ωεa ∪ Ωεr ∪ Ωεc = {x ∈ R3,−1 < y < d

L
} does

not depend on ε. Only its partition in Ωεa, Ωεr and Ωεc is
ε-dependent where

σε(x, y, z) = Σε(
x

ε
,
y

ε
,
z

ε
), (37)

with Σε given by (34) and

εη =
4π2L

2

λ2
, (38)

we replace E by Eε, to clearly state that it depends on ε.
Equation (36) is provided with the following boundary

conditions:

∇×Eε × e2 = −iωHd(x, z)× e2 on R× Γd, (39)

coming from (24). And, coming from (20),

∇×Eε × e2 = 0 on ΓL. (40)

From (36) we can deduce the condition on the divergence of
Eε which can be written in two ways. As previously in (6),
(7) and (8) we obtain:

∇·[(−ω2εηε? + iωσε)Eε] = 0 in Ω, (41)

which will be preferentially used with (36) and its second
one is

∇·Eε|Ωεa = 0 in Ωεa, ∇·Eε|Ωεr = 0 in Ωεr, ∇·Eε|Ωεc = 0 in Ωεc,
(42)

with the transmission conditions on the interfaces Γra and
Γεcr

(−ω2εη + iωΣεa) Eε|Ωεa
· n|Ωεa

= (−ω2εηεr + iωΣεr) E
ε
|Ωεr
· n|Ωεr on Γra,

(−ω2εηεr + iωΣεr) E
ε
|Ωεr
· n|Ωεr

= (−ω2εηεc + iωΣεc) E
ε
|Ωεc
· n|Ωεc on Γεcr.

(43)

Before treating mathematically the question we are interested
in, we make a last simplification. Since it seems clear that
physical relevant phenomena occur in the upper part of the
plate. The boundary condition on the lower boundary of the
plate has very little influence on the physics of what happens
in the upper part, we consider that the lower boundary of Ω
is located in y = −∞ in place of y = −1, making the second
boundary condition useless. Besides, as L and d are of the
same order it seems reasonable to set Γd = {x ∈ R3, y = 1}
and consequently

Ω = {x ∈ R3, y < 1} = Ωεa ∪ Ωεr ∪ Ωεc, with,
Ωεa = ψ−1

ε (Ωa),
Ωεr = ψ−1

ε (Ωr),
Ωεc = ψ−1

ε (Ωc),
(44)

with ψε defined in (35). We have that the border of Ω is
Γd. In the following section we will establish existence and
uniqueness results.
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II. MATHEMATICAL ANALYSIS OF THE MODELS

A. Preliminaries

We are going to make precise the variational formulation.
First of all, we need to introduce the following functional
spaces. We have the standard function spaces L2(Ωε) =
[L2(Ωε)]3

H(curl,Ω) = {u ∈ L2(Ω) : ∇×u ∈ L2(Ω)},
H(div,Ω) = {u ∈ L2(Ω) : ∇·u ∈ L2(Ω)}, (45)

with the usual norms:

‖u‖2
H(curl,Ω)

= ‖u‖2L2
(Ω)

+ ‖∇×u‖2L2
(Ω)
,

‖u‖2
H(div,Ω)

= ‖u‖2L2
(Ω)

+ ‖∇·u‖2L2(Ω).
(46)

They are well known Hilbert spaces.
We use the trace spaces H−

1
2 (curl,Γd) and H−

1
2 (div,Γd)

defined by

H−
1
2 (curl,Γd) = {u ∈ H− 1

2 (Γd, R
3),

(n · u)|Γd = 0, curlΓdu ∈ H−
1
2 (Γd, R

3)},
(47)

H−
1
2 (div,Γd) = {u ∈ H− 1

2 (Γd, R
3),

(n · u)|Γd = 0, divΓdu ∈ H−
1
2 (Γd, R

3)}
(48)

where the surface divergence divΓdu and the surface rotation
curlΓdu are defined by ∀ V ∈ C1(Γd)

(divΓdu, V )L2(Γd) = −(u,∇ΓdV )L2(Γd,R3),
curlΓdu = n · (∇× u|Γd)

(49)

and the surface gradient ∇ΓdV is defined by the orthogonal
projection of ∇ on Γd, n denotes the outward unit vector
normal to Γd. Finally we recall the trace theorems, see J.C
Nédélec [6] for the demonstration, stating that the traces
mappings γT : H(curl,Ω) −→ H−

1
2 (curl,Γd), that assigns

any u ∈ H(curl,Ω) its tangential components n × (u × n)
is continuous and surjective, that is:

‖γT (u)‖
H− 1

2 (curl,Γd)
≤ CγT ‖u‖H(curl,Ω), ∀u ∈ H(curl,Ω)

(50)
γt : H(curl,Ω) −→ H−

1
2 (div,Γd), that assigns any u ∈

H(curl,Ω) its tangential components u × n, is continuous
and surjective:

‖γt(u)‖
H− 1

2 (div,Γd)
≤ Cγt‖u‖H(curl,Ω), ∀u ∈ H(curl,Ω).

(51)
Moreover, H−

1
2 (div,Γd) is the dual of H−

1
2 (curl,Γd) and

one has the Green’s formula ∀(u, V ) ∈ H(curl,Ω):∫
Ω

(∇×u · V − u · ∇×V )dx = 〈u× n, VT 〉Γd . (52)

We define the next space:

X(Ω) = {u ∈ H(curl,Ω) | ∇·u|Ωεa ∈ L
2(Ωεa),

∇·u|Ωεr ∈ L
2(Ωεr), ∇·u|Ωεc ∈ L

2(Ωεc)}.
(53)

Our variational space is:

Xε(Ω) = {u ∈ X(Ω) | (−ω2εη + iωσε|Ωεa
)u|Ωεa · e2

= (−ω2εηεr + iωσε|Ωεr
)u|Ωεr · e2,

(−ω2εηεr + iωσε|Ωεr
)u|Ωεr · n

ε
|Ωεr

= (−ω2εηεc + iωσε|Ωεc
)u|Ωεc · n

ε
|Ωεc
.

(54)

Finally

Xε(Ω) = {u ∈ X(Ω) | (−ω2εη + iωΣεa)u|Ωεa · e2 =
(−ω2εηεr + iωΣεr)u|Ωεr · e2,
(−ω2εηεr + iωΣεr)u|Ωεr · n

ε
|Ωεr

= (−ω2εηεc + iωΣεc)u|Ωεc · n
ε
|Ωεc
}.

(55)
This space is equipped with the norm

‖u‖2Xε(Ω) = ‖u‖2L2
(Ω)

+ ‖∇·u|Ωεa‖
2
L2(Ωεa) + ‖∇·u|Ωεr‖

2
L2(Ωεr)

+‖∇·u|Ωεc‖
2
L2(Ωεc)

+ ‖∇×u‖2L2
(Ω)
.

(56)

B. Weak formulation

Now, we introduce the variational formulation of our
problem (36), (39) and (40) for the electric field. Integrating
(36) over Ω and using the Green’s formula and (39) we obtain

∫
Ω
∇×Eε · ∇×V dx +

∫
Ωεa

(−ω2εη + iωΣεa)Eε · V dx

+
∫

Ωεc
(−ω2εηεc + iωΣεc)E

ε · V dx

+
∫

Ωεr
(−ω2εηεr + iωΣεr)E

ε · V dx

=
∫

Γd
(∇×Eε × e2) · V T dσ

=
∫

Γd
−iωHd × e2 · V T dσ

(57)
where V is the complex conjugate of V and VT = (e2 ×
V ) × e2. We introduce the sesquilinear form depending on
parameters η and ε:

For Eε, V ∈ Xε(Ω),
aε,η(Eε, V ) =

∫
Ω
∇×Eε · ∇×V dx

+
∑
i=a,r,c

∫
Ωε
i
(−ω2εηεi + iωΣεi ) E

ε · V dx.
(58)

Hence, the weak formulation of (36), (39) and (40) that
we will use is the following, is:{

Find Eε ∈ Xε(Ω) such as ∀ V ∈ Xε(Ω) we have :
aε,η(Eε, V ) = −iω

∫
Γd
Hd × e2 · V T dσ.

(59)
Integrating by parts in the variational formulation (57), we
find the following transmission problem:

∇×∇×Eε + (−ω2εη + i ω Σεa)Eε = 0 in Ωεa,
∇×∇×Eε + (−ω2εηεr + i ω Σεr)E

ε = 0 in Ωεr,
∇×∇×Eε + (−ω2εηεc + i ω Σεc)E

ε = 0 in Ωεc.
Eε|Ωεa

× e2 = Eε|Ωεr
× n|Ωεr on Γra,

Eε|Ωεr
× n|Ωεr = Eε|Ωεc

× n|Ωεc on Γεcr,

∇×Eε|Ωεa × e2 = ∇×Eε|Ωεr × n|Ωεr on Γra,

∇×Eε|Ωεr × n|Ωεr = ∇×Eε|Ωεc × n|Ωεc on Γεcr,
(60)

where e2 is the unit outward normal to Ωεa, n|Ωεr is the unit
outward normal to Ωεr and n|Ωεc is the unit outward normal to
Ωεc. We refer to [5] for the proof that transmission problem
(60) is equivalent to ((36), (39), (40), (42)).

C. Regularized Maxwell equations for the electric field

The sesquilinear form aε,η is not coercive on Xε(Ω), so
we regularize it adding terms involving the divergence of Eε

in Ωεa, Ωεr and Ωεc. Thanks to the additional terms, existence
and uniqueness of the regularized variational formulation
solution will be established by the Lax-Milgram theory. Let
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s be an arbitrary positive number, we define the regularized
formulation of problem (59):

Find Eε ∈ Xε(Ω) such that for any V ∈ Xε(Ω)
aε,ηR (Eε, V ) = aε,η(Eε, V ) + s

∫
Ωεa
∇·Eε∇·V dx

+s
∫

Ωεr
∇·Eε∇·V dx + s

∫
Ωεc
∇·Eε∇·V dx

= −iω
∫

Γd
Hd × e2 · V T dσ.

(61)
For any ε > 0 and any η ≥ 0, sesquilinear form aε,ηR (., .)
is continuous over Xε(Ω) thanks to the continuity condi-
tions. We will show that it is also coercive. The following
proposition was inspired by article [7] Lemma 1.1.

Proposition 1: For any ε > 0, for any η ≥ 0 and for any
s > 0, there exists a positive constant ω0 which does not
depend on ε and such that for all ω ∈ (0, ω0), there exists
a positive constant C0 depending on εr, εc, s, ω but not on ε
such that ∀ Eε ∈ Xε(Ω):

<[exp(−iπ4 ) aε,ηR (Eε, Eε)] ≥ C0‖Eε‖Xε(Ω). (62)

The proof is in [5].

D. Existence, uniqueness and estimate

Theorem 2: For any ε > 0, for any η ≥ 0, there exists a
positive constant ω0 which does not depend on ε and such
that for all ω ∈ (0, ω0), there exists a unique solution of (60)
or ((36), (39), (40), (42)).

Proof: It is obvious that any solution of (60) or of
((36), (39), (40),(42)) is also solution to (61). Indeed,
since from (60) or from ((36), (39), (40),(42)) we have
∇·Eε|Ωεa = 0, ∇·Eε|Ωεr = 0, ∇·Eε|Ωεc = 0, the addi-
tional terms s

∫
Ωεa
∇·Eε∇·V dx + s

∫
Ωεr
∇·Eε∇·V dx +

s
∫

Ωεc
∇·Eε∇·V dx cancel in (61).

Uniqueness follows from that if Eε1 and Eε2 are two
solutions to (36) with the boundary condition (40) their
difference eε = Eε2 − Eε1 satisfies the problem (36) with
(40). Then it comes∫

Ω
|∇×eε|2 dx +

∫
Ωεa

(−ω2εη + iωΣεa)|eε|2 dx
+
∫

Ωεc
(−ω2εηεc + iωΣεc)|eε|2 dx

+
∫

Ωεr
(−ω2εηεr + iωΣεr)|eε|2 dx

= 0.

(63)

Taking the imaginary part of the expression we get∫
Ωεa
ωΣεa|eε|2 dx+

∫
Ωεc
ωΣεc|eε|2 dx+

∫
Ωεr
ωΣεr|eε|2 dx = 0

and then eε = 0.
Let us consider the reciprocal assertion, according to the

same proof of S. Hassani, S. Nicaise, A. Maghnouji in [8],
we define H1

0 (Ωεc,∆) the subspace of ψ ∈ H1
0 (Ωεc) such that

∆(ψ) ∈ L2(Ωεc).
Let Eε be the solution of the regularized formulation

(61). In (61) we take a test function V = ∇ψ where
ψ ∈ H1

0 (Ωεc,∆), extended by zero outside Ωεc. We get:∫
Ωεc
s∇·Eε∇·(∇ψ) dx +

∫
Ωεc

(−ω2εηεc
+iωΣεc)E

ε · ∇ψ dx = 0.
(64)

By Green’s formula, ∀ψ ∈ H1
0 (Ωεc,∆), we obtain:∫

Ωεc
∇·Eε(∆ψ +

ω2εηεc−iωΣεc
s ψ) dx = 0. (65)

Thus, if we choose s such that ω2εηεc−iωΣεc
s is not an

eigenvalue of (∆dir,Ω
ε
c): the Laplacian operator in Ωεc with

Dirichlet condition on its boundary, then for all ϕ ∈ L(Ωεc)
2

there exists ψ ∈ H1
0 (Ωεc,∆) solution of

∆ψ +
ω2εηεc−iωΣεc

s ψ = ϕ. (66)

Then, we conclude that

∇ · Eε|Ωεc = 0. (67)

A similar argument in Ωεa yields ∇·Eε|Ωεa = 0 for s such

that ω2εη−iωΣεa
s is not an eigenvalue of (∆dir,Ω

ε
a). In the

same way, we obtain in Ωεr, ∇·Eε|Ωεr = 0 with s such that
ω2εηεr−iωΣεr

s is not an eigenvalue of (∆dir,Ω
ε
r).

So, (61) becomes (57). Applying Green’s formula, we
find (36).

Theorem 3: Under the assumptions of Theorem 2, Eε ∈
Xε(Ω) solution of (61) satisfies

‖Eε‖Xε(Ω) ≤ C (68)

with C =
CγtCγT
C0 ‖Hd‖H(curl,Ω)

The propositions and theorems above has been proved in [5].
Proof: The sesquilinear form aε,ηR (Eε, V ) is coercive,

weak formulation (61) becomes:

C0‖Eε‖2Xε(Ω) ≤ <(exp(−iπ4 )aε,ηR (Eε, Eε))

≤ | exp(−iπ4 ) · aε,ηR (Eε, Eε)| = |aε,ηR (Eε, Eε)|
≤ |
∫

Γd
−iωHd × e2 · EεT dσ|

≤ ‖Hd × e2‖
H− 1

2 (div,Γd)
‖EεT ‖H− 1

2 (curl,Γd)

≤ CγtCγT ‖Hd × e2‖H(curl,Ω)‖E
ε‖H(curl,Ω)

(69)
where EεT = e2× (Eε× e2) and the continuous dependence
of the trace norm with C =

CγtCγT
C0 ‖Hd‖H(curl,Ω) gives:

‖Eε‖2Xε(Ω) ≤ C‖Eε‖H(curl,Ω) ≤ C‖E
ε‖Xε(Ω). (70)
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éclairs.” Hamelin, CENT.

[3] S. Berthier, “Optique des milieux composites.” Ed. Polytechnicia., 1993,
p 67.

[4] P.R.P. Hoole and S.R.H. Hoole. “Guided waves along an unmagnetized
lightning plasma channe” IEEE Transactions on Magnetics, 1998, vol.
24, no. 6, pp. 3165–3167.

[5] H. Canot and E. Frenod. “Modeling electromagnetism in and near com-
posite material using two-scale behavior of the time-harmonic Maxwell
equations”, 2016. https://hal.archives-ouvertes.fr/hal-01409522.
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