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Abstract

This article studies the local controllability to trajectories of a one dimensional model for tur-
bulence. By linearization we are led to an equation with a non local term whose controllability
properties are analyzed by using Fourier decomposition and biorthogonal techniques. Once the
existence of controls is proved and the dependence of their norms with respect to the time is estab-
lished for the linearized model, a fixed point method allows us to deduce the result for the nonlinear
initial problem.
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1 Introduction

In [7], the authors tackle the local null controllability of a Ladyzhenskaya-Smagorinsky model of
turbulence. More precisely, they consider the following control problem

dyw + (w - V)w — v(||Vw||7z ) Aw + Vg = ux,, in (0,T) x Q,
divw=0 1in (0,T) x Q,

w=0 on (0,T) x 9N

w(0,-) =wp in £,

where v : Ry — [vg,00) is a C! function, with v > 0 and with bounded derivatives. Following the
method used for the controllability of the Navier-Stokes system (see [6]), they show a Carleman
estimate for the linearized system and, with a fixed point argument, they obtain the local control-
lability to the null state (w(T,-) = 0). In Section 6 of [7], it is mentioned that at the contrary to
the Navier-Stokes system, it is not clear how to obtain the local controllability to the trajectories.
Indeed, in the linearized system, one has to deal with non-local terms.

In [8], a partial answer to the above question is given: the authors consider the linear heat and
the linear wave system and show that one can recover the controllability properties of these systems
if some non local terms are added. More precisely, their results are obtained for any dimension in
space, but they need that the nonlocal integral terms are analytic in space.

Unhappily, in the above paper, the proof is given through a contradiction argument and in
particular, it is not clear how to keep the cost of the linear heat equation in order to tackle
nonlinear problems. Our aim is here to study the controllability of a Burgers system with variable
viscosity. This can be seen as a simplified model for the turbulence model considered in [7]. More
precisely, our system writes as

Oyw — 1/(||6'mw||2L2(07ﬁ))8mw +wdyw = f% +uy, in (0,T) x (0,7),
(1.1) w(t,0) =w(t,7)=0 te(0,7T),

w(0,) = wg :=yo +w? in (0,7),
where w is a non empty open interval of (0, 7). In what follows, we assume that v : Ry — [vg,00)
is a C? function, with vy > 0. In (1.1)) the function f* depends only on z and belongs to L(0, 7).

Our aim in this paper is to obtain the local exact controllability to the stationary trajectories.
More precisely, w® and f° in the above system are related through the stationary equations:

12) {_y(||aww5||§2(0ﬂ))amws +wS0,wS = f5 in (0,T) x (0, 7),

w?(0) = w®(7) = 0.
We can write the above problem as a null controllability problem by setting

yi=w—w’.

Then y satisfies the following nonlinear heat-type system:

Ory — Vsamcy — K (/ (ast)(axy) dx) axa:ws + wsaxy + yast = F + uxw,
0

y(t,()) = y<t7 7T) =0,
y(0,-) = o,



(13) F = —y0uy + [v(100y + 0u00% Ba(0,m)) = v(1050° 230 )] Dot

V(100 + 02w |[F2(0 m) — V(102w |[2 0 ))

- 21/(”8?0“}5”%2(0,#)) (/0 (aﬂ?ws)(al’y) dl’) ‘|al’mws7

with
v = (0w | F2(0.m) >0 and g =20 (|02w” |72 (0 n)-

By integrating by parts and linearization we are lead to study

Oy — Opxy + (/ ay dI) a+ wsaacy + yast = UXw>
0

y(t,0) = y(t,m) =0,

31(07 ) = Yo,

(1.4)

where a is smooth function and p € R. We have assumed v° = 1 to simplify.
Let us consider

1 x
W(z) = f/ w® ds
2 Jo
and let us set
(1.5) 2(t,x) = y(t, x)e™ V@,

Then standard calculation yields

Oy — Opay + 1 (/ ay dx) a+ w*dpy + yd,w®
0

=eV (5}2 — Oppz — 2W'(0p2) = W2 — (W')%2

+p (/ ae"z dx) ae™ w8,z + W'2) + z@wws>.
0

The system (|1.4]) is transformed into

— Mz—i—/ K€ €) d€ + pz = vXw,
(1.6) z(t,0) = z(t, ) =
2(0,-) = 2o,

p= (;Bmws + le(ws)2> ,
K&, z) = a(&)eVOa(z)e= @),
Let us define the unbounded operator (D(A), A) in L?(0,7) as follows
D(A) = H?(0,7) N HL(0, ),

(1.7)
8 IZJF/ K@ )2(€)dé+pz (2 € D(A)),



where p € L*°(0,7) and the kernel K € L? ((0,7)?).
With this notation, system (1.6) can be equivalently written as follows

18 {@z(t) + Az(t) = vy,

z(0) = 2.
The adjoint (D(A*), A*) of the operator (D(A), A) is given by

D(A*) = H*(0,7) N H(0, ),

(1.9) .
ww= -t [(K(Qu@ et (we DY),

where K € L? ((0,7)?) and ¢ € L>(0,7) are given by

K(CE,&)ZK(I,&), q=Dp.

Also, we introduce the following “adjoint problem”:

{&s@(t) + Ap(t) = 0,

(110 2(0) = 0.

The following result is classic in control theory (see [5] or Theorem 11.2.1 in [I3]).

Theorem 1.1. Let T > 0 and let w C [0, 7] be a non empty open set. For each 29 € L*(0,) there
exists v € L*((0,T) x w) such that the solution z of (1.8)) vanishes at T, if and only if there exists
a constant C' = C(T') such that the following inequality holds

T
(1.11) 1o(T) 2200 < C / / lo(t, )2 dardt,

for any oo € L?(0,7) and ¢ solution of (1.10). Moreover, if (1.11)) holds, then there exists a
control v € L(0,T) which verifies

(1.12) Il Z20,1) < CllzollZ20m (20 € L*(0,7)).

A key result of this paper is the following theorem concerning the observability inequality (|1.11))
which also estimates the behavior of the constant C' as T tends to zero.

Theorem 1.2. Let w C [0,7] be a non empty open set. Suppose that the kernel K is degenerate,
i.e. there exist two functions a, 8 € L*(0,7) such that K(z,&) = a(z)B8(€) for each (z,€) € [0, 7]
and suppose that o is not identically zero in w. Then, there exist three positive constants Ty, My
and s such that, for any T € (0,Ty) and @y € L?(0,7), the corresponding solution ¢ of equation
(1.10) verifies the observability inequality

T
S
(1.13) D)0 < Moen (5) [ [ et dmar

To prove Theorem we adopt the following strategy:

e We show that there exists a Riesz basis of L?(0, ) formed by generalized eigenvectors of the
operator (D(A*), A*).
In order to do this we analyze in Section [2] the high part of the spectrum of (D(A*), A*),
we localize the sufficiently large eigenvalues (A),>n and we show that the corresponding



eigenvectors (1, )n>n are geometrically simple and quadratically close to the orthonormal

sequence (¢n),, sy = (ﬁsin(nx)) :
= n>N

2
Z ||1/1n - ¢nHL2(O,7r) < 00.

n=>N

From [9, Theorem 1] we know that there exist a number Ny > N and generalized eigenvectors
(tn)1<n< Ny —1 of the operator (D(A*), A*) such that (¢,)1<n< Ny —1U(¥n)n> N, forms a Riesz
basis B of L?(0,7). The set of the eigenvalues corresponding to the generalized eigenvectors
from B will be denoted by £ = (An)1<n<n, U (An)n>Ny -

We recall that (fn)n>1 is a Riesz basis of a Hilbert space H if it is complete in H and there
exist two positive constants ¢; and co such that the following inequalities are verified

2
(1.14) C1Z|an|2 < Zanfn <022|an\2,

n>1 n=1 H n>1

for any finite sequence of scalars (a,)n>1. For equivalent definitions and properties of Riesz
basis the interested reader is referred to [I4, Ch. 1, Sec. 8.

e By expanding the solution ¢ of in the Riesz basis constructed above, we reduce
the proof of inequality to obtain and evaluate the norm of a biorthogonal sequence
(03) xex.0cj<n_1 to the family of functions A = (tjeiAt))\eE,Ogjgn—l in L (-2, Z), where

1 > 1 is the maximal dimension of the root linear space corresponding to the low eigenvalues

(An)1gngny, - This is done in Theorem by adapting some ideas from [I] and [12].

We recall that, given a sequence (f,)n>1 in the Hilbert space H endowed with the inner

product (-, - ), (gn)n>1 is a biorthogonal family to (fn)n>1 in H if the following relations are

verified

(1.15) (fmagn)H = Omn (nam P 1)'

From Theorem [[.2] we can obtain the main result of this paper concerning the local controlla-
bility of (1.1)) to the stationary states:

Theorem 1.3. Assume that f° € L*(0,7) such that (1.2)) admits a solution
wS € H*(0,7) N HY(0,7), w® #0.

Let w C [0,7] be a non empty open set such that Oy w® is not identically zero in w and let T > 0.
Then there exists co > 0 such that for any wo € HE (0, ) with

[[wo — wSHHg(o,w) < ¢o,
there exists a control u € L*(0,T; L?(0,7)) such that the solution w of (1.1)) satisfies
w(T) = w®.

In the above result, we assume that admits a solution for some f°. Note that for an
arbitrary f° € L?(0,7), may not have a solution. Nevertheless, it is easy to construct an
infinite number of solutions of (1.2), even with the restriction that 9,,w® does not cancel in (0, ).

Notice that our controllability result holds for initial data in H}(0,7). This is due to the
fact that the solution w of in Theorem should be a strong solution. We obtain such
a solution by a fixed point argument and we need in particular that wy € Hg(0,7) and that
w® € H%(0,7)NHE(0,7) to handle the nonlinear terms. Let us remark that even the well-posedness



for weak solutions of (without control) is not an easy issue. Indeed, the compactness or
completeness methods can not be applied directly with a regularity such as w € L°°(0,T; L?(0,7))N
L*(0,T; H(0,7)) because of the nonlinear term v([|0zw||72 (o ))-

The outline of the paper is the followmg in Section [2] we describe the main spectral properties
of the linear operator A* defined by . In Section (3 l we give the spectral decomposition of
the solutions of the linearized system in terms of a Riesz basis formed from generalized
eigenvectors of A*. Section [4 is devoted to the construction and the evaluation of a biorthogonal
family to the set of functions A = (tJ e‘”) AEE. 0<i<n1" This allows us to prove in Section [5| the
observability inequality given by Theorem [1.2) - Finally, Section [6] is devoted to the proof of our
main result Theorem [L.3

2 Spectral analysis

The aim of this section is to give a complete description of the high part of the spectrum of the
operator (D(A*), A*). First of all we have the following quite general result.

Theorem 2.1. The operator (D(A*), A*) defined by is an unbounded linear operator in
L2(0,7) with compact resolvent. Its spectrum o(A*) consists of a sequence of isolated complex
eigenvalues. To each eigenvalue N € o(A*) corresponds a finite dimensional root linear space Gy
(the space of generalized eigenvectors). Moreover, if Do = || K| 12((0,x)2) +1¢| Lo (0,x), then we have
that

(2.1) o(A*) = {AeC : [S(\)| < Do, RON) = —Do}.

Proof. The fact that (D(A*), A*) has compact resolvent follows from the compact embedding of
H?(0,7) into L?(0, 7). The classical spectral theory of compact operators ensures that the spectrum
o(A*) consists of isolated complex eigenvalues and the root linear space Gy corresponding to each
eigenvalue A is of finite dimension.

Let us now show that holds. Given A € o(A*) there exists a function v € D(A*) with
llull 20,7 = 1 such that

(2.2) — Ogatt +/ K(- &) dE+ qu = M.

Multiplying (2.2) by @ and integrating by parts we obtain that

T ) T T 7 T ) B
(2.3) /0 |Ozu(x)] dx+/0 /0 K(w,f)u(f)u(az)dﬁder/o q(z)|u(z)|* dz = A

By taking the imaginary part of (2.3 we get that

sovl=[3 ([ [ K@ ou@nw st + [ a@ira)|

< 1K z2(0,7)2) + llallze=0,m)>

and the first relation in (2.1)) follows.
By taking the real part of (2.3) we get that

200 = [ToawPas+r ([7 [ K@ gu@u acar+ [Ma@luPa)
>

— (1K 2(0,7)2) + llall = 0,7)) -

and the second relation in (2.1)) follows. The proof of the theorem is complete. O



We pass to localize and describe the high eigenvalues of the operator (D(A*), A*). In the sequel,
given a € C and r > 0, we denote by B(a,r) the ball in the complex plane of center a and radius r.
We localize the eigenvalues of the unbounded operator (D(A*), A*) by using a strategy similar to
the one presented in [IT, Chapter 2] which combines the shooting method and the Rouché Theorem.
Similar ideas have been employed to analyze the spectrum of several differential operators (see, for
instance, [2 4, [15]). In order to do that let us define the map

(2.4) G:C—C, G(u) =v(m),
where v is the unique solution of the initial value problem

—0pzv(x) — pv(z) =0 2 € (0,7)
(2.5) v(0) =0
0,v(0) = 1.

We have the following immediate result.

Proposition 2.2. The value p € C is a root of the function G given by (2.4) if and only if it is
an eigenvalue of the one dimensional Laplace operator (D(A), A),

(2.6) D(A) = H*(0,7) N H)(0,7), Au= —0,u,
i.e. there exists n € N* such that u = n?.

Now, given D > 0 and M > D?, let us set
(2.7) Ayp={z€C: R(z) =M, |S(2)| < D}.

Remark 2.3. For our future computations we need to give some estimates of \/i in the case when
€ Anp. If u € Ay p, it is easy to see that

(28) RE) 2 VEL SV < 5 e

Notice that, here and in the sequel, /i1 represents the principal branch of the square root function
such that \/u € Ry, if p € Ry.

We define the map
(2.9) F:Apy —C, F(p) = 2(m),
where z is the unique solution of the initial value problem

Ouez(e) — ple) + / " K(2.6)2(6) de + q(a)z(x) =0z € (0,7)

z(0)=0
0.2(0) = 1.

(2.10)

Given D > 0, let us show that there exists M > D? such that F is well-defined in An,p, e
equation (2.10) has a unique solution z € H?(0,7) for each u € Aprp. We have the following
result.

Proposition 2.4. Let us set
(2.11) CK,q = 2me™ (HKHLZ((O,TF)Z) + ||q||Loc(0’ﬂ-)) = 27T67rD0.
Given D > 0, K € L*((0,7)?) and q € L>=(0,7), let M > 0 be such that

(2.12) max {D, Cg .} < VM.



Then, for each p € A p, the integro-differential equation (2.10)) has a unique solution z € H?(0,7)
which verifies the following variation of constants formula

1.
z2(x) = ﬁ sin(/pz)

1 x . s
@13+ [snyita =) ([ Keox@acrawse)as (e ©.m)

and the following estimate
2

me

Proof. Given f € L*(0,7) and 1 € Ay p, let us consider the nonhomogeneous equation

- xmv('r) - /LU(:C) = f(i[') UAS (077T)
(2.15) v(0) =0
(921](0) =1,

us
2

(2.14) 12l L= 0,m) <

and remark that its unique solution v € H?(0, 7) is given by the following formula

x

(2.16) v(z) = € sin(y/pz) — sin(\/p(z —s)) f(s)ds (x € (0,m)).

7

With this in mind, we define the map

\f

z € L*(0,7) — Lz € L?(0,7),

(2.17) .

1

Lz(z) = Tsm (V) + / sin(y/p(z — s)) (/ K(s,8)z(£)dE + q(s)z(s)) ds.
0

We remark that z verifies (2.13)) if and only if it is a fixed point of the operator £. We show that,

by choosing M as in (2.12)), £ becomes a contraction in L*(0, ) for each p € Ay p. Indeed, given
21,22 € L?(0,7) and taking into account (2.8)), we obtain that

™ |
|L21 — Lzal|12(0,7) < ,/me SWIRL(1K || 22 0,m92) + lallzos0.0)) 121 = 22l £2(0.7)

m =D
(2.18) <\ 77877 (K2 q0.m) + llalpeo.m) 121 = 220l 22(0.m)-
Since ([2.12]) implies that

T _nmD_ 1
(2.19) i (1K | 22¢0,m)2) + gl Lo (0,m)) < w <L

from it follows that £ is a contraction in L?(0, ) for each u € Ay p. Hence, in this case,
there exists a unique z € L?(0,7) which verifies (2.13).

It is easy to see that, if 2 € L%(0,7) verifies , with K € L*((0,7)?) and q € L®(0,T),
then in fact z € H2(0,7) and it is the unique solution of . Hence, it remains to prove .
We have that, for each = € (0, ), the following estimate holds

L ristuml T crlsml (

R TN

(2.20) 1K (| L2((0,m)2) + lall Lo 0,m)) 1121 oo (0,m)-



Since (2.12)) implies that, for any p € Ay p, we have

—_

o s s

D
e (K| L2 ((0,m2) + lall L 0,m)) <
Vinl VM

from (2.20) and (2.8) we deduce that (2.14) holds true. The proof of the proposition is now
complete. O

™SV (K| L2(0.)2) + lall o 0.7)) < 3

Remark 2.5. If |u| is not sufficiently large, equation (2.10) may have multiple solution. For
instance, in the case ¢ = 0, we have the following result.

Proposition 2.6. Assume that p € C* and let o, 8 € L*(0,7) be such that
(2.21) Vi= [ ) [ sin(yi - 9)as) dsds,

0 0
where (/i is a square root of p. Then for any ¥ € C, w given by

(A
(2.22) w(z) = \/lj/o sin(y/p(z — s))a(s) ds,

s a solution of

s

~Oppw(z) + / K (. €)w(€) dé = pw(z) z € (0,7)

(2.23) 0
w(0) = 9w (0) = 0

with K(x,&) = a(z)B(&) (degenerate kernel). In particular, for any p € C*, there exists K €
L?((0,7)?) such that ([2.23) has nontrivial solutions.

Remark 2.7. If u =0, we can replace by
1:/ ,B(x)/ (x — s)a(s)dsdz
0 0
and (2.22) by

Proof of Proposition[2.6. If ¥ denotes the number [, B()w(€) d€, we have that the solution w of
(2.23) is given by ([2.22)). Thus, 9 is solution of

19 ™ x
2.24 ﬂ:—/ﬂx/sin w(x —s))a(s)dsdex.
(2.24) \/ﬁo()o (Viu(z = 5))a(s)
From ([2.24) we deduce that there exists two possibilities:

1. Relation (2.21) does not hold. In this case ¥ = 0 and the unique solution of (2.23)) is the
trivial one.

2. Relation ([2.21)) holds. In this case any w given by (2.22) with 9 € C is a solution of (2.23))
and the space of solutions of ([2.23) is of dimension one.

We notice that, given any y € C* and o € L%(0,7), a # 0, there exists 8 € L?(0,7) such that

(2.21)) holds.
O



Remark 2.8. We can show that, in the case of a degenerate kernel K(x,&) = a(x)B(§) with
a, B € L?(0,7), the geometric multiplicity of any eigenvalue X\ of the operator (D(A*), A*) is
at most two. Indeed, let A € C be an eigenvalue of the operator (D(A*), A*), i.e. there exists
@ € D(A*) with [|||g2(0,x) = 1 such that

05 { “Ouapla) + [ K. 00(6) 6 + alodole) = Neo) € (0.7)
©(0) = ¢(m) = 0.
Also, let ' and ¢* be the unique solutions of the equations
~02¢" () + q(2)9' () = Ap' (z) = € (0,m)
(226) L= by <o
and
~002¢(2) + q(2)¢*(2) = X¢*(x) @ € (0,7)
(227 Lo ok o
respectively. Any solution of the non homogeneous problem
Orad(x) + q(x)p(x) = Ap(x) + f(z) 2 € (0,m)
(229 P
can be written as follows
(2.29) o(z) = (ag' (z) + bd*(z / H(z,s) (x € (0,)),

where

¢! (s)¢*(x) — ¢' (x)¢%(s)
H .
5 = 5100.67() — 0.0 ()6°(5)
From this formula, we obtain that any eigenfunction ¢ verifying (2.25) is of the following form

(2.30) o(x) = 0,0(0)$? () + 19/01 H(x,s)a(s)ds (x € (0,7)),

where 9 = [ B(€)p(€) d.
By taking into account the above considerations we have that the following two cases are possible
for the eigenspace £\ = {v € D(A*) : A*v = X} corresponding to \:

1. If 1 # / ﬂ(x)/ H(z,s)a(s)dsdz, then the eigenspace Ex is one dimensional and it is
0

generated by the unique solution of the equation

o) { “Ouu(e)+ [ K@ u(©)de + alaula) = ula) @€ (0.1
w(0) =0, d,w(0) =1

2. If1= / / H(z,s)a(s)dsdz, then we have the following possibilities
(a) If/ $*(s)B(s)ds = 0, / H(m, s)a(s)ds = 0 and ¢*(7) = 0 (i.e. X is an eigenvalue of
0

the operator —0., + q) then the space 5)\ s two dimensional and it is generated by the
functions

*(x), /Om H(xz,s)a(s)ds

10



(b) Otherwise, the eigenspace Ey is one dimensional.

The following immediate property of the function F' is very important in the sequel and justifies
the introduction of F.

Proposition 2.9. Assume that (2.12) holds true. Then the value p € Ayp is a root of the
function F if and only if it is an eigenvalue of the operator (D(A*), A*).

According to Proposition if we want to find the eigenvalues of the operator (D(A*), A*)
from A p, it is sufficient to look for the roots of F' in this domain. We shall localize the large
roots of F' by using the Rouché Theorem. Firstly, we have to prove the following three lemmas.

Lemma 2.10. Given D > 0 and M satisfying (2.12)), the following estimate holds

(2.32) F(i) - G| < C[jjf (1€ Anrp).

Proof. We have that
F(i) - G() = 2(m) — v(m) = w(x),
where w is the unique solution of

s

Oppwo(z) — () + / K(2,€)2(€)dé + q(2)2(x) =0z € (0,m)
w(0) = 9, w(0) = 0.

(2.33)

Since the solution of ([2.33)) is given by

1 xT . T
w(z) = \/ﬁ/o sin(y/u(z — s)) (/O K(s,£)2(€) d€ + q(S)Z(S)) ds  (z€(0,m)),
it follows that

m R
(2.34) ()] < —=e"SVI (| K| L2((0,m92) + lallze.m) 12l em (@ € (0,7)).

vard
From ([2.14) and (2.34) it follows that

2T
|l

D
jw(m)| < —e2v¥ "2 ([|K|| L2((0,m)2) + llall L= 0,m)) -

Since M > D?, the above inequality implies that holds. O
Given § > 0, for each n € N, we define the circles

(2.35) I,(0)={2€C: |z—n’ =6} =0B(n*9).

Also, we define the set

(2.36) S(©6)={z€Aup : |z—n? =6 ¥n=>0}.

Lemma 2.11. Given § > 0, D > 0 and M satisfying (2.12), the function G defined by (2.4))
verifies the following inequality

20 1
(2.37) G > 5 (uesw), u|>2>.
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Proof. We have that G(u) = v(r) = ﬁ sin(m,/p) and the problem is reduced to evaluate sin(m,//)

in S(6). Let p € S(9) and let us set that \/i = a + ib with b € R and a € Ry. If n, € Nis a
number which verifies

1
(2.38) la—na| <35,

we have that

1
|sin(y/pm)|? = |sin((a + ib)7)|? = 1 (e%” + e — 2 cos(2ar))
(2.39) > b2 4 sin’(am) = b*n? 4 sin?((a — ng)7).
Inequality (2.38)), together with the facts that u € Ay p (see (2.8) and M > D?| implies that
1 D \* 1
2 2 2
—ngl " =la—n "+ P < -+ | —=] <<
V-l = o= 0P < 3+ (55 ) <5
Since, for |\/p| > %, we have that

1
VAl < V=l + 21V <+ 21V < 31V

from (2.39) and (2.38)) we deduce that, for any u € S(§), we have that
462 452
;> g
‘\/ﬁ + na‘ 9|p

From the last inequality it follows immediately that (2.37)) is verified if [,/u| > % and the proof
ends. 0

[sin(y/Am)[? > 46 + 4(a - n,)> = 4| — nal* >

Lemma 2.12. Given D > 0 and M satisfying (2.12)), the functions G : C — C and F' : Aprp — C,
given by (2.4) and (2.9) respectively, are analytic in their domains of definition.

Proof. Since G(u) = # sin(/u), it follows immediately that G is an entire function. Let us prove

the property for F. We recall that, according to Proposition for each 1t € Ay p, there exists
a unique solution z = 2(-,u) € H?(0,7) of equation (2.13)). Let us define the Picard’s recurrent
sequence of functions

1 .
ZO(xnu) - ﬁsm(\/ﬁm),
(240) Zn+1(13,,u) = ZO(xhu)
z—sin(\/ﬁ(a:—s)) ' 5,8)z 8)zn(s s n
+/O i (/ K(s,€) n<«s,u>d§+q<>n<7u>)d, (n>0).

We have that

(241)  [1(zns1 = 20) (-5 1)l oo (0.

T ISl

vard
By taking into account (2.8]) and (2.12)), it follows from (2.41]) that

N

(1K L2 0,m)2) + llall oo 0,0)) 12 = 2n—1) (-, 1) | Los (0,m)-

1
(2‘42) H(2n+1 - Zn)( : vN)HLOO(o,qr) < §||(Zn - znfl)( : 7N)||L°°(0,7r)'
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Hence, the series »°, - o(2n+1 — 2n)( -, ) converges in C[0, 7] and since

1 emISVAl < 1

Zo( ", (0,7 g
lz0(-, )z (0,7) NG NG

this convergence is uniformly in g € Ay p. Since

jus
2
€ i

k

Z(zn+1 _Zn)(ap’) = Zk+1(.’/i) _ZO(';N)7

n=0

it follows that the sequence (2,(,u)),s, converges in C[0, 7] as n tends to infinity, uniformly in
p € An,p. In fact, the limit of the sequence (2, (-, 1)), is the unique solution z(-, u) of
encountered in Proposition It follows that the sequence (z (T, 1)), converges to z(m, p) as
n tends to infinity, uniformly in ¢ € Apr,p. Since each z, depends analytically of 1 in Ay p, it
follows that F'(u) = z(m, ) is analytic in Ay p and the proof of the lemma is now complete. [

We have now all the ingredients needed to apply the Rouché Theorem and to localize the zeros
of F from the region Aps p. In the sequel |-] denotes the floor function.

Theorem 2.13. There exists 6 > 0, such that for any D > § and N > max{|2d], | D] + 1}, there
exists M satisfying and having the following property: for each n > N + 1, the function F
has a unique root A, inside the circle T',,(8) defined by . Moreover, the roots of the function
F in Apy,p are exactly (An)n>N+1-

Proof. We recall that Ck 4 is defined by (2.11). We choose 6 = SC# + 1 and let D > §. From the
choice of N we deduce that (N +1)2 —§ > N? + § and we can take M such that

(N+1)2-6>M>N?+34.
From the above relations we have, in particular, that M satisfies (2.12)) and
Fn(é)CAM’D (n>N+1)

From Lemmas and the choice of § it follows that, for each n > N + 1, we have that

Ck.q 20
=< = < |G(p welL(6)).
PRET Gl ( (9))

(2.43) [F (1) = G(p)| <

Moreover, Lemma ensures that ' and G are analytic functions in Ays p. From the Rouché
Theorem we deduce that, for each n > N + 1, there exists a simple root A, of F' inside the contour
I',(0) C Ap,p. On the other hand, by using estimate (2.37)) from Lemma it follows that

(2.44) [F(p) — G(p)| <G| (1€ S(3)).
This implies that there are no other roots of the function F' in A p. O

We pass to prove some properties of the associated eigenvectors.

Lemma 2.14. Under the hypothesis of Theorem|2.13, for each n > N +1, let ¢, (x) = \/gsin(nx)
and Y, (x) = \/%nz(x,)\n), where z(-, \y) 1s the solution of (2.10) with u = A\,. The following

properties are verified

1. There exist two positive constants p1 and pa such that

(2.45) p1 < [Unllzzom <p2 (n2N+1);

13



2. There exists a positive constant ps such that
P3
(2'46) ”djn - QSYLHLQ(O,TF) < . (Tl =z N+ 1)'
3. If w is a non empty open subset of [0, 7|, then there exists a positive constant py such that

(2.47) / (@) 2de > pr (0> N+1).

Proof. We remark that ¢,, is the solution of the equation

—Opupn(x) —n’Pn(x) =0 2 € (0,7)
(2.48) én(0) = ¢n(m) =0
0:6n(0) = /20,

whereas 1), is the solution of the equation
—0Ozathn (%) = Antn (@) + ; K (@,8)1n(§) d€ + q(x)ihn(z) =0 2 € (0,7)
(2.49) ¥n(0) = Yn(r) =0
Db (0) = /2n
To prove , we use to deduce that
(2.50) +1 / sin(n(z — s)) ((n Ca) / K (s, €Y (€) d€ + q(s )wn(s)) ds
0

n

From and the fact that [n? — \,,| < d it follows that
7r
enllzz0m) — l9nllL20,m | < - (0 + 1K |22 (0,m)2) + ldll oo (0,0)) 1¥onll 22 (0,m)-

From the last estimate, by using that ¢, | z2(0,-) = 1 and that, for n > max{N + 1,474},

n
7 (6 + 1K 2 ((0,m)2) + llall e (o,m)) < 276 < 3

we obtain that (2.45)) holds with

2
= = 2 .
p1= mln{3 N+1<n<4m5||¢nHL (0,7) }, P2 maX{ N+1<n<47r6||¢nHL (0,7) }

Let us pass to prove (2.46). If we put (, = ¥ — ¢n, it follows that (, verifies the following
relation

1
(2.51) CGu(z) = ﬁ/ sin(n(z — s) (/ K(s €)d€ + q(s)pn(s) + (n® — )\n)wn(s)> ds
0
Since, according to Theorem |An —n?| < 8, we deduce from (2.51)) that
0
(2.52) IGallz2(0,m) < (K Nl 2 (0,my2) + N1l oo 0,m) + ) 190l L2 (0,m)-

From (2.52)) we deduce, by taking into account the second inequality in (2.45)), that (2.46) holds
true with ps = 27 ps.

14



On the other hand, from (2.46)), we deduce that

/w|¢n(x)|2dx> %/w\sin(na:ﬂ?dx—/w wn(x)—\/zsin(nx)

from which we deduce that there exists N; > N + 1 and a constant p’ > 0 such that

2

dx}l/ |sin(naL')|2d9L‘—p—§7
T Jo n?

(2.53) / n(@)Pdz > (0> Ny).

Relation (2.53) follows with

_ . 2 . 2
p3 —mln{p,N+1rgg1<Nl {[dlwn(w)l dw}}

and the proof of the lemma is complete. O

To solve our control problem we shall also need the following unique continuation principle for
the solutions of equation (2.10).

Lemma 2.15. Suppose that the kernel K is degenerate, i.e. there exist two functions a, 3 € L?(0,7)
such that K (z,£) = a(x)B(€) for each (z,&) € [0,7)2. Let p € C and let = € H?(0,7) be any solution
of equation

(2.54) — Oyun(a) + / " K(2.6)2(€)dé + q(@)2(x) = pz(e) (€ (0.7),

with the property that there exists a non empty open interval (a,b) C [0, 7] such that z vanishes in
(a,b) and a is not identically zero in (a,b). Then z is identically zero in [0, ].

Proof. By taking into account the particular form of the kernel K and equation (2.54)) verified by
z, we obtain that

o) /0 TBOAOAE =0 (re (b))

Since « is not identically zero in (a,b) it follows that [; 8(£)z(¢) d€ = 0. Let zo € (a,b) and notice
that z(zg) = d,2(x0) = 0. From the uniqueness of solutions of the equation

{ —Opaz(x) + (q(z) — p)z(z) = 0
2(xo) = 0zz(x0) =0,

in (0,x0) and (zo,7), we deduce that z is identically zero in [0, 7] and the proof ends. O

Remark 2.16. The degeneracy hypothesis of the kernel K is verified in the case of our model
. It seems that, for kernels that are not degenerate, additional conditions should be imposed in
order to ensure that the unique continuation property holds. For instance, in [§] an assumption of
analyticity of the kernel is used in order to solve a multidimensional control problem.

Remark 2.17. The hypothesis that « is not identically zero in (a,b) is necessary since it is easy
to construct in this case a nonzero function z verifying (2.54) which vanishes in (a,b).

Let us summarize the most important results concerning the high part of the spectrum of the
operator (D(A*), A*) in the following theorem.
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Theorem 2.18. There exist N € N and § > 0 such that, for eachn > N + 1, o(A*) N B(n?,4) is
reduced to one element that we denote by A\, and

(2.55) a(A*Y\ B(0,(N +1)? —6) = {\,, n> N +1}.

Moreover, for any n > N + 1, the eigenvalue A, is geometrically simple and there exists an eigen-
vector ¢, of A* corresponding to N\, such that

P
(2'56) ”7/}'@ - anHLQ(O,Tr) < Ea

where ¢, (x) = \/gsin(nx) and p is a positive constant independent of n.

Proof. Let Dy > 0 be the constant from Theorem Also, let D, M, N € N and § > 0 be given
by Theorem with D > Dy. According to Proposition 2.9 and Theorem there exists a a
unique eigenvalue \,, of the operator (D(A*), A*) in each ball B(n?,§) for n > N + 1 and there
are no others eigenvalues of this operator in Ay; p. By taking into account relations from
Theorem [2.1) we obtain that (2.55) is verified, too. Due to the uniqueness of solutions to problem
proved in Proposition if n > N+1, to each A\, corresponds a one dimensional eigenspace
generated by the function 1, defined in Lemma Finally, estimate for 1, follows from
(2.46]) and the proof of the theorem is complete. O

3 Riesz basis

The analysis of the eigenfunctions (¢, ),>n+1 in the previous section and a result from [9, Theorem
1] allow us to obtain a Riesz basis of L?(0, ).

Theorem 3.1. Let N be the entire number and (¢y)n>n+1 be the eigenvectors given by Theorem
. There exist Ny, Ni, € N, with Ng > max{N + 1, N} and a Riesz basis B of L?(0,7) such
that

(3.1) B = ($1)rsnu U (k) 1<han -1,

where (Jk)lgngH—l are generalized eigenvectors of the operator (D(A*), A*) corresponding to Ny,
different eigenvalues of A*, Ai,..., AN, , satisfying

(3.2) Mol < Awy| (1< n<NL).

Proof. The result follows immediately from [9, Theorem 1], by taking into account that (D(A*), A*)
is a densely defined operator with compact resolvent in L?(0,7), (¢)n>1 is an orthonormal basis

of L2(0,7) and (¢)k>n41 verify (2.56). O

Let us use Theorem in order to expand the functions from L?(0,7) and to write the solu-
tions of (1.10). Firstly, let us denote the family of distinct eigenvalues corresponding to all the
eigenvectors (Y )k>n, and generalized eigenvectors (¥x)1<k<ny—1 from Theorem by

(3.3) Y= EL U ZH = ()\k)lgngL U ()\k)k>NH c C.

We recall that, according to Theorem if K > Ny, the element v, from the basis B generates
the one dimensional eigenspace corresponding to \y.

On the other hand, for any 1 < k < Ny, let us consider a Jordan basis of the root space of A*
associated to the eigenvalue Ag:

34 Uhjm 1<E<NL, 1<j<dy, 0<m <y — 1.
3Ty J
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More precisely, for a given k, {1y, jm} is a family of generalized eigenvectors of A* associated with
the eigenvalue Ax with the following property

¢k,j,0 € ker(A* — )\kI), (A* — )\kI)wk)jm = —’lbk)j’mfl 1 < m < Tk’j — 1, 1 < j < d]€7
and the family in (3.4) is linearly independent. Note that
ker(A* — A\ Z) = Span{ty ;0,1 <dg}

We remark that not all the generalized eigenvectors (wk,j’m)lgngL, 1<G<dn, 0<m<ry ;-1 belong
necessarily to the Riesz basis B given by Theorem However, in order to simplify the notation,
we shall write that any function ¢y € L?(0,7) can be uniquely written as

Np dg Tk,j—

(35) @O_ZZ Z ak]md’kgm"‘ Z akwka

k=1j=1 m=0 k=Npg

where in (3.5) we shall consider that ay jm = 0 if ¥y jm ¢ B.
Now, if ¢g € L?(0,7) is given by (3.5), then the corresponding solution ¢ of (1.10) can be
written under the following form

Np di Tk,j— 0o
(3.6) Y <Z 1 Vkim- ) ML D anre M

k=1 j=1 m=0 k=Npg

We shall need to rewrite the solution ¢ in a slightly different way. Let us set for k=1,..., N,

(37) Rk = max{rhj, j = 1,...,dk},
and
(3.8) Tip:={je{l,....dx}; "y =Ri—p} (0<p<Rp—1).

Then we can rewrite (3.6]) as

Ny Rrp—1 Rip—s—1Ry—p—1
(39) () => Y te M Z > Z akJ mWkjm—s | + Z agpe” M
k=1 s=0 m=s JeIkp k=Npg

For any k € {1,..., N1}, the coefficient corresponding to tf+~le=A#t ig

1
> mak,mm—l%,y’,ov

J€Tk,0

the coefficient corresponding to tft* 2~k ig

Z (Rkl ) 10k, j, R —2Vk,j.0 + Z

72), k. j,Rie—1%k 5,15
J€Lk,0ULk,1 J€Zk,0 R ’

and so on.
We shall use these expressions of the solution ¢ of (|1.10]) in order to prove our observability

inequality for this equation. Note that in (3.9 appears the family of functions
(tse—)\kt) U (e—)\kt)

1<k< N, 0<s<Re—1 k>Ny

Given T > 0, we need to construct and estimate a biorthogonal family in L?(0,T) to this family.
In fact, we can obtain a slightly more general result and we start with the family

_ s _—At
A= (e )Aez,ogsgnq’
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where 7 > 1 is a given integer. The following section is devoted to the construction and evaluation
of a biorthogonal sequence to A in L%(0,7). Let us remark that such a construction has been
already done in similar contexts by [I]. However, since we need to estimate the dependence of the
norm of the biorthogonal sequence with respect to small T', we shall adopt a different and more
explicit approach which is closer to the one used by [12], even though in [12] the exponents X are
purely real and n = 1.

4 The biorthogonal family

Let X be defined by (3.3) and n € N*. Before starting the construction of a biorthogonal sequence
to the family A = (tse_)\t)xez,ogsgn—p for reader’s convenience, let us enumerate some simple
properties of the set ¥ which will be used in this section.

Lemma 4.1. The eigenvalues of the operator (D(A*), A*) from ¥ verify the following properties:
P1) There exists v > 0 such that

(4.1) A==y (ANED, A£N).
P2) There exists a constant 6 € (0, Ny) such that

(4.2) A, —n?| <6 (n > Ng),

(4.3) RAng) =R 26 (1<n<Np).
P3) For each 1 < n < Np, we have that

(4.4) [An| < [Ang |-
P4) The sequence (Ay)n>n, verifies the following properties

(a) [R(An) —n?| < C, n > Ny,

(b) R(Ant1) —R(A\,) =9, n > Ng.
P5) We have that

(4.5) > ﬁ < oc.

Proof. The existence of v > 0 verifying follows from the localization of the elements of %
given by Theorem and the fact that X* has only a finite number of different eigenvalues. On
the other hand, with § > 0 given by Theorem both and are verified. Indeed, since
26 < N+ 1 < Npg, we deduce that

dist (T, (0),Tn(8)) =6 (1< n < Np),

which gives (4.3). Property (4.4) follows from Theorem and the last properties are direct
consequences of Theorem O

For each A € X, let us consider the function @) : C — C defined by

(4.6) er(z)= ][] (1_X'Z_A).

NeX\{A}

Some of the basic properties of ®, are described in the following lemma.
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Lemma 4.2. The function @y is an entire function of arbitrarily small exponential type. Moreover,
there exist three positive constants By, C1 and Cs, depending at most upon v, N, Ny and §, such
that we have, uniformly with respect to A,

(4.7) 185(2)| < Cre™VEI(L 4+ 2B (z€0),

(4.8) |®a(iz — N)| < Cae™ =L RO + |z|) B (z € R).
Proof. Firstly, by using (4.1)), we deduce that

INCIEEI| <1+|X|Z_|)\>< 1] (”Z|) 11 (”X|Z—|AI>

NeES\ (A} NESL\ (A} T vesi\(ay

<(oms{ad}) 0o (o)

Now, by taking into account that (R(\)),cyu verifies the properties P4) from Lemma estimate
(4.7) follows as in [12, Lemma 4.1].
For the proof of (4.8, we remark that

. — N — iz N +ix N 4 ix
|<I>)\(z:z:—)\)|: H = H g H =
PUDY v N — A
NeS\{A} NeSE\{\} NeSH\{\}
N\ NL NL |z [Nl
(4.9) <1+ =) (max{L Ay, D™ @+ )™ ] (1+ ] 11 T
v NeLH NETH\{A\}

Let us evaluate each of the last two products in (4.9)). For the first product we remark that

I (5] = 3 (e B) 5 m(B) - 5 ()

N exsH

(4.10) In [

S1 Sa 53

Now, from (4.2]), we have that there exists a positive constant C' such that

k| + k2 — A J
< _— — | < —
Si< > ln( oW <) In 1+|Ak\ > A

k>Nu k>Ny k>Ny il
Ag| — k2 5 5
_ In (14 2628 n(1 < 2 <o,
> n(+k2+x| > I +k2+\x| Zkg
E>Ng k>Ng E>Ngy

Zm(u)m 11 1016@ =1In Sm(mm) <ln

E>1 k>1

[cemVieT]

]

The above inequalities for (S;)1<i<3, together with (4.10)), imply that there exists C' > 0 such that

(4.11) I1 (1 + ||f’||> < CemVial,

NexH

We pass now to evaluate the second product in (4.9). We have that

M P2 BO-R o men

/ = / !
st ’ ROV by

Pl P2

NeESH\{)\} NeESH\{N\}
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We evaluate each of the products above. For the product P; we use property P4) and the same
arguments as in [12, Lemma 4.1]. We deduce that there exist two positive constants By > 0 and
C > 0 such that

(P)7h <+ R

For the second product, by using (4.2), we deduce that there exists C' > 0 such that

) N2 = (S(V))? 5
o= T PR T (1l 20

MNeSH\{\}

Hence, the last inequalities for (P;)1<i<2 imply that there exist By, C' > 0 such that

)\/
(4.12) 11 = ’< C(1+ RN
N eSH\{\}
From (4.9)), (4.11)) and (4.12) it follows that (4.8) holds and the proof of the lemma is complete.

O

Remark 4.3. Estimate (4.7)) implies that @y is a function of order not exceeding % and a type
not exceeding 7 if or order % We recall that an entire function of exponential type 7 € (0,00) is a
function of order not exceeding 1 and a type not exceeding T if of order 1 (see [3, Page 8]).

Let us define the C*°(R) function

(4.13) g, =4 P (_#) if |t <1
0 if [t >1

where v is a positive constant and put ¢, = 1/||o,||z1. Given 8 > 0, we introduce the function
1 .
(4.14) Hg(z) = cl,/ o, (t)e = dt.
—1
The properties of Hz we are interested in are listed in the following lemma.

Lemma 4.4. Let 3 >0, 0 > 0 and set v = (7 + 0)?/B. The function Hg defined by (4.14)) is an
entire function of exponential type B which verifies the following properties:

(4.15) Hy(0) =
(4.16) |Hp(2)| <exp(Bly])  (z==z+1y, z,y €R),
(4.17) |Hj(z)| < C3v/v + Lexp (3y/4 (4 g/z)\/m) (z €R),

(4.18) |Hpg(iy)| > IIX/—eXP(BIyI/(Q\/V+ 1))  (yeR),

exp (Blyl/(2v 7 1) (yeR, |x|<47;)7

Cy
4.19 Hg(z +1y)| =
@) H i) > e
where C3 and Cy are two positive constants, independent of o, v and (.
Proof. From (4.14]) we deduce that Hg, being the Fourier transform of a function in L2(—8, B), is

an entire function of exponential type 3. Properties (4 are proved in [I2, Lemma 4.3]
(see, also, [I3, Lemma 9.2.3]). It remains to show estlmate We have that

1

|Hsg(x +iy)| > ¢ o, (t)ePt cos(Btx) dt| .

-1
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Since 0 < B|z| < 7, it follows that

2
g < cos(ftx) < 1,

from which we deduce that
2 [t 2
(4.20) |Hp(z +iy)| > cy\g/ o, (t)eP dt = %Hﬁ(iy).
-1
By using (4.20) and (4.18) we deduce immediately that (4.19)) holds and the proof of the lemma is
complete. O

For each )\ € X, let us now define the entire function

(4.21) Qr(2) = D (iz — )\)m.

The properties of the function Q) we are interested in are given by the following lemma.

Lemma 4.5. For each A € X, the function Q) defined by (4.21)) has the following properties:
1 ifa=XN

0 ifA£N.

2. @ is an entire function of exponential type S.

3. There exists By > 0 such that, for each B € (0, Bo], the following estimate holds

1. For each N € ¥ we have that Qx(—i\N) = {

(4.22) |Qx(@)] < C5 (L + RO + |2)™ exp (K—\/I? BRI/ 2VY + )) (z € R),

where the two positive constants Cs and k are independent of 8 € (0, Bo].

Proof. From definitions (4.21]) of the function Q», (4.14) of the function Hz and (4.6) of the
function ®, we deduce immediately that the first property of @, holds true. Moreover, by taking

into account estimate for ®, and the fact that, according to Lemma Hp is an entire
function of exponential type (3, it follows that @, verifies the second property, too.

To prove (4.22)), let us first recall that, according to (2.1)), |S(A)| < Dy for each A € ¥. By
taking By = ﬁ we deduce from that, for any 8 < [, the following estimate holds

- C
(4.23) |Ha(—iN)| = W% exp (BIR(N)]/2Vr +1)).
From , and we obtain that, for any z € R, we have
_ o+ Hg(z)
0s(0)] = [atia - D
(4.24) < Céf?’ (v + 1)1+ RO + )% exp (3v/4 = 0/2/[al = BRI/ 2V +1)).

Since v = (”'ZQ from we deduce that the following estimate holds true for any 8 € (0, Bo]

C 3(m + 0)? 0
[Qx(2)] < ﬂ5(1+ RO+ |2])P exp <( 5 Vel = BRI/ (2vr + )) (z € R),
where C5 is a positive constant independent of 8. The last inequality gives (4.22) by taking
(7r+9)
= +1L O
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We need to modify our function @ given by (4.21)) in order to be able to add conditions on the
values of the derivatives.

Lemma 4.6. Let A € ¥ and n € N*. If Q, is the function defined by (4.21) then, for each
0 < j <n—1, there exists a polynomial function py ; of degree less than or equal to n—1 such that
the following properties are verified

1 ifdx=XNandj=k

_ n NGNS v
(4.25) V<=1, (QXpa;) (=iX) { 0  otherwise.

Moreover, there exists a positive constant Cg independent of X and € (0, 80), such that

C JE
(4.26) Ipa;(2)] < 6’7726/2 (14 ]z +ax))" e PIRN (e Q).

Proof. We shall explicitly construct and evaluate the polynomials py ; for each 0 < j < n—1. First,
we define

1 _

4.27 Pa—1(2) = ——= (2 +iN)" L.

(4.27) n-1(2) = 1)!( )

We remark that relations (4.25)) are verified in the case j = n — 1 and we have that
1 _

4.28 Pag—1(z)] < —— |z + A"

(4.28) [PAn—1(2)] = 1)!\ |

Generally, for 0 < j < n — 1, we define

|
—

n

s
(4.29) pa(z) = Agok

k!

(2 +iM)",

~
Il

0

where the values (a)\,j,k)ogkgnfl are given recursively as follows

axjk =0 (O <k< ])

axj5,5 = 1a
(4.30) e

—J
anie=—> G QDY (~Narju-s  (GH1<k<n—1).
s=1

Notice that (4.29)) implies that ay ;, = pg\k;(—zX) From (4.30) it follows immediately that QY px ;

verifies (4.25). In order to prove (4.26)), let us evaluate (Qz)(s) (—iX) and show that there exists a
constant C' > 0 such that

8, C
(4.31) ](Q’i)( ) (—m)‘ < WWWN (0<s<n—1).

Indeed, by using the Cauchy formula, we have that

| n
o p B4,
21i Jp, (2 +1A)sHL
where R € (0,7), Tr = {z € C : |z+1i)\| = R} and the contour integral is taken counter-clockwise.

Let us evaluate Qx(z) on I'r. From (4.21)), (4.7), (4.16) and (4.19) it follows that, for any

z € T of the form z = —i\ + Re'™, v € [0, 27, we have that

@)™ (-3 =

< %(1 +R)Povi+1 TemVR+RB+BIRON|
4

Hg(—ix + Rei“)

®y(iRe™) FREDY

|Qx(2)| =
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and (4.31)) is proved.

Now, from (4.30) and (4.31]), we immediately deduce that
) (¥ O sntk-g)R00)| :
[P (-%)| < e (k> ),

which, by taking into account (4.29)), implies that

C _ n—1-j e
(4.32) Ipaj(2)] < W\z +in) ZO |z + xRN (e ).
S
Estimate (4.32]) shows that (4.26)) holds and the proof of the lemma is complete. O

For each A € ¥ and j € {0,1,...,n — 1}, let us define the function

(4.33) Gxj(2) = Q3 (2)pa (2)  (2€C),
where Q5 is given by (4.21)) and p, ; are the polynomials functions from Lemma The following

theorem studies the main properties of the function G ;.

Theorem 4.7. For each A € ¥ and j € {0,1,...,n — 1}, the function G ; defined by (4.33)) has
the following properties:

1. For each X' € ¥ we have that

1 ifAx=XNandj=k

NER) Ty <k<n—
(4.34) (Gag)™ (=) {0 otherwise. I<k<n-1).

2. Gy; ts an entire function of exponential type nS.

3. There exists By > 0 such that, for each B € (0, Bo], the following estimate holds

Cy
20 < a7 o (5 + RO

where the two positive constants C7 and k are independent of A\, j and 8 € (0, Bo].

(4.35) 1Gx.

Proof. Properties (4.34) are consequences of (4.25). Since the polynomials py ; have degree less
than 1 and @ is an entire function of exponential type B, it follows that G ; is an entire function

of exponential type n5. Finally, estimate is a consequence of estimates and -
Indeed from (4.22)) and (4.26]), we have that

G (@) = 1QY(2)pa s (2)
(0506) (14 |RON)| + |2])?P° exp (2’“ — ov/|z] = BIRW)|/Vv + 1) (1+]z+ iX|)2" o2 BIROV|

< an 8
g(cgff) eXp<2;+2n25|§}?()\)|>C"(H|§R()\)|+|I|)QBO+2”€XP< oV/Iel = BRO)IVYFT).

Now, we have that
(L ROV + [al)* 7 exp (—ov/[a] = BRIV +1)
< (L+ RO exp (~BIROI/ V2 +1) (1+ [2])* 2 exp (—0/To]

NES e 1 2Bo+2
<C( 3 ) W(l‘ﬂx\) 77eXP<—Q \33|>7

)
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where we have used in the last inequality that (1 + s)2Bo+21+2¢=s < O = C(n, By) for any s > 0.
The conclusion follows by taking into account that

[ @1+ exp (~o/fal) do < € = Clo,Bovo)
R

and, for any &’ > k,

2Bo+2n /
ﬂ;m{?+mmwm)@g“) <0m{ﬁ+%%w»)

O

Now we have all the ingredients needed to construct our biorthogonal family. For each A €
and j € {0,1,...,n — 1}, we define the function 8 ; as follows

(4.36) 0y,,(t) = (;:.T)j/RG/\,j(x)emt de.

The following result is a consequence of the properties of the function G ; proved in Theorem

Theorem 4.8. Let ¥ be the family of eigenvalues given by (3.3) and let n € N*. There exists

To > 0 such that, for any T € (0,Tp), the family of functions A = (tje_)\t)AeZ,Ogjgnfl has a
T T

biorthogonal (6 ;) \cs, 0<j<n_1 i L? (—57 5) with the property that

c 2

2n°k T
) S |%(A)|+16Xp< T +2|%(A)|>’

where the two positive constants ¢ and k are independent of A, j and T.

(.37 10330z,

!

Proof. Let us chose Ty = min {295y, 1}, T € (0,Tp) and § = % The Paley-Wiener Theorem
and Theorem imply that (4.36) defines a function 6, ; which belongs to L? (—%, %) Moreover,
since

1 Z .
Cri(z) = —— / brs(e ™t (z€C),

(=) J_z
relations (4.34) imply that (9%3’)%2,0@@1*1 is a biorthogonal family to A in L2 (f%, g) Since
the Plancherel formula implies that \/27r||9,\)j||L2( T 1) = |G xjllL2(m), from estimate (4.35) we

2

deduce that (4.37) is verified with ¢ = \;’;Lﬂ which completes the theorem’s proof. O

The following result is a consequence of Theorem [4.8]

Corollary 4.9. Under the hypothesis of Theorem[].§ the following inequality holds true

2

4n? 4 ;
(4.38) Z |a>\’j|2e_2T%()‘) < cexp< Zfé)/ Z CLA,jtJe_)‘t dt
0

AEX, 0<yj<n—1 AEX, 0<y<n—1

for any finite sequence of complex numbers (ax ;j)res, 0<i<n—1-

Proof. Let (HA’j)AeZ 0<j<n—1 be the biorthogonal to A in L? (—%, %) given by Theorem It

follows that there exists a biorthogonal (é\)\d‘))\ s ocic to A in L? (0,T) such that
€X,0<jsn—1

2

c 2n°K
<
|L2(O,T) ‘%(A)‘ ¥ 1 exp ( T

(4.39) W

+T§R(A)> .
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Indeed, (é\x j)

- T
(4.40) Ox; (t +5

is given by the following formulas

AEE, 0<j<n—1

) Ox,5(t) + nz_:l LisOrs(t) | €22 (tG <€€)>

s=j+1

where the coefficients /; ; can be obtained recursively

lj,j+1 = _C§+1 (%)j>

(4.41)

ljs=—C1 (%)J —yeten (D) e, j+2<s<n—1

From (4.37), (4.40)) and

(4.41)) it follows that (4.39)) holds with a constant ¢ depending only on Ty

and 7).

Let us now pass to prove (4.38)). By using the orthogonality properties of (0 ;), s, 0<j<n—1
and Cauchy inequality we obtain that

AED,

</OTZ

A€X, 0<ysn—1

N

D

2 —2TR(M
) lax,j| e ) =
AR, 0<j<n—1

Z ax,j eiQT%O‘)é\A’j(t) Z ayjtie | dt <
0<j<n—1 AES, 0<j<n—1
9 1/2 9 1/2
T
ax,; 6_2T%(A)9)\’j(t) dt / Z ax; e A dt <
0

AES, 0<j<n—1

1/2 1/2
2,=2TR(N) Z e 2TR(N) ||§)\,j|

2
|ax,; L2(0,T)

AER, 0<j<n—1 AEE, 0<<n—1

9 1/2

T .
/ Z ay; e M| dt
0

AEE, 0<j<n—1

By taking into account estimates (4.39)) and since (4.5)) implies that

1
)PP
2 b
Z RO+ 1)
it follows that ([4.38]) holds and the proof ends. O

5 Observability result

Now, we have all the ingredients needed to prove the observability inequality (|1.13)) for the solutions

of the adjoint equation

[L.10).

Proof of Theorem @ Let Ty be given by Theorem and let T € (0,7p). We recall that the
set ({/;k> en U (r)p>n,, is a Riesz basis in L?(0, ) (see Theorem D and, if o € L?(0,7) is
1\ X4VL i
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given by (3.5)) then the corresponding solution ¢ of ([1.10)) is given by (3.6]). Consequently, we have
that

NL dk
()3 2000y < M Z |ax|?e 2%<*k>T+ZZ<\ak,W-1!

2

Ok, j,ry, j—2 T 11 Fodire =1

k= NH k 1] 1
T T2 Trei—1 2 3
(5.1) toot|akj0 + o 11 ag,j1 + ol oy Wk,j,2 et 7(7% e 1)!ak,j,rk.j—1 e RONIT |

Since T < Ty < 1, from we deduce that

Np di Tk 771

(5:2) I z2 0 S Mi (DD D langml e 2T 4 Z jag[*em2ROWT

k=1j=1 m=0 k=N

where M, is a positive constant independent of T. Let us now evaluate the right hand side of

(T.13). To this aim, we use the solution ¢(t) of (L.I0) written in the form . From (4.38]) we

obtain that

(5.3) /OT/w|g0(t,:z:)|2d:z:dt[}/OT|¢(t,x)|2dtdm

2& NL Rk !
2067477T (Z —2TR(\) Z /|Sk9 |2dg;+ Z |a ‘2 —2TR(A) /W’k( )de>7

k=1 k=Ng

where

Rip—s5—1Rp—p—1 1
(5.4) Sk 9 Sl =1 %k.3, mwk,jm s(x)

p=0 m=s j€Ly,

For each 1 < k < Np, let Sk be the root space corresponding to the eigenvalues A, of dimension
Np(k) = Z;l 1Tk For each 1 < k < Ny, the following two properties hold true:

(P1) If Sk, =0 for 0 < s < Ry, — 1, then
(55) ag,jom =0 (1<j<dk7 0<m<7‘k]~—1),

(P2) For each 1 < k < Ny, the map

Rp—1 1/2
(5.6) chr® 5 (ak’jam)léjédm 0Sm<re;—1 ~ (Z / |Sk’5(x)|2dx> e
s=0 Y%

is a norm in CVr(*),

Property (P2) is a direct consequence of definition (5.4)) and property (P1). To prove property
(P1) we use the unique continuation principle given by Lemma Notice that the properties of
our kernel K allow us to apply this Lemma. Since

Sk, Ry —1(x) = Rk— Z ak,,0%%k,5,0(),

]GIk 0

and ¥y 0 € ker(A* — A\ Z), j € Iy 0, from Lemma we deduce that

(5.7) ak,j,Re—1 =0 (j € Tr,o)-
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Since

1
Sk, Ry —2(T) = =2 D akjreoPhio@) + D kg re 1Pk ()

J€ZLk,0 J€Lk,0

+ ) akjr—2trio(@) |

J€Tk 1
and ¥y 50 € ker(A* — A\Z), j € I o UZg 1, from (5.7) and Lemma we deduce that
(5.8) arjRe—2=0 (€ TroULy,).

If we suppose that, for some 0 < ¢ < R — 1, we have that

(5.9) apji=0 (GeU™ P, q+1<I<Ry—1),
then it follows that
Rk qg—1
Skq( Z Z Ok, j,q¥h.5,0(2)-
p=0  j€Ti,

Since ¢y .0 € ker(A* — A\, Z) for j € URk - 1Ik,p, by using again Lemma we deduce that
(5.10) g =0  (jeUH ).

Hence, we have proved by induction that (P1) holds true.
From (P2) we deduce that, for each 1 < k < Ny, there exists a constant ¢ > 0 such that,

Ryr—1 dy Tkj—
(5.11) Z /|S,“ IRCEEESY Z \ajm|” -
j=1 m=0

From (5.11), by taking ¢’ = min;<r<n, ¢k, we deduce that

Rp—1 Np di Tkj—

(5.12) Ze—2m (k) Z /\Sks Wdz > >N Z g m? € 2TROW),

k=1j=1 m=0

Using (2.47)), we have that

(5.13) Z |ak|2 —2TR( )\k)/ |4 (2 )|2 dz > ¢ Z |ak|26—2T%(Ak).

k=Npg k=Ng

From (5.3, (5.12) and (5.13) it follows that

T
| [ et st
0 w
Ny dg Tkyfl

(5.14) > Moe™ dge ZZ Z |k | 2 —2TR() 4 i |ag|2e~2TROW)

k=1 j=1 m=0 k=Npg

where My = cmin{c’,c"} is a positive constant independent of 7. By taking into account ({5.2)
and -, we deduce that - holds with My = M1 and ¢ = 4n?k which concludes the proof of
the theorem. O
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6 The nonlinear problem

The aim of this section is to provide the proof of Theorem Without loss of generality, we may
suppose that T' < Ty, where T is given in Theorem [I.2] Let us consider that

K (&) = Opw®(§)e" © 0w (w)e ™),

with W(z) = %fom w? ds. Since d,,w® # 0 in w, the hypotheses Theorem are satisfied and

(1.13) holds true.
Let X = L?(0,7) and U = L?(w) and let us denote

v:(0,00) = [0,00), t+>~(t) := Mpexp (%) ,

where M, and ¢ are the constants in .
As stated in Theorem u for any zo € X, there exists v € L2(0,T;U) such that the solution of
(1.8) satisfies
2(T)=0

and
[v]lz2 0,70y < Y(T)l 20/ x -

By using this result, one can handle the controllability of a system similar to (1.8]) but with right-
hand side (see [10]). We introduce here some notation in order to state such a result.
Let r € (1,2) be a constant. We consider ¢y, <1, ¢« such that

1 1 S G S 1
6.1 —_2)> L =2 o> > Lo
(6.1) o1 (7’2 4) r—1 0 r2 r—1 0 =6 4

We define three functions in (0,7) by

62 = (-7 ). w0 =Moo (~ 12 ). a0 =ew (5.

so that px, po and p are continuous, decreasing and px(T') = po(T) = p(T) = 0. We associate to
the functions pr and py the Hilbert spaces F and U defined by

(6.3) F= {feLQ(O,T;X) ’ pif GLQ(O,T;X)},
(6.4) U= {ueLQ(O,T;U) ‘ % eL2(0,T;U)}.

By supposing that zg € D((—A)%) and f € F, we are now able to obtain a controllability result
for the nonhomogeneous equation

(6.5) {@z(t) + Az(t) = f 4 vXw,
z(0) = 2.

In order to do this we use the controllability of (L.8)) from Theorem and the fact that pr, pg
and p satisfy the following relations

plt) =pr(r?e = 1) + D0 =0T -1 (te |7 (1-5).7))

/
fo, B2 PR ¢ 10, T).
p’ o p
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Consequently, applying Proposition 2.3 and Proposition 2.8 of [I0], we deduce that for every
20 € D((—A)2) and for every f € F, there exists v € U such that the solution z of (6.5) satisfies

~ € I2(0,T: D(A)) N HY(0,T; X) 1 00, T D(-4))).

Moreover, there exists a positive constant C' such that

z

Pl L2(0,7:D(A)NH? (0,T:X)NC([0.T]:D((~A)3))

Using the change of variables (|1.5)) and definition (1.7) of A, we deduce that for every yo €
H}(0,), and for every f € F, there exists u € U such that the solution y of

(6.6)

< C (llzollp—ay/zy + I1f1lF) -

Oy — v 0py — 11 (/ (8,w%)(8,y) dx) Oua0® + w5 0py + yOpw® = f + ux.,
0

6.7
(6.7) y(t,0) = y(t,m) =0,
y(0,-) = yo,
satisfies
% € L*(0,T; H*(0,7)) N H' (0, T; L*(0, 7)) N C([0, T]; H (0, 7)),
with the estimate
Yy
CONN <0 (Il mom + 1£117).
PllL2(0,1;H2(0,7))NH" (0,T;L2(0,7))NC([0,T]; HE (0,7))

Notice that implies, in particular, that
(6.9) y(T) = 0.
In order to prove Theorem we only need to show that the mapping
N:feF—F(yeF,

where F' is given by (|1.3), is well-defined and admits a fixed point.
In order to do this, we first notice that (6.1]) and (6.2]) yield

ot

pF

Using this inequality, relation and standard properties of Sobolev spaces we find that

2 2
610 1FWIr < (nlagom +171) (14 (lmom + 1712)°).

Let us consider f! and f2 in F. Assume that y' and y? are the solutions of (6.7) associated with
f! and f2, respectively, with the initial condition yo and satisfying (6.8)). Then some calculation

and ((6.10]) imply
6.12) 1P(") = F?)lx < I = 217 ( (lwollmyom + 1717 + 1721 5)

3
+ (lwollmo.m + 17117 + 17205) )

Estimates (6.11)-(6.12) imply that we can use the Banach fixed point theorem on a ball of F
of radius ||yoll 2 (0,n)- If [Yollma(0,x) 15 small enough, then the above estimates yield that F' is a
contraction and this completes the proof of the theorem.

(6.10) <C.
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