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2 LMT-Cachan, ENS de Cachan, Université Paris 6, 61 avenue du Président Wilson, 94235,

Cachan Cedex, France

1



1 ISOTROPIC DAMAGE MODEL

1.1 VALIDITY

This constitutive relation is valid for standard concrete with a compression
strength of 30–40 MPa. Its aim is to capture the response of the material
subjected to loading paths in which extension of the material exists (uniaxial
tension, uniaxial compression, bending of structural members) [4]. It should
not be employed (i) when the material is confined ( triaxial compression)
because the damage loading function relies on extension of the material only,
(ii) when the loading path is severely nonradial (not yet tested), and (iii)
when the material is subjected to alternated loading. In this last case, an
enhancement of the relation which takes into account the effect of crack
closure is possible. It will be considered in the anisotropic damage model
presented in Section 3. Finally, the model provides a mathematically
consistent prediction of the response of structures up to the inception of
failure due to strain localization. After this point is reached, the nonlocal
enhancement of the model presented in Section 2 is required.

1.2 BACKGROUND

The influence of microcracking due to external loads is introduced via a single
scalar damage variable d ranging from 0 for the undamaged material to 1 for
completely damaged material. The stress-strain relation reads:

eij ¼
1þ v0

E0ð1ÿ dÞsij ÿ
v0

E0ð1ÿ dÞ½skkdij� ð1Þ

E0 and v0 are the Young’s modulus and the Poisson’s ratio of the undamaged
material; eij and sij are the strain and stress components, and dij is the
Kronecker symbol. The elastic (i.e., free) energy per unit mass of material is

rc ¼ 1
2
ð1ÿ dÞeijC

0
ijklekl ð2Þ

where C0
ijkl is the stiffness of the undamaged material. This energy is assumed

to be the state potential. The damage energy release rate is

Y ¼ ÿr @c
@d
¼ 1

2
eijC

0
ijklekl

with the rate of dissipated energy:

’ff ¼ ÿ @rc
@d

’dd
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Since the dissipation of energy ought to be positive or zero, the damage rate is
constrained to the same inequality because the damage energy release rate is
always positive.

1.3 EVOLUTION OF DAMAGE

The evolution of damage is based on the amount of extension that the
material is experiencing during the mechanical loading. An equivalent strain
is defined as

*ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1
ð eih iþÞ

2

r
ð3Þ

where h.i+ is the Macauley bracket and ei are the principal strains. The loading
function of damage is

fð*ee; kÞ ¼ *eeÿ k ð4Þ

where k is the threshold of damage growth. Initially, its value is k0, which can
be related to the peak stress ft of the material in uniaxial tension:

k0 ¼
ft

E0

ð5Þ

In the course of loading k assumes the maximum value of the equivalent
strain ever reached during the loading history.

If fð*ee; kÞ ¼ 0 and _ffð*ee; kÞ ¼ 0; then

d ¼ hðkÞ
k ¼ *ee

(
with ’dd � 0; else

’dd ¼ 0

’kk ¼ 0

(
ð6Þ

The function hðkÞ is detailed as follows: in order to capture the differences of
mechanical responses of the material in tension and in compression, the
damage variable is split into two parts:

d ¼ atdt þ acdc ð7Þ

where dt and dc are the damage variables in tension and compression,
respectively. They are combined with the weighting coefficients at and ac,
defined as functions of the principal values of the strains et

ij and ec
ij due to

positive and negative stresses:

et
ij ¼ ð1ÿ dÞCÿ1

ijkls
t
kl; ec

ij ¼ ð1ÿ dÞCÿ1
ijkls

c
kl ð8Þ
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at ¼
X3

i¼1

et
i


 �
eih i

*ee2

� �b

; ac ¼
X3

i¼1

ec
i


 �
eih iþ

*ee2

� �b

ð9Þ

Note that in these expressions, strains labeled with a single indicia are
principal strains. In uniaxial tension at ¼ 1 and ac ¼ 0. In uniaxial
compression ac ¼ 1 and at ¼ 0. Hence, dt and dc can be obtained separately
from uniaxial tests.

The evolution of damage is provided in an integrated form, as a function of
the variable k:

dt ¼ 1ÿ k0ð1ÿ AtÞ
k

ÿ At

exp½Btðkÿ k0Þ�

dc ¼ 1ÿ k0ð1ÿ AcÞ
k

ÿ Ac

exp½Bcðkÿ k0Þ�

ð10Þ

1.4 IDENTIFICATION OF PARAMETERS

There are eight model parameters. The Young’s modulus and Poisson’s ratio
are measured from a uniaxial compression test. A direct tensile test or three-
point bend test can provide the parameters which are related to damage in

tension ðk0; At; BtÞ. Note that Eq. 5 provides a first a pproximation o f the 
initial threshold of damage, and the tensile strength of the material can be
deduced from the compressive strength according to standard code formulas.

The parameters ðAc; BcÞ are fitted f rom t he r esponse o f t he m aterial to 
uniaxial compression. Finally, b should be fitted f rom t he r esponse o f the 
material to shear. This type of test is difficult to implement. The usual value is
b ¼ 1, which underestimates the shear strength of the material [7]. 
Table 1 presents the standard intervals for the model parameters in the case
of concrete with a moderate strength.

TABLE 1 STANDARD Model Parameters

E0� 30,000–40,000 MPa

v0 � 0.2

k0� 1� 10ÿ4

0.74At41.2

1044Bt45� 104

14Ac41.5

1034Bc42� 103

1.04b41.05
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Figure 1 shows the uniaxial response of the model in tension and

compression with the following parameters: E0 ¼ 30; 000 MPa, v0 ¼ 0:2; 
k0 ¼ 0:0001, At ¼ 1, Bt ¼ 15; 000, Ac ¼ 1:2, Bc ¼ 1500, b ¼ 1.

2 NONLOCAL DAMAGE

The purpose of this section is to describe the nonlocal enhancement of the
previously mentioned damage model. This modification of the model is
necessary in order to achieve consistent computations in the presence of
strain localization due to the softening response of the material [8].

2.1 VALIDITY

As far as the type of loading is concerned, the range of validity of the nonlocal
model is exactly the same as the one of the initial, local model. This model,
however, enables a proper description of failure that includes damage
initiation, damage growth, and its concentration into a completely damaged
zone, which is equivalent to a macrocrack.

FIGURE 1 Uniaxial response of the model.
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2.2 PRINCIPLE

Whenever strain softening is encountered, it may yield localization of strains
and damage. This localization corresponds to the occurrence of bifur-
cation, and a surface (in three dimension) of discontinuity of the strain rate
appears and develops. When such a solution is possible, strains and damage
concentrate into a zone of zero volume, and the energy dissipation, which is
finite for a finite volume of material, tends to zero. It follows that failure
occurs without energy dissipation, which is physically incorrect [1].

Various remedies to this problem can be found (e.g., [5]). The basic idea is
to incorporate a length, the so-called internal length, into the constitutive
relation to avoid localization in a region of zero volume. The internal length
controls the size of the region in which damage may localize. In the nonlocal
(integral) damage model, this length is incorporated in a modification of the
variable which controls damage growth (i.e., the source of strain softening):
a spatial average of the local equivalent strain.

2.3 DESCRIPTION OF THE MODEL

The equivalent strain defined in Eq. 3  i s replaced by i ts average ee%:

%eeðxÞ ¼ 1

VrðxÞ

Z
O
cðx ÿ sÞ*eeðsÞds with VrðxÞ ¼

Z
O
cðx ÿ sÞds ð11Þ

where O is the volume of the structure, VrðxÞ is the representative volume at
point x, and cðx ÿ sÞ is the weight function, for instance:

cðx ÿ sÞ ¼ exp
4 jjx ÿ sjj2

l2c

!
ð12Þ

where lc is the internal length of the nonlocal continuum. The loading 
function (Eq. 4) becomes fðe%; wÞ ¼ e% ÿ w. The rest of the model is similar 
to the description provided in Section 1. 6.13.1.

2.4 IDENTIFICATION OF THE INTERNAL LENGTH

The internal length is an additional parameter which is difficult to obtain
directly by experiments. In fact, whenever the strains in specimen are
homogeneous, the local damage model and the nonlocal damage model are,
by definition, strictly equivalent ð%ee ¼ *eeÞ. This can be viewed also as a
simplification, since all the model parameters (the internal length excepted)
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are not affected by the nonlocal enhancement of the model if they are
obtained from experiments in which strains are homogeneous over the
specimen.

The most robust way of calibrating the internal length is by a semi-inverse
technique which is based on computations of size effect tests. These tests are
carried out on geometrically similar specimens of three different sizes. Since
their failure involves the ratio of the size of the zone in which damage can
localize versus the size of the structure, a size effect is expected because the
former is constant while the later changes in size effect tests. It should be
stressed that such an identification procedure requires many computations,
and, as of today, no automatic optimization technique has been devised for it.
It is still based on a manual trial-and-error technique and requires some
experience. An approximation of the internal length was obtained by Bazant
and Pijaudier-Cabot [2]. Comparisons of the energy dissipated in two tensile
tests, one in which multiple cracking occurs and a second one in which failure
is due to the propagation of a single crack, provided a reasonable
approximation of the internal length that is compared to the maximum
aggregate size da of concrete. For standard concrete, the internal length lies
between 3da and 5da.

2.5 HOW TO USE THE MODEL

The local and nonlocal damage models are easily implemented in finite
element codes which uses the initial stiffness or secant stiffness algorithm.
The reason is that the constitutive relations are provided in a total strain
format. Compared to the local damage model, the nonlocal model requires
some additional programming to compute spatial averages. These quantities
are computed according to the same mesh discretization and quadrature as for
solving the equilibrium equations. To speed the computation, a table in
which, for each gauss point, its neighbors and their weight are stored can be
constructed at the time of mesh generation. This table will be used for any
subsequent computation, provided the mesh is not changed. Attention should
also be paid to axes of symmetry: as opposed to structural boundaries where
the averaging region lying outside the structure is chopped, a special
averaging procedure is needed to account for material points that are not
represented in the finite element model.

The implementation of the nonlocal model in an incremental format is
awkward. The local tangent stiffness operator relating incremental strains to
incremental stresses becomes nonsymmetric, and, more importantly, its
bandwidth can be very large because of nonlocal interactions.
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3 ANISOTROPIC DAMAGE MODEL 

3.1 VALIDITY

Microcracking is usually geometrically oriented as a result of the loading
history on the material. In tension, microcracks are perpendicular to the
tensile stress direction; in compression microcracks open parallel to the
compressive stress direction. Although a scalar damage model, which does not
account for directionality of damage, might be a sufficient approximation in
usual applications, i.e., when tensile failure is expected with a quasi-radial
loading path, damage-induced anisotropy is required for more complex
loading histories. The influence of crack closure is needed in the case of
alternated loads: microcracks may close and the effect of damage on the
material stiffness disappears. Finally, plastic strains are observed when the
material unloads in compression. The following section describes a
constitutive relation based on elastoplastic damage which addresses these
issues. This anisotropic damage model has been compared to experimental
data in tension, compression, compression–shear, and nonradial tension–
shear. It provides a reasonable agreement with such experiments [3].

3.2 PRINCIPLE

The model is based on the approximation of the relationship between the
overall stress (simply denoted as stress) and the effective stress in the material
defined by the equation

st
ij ¼ C0

ijkle
e
kl or st

ij ¼ C0
ijklðCdamagedÞÿ1

klmnsmn ð13Þ

where st
ij is the effective stress component, ee

kl is the elastic strain, and C
damaged
ijkl

is the stiffness of the damaged material. We definite the relationship between
the stress and the effective stress along a finite set of directions of unit vectors
n at each material point:

s ¼ ½1ÿ dðnÞ�nist
ijnj; t ¼ ½1ÿ dðnÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1
½st

ijnj ÿ ðnksnknlÞni�2
r

ð14Þ

where s and t are the normal and tangential components of the stress vector,
respectively, and dðnÞ is a scalar valued quantity which introduces the effect of
damage in each direction n.

The basis of the model is the numerical interpolation of dðnÞ (called
damage surface) which is approximated by its definition over a finite set of
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directions. The stress is the solution of the virtual work equation:

find sij such that 8e*
ij :

4p
3
sije*

ij ¼
Z

S

ð½ð1ÿ dðnÞÞnkst
klnlni þ ð1ÿ dðnÞÞðst

ijnj ÿ nkst
klnlniÞ� � e*

ij njÞdO

ð15Þ
Depending on the interpolation of the damage variable dðnÞ, several forms of
damage-induced anisotropy can be obtained.

3.3 DESCRIPTION OF THE MODEL

The variable dðnÞ is now defined by three scalars in three mutually orthogonal
directions. It is the simplest approximation which yields anisotropy of the
damaged stiffness of the material. The material is orthotropic with a
possibility of rotation of the principal axes of orthotropy. The stiffness
degradation occurs mainly for tensile loads. Hence, the evolution of damage
will be indexed on tensile strains. In compression or tension–shear problems,
plastic strains are also of importance and will be added in the model. When
the loading history is not monotonic, damage deactivation occurs because of
microcrack closure. The model also incorporates this feature.

3.3.1 Evolution of Damage

The evolution of damage is controlled by a loading surface f , which is similar 
to Eq. 4:

fðnÞ ¼ niee
ijnj ÿ ed ÿ wðnÞ ð16Þ

where w is a hardening–softening variable which is interpolated in the same
fashion as the damage surface. The initial threshold of damage is ed. The
evolution of the damage surface is defined by an evolution equation inspired
from that of an isotropic model:

If f ðn* Þ ¼ 0 and n*
i dee

ijn
*
j > 0

then
ddðnÞ ¼

ed½1þ aðn*
i e

e
ijn

*
j Þ�

ðn*
i e

e
ijn

*
j Þ

2 expðÿaðn*
i e

e
ijn

*
j ÿ edÞÞ

" #
n*

i dee
ijn

*
j

dwðnÞ ¼ n*
i dee

ijn
*
j

8>><>>:
else ddðn* Þ ¼ 0; dwðnÞ ¼ 0

ð17Þ

The model parameters are ed and a. Note that the vectors n* are the three
principal directions of the incremental strains whenever damage grows. After an
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incremental growth of damage, the new damage surface is the sum of two
ellipsoidal surfaces: the one corresponding to the initial damage surface, and
the ellipsoid corresponding to the incremental growth of damage.

6.13.3.3.2 Coupling with Plasticity

We decompose the strain increment in an elastic and a plastic increment:

deij ¼ dee
ij þ dep

ij ð18Þ

The evolution of the plastic strain is controlled by a yield function which is
expressed in terms of the effective stress in the undamaged material. We have
implemented the yield function due to Nadai [6]. It is the combination of two
Drucker-Prager functions F1 and F2 with the same hardening evolution:

Fi ¼
ffiffiffiffiffiffiffi
2

3
Jt
2

r
þ Ai

It
1

3
ÿ Biw ð19Þ

where Jt
2 and It

1 are the second invariant of the deviatoric effective stress and
the first invariant of the effective stress, respectively, w is the hardening
variable, and ðAi; BiÞ are four parameters ði ¼ 1; 2Þ which were originally
related to the ratios of the tensile strength to the compressive strength,
denoted g, and of the biaxial compressive strength to the uniaxial strength,
denoted b:

A1 ¼
ffiffiffi
2
p 1ÿ g

1þ g
; A2 ¼

ffiffiffi
2
p bÿ 1

2bÿ 1
; B1 ¼ 2

ffiffiffi
2
p g

1þ g
; B2 ¼

ffiffiffi
2
p b

2bÿ 1

ð20Þ
These two ratios will be kept constant in the model: b ¼ 1:16 and g ¼ 0:4.
The evolution of the plastic strains is associated with these surfaces. The
hardening rule is given by

w ¼ qpr þ w0 ð21Þ

where q and r are model parameters, w0 defines the initial reversible domain
in the stress space, and p is the effective plastic strain.

6.13.3.3.3 Crack Closure Effects

Crack closure effects are of importance when the material is subjected to
alternated loads. During load cycles, microcracks close progressively and the
tangent stiffness of the material should increase while damage is kept
constant. A decomposition of the stress tensor into a positive and negative
part is introduced: s ¼ sh iþþ sh iÿ, where sh iþ, and sh iÿ are the positive and
negative parts of the stress tensor. The relationship between the stress and the

10



effective stress defined in Eq. 14 of the model is modified:

sijnj ¼ ½1ÿ dðnÞ� sh itþijnj þ ½1ÿ dcðnÞ� sh itÿijnj ð22Þ

where dcðnÞ is a new damage surface which describes the influence of damage
on the response of the material in compression. Since this new variable refers
to the same physical state of degradation as in tension, dcðnÞ is directly
deduced from dðnÞ. It is defined by the same interpolation as dðnÞ, and along
each principal direction i, we have the relation

di
c ¼

djð1ÿ dijÞ
2

� �a

; i 2 ½1; 3� ð23Þ

where a is a model parameter.

6.13.3.4 IDENTIFICATION OF PARAMETERS

The constitutive relations contain six parameters in addition to the Young’s 
modulus of the material and the Poisson’s ratio. The first s eries o f three 
parameters ðed; a; aÞ deals with the evolution of damage. Their determination 
benefits from the fact that, in tension, plasticity is negligible, and hence e d is 
directly deduced from the fit of a  uniaxial t ension t est. I f we assume that in 
uniaxial tension damage starts once the peak stress is reached, ed is the 
uniaxial tensile strain at the peak stress (Eq. 5). Parameter a is more difficult 
to obtain because the model exhibits strain softening. To circumvent the 
difficulties involved with softening in the computations without introducing 
any nonlocality (as in Section 2), the energy dissipation due to damage in 
uniaxial tension is kept constant whatever the finite element size. Therefore, a 
becomes an element-related parameter, and it is computed from the fracture 
energy. For a linear displacement interpolation, a is the solution of the 
following equality where the states of strain and stresses correspond to 
uniaxial tension:

hf ¼ Gf ; with f ¼
Z 1

0

Z
O
½ ’ddð~nnÞnkst

klnlni�njdOdeij ð24Þ

where f is the energy dissipation per unit volume, Gf is the fracture energy,
and h is related to the element size (square root of the element surface in a
two-dimensional analysis with a linear interpolation of the displacements).
The third model parameter a enters into the influence of damage created in
tension on the compressive response of the material. Once the evolution of
damage in tension has been fitted, this parameter is determined by plotting
the decrease of the uniaxial unloading modulus in a compression test versus
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the growth of damage in tension according to the model. In a log–log
coordinate system, a linear regression yields the parameter a.

The second series of three parameters involved in the plastic part of the
constitutive relation is ðq; r; w0Þ. They are obtained from a fit of the uniaxial
compression response of concrete once the parameters involved in the
damage part of the constitutive relations have been obtained.

Figure 2 shows a typical uniaxial compression–tension response of the 
model corresponding to concrete with a tensile strength of 3 MPa and a 
compressive strength of 40 MPa. The set of model parameters is: 
E ¼ 35; 000 MPa, v ¼ 0:15, ft ¼ 2:8 MPa (which yields ed ¼ 0:76 � 10ÿ4); 
fracture energy: Gf ¼ 0:07 N/mm; other model parameters: a ¼ 12, r ¼ 0:5, 
q ¼ 7000 MPa, o0 ¼ 26:4 MPa.

3.5 HOW TO USE THE MODEL

The implementation of this constitutive relation in a finite element code
follows the classical techniques used for plasticity. An initial stiffness
algorithm should be preferred because it is quite difficult to derive a
consistent material tangent stiffness from this model. Again, the evolution of

FIGURE 2 Uniaxial tension–compression response of the anisotropic model (longitudinal 
[1], transverse [2], and volumetric [v] strains as functions of the compressive stress).
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damage is provided in a total strain format. It is computed after incremental
plastic strains have been obtained. Since the plastic yield function depends on
the effective stress, damage and plasticity can be considered separately (plastic
strains are not affected by damage growth). The difficulty is the numerical
integration involved in Eq. 15, which is carried out according to Simpson’s
rule or to some more sophisticated scheme.
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