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Abstract 

Traffic is one of the urban phenomena that have been attracting substantial interest in different scientific and industrial communities since many 
decades. Indeed, traffic congestions can have severe negative effects on people's safety, daily activities and quality of life, resulting into 
economical, environmental and health burden for both governments and organizations. Traffic monitoring has become a hot multi-disciplinary 
research topic that aims to minimize traffic's negative effects by developing intelligent techniques for accurate traffic states’ estimation, control 
and prediction. In this paper, we propose a novel algorithm for traffic state estimation from GPS data and using fuzzy switching linear models. 
The use of fuzzy switches allows the representation of intermediate traffic states, which provides more accurate traffic estimation compared to 
the traditional hard switching models, and consequently enables making better proactive and in-time decisions. The proposed algorithm has been 
tested on open traffic datasets collected in England, 2014. The results of the experiments are promising, with a maximum absolute relative error 
equal to 9.04%. 
 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Traffic is one of the urban phenomena that have been attracting substantial interest in different scientific communities for many 
decades. Indeed, traffic congestions can have severe negative effects on people's safety, daily activities and quality of life, resulting 
into economical, environmental and health burden for both governments and organizations. Traffic monitoring has become a hot 
multi-disciplinary research topic that aims to minimize traffic's negative effects by developing intelligent techniques for accurate 
traffic states estimation, control and prediction. Moreover, recent progress in information and communication technologies has 
dramatically changed traffic data acquisition techniques, leading to a switch from the traditional so-called Eulerian perspective to 
the Lagrangian one1. In the former perspective, fixed sensing equipments (e.g., loop detectors, video and radar cameras) are 
installed in fixed and pre-selected road parcels (segments) and / or intersections, and are used to collect traffic data in those 
particular segments / intersections (e.g., traffic flow and traffic density). This perspective is infrastructure-intensive and allows for 
traffic estimation only at certain locations of the transportation network. In the Lagrangian perspective, traffic data are collected 
by mobile sensors that are moving within the transportation network, which allows for covering the whole transportation network. 
The Lagrangian perspective can be implemented either in controlled or uncontrolled mode. In the controlled mode, dedicated 
vehicle probes are equipped with GPS receivers and communication links, and are exclusively used to move within the 
transportation network and collect traffic data. Where and when traffic data is collected is somehow controlled by probes' 
trajectories, but accurate results require a minimum penetration rate2. On the other hand, uncontrolled mode is based on the use of 
mobile phones of road' users as sensors to collect traffic data. This mode takes benefit of the progress in the mobile communication 
technology to provide cheaper data collection solutions that do not need additional infrastructure’s investment and maintenance 
costs, compared to the Eulerian and controlled Lagrangian approaches. However, relying on drivers' mobile phones to collect data 
raises one main challenge: the data collection process is opportunistic, in the sense that it is not possible to control where and when 
data will be collected in the transportation network. This depends both on the availability of the communication network (network 
coverage) and the presence of connected smart phones (switched-on) in space and time, leading to incomplete traffic data because 
of the gaps in the acquisition process. Moreover, due to the heterogeneity of measurement sources (in terms of accuracy, 
connectivity or redundant readings), the collected data are also noisy. Hence, a filtering pre-processing step is necessary to both 
remove noise and fill in the data gaps by estimating the missing traffic data. 
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In this paper, we address the problem of data incompleteness, and we propose a solution for real-time, short-term macroscopic 
traffic data estimation and prediction in the context of mobile sensor-based traffic data acquisition (Figure 1). In this solution, 
current traffic speed and density in every road parcel gi - denoted by d(gi, t) and s(gi, t), respectively- are sensed by drivers’ 
smartphones and sent to a central Intelligent Transportation System (ITS). The ITS stores the collected data in a Traffic Data 
Repository (TDR) and updates the parameters used for the estimation and prediction model. Then, the ITS calculates the predicted 
parcel’s density and speed (respectively denoted by d(gi, t+1) and s(gi, t+1)in Figure 1) and sends them back to end-users’ 
smartphones, along with the file containing current updated estimation parameters (denoted by Qt). The ITS also uses the updated 
parameters to estimate the missing traffic data and to fill the gaps in the TDR. In case there is no internet connection, the prediction 
can be carried out on the end-users' mobile phones, but using the last estimation parameters received from the ITS for the 
corresponding road parcel (denoted by Qt-1). The main contribution of our solution is the use of a Fuzzy Switching Linear Model 
to implement a novel smoothing algorithm for traffic data estimation / prediction. Indeed, several filtering algorithms have been 
proposed in the literature, including Kalman filtering3, ARIMA4, SARIMA5 and particle filtering6 approaches. To the best of our 
knowledge, fuzzy switching linear models have not been used in the existing filtering approaches, which attribute two main 
advantages to our algorithm. In the one hand, the algorithm is linear and has an efficient computation time. Hence, it is suitable for 
real-time applications, and it can be run on end-users’ smartphones if the internet connection is not available. On the other hand, 
the use of fuzzy switching techniques leads to more precise prediction results, given that it is possible to differentiate between 
more traffic states (e.g., slow, medium and heavy congestion), compared to the two common states in the classic switching models 
(congested vs. not congested). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: An architecture for smartphone-based real-time traffic data estimation and prediction. 
 

In this paper we only present our proposed estimation algorithm, and the paper is structured as follows. In Section 2 we introduce 
macroscopic traffic flow modeling concepts. In Section 3 we outline the problem of traffic data acquisition using mobile probes. 
The estimation algorithm is detailed in Section 4, while an experimental study is presented in Section 5. Section 6 concludes the 
paper and outlines our future work. 

2. Macroscopic traffic flow model 

The definition of a macroscopic model for road traffic is an important prerequisite for the implementation of efficient control 
and monitoring strategies. At a macroscopic level, traffic behaves as a complex and non-linear system governed by the underlying 
interactions between vehicles depending on unpredictable individual human reactions. Several mathematical models have been 
proposed to represent the dynamics of traffic state. One of the most studied models is the Cell Transmission Model (CTM) which 
predicts traffic state on a road lane from observed traffic parameters - such as flow and density - at a finite set of spatial and 
temporal points7. This model is implemented by subdividing the road lane into 𝑁 homogeneous parcels (or segments) called cells 
𝑐#, 0 ≤ 𝑖 ≤ 𝑁 (Figure 2). The length of each cell corresponds to the distance driven during the observation period by free flow 
traffic. Traffic state is evaluated in each cell on short term basis with respect to three evolving traffic variables: 

• Traffic average speed, denoted 𝑠)# , is the mean measured speed in cell 𝑐# at time stamp 𝑛. 
• Traffic average density, denoted 𝑑)# , is the number of vehicles in cell 𝑐# at time stamp 𝑛.  
• Traffic flow, denoted 𝑞)# , refers to the number of vehicles transferred from cell 𝑐# to cell 𝑐#-.at time stamp 𝑛. 

 



 

 

We use the following notations to describe the parameters of a traffic model: 
• 𝐹#(𝑛): is the outflow of the cell (𝑖 − 1); 
• 𝐴#(𝑛): is the flow that can be absorbed by the cell 𝑖; 
• 𝑄6,#: is the maximum flow from cell (𝑖 − 1) to cell𝑖. 

Let𝑠7,# be the free flow speed, 𝑑# 𝑛  the average vehicle density between times 𝑛 and	𝑛 + 1, 𝑑:# the maximum density allowed in 
cell	𝑖 (congestion density) and 𝑤<,# the backward congestion wave propagation speed. Then7: 

𝐹#(𝑛)=𝑠7,#𝑑#(𝑛); 
𝐴#(𝑛)=𝑤<,# 𝑑:# − 𝑑#(𝑛) ; 
𝑑# 𝑛 = min 𝐹# 𝑛 , 𝐴# 𝑛 , 𝑄6,#  

 

Figure 2: Cell transmission model for traffic flow on a highway. 

The CTM is depicted by the so-called Model Fundamental Diagram (MFD) which ties together the traffic variables (speed, 
density and flow). Figure 3(a) shows the shape of a MFD. Point O corresponds to the zero-density and zero-flow state while the 
point J refers to the zero-flow and jam density denoted as 𝑑ABC. Point M refers to the maximum-flow which corresponds to density 
𝑑CBE. The slope of tangent line [𝑂𝑣) gives the mean free flow speed𝑆7. The slope of the line (MJ) corresponds to the backward 
congestion wave propagation speed. The speed-density diagram (Figure 3(b)) also shows the relationship between speed and 
density. One common assumption in macroscopic traffic modelling consists in considering linear relationship between density and 
speed. However, other non-linear functions can be used in several practical contexts. Due to the intrinsic correlation of traffic 
variables as depicted by the MFD, the traffic flow state can be explicitly estimated by two free variables 𝑑)#  and 𝑠)# .  

 
  

(a) (b) 

Figure 3: Model fundamental diagrams: flow density diagram (a) and speed-density diagram (b). 

3. Traffic data collection using mobile probes 

Instantaneous traffic data (i.e., traffic speed and traffic density) are collected from end-users’ mobile devices embedding GPS 
sensors. Travelers’ locations are mapped to roads network, providing an estimation of traffic density. Travelers’ average speed is 
also recorded periodically on a short-term basis, allowing for a quite accurate estimation of traffic flow. The main drawback of 
relying on end-users’ locations only to estimate traffic flow is that many users can share the same vehicle which biases the accuracy 
of the estimated density. Likewise, measured average speed is not reliable since some drivers can slow down for various reasons 
such as vehicle breakdown. An efficient approach to improve traffic data acquisition's accuracy consists in aggregating both 
measures (i.e., traffic velocity and traffic density). The implementation of this approach requires a centralized framework in which 
a database is used to collect the aforementioned GPS data on a short-term basis (e.g., every 5-15 minutes).  



 

Table 1: Illustrative example of captured traffic data from users’ GPS devices. 

id IMEI Time Longitude Latitude Speed 
1 35377860998765 3/3/2017 4:00:00 17.025081  54.114485 70 
2 35377860998765 3/3/2017 4:01:00 17.025019 54.116405 73 
3 35377860990006 3/3/2017 4:01:00 17.025019 54.116405 74 
4 33889946845688 3/3/2017 4:02:00 17.025019 54.116335 68 
5 33556367688698 3/3/2017 4:02:00 17.025019 54.116337 73 

 
From the example in Table 1, we can derive traffic data at each time point. For example, on 3/3/2017 at 4:01:00 and location 

(17.025019, 54.116405), the recorded density is 2 vehicles and the average speed is 73.5 km/h. The acquired GPS coordinates are 
mapped into the roads network which allows a real-time data acquisition of traffic velocity and traffic density in each road segment. 
Two temporal series,𝑆.J = (S1, … , SM) and 𝐷.J = D1, … , DM , serve to keep a record of	𝑁instantaneous speed and density 
measures, respectively. 

Since the GPS floating sensors are not always connected, we expect several gaps in data acquisition for either traffic density or 
traffic average speed. Moreover, due to heterogeneity of measurement sources (in terms of accuracy, connectivity or redundant 
readings), we assume that the acquired data to be noisy and incomplete. Hence, a filtering/predicting algorithm is necessary not 
only to remove noise but also to fill in gaps in acquired data by estimating the traffic state and traffic patterns. In the following 
Section, we present our proposed filtering algorithm and scheme. 

4. Traffic data filtering scheme 

4.1. Gaussian observed fuzzy switching Markov models  

Let S1M = (S1, … , SM) andD1M = (D1, … , DM) be two random sequences taking their values in ℝQand ℝR respectively. Let R1M =
(R1, … , RM) be an auxiliary process taking its values in ℕ and representing the model switches. We assume that S1M is a hidden 
process referring hereafter to traffic speed and D1M is an observed process which corresponds to traffic data. Let us also assume that 
T1M = (S1M, R1M, D1M) is a stationary Markov chain and that p rX-. sX, dX, rX = p rX-. rX . 

The pairwise process Z.M = (S1M, D1M) follows a linear system called conditionally Markov switching hidden linear model 
(CMSHLM) defined as follows 10: 

 
SX-.
DX-.

=
A.(rXX-.) A](rXX-.)
A^(rXX-.) A_(rXX-.)

`(abbcd)

SX
DX

+
B.(rXX-.) B](rXX-.)
B^(rXX-.) B_(rXX-.)

f(abbcd)

UX-.
VX-.

,   

 
where A(rXX-.),B(rXX-.) are two matrices specifying the model parameters andUX-. and VX-. are Gaussian unit variance white 
noise vectors. 
The smoothing problem consists in the estimation of the hidden speed process S.M and the switches sequence	R.M from the observed 
density process D.M only. However, fast smoothing is not workable in CMSHLM without setting assumptions on the parameters 
setsA(rXX-.) and B(rXX-.)11. Several CMSHLM variants have been derived to allow fast smoothing such as conditionally Gaussian 
observed Markov switching model (CGOMSM) in which	A^ rXX-. = 0. In classical CGOMSMs, we assume that each switch 𝑟) 
belongs to a finite set of K switches denoted as Ω = {1, … , 𝐾} allowing for modelling dynamic regime switching processes with a 
different set of parameters for each switch to depict nonlinear dynamic patterns. The main drawback of this hard switching model 
is that it is not adapted for several practical contexts since it does not take into account the transient parameters switching. To 
overcome the discontinuity of CGOMSM, a fuzzy approach has been proposed by Bouyahia et al.8, in which it is assumed that 
each switch is a mixture of more than one hard component in Ω. The corresponding model is called conditionally Gaussian observed 
switching Fuzzy Markov model (CGOFMSM). 
For the sake of simplicity, we will consider that the set of hard components is limited to two jumps, i.e.,	Ω = 	 {0,1}. Under this 
assumption, each switch 𝑟) takes its values in [0,1]. If we denote by 𝜀)p (resp. 𝜀).) the contribution of the hard switch 0 (resp. 1) of 
the switch 𝑟)	with 𝜀)p, 𝜀). ∈ [0,1]], we can simply write –without loss of generality- 𝑟)	 = 𝜀) where 𝜀) = 𝜀). = 1 − 𝜀)p. 
The parameters of the interpolated fuzzy model are expressed using a bilinear function as follows: 

A ε.] = 1 − ε. A 0,0 + ε.A 1,0 1 − ε] + 1 − ε. A 0,1 + ε.A 1,1 ε] 
B ε.] = 1 − ε. B 0,0 + ε.B 1,0 1 − ε] + 1 − ε. B 0,1 + ε.B 1,1 ε] 

4.2. Parameters estimation 

Parameter estimation is achieved using the Expectation-Maximization (EM) algorithm. The algorithm consists in a sequence of 
𝑄 iterations aiming at maximizing the likelihood of the observed sequence during time interval [1, N]9. 



 

Initially, a K-means clustering method is used to assign each pair 𝑠#∗, 𝑑#∗  to one of the 2 + F clusters. Let 𝜑#p(𝑙) = 1, if (𝑠#∗, 𝑑#∗) 
belongs to the cluster 𝑙 and 0 otherwise ∀1 ≤ 𝑙 ≤ 2 + F, 1 ≤ 𝑖 ≤ 𝑁. Let us also set ∀1 ≤ 𝑖 ≤ 𝑀 − 1, 𝜓#p 𝑙, 𝑘 = 𝜑#p(𝑙)×𝜑#-.p (𝑘). 

For each iteration 𝑞 > 1, we successively perform the following items: 
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(ii) Compute the forward-backward probabilities defined as follows: 

α. k = p~�
R p s.∗, d.∗ r. = l

.

p

𝑑𝜈(𝑟.); 	α�-. l = α� k δ�
R(k, l)γ(k, l)𝑑𝜈(α� k )

.

p

 

β� l = 1;	β� k = β�-. l δ�
R(k, l)γ(k, l)𝑑𝜈(β�-. l )

.

p

 

Where z��-. = (s�∗, d�∗, s�-.∗ , d�-.∗ )⊺,δ�
R k, l = p(s�-.∗ , d�-.∗ |r� = k, r�-. = l, s�∗, d�∗) and	γ(k, l) = p~�

R p~�
R]-�

��. . 

(iii) Compute ψ�
R k, l =

�� ~ ��
�(~,�) �cd � ¡(~,�)

�� ~∗ ��
�(~∗,�∗) �cd �∗ ¡(~∗,�∗)�∗,�∗
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(iv) LetΓ£¤ =
Γ£
E,E Σ£¤

E,¦

Σ£¤
¦,E Γ¤

¦,¦ , compute matrices A(rXX-.) and B(rXX-.) using the following formulae: 

A rXX-. = 	 Σ£¤
¦,EΓ£

E,E�.;B rXX-. = 	 Γ¤
¦,¦ − A rXX-. Σ£¤

E,¦. 

Remark: It is not always possible to derive a closed form formula for the integration with respect to	𝜈(𝑟)). Hence, we will use the 
following approximation: ℎ 𝑡 𝑑𝜈 𝑡 ≈ ℎ 0 + .

ª
ℎ A

ª
+ ℎ(1)ª�.

A�.
.
p . This approximation relies on a finite set of 𝐹 discrete fuzzy 

levels (see Figure 5). Using this approximation scheme, fast smoothing is achieved with a set of parameters estimated for 2 + 𝐹 
discrete components. Furthermore, we do not have an efficient computational scheme to determine the optimal number of fuzzy 
levels 𝐹. However, we underline that the larger is	𝐹, the more accurate are smoothing results and the higher is the computational 
cost. 

4.3. Fast smoothing in CGOFMSM 

Smoothing within the framework of CGOFMSM consists at first place in computing the probability 𝑝(𝑟)-.|𝑑.J), the mean 
vector𝔼 𝑆)-.|𝑟)-., 𝑑.J , and the variance matrix 𝔼 𝑆)-.𝑆)-.⊺|𝑟)-., 𝑑.J  from	𝑝(𝑟)|𝑑.J), 𝔼 𝑆)|𝑟)-., 𝑑.J  and𝔼 𝑆)𝑆)⊺|𝑟)-., 𝑑.J . 
Since (𝑅.J, 𝐷.J) is assumed to be a Markov chain, it is possible to achieve the computation of	𝑝(𝑟))-.|𝑑.)-.). Indeed, we have: 
 

 𝑝 𝑟))-. 𝑑.)-. = ®( °̄°cd,±°cd|±d°)
®(±°cd|±d°)

=
® 𝑟) 𝑑.) ®( °̄cd,±°cd| °̄,±°,²°)
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=
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Moreover, using the fuzzy model, we can write: 

𝑝 𝑑)-. 𝑑.) = 𝑝 𝑟) 𝑑.) 𝑝 𝑟)-. 𝑟) 𝑝 𝑑)-. 𝑟))-., 𝑑)
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.

p
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𝑝 𝑟)-. 𝑟) isgiven and𝑝(𝑑)-.|𝑑), 𝑟))-.)is follows a Gaussian distribution with mean A_ rXX-. dXand 
varianceB^ rXX-. B^ rXX-. ⊺ + B_ rXX-. B_(rXX-.)⊺.Then eq. (1) gives: 
 𝑝 𝑟)-. 𝑑.)-. = .

®(±°cd|±d°)
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Besides, 

 𝑝 𝑟) 𝑟)-., 𝑦.)-. =
® 𝑟) 𝑟)-., 𝑦.)-.
®( °̄cd|¦d

°cd)
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Optimal fuzzy switching fast smoother(OFSFS) runs as follows:  

(i) compute 𝑝(𝑟)-.|𝑦.)-.)          (4) 

(ii) compute 𝔼 𝑍)-.|𝑟))-., 𝑑.) = 	A(rXX-.)
𝔼 𝑆)|𝑟))-., 𝑑.)

dX
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(iii) compute 𝔼 𝑆)-.|𝑟))-., 𝑑.)-. = 𝔼 𝑆)-.|𝑟))-., 𝑑.) + 𝜉(𝑟))-.)𝜒(𝑟))-.)�. 𝑑)-. − 𝔼 𝐷)-.|𝑟))-., 𝑑.)  
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Figure 4: Example of hard and fuzzy switching traffic state models (level 1	corresponds to traffic congestion and 0 represents free flow traffic). 

4.4. Qualitative interpretation of smoothed data 

One novelty in our work consists in assigning to each time interval a qualitative description of traffic data. In fact, the proposed 
switching regime model provides an easily interpretable traffic flow state. For example, the use of 2 hard switches corresponds to 
two traffic states (traffic congestion and free traffic). The use of fuzzy switches allows a representation of transient traffic states, 
which does not only provide more efficient estimation of traffic data but also enables proactive measures for decision makers. For 
example, a gradual transition from free traffic to traffic bottleneck can be observed by a sequence of transitional states during a 
lapse of time long enough to avoid irretrievable congestion state. Figure 5 shows an example of traffic state evolution switching 
model. The use of steep switching model does not allow a progressive representation of traffic state evolution. 

5. Experimental Study 

5.1. Experimental setup 

In order to evaluate the efficiency and the accuracy of our proposed fuzzy fast traffic data estimator, we used online highway 
traffic data captured on several segments of England express ways from January 1st 2014 to January 31st 2014.The data sets provide 
the average density and speed with a temporal frequency of 15 minutes. These data have not been collected by mobile sensors, but 
according to the Eulerian perspective. However, we used them to evaluate the performance of the proposed algorithm on real traffic 
data. The same algorithm can be applied if traffic density is derived from GPS data captured from end-users’ smartphones or on-
board car GPS sensors. The objective is to estimate traffic velocity from traffic density. Traffic data from January 1st 2014 to 
January 20th 2014 were extracted to serve as historical data for parameters estimation. Traffic density data from January 21st 2014 
to January 30th 2014 are used to estimate the equivalent traffic speed data. The accuracy of the estimation algorithm is evaluated 
using the mean absolute percentage error defined as follows: 

𝑚 =
1
𝑁

𝑠) − 𝑠)
𝑠)

,
J

)�.

 

where 𝑠) is the estimated traffic velocity and 𝑠) is the real one. 

Let us denote by 𝑚½ and 𝑚ª the mean absolute percentage error of hard smoother and fuzzy smoother respectively. Table 2 
reports the results. We notice that our smoothing algorithm yields encouraging results with an absolute relative error which does 
not exceed 9.04% (Site 105). Figure 5 illustrates the trajectories of real data together with estimated process. Unsurprisingly, we 
notice that the fuzzy smoothed data are more accurate than those estimated by the hard estimator. Our smoother is also able to 
detect highway traffic bottlenecks from vehicle density fluctuations. Figure 6 shows the trajectories of estimated switches depicting 
the variation of traffic speed. In order to evaluate the ability of our proposed model to withstand unpredictable fluctuations of 
traffic data (density and speed), we focused on measures corresponding to irregular traffic pattern. We noticed that our fuzzy 
smoother detected congested states more accurately than the hard counterpart. 

Table 2: Mean relative error of speed from 1/2/14 to 4/2/2014 (450 samples). 

 Site 104 Site 1048 Site 1049 Site 105 Site 1050 
𝑚ª�¾(%) 4.15 5.45 5.62 6.03 5. 11 



 

𝑚ª�.(%) 6.40 6.7 6. 22 7. 16 6.34 
𝑚½	(%) 6.97 7.33 8.03 9.04 7.08 

 

 

Figure 5:Traffic data  estimation  results for Site 1048(a) and Site 105 (b) datasets. True traffic average speed (black, solid), estimated traffic speed using fuzzy 
smoother (red, solid) and estimated data using hard smoother (green, dashed). 

Figure 6:Estimated fuzzy switches using hard smoother and 6 levels fuzzy smoother for traffic speed estimation using CGOFMSM on 2014 Site 105. 

6. Conclusion and future work 

In this paper, we proposed a novel algorithm for traffic state data estimation from GPS data and using fuzzy switching linear 
models. The use of fuzzy switches allows the representation of intermediate traffic states, which provides more accurate estimation 
of traffic data compared to the classical hard switching models, and consequently gives the ability to propose better proactive and 
in-time decisions. The proposed algorithm is unsupervised and performs in reasonable time which motivates its usability in. The 
algorithm has been tested on open traffic datasets collected in England, 2014. The results of the experiments are promising, with a 



 

maximum absolute relative error of about 9%. However, more experiments are required in order to evaluate the performance of 
the algorithm with mobile probes, either using end-users' smartphones or GPS-equipped vehicles.  
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