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Abstract. In this paper, we propose a novel method for image labeling
of colorectal Narrow Band Imaging (NBI) endoscopic images based on a
tree of shapes. Labeling results could be obtained by simply classifying
histogram features of all nodes in a tree of shapes, however, satisfac-
tory results are difficult to obtain because histogram features of small
nodes are not enough discriminative. To obtain discriminative subtrees,
we propose a method that optimally selects discriminative subtrees. We
model an objective function that includes the parameters of a classifier
and a threshold to select subtrees. Then labeling is done by mapping
the classification results of nodes of the subtrees to those corresponding
image regions. Experimental results on a dataset of 63 NBI endoscopic
images show that the proposed method performs qualitatively and quan-
titatively much better than existing methods.

1 Introduction

Colorectal cancer has been one of the major cause of cancer death in many
advanced countries [1]. For early detection of colorectal cancer, colorectal en-
doscopy (colonoscopy) with Narrow-Band Imaging (NBI) system is widely used,
where endoscopists observe the condition of tumor displayed on a screen. How-
ever, because of intra/inter-observer variability [2—4], the visual inspection of a
tumor depends on the subjectivity and experience of endoscopists. Therefore, de-
veloping a computer-aided diagnosis system that provides objective measure of
tumor to endoscopists would be greatly helpful [5]. To develop such a computer-
aided system, Tamaki et al. [6] have proposed a recognition system to classify
NBI endoscopic image patches into three-types (types A, B, and C3) based on
the NBI magnification findings [4,7] (see Figure 1). Furthermore, this system
has been extended to a frame-wise recognition that classifies the center patch
of each endoscopic video frame and shows classification results on a monitor
by a frame-by-frame manner [8]. Although these systems have achieved high
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Type A ") Microvessels are not observed or extremely opaque. . . .
Type B Fine microvessels are observed around pits, and clear pits
yp can be observed via the nest of microvessels.
Microvessels comprise an irregular network, pits observed ;. |
1 via the microvessels are slightly non-distinct, and vessel
diameter or distribution is homogeneous. &4
Microvessels comprise an irregular network, pits observed
Type Cl2 - via the microvessels are irregular, and vessel diameter or
T~/ distribution is heterogeneous.
Pits via the microvessels are invisible, irregular vessel
3 diameter is thick, or the vessel distribution is
heterogeneous, and a vascular areas are observed.

Fig. 1. NBI magnification findings [7].

recognition rate and have been confirmed its medical significance, an important
limitation lies in the fact that they can only a part of images of the frame. For
instance, in case that a tumor is not in the center of the frame or multiple tumors
exist in the frame, these systems cannot provide appropriate objective measures.
Therefore, recognizing an entire endoscopic image would be a further assistance
for endoscopists during examinations, and could be used to train inexperienced
endoscopists.

In this paper, we aim to assign labels each pixel in an entire NBI endoscopic
image. Also for the same purpose, previously we proposed an image labeling
method for endoscopic images that uses a posterior probability obtained from
an SVM classifier trained with a Markov Random Field (MRF) [9], but the
obtained results were not satisfactory enough. One reason lies in the large vari-
ation of the texture caused by geometrical and illumination changes. Colorectal
polyps and intestinal walls are not flat but undulating (wave-like or spherical
shapes). Furthermore, endoscopic images have high contrast textures due to the
lighting condition of the endoscope. In such a circumstance, recognition meth-
ods would fail because texture descriptors such as BoVW, Gabor, wavelet, and
LBPs become unstable to be computed. Another reason is the lack of spatial
consistency of MRF framework. In general, object shapes and boundaries are
roughly modeled by the pairwise term of an MRF model with edges in the im-
age. However NBI endoscopic images used in our task often do not have clear
boundaries between categories and therefore it would be difficult to model the
edge information by the MRF.

Towards a robust texture representation, Xia et al. [10] proposed a texture
descriptor, shape-based invariant texture analysis (SITA), based on a tree of
shapes [11]. SITA consists of histograms of texture features computed from all
nodes in a tree of shapes. Thanks to the hierarchical structure of a tree of
shapes, SITA has the invariance to local geometric and radiometric changes. In
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classification and retrieval experiments with texture image datasets, SITA was
shown to achieve a better performance.

Inspired by the work of Xia et al. [10], we propose here a novel image label-
ing method for texture images using a tree of shapes. The basic idea is to com-
pute histograms of texture features, such as SITA, at every node. Histograms of
nodes are then classified to assign labels to the corresponding pixels. However,
histograms of smaller nodes close to leaf would be less informative for classifica-
tion. Therefore, our method aims to find subtrees having nodes discriminative
enough for classification. We then introduce a threshold for selecting discrim-
inative subtrees and formulate a joint optimization problem of estimating the
threshold and training a classifier.

The rest of this paper is organized as follows. Section 2 reviews related med-
ical and morphological work. Then, a tree of shapes and the SITA textures
descriptor are briefly introduced in Section 3. We formulate the problem in Sec-
tion 4. Section 5 shows some experimental results with an NBI endoscopic image
dataset. Finally, we conclude this paper in Section 6.

2 Related work

Polyp segmentation is a well studied task in endoscopic image analysis. Gross
et al. [12] proposed a segmentation method of NBI colorectal polyps using the
Canny edge detector and Non-Linear Diffusion Filtering (NLDF), which is the
first attempt for polyp segmentation of NBI endoscopic images. Ganz et al. [13]
proposed Shape-UCM, an extension of gPb-OWT-UCM [14] for segmentation of
polyps in NBI endoscopic images. Shape-UCM solves a scale selection problem
of gPb-OWT-UCM by introducing a prior about the shape of polyps. Collins
et al. [15] proposed a method using Conditional Random Field (CRF) with
Deformable Parts Model (DPM) and a response of positive Laplacian of Gaussian
filter (negative responses clipped to zero). Some other methods using watershed
and region merging [16] or GrabCut [17] have proposed.

A popular approach for polyp segmentation is the use of active contours.
Breier et al. [18] proposed a method for localizing colorectal polyps in NBI
endoscopic images. They assumed that polyps appear as convex objects in a
image, and introduced active rays to obtain a smoother contour. Figueiredo et
al. [19] proposed a segmentation method for assessing the aberrant crypt foci
captured by an endoscope. They used variational level sets and active contours
without the edge model of Chan and Vase [20].

All of the above existing methods try to find contours between polyps and
non-polyp intestine walls. Instead, we aim to assign labels conditions of cancer
to pixels. To avoid confusion, we mention the term segmentation for finding con-
tours and labeling for assigning pixel labels like as our task. The most similar
task to ours is one conducted by Nosrati et al. [21]. To increase a surgeon’s vis-
ibility in an endoscopic view, they label visible objects (such as tumors, organs,
and arteries) in an endoscopic video frame. Their approach is based on trans-
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ferring 3D data into 2D images. The pose and deformation of objects estimated
from preoperative 3D data are aligned into 2D images.

In the field of computer vision, image labeling is a well studied task and many
methods have been proposed including ones using CNN features. Farabet et al.
[22] proposed a labeling method for scene parsing. Their approach assigns esti-
mated labels to pixels, and then refines the results using superpixels, CRF, and
optimal-purity cover on a segmentation tree. Long et al. [23] used a fully convo-
lutional network trained in a end-to-end manner, and some more methods have
been proposed [24-26]. Although these methods have achieved high accuracies,
these need a large amount of training samples, which is impractical to medical
image analysis; in general, it is difficult to collect a large amount of medical data
in a short period of time. If fact, we have only a dataset of 63 NBI endoscopic
images (described in Section 5). In contrast, our method trains classifiers with
histogram features from thousands of nodes in a tree of shapes, hence requires
relatively few training images.

In the field of mathematical morphology, a hierarchical representation, so-
called morphological tree, is a popular framework, and a number of hierarchical
trees have been proposed such as min/max-trees [27, 28], binary partition trees
[29], minimum spanning forests [30], and tree of shapes [11]. Morphological trees
have been applied to various images. One of the most popular application is
biomedical imaging [31-33].

Meanwhile, Xia et al. [10] focused on the natural scale-space structure and
invariance for contrast change of tree of shapes, they proposed a texture de-
scriptor based on tree of shapes (details are described in Section 3.2). To the
best of our knowledge, this is the first attempt to make texture descriptor from
tree of shapes. Then, another texture descriptors based on tree of shapes have
been proposed. Liu et al. [34] introduced a bag-of-words model of the branches
in a tree of shapes and represented co-occurrence patterns of shapes. He et al.
[35] adopted a basic idea of LBP, and proposed a texture descriptor. It divides
a concentric circle of a shape into fan-based regions and computes the ratio of
occlusion of a shape for each region. Histogram is computed from these ratios.
However, these works handle only texture patch classification and retrieval and
ignore multiple textures in a single image.

3 Tree of shapes and texture feature

In this section, we briefly introduce the definition of the tree of shapes and the
SITA histogram features.

3.1 Tree of shapes

A tree of shapes [11] is an efficient image representation in a self-dual way.
Given an image u : R?2 — R, the upper and lower level sets of u are defined as
xa(u) = {x € R?|u(z) > A} and x*(u) = {z € R%|u(x) < A} respectively, where
A€eR.
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Fig. 2. An example of a synthetic image (left) and corresponding tree of shapes (right).
Alphabets denote the correspondence between blobs and tree nodes.

From these level sets, we can obtain tree structures 7>(u) and 7<(u) that
consist of connected components of upper and lower level sets: T>(u) = {I" €
CC(xx(u))}x and T=(u) = {I" € CC(x*(u))}» where CC is an operator giving a
set of connected components.

Furthermore, we define a set of upper shapes S>(u) and lower shapes S<(u).
These sets are obtained by the cavity-filling (saturation) of components of 7> (u)
and T<(u). A tree of shapes of u is defined as the set of all shapes defined as
G(u) = S>(u) USc(u).

Thanks to the nesting property of level sets, the tree of shapes forms a
hierarchical structure. Figure 2 shows an example of a tree of shapes. Given an
image u whose image size is A. Let T'= {V, E'} be a tree of shapes where V' is a
set of nodes, E a set of edges, n; € V be nodes in the tree of shapes. We define
parent and children nodes of n; as Pa(n;) = {ng|(nj,n;) € E,a; < ai} and
Ch(n;) = {ni|(n;,nx) € E,a; > ay} respectively, where a; is area of n;.

3.2 Shape-based invariant texture analysis

Xia et al. [10] proposed a texture descriptor based on the tree of shapes, Shape-
based Invariant Texture Analysis (SITA). It consists of four shape features of
the blob corresponding to a node.

Let s; be a blob of n;. The (p + ¢)-th order central moment pg, of s; is
defined by

fipq(s;) = //SJ (z; — ;)P (y; — ;) da;dy;, (1)

where (Z;, ;) are the center of mass of s;.
The normalized (p + ¢)-th order moments are

N Fpq(85)
Tpa(87) = poo(s;j)(Ptat2)/2” (2)
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Then, two eigenvalues Aq;, Ag; (A1; > Ag;) of the normalized inertia matrix are
computed as
_ N2y

-3 9

€

and
1

477\ / )\1]‘ )\gj ’
where ¢; is elongation and x; is compactness. These are two shape features of a
blob.

The third feature a(s;) is computed from blob sizes and the parent-children
relationship defined as

(4)

Kj

Ho0(55)

Oé(sj> ZskepaM(sj) ,LLOO(Sk)/M, (5)
where PaM (s;) = {sy,¥m € (1,..., M)} is a set of M-th ancestor blobs. This
feature is the ratio of blob sizes between s; and the ancestor blobs, which is
called a scale ratio. According to [10], we set M = 3 in our method.

The last feature is a normalized gray value computed for each pixel z in the
image u as follows
u(x) — meang(y)(u)

varg(z)(u)

V(z) = (6)
where s(z) is the smallest blob containing . mean,(,y(u) and varyg(u) are
mean and variance of pixel values over s(x).

These are computed on every nodes (hence blobs) in the tree of shapes. The
first three features are computed at all nodes, and the last feature is computed
for all pixels in the image. Histograms of each feature are then constructed.
These histograms are concatenated to form the SITA texture descriptor of the
image, which is invariant to local geometric and radiometric changes because of
the hierarchical structure of the tree of shapes.

4 Proposed method

In this section, we develop a method for selecting discriminative subtrees in a tree
of shapes by using SITA at each node. Figure 3 shows an overview of the proposed
method. In the training phase, the histogram features of all nodes are used for
train a classifier and estimate a size threshold. In the labeling phase, histogram
features of only nodes whose sizes are larger than the estimated threshold are
classified to assign labels to the nodes, then map to the corresponding blobs.
Hereafter, we introduce the details of the proposed method.

We extend basic notions of the tree of shapes defined for a single image to
that for a set of images. Let {u;}X, be a set of images and A; be the image
size of i-th image u;. A tree of shapes of image u; is defined as T; = {V;, E;},
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Fig. 3. Overview of the proposed method.

where V; is a set of nodes and E; a set of edges. Each node n;; € V; has the
corresponding label y;; € {—1,1} and the area a;; of the corresponding blob.

Herein, we explain the details of the histogram feature used in our method.
In the work of Xia et al., a SITA descriptor is computed as a histogram feature
for a given image. This means that the SITA is computed at the root node
of the tree by aggregating feature from all descendant nodes. In contrast, our
method constructs the histogram features at all nodes of the tree. Let g(n;;)
be a histogram computed by the features from node n;; only. Then the total
histogram h(n;;) of node n;; is computed recursively as

h(nij) = g(nij) + Z h(nik)’ (7>

nikECh(ngj)

then normalized to have a unit L1 norm. This means that h(n;;) is computed in
a bottom-up manner, i.e., the computation is done from leaf nodes to the root
node. For the sake of simplicity, we denote h(n;;) as h;;.

As we mentioned, discriminative subtrees useful for labeling are expected
to exist in the tree of shapes. Figure 4 shows examples of labeling results with
different subtrees. If we use smaller, less discriminative subtrees (such as leaf
nodes), labeling fails; Using subtrees with large size nodes (e.g. the root node),
labeling wouldn’t be satisfactory because such nodes correspond to a large part
of the image. Therefore, we introduce a threshold 6 to node sizes for select-
ing discriminative subtrees, and define the objective function to estimate 6 and
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Testimage small medium large
Threshold

SR
&

Fig. 4. Examples of labeling results using subtrees with different node sizes. Subtrees
used for labeling are decided by an estimated threshold.

classifier parameters as follows:

1

B(0,w,b) = |[w]® + 577

. Zmu(@ ¢ (yij(w" hij + b)) + Az (8)

where w and b are the weight and bias of an SVM classifier, respectively. The
first term denotes a regularizer for the weight. The third term /\% is a regularizer

for the threshold ¢, where X is a scale parameter and A = + Ziv Aj; is the mean
size of N training images. £(-) is the hinge loss function of the SVM classifier.

m;;(0) represents the sample weight for h;;. In our method, we need to select
the threshold 6 to find discriminative subtrees. In other words, we have to use
histograms of nodes whose area is larger than 6, otherwise ignore. Therefore, we
define m;;(0) as a step function;

miy(0) = {0 i 0y <6 (9)

1 otherwise

4.1 Optimization

Given a training data, we need to estimate 0, 113,13 by minimizing the cost func-
tion;

0,w,b = argmin E (6, w, b) . (10)
6,w,b

However, it is difficult to estimate all parameters at once. Therefore, we use
block-coordinate decent to solve this optimization; estimate the threshold 6 and
the classifier parameters w, b iteratively. For estimating 6, we solve

Gk :argminE(G,wk_l,bk_l). (11)
6

This problem is non-convex because ¢ depends on histograms h;;. However, we
experimentally confirmed that the cost function is rather smooth and have a
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Fig. 5. Examples of images in the NBI endoscopic image dataset. Upper row shows NBI
images and bottom row shows corresponding masks. White color of the mask represents
foreground and black represents background. The left-most image is a negative sample
which doesn’t have any foreground region.

single minimum (details are discussed in Section 5.1). For estimating w and b,
we solve
W11, bg+1 = argmin E (0, w, b). (12)
w,
This is an SVM formulation with sample weights, which is convex. For a large
number of training samples, it would be difficult to obtain a nonlinear SVM
problem within a practical time, therefore we solve the SVM in a primal domain
by using the primal solver of LIBLINEAR [36].
We stop the alternation when 6 converges with the termination criterion of

|9k — ak—l‘ < €. (13)

4.2 Labeling procedure

After training phase, we label a test image as follows. First, we classify his-
tograms h;; of nodes n;; if a;; > 6, that is, the node are larger than the thresh-
old, then assign the estimated labels to the nodes n;;. For smaller nodes, we
assign the label of their parent node. This procedure is done from the root node
down to the leave nodes. Once labels are assigned to every nodes, labeling results
are obtained by mapping labels of nodes into the corresponding blobs.

5 Experimental results

We have prepared a dataset of 63 NBI endoscopic images. Example images in
the dataset are shown in Figure 5. Sizes of images are 1,000 x 870 pixels. There
are two label categories (foreground and background) based on the NBI magnifi-
cation findings (see Figure 1). Foreground regions correspond to polyps of types
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Fig. 6. Energies at each iteration. Horizontal axis shows 6 value and vertical axis shows
energy. Colorized curves are energies of each iteration. Initial value of 6y = 1000 is used,
A = 1.0 is fixed.

B and C, and background regions are others (type A polyps, normal intestinal
walls, and uninformative dark regions). Among 63 images, 20 images are nega-
tive samples which don’t contain any foreground regions; the left-most image in
Figure 5 captures only a hyperplastic polyp (i.e. benign tumor and non-cancer,
hence Type A) labeled as background. A tree of shapes created from an NBI en-
doscopic image contains a large number of nodes. The average number of nodes
from images in the dataset is 24,070. We randomly divided the dataset into half
for training and test. We set parameters A as 1.0 and initial value of threshold
0y as 1000.

We used two methods for comparison. One is to simply classify histograms
of nodes in a tree of shapes and assign labels to pixels, which is corresponding to
m;;(#) = 1in Eq. (8). This is a simple application of SITA for every nodes and is
an obvious extension, while our proposed method is not. In the following experi-
ments, we refer this method as conventional method. The other is a patch based
segmentation method using MRF and posterior probabilities obtained from a
trained SVM classifier [9]. For training SVM, we used 1,608 NBI endoscopic
image patches (type A: 484, types B and C3: 1,124) trimmed and labeled by
endsocpists. In this method, densely sampled SIFT features are extracted from
these patches and converted as BoVW histograms. BoVW histograms are then
used for training an SVM classifier. Small square patches corresponding to each
site of the MRF grid are classified to obtain posterior probabilities used as the
MRF data term. The MRF energy is minimized by Graph Cut for obtaining
labeling results.
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The number of nodes: 11,784

The number of nodes: 14,318

The number of nodes: 37,754

The number of nodes: 23,745

The number of nodes: 20,876

Fig. 7. Labeling results. From left to right: test image, ground truth, labeling result of
SVM-MREF [9], conventional, and proposed. The number of nodes in the trees of shapes
created from test images are shown below the images. Red color represents foreground
and blue background. Black color of SVM-MREF results represents unlabeled region due
to the boundary effect.

5.1 Labeling results of NBI endoscopic images

Figure 6 shows the cost function values over different threshold at each iteration
in the training phase. We can see that the minimum of the cost function become
smaller and threshold 6 converges.

Figure 7 shows labeling results. As we mentioned above, we used the half of
dataset (31 images) are used for training. The total number of nodes for training
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Table 1. Dice coefficients of labeling results.

Method dice coefficient
SVM-MRF [9] 0.555
conventional |0.522 + 0.056

proposed | 0.633 £ 0.041

is 747,937 and the primal solver for SVM training is necessary. The numbers of
nodes of each test images are also shown in Figure 7. In SVM-MRF segmentation,
labeling results are poor because the accuracy of MRF-based approaches highly
depends on the data term. In other words, failures by the SVM classifier have the
large impact on the poor accuracy. The conventional method provides cluttered
labeling results because it classifies even small nodes. For instance, in the first two
rows shows that the results of the conventional method provide small foreground
regions. Meanwhile the proposed method can suppress the cluttered labels by
selecting discriminative subtrees. In the middle and last two rows, foreground
shapes of the proposed results are similar to the ground truth.

For quantitative evaluation, we used the dice coefficient [37]. Table 1 shows
dice coefficients of each method. For conventional and proposed methods, we
tested the procedures mentioned above repeatedly ten times and for the SVM-
MRF method we tested only once. Note that the dice coefficient is calculated
only for samples containing foreground. We can see that the proposed method
outperforms the other two methods because using discriminative subtrees sup-
presses cluttered labels.

The proposed method outperforms the others in both the qualitative and
quantitative evaluations. However, we need to discuss failure labeling results.
Some failure examples are shown in Figure 8. In the case of top row, the image
is almost labeled as foreground. A possible reason is that the used histogram is
simply constructed from four low level features, which might be too few to be
discriminative enough. Therefore, using richer texture features is included in our
future work. The proposed method labels as background inside of the foreground
region in the middle row. In our method, subtrees are selected by one threshold,
but optimal thresholds may be different for different images, which is a limita-
tion of the proposed method. Results of bottom row provide small foreground
labels, which correspond to specular reflections (highlight) and the surrounding
regions. Because highlights are large area nodes, texture features extracted from
highlights may affect classification results, and dealing with highlights is also
one of our future work.

About the computational time, our python implementation of the proposed
method takes about 600 seconds for training and about 70 seconds for labeling
an image. Although we handle ten thousand and more samples, our method can
be trained within a practical time.
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The number of nodes: 66,627

The number of nodes: 16,595

The number of nodes: 29,048

Fig. 8. Some failure examples. From left to right: test image, ground truth, labeling
result of SVM-MRF [9], conventional, and proposed. The number of nodes in a tree
of shapes created from the test image is shown in the bottom of images. Red color
represents foreground and blue background. Black color of SVM-MRF results represents
unlabeled region due to boundary effect.

6 Conclusion

In this paper, we proposed an image labeling method for NBI endoscopic images
using a tree of shapes and histogram features derived from the tree structure.
Our method selects optimal discriminative subtrees for tree node classification.
This is formulated as a simultaneous optimization problem for estimating the
threshold and classifier parameters and is solved via iterative block-coordinate
decent. Then, we label images using the estimated parameters and the tree of
shapes, by classifying each node from the root node to leave nodes, and mapping
classification results into pixels. Experimental results on NBI endoscopic images
show that the proposed method outperforms conventional methods and provides
more reliable results.

Our future work includes improving the sample weights, extending to a multi-
class problem, and seeking a more effective way of the labeling procedure using
the hierarchical structure.
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