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Introduction

Distributed computing deals with a jungle of models, parameterized by types of failures, synchrony assumptions and communication primitives. Determining relative computability power of these models ("is model A more powerful than model B?") is an intriguing and important problem.

This paper deals with shared-memory models in which a set of crash-prone asynchronous processes communicate via invoking operations on a collection of shared objects, which, by default, include atomic read-write registers.

Topology of wait-freedom. The wait-free model [START_REF] Herlihy | Wait-free synchronization[END_REF] makes no assumptions on when and where failures might occur. Herlihy and Shavit proposed an elegant characterization of wait-free (read-write) task computability via the existence of a specific simplicial map from geometrical structures describing inputs and outputs [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF].

A task T has a wait-free solution using read-write registers if and only if there exists a simplicial, chromatic map from some subdivision of the input simplicial complex, describing the inputs of T , to the output simplicial complex, describing the outputs of T , respecting the task specification ∆. In particular, we can choose this subdivision to be a number of iterations of the standard chromatic subdivision (denoted Chr, Figure 1a).

Therefore, the celebrated Asynchronous Computability Theorem (ACT) [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF] can be formulated as:

A task T = (I, O, ∆), where I is the input complex, O is an output complex, and ∆ is a carrier map from I to sub-complexes of O, is wait-free solvable if and only if there exists a natural number and a simplicial map φ : Chr (I) → O carried by ∆ (informally, respecting the task specification ∆).

The output complex of the immediate snapshot (IS) task is precisely captured by Chr [START_REF] Borowsky | A simple algorithmically reasoned characterization of wait-free computation (extended abstract)[END_REF]. By solving the IS task iteratively, where the current iteration output is used as the input value for the next one, we obtain the iterated immediate snapshot (IIS) model, captured by iterations of Chr. The ACT theorem can thus be interpreted as: the set of wait-free (read-write) solvable task is precisely the set of tasks solvable in the IIS model. The ability of (iteratively) solving the IS task thus allows us to solve any task in the wait-free model. Hence, from the task computability perspective, the IS task is a finite representation of the wait-free model. (a) Chr(s), the standard chromatic subdivision of a 2-simplex, the output complex of the 3-process IS task.

(b) In blue, R1-res , the affine task of 1-resilience for a 3-process system. Adversaries. Given that many fundamental tasks are not solvable in the wait-free way [START_REF] Borowsky | Generalized FLP impossibility result for t-resilient asynchronous computations[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF][START_REF] Saks | Wait-free k-set agreement is impossible: The topology of public knowledge[END_REF], more general models were considered. Delporte et al. [START_REF] Delporte-Gallet | The disagreement power of an adversary[END_REF] introduced the notion of an adversary, a collection A of process subsets, called live sets. A run is in the corresponding adversarial A-model if the set of processes taking infinitely many steps in it is a live set of A. For example, the t-resilient n-process model is defined via an adversary A t-res that consists of all process subsets of size nt or more. A t-res is superset-closed [START_REF] Kuznetsov | Understanding non-uniform failure models[END_REF], as it contains all supersets of its elements. Saraph et al. [START_REF] Saraph | Asynchronous computability theorems for t-resilient systems[END_REF] recently proposed a direct characterization of t-resilient task computability via a specific task R t-res . The task is defined as a restriction of the double immediate snapshot task: the output complex of the task is a sub-complex consisting of all simplices of the second degree of the standard chromatic subdivision of the task's input complex, except the simplices adjacent to the (nt -1)-skeleton of the input complex. Intuitively the output complex of R t-res contains all of 2-round IS runs in which every process "sees" at least nt -1 other processes. We call such tasks affine [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF][START_REF] Gafni | A generalized asynchronous computability theorem[END_REF], as the geometrical representation of their output complexes are unions of affine spaces. An affine task consists in solving a (generalized) simplex agreement [START_REF] Borowsky | A simple algorithmically reasoned characterization of wait-free computation (extended abstract)[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF] on the corresponding sub-complex of Chr 2 s.

Figure 1b depicts the output complex of R 1-res , the affine task for the 3-process 1-resilient model. Solving a task T in the t-resilient model is then equivalent to finding a map from iterations of R t-res (applied to the input complex of T ) to the output complex of T .

Similarly, the affine task of the k-obstruction-free adversary, consisting of all process subsets of size at most k, was recently determined by Gafni et al. [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF]. Note that such an adversary is symmetric [START_REF] Taubenfeld | The computational structure of progress conditions[END_REF], as it only depends on the sizes of live sets, and not on process identifiers. Unlike A t-res (which is also symmetric), the k-obstruction-free one is not superset-closed.

Topology of fair adversaries. In this paper, we present a compact topological characterization of the large class of fair adversarial models [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF]. Informally, an adversary is fair if a subset of the participating processes P cannot achieve better set consensus than P . Fair adversaries subsume, but are not restricted to, symmetric and superset-closed ones.

We define an affine task R A capturing the task computability of any fair (adversarial) A-model. Our characterization can be put as the following generalization of the ACT [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF]:

A task T = (I, O, ∆) is solvable in a fair adversarial A-model if and only if there exists a natural number and a simplicial map φ : R A (I) → O carried by ∆.

This result generalizes all existing topological characterizations of distributed computing models [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF][START_REF] Gafni | A generalized asynchronous computability theorem[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF][START_REF] Saraph | Asynchronous computability theorems for t-resilient systems[END_REF], as it applies to all fair adversaries (and not only t-resilient and k-obstruction-free) and all tasks (and not only colorless).

Figure 2 shows adversary classes and summarizes the results of this paper along with earlier affine characterizations.

We believe that the results can be extended to all "practical" restrictions of the wait-free model, beyond fair adversaries, which may result in a complete computability theory for distributed computing shared-memory models. [HS99] [GHKR16]

Figure 2: Earlier topological characterizations of the wait-free [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF], t-resilient [START_REF] Saraph | Asynchronous computability theorems for t-resilient systems[END_REF] and k-obstructionfree [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF] models, and our contribution: affine tasks for all fair adversaries.

Compact models. Our affine-task formalism enables a compact representation of a distributed computing model. Intuitively, assuming the conventional "longest-prefix" metric [START_REF] Alpern | Defining liveness[END_REF], a model M , as a set of infinite runs, is compact if it contains its limit points: if every prefix of an infinite run complies with M (i.e., can be extended to a run in M ), then the run is in M . M can then be viewed as a safety property [START_REF] Lynch | Distributed Algorithms[END_REF]Chap. 8]: to check if a run is in M , it is sufficient to check whether each of its finite prefixes complies with M . Most adversarial models are non-compact. For example, the 1-obstruction-free 2-process model is compliant with all finite runs, but among the infinite ones-only those in which exactly one process runs solo from some point on are in the model. Similarly, consider an infinite solo run in which exactly one process takes steps. All finite prefixes of this run complies with the 1-resilient 3-process model, but the run itself is not in the model.

In contrast, the affine model L * , defined as the subset of infinite IIS runs resulting by iterating an affine task L is, by construction, compact. By a simple application of König's lemma, we can easily show that every task solvable in an affine model is solvable in a bounded number of IIS rounds, i.e., in finitely many finite runs. In a non-compact model, such as the model of 1-resilience, many tasks can only be solved in arbitrarily long runs, hence, to check if a solution is correct, we might have to consider infinitely many infinite runs. Thus, working in an equivalent affine model may be attractive from the verification viewpoint.

Roadmap. Section 2 describes our model. Section 3 recalls the definitions of adversarial models and presents agreement functions. Section 4 defines the affine task R A for a fair adversary A. In Section 5, we show that R * A can be simulated in the adversarial A-model. In Section 6, we show that any task solvable in the A-model can be solved in R * A . Section 7 reviews related work and Section 8 concludes the paper. 

Preliminaries

We assume a system of n asynchronous processes, Π = {p 1 , . . . , p n }. Two models of communication are considered: (1) atomic snapshots [START_REF] Afek | Atomic snapshots of shared memory[END_REF] and (2) iterated immediate snapshots [START_REF] Borowsky | A simple algorithmically reasoned characterization of wait-free computation (extended abstract)[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF].

Atomic snapshot models. The atomic-snapshot (AS) memory is represented as a vector of n shared variables, where each process p i is associated with the position i. The memory can be accessed with two operations: update and snapshot. An update operation performed by p i modifies the value at position i and a snapshot returns the vector current state.

A protocol is a deterministic distributed automaton that, for each process and each its local state, stipulates which operation and state transition the process may perform. A run of a protocol is a possibly infinite sequence of alternating states and operations. An AS model is a set of infinite runs.

In an infinite run of the AS model, a process that takes only finitely many steps is called faulty, otherwise it is called correct. We assume that in its first step, a process shares its initial state using the update operation. If a process completed this first step in a given run, it is said to be participating, and the set of participating processes is called the participating set. Note that every correct process is participating.

Iterated Immediate Snapshot model. In the iterated immediate snapshot (IIS) model, processes proceed through an infinite sequence of independent memories M 1 , M 2 , . . .. Each memory M r is accessed by a process with a single WriteSnapshot operation [START_REF] Borowsky | Immediate atomic snapshots and fast renaming[END_REF]: the operation performed by p i takes a value v ir and returns a set V ir of submitted values (w.l.o.g, values of different processes are distinct), satisfying the following properties (See Figure 3 for IS examples):

• self-inclusion: v ir ∈ V ir ; • containment: (V ir ⊆ V jr ) ∨ (V jr ⊆ V ir ); • immediacy: v ir ∈ V jr ⇒ V ir ⊆ V jr .
In the IIS communication model, we assume that processes run the full-information protocol, in which, the first value each process writes is its initial state. For each r > 1, the outcome of the WriteSnapshot operation on memory M r-1 is submitted as the input value for the WriteSnapshot operation on M r . There are no failures in the IIS model, all processes go through infinitely many IS instances.

Note that the wait-free AS model and the IIS model are equivalent as regards task solvability [START_REF] Borowsky | Immediate atomic snapshots and fast renaming[END_REF][START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF].

Tasks. In this paper, we focus on distributed tasks [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF]. A process invokes a task with an input value and the task returns an output value, so that the inputs and the outputs across the processes respect the task specification. Formally, a task is defined through a set I of input vectors (one input value for each process), a set O of output vectors (one output value for each process), and a total relation ∆ : I → 2 O that associates each input vector with a set of possible output vectors. We require that ∆ is a carrier map: ∀ρ, σ ∈ I, ρ ⊆ σ: ∆(ρ) ⊆ ∆(σ). An input ⊥ denotes a non-participating process and an output value ⊥ denotes an undecided process. Check [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF] for more details on the definition. In the k-set consensus task [START_REF] Chaudhuri | Agreement is harder than consensus: Set consensus problems in totally asynchronous systems[END_REF], input values are in a set of values V (|V | ≥ k + 1), output values are in V , and for each input vector I and output vector O, (I, O) ∈ ∆ if the set of non-⊥ values in O is a subset of values in I of size at most k. The case of 1-set consensus is called consensus [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF].

A protocol solves a task T = (I, O, ∆) in a model M , if it ensures that in every run of M in which processes start with an input vector I ∈ I, there is a finite prefix R of the run in which: (1) decided values form a vector O ∈ O such that (I, O) ∈ ∆, and (2) all correct processes decide. Hence, in the IIS model, all processes must decide.

Simplicial complexes. We use the standard language of simplicial complexes [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF][START_REF] Spanier | Algebraic topology[END_REF] to give a combinatorial representation of the IIS model. A simplicial complex is defined as a set of vertices and an inclusion-closed set of vertex subsets, called simplices. The dimension of a simplex σ is |σ| -1, and any subset of σ is one of its faces. We denote by s the standard (n -1)-simplex: a fixed set of n vertices and all its subsets.

Given a complex K and a simplex σ ∈ K, σ is a facet of K, denoted facet(σ, K), if σ is not a face of any stricly larger simplex in K. Let facets(K) = {σ ∈ K, facet(σ, K)}. A simplicial complex is pure (of dimension n) if all its facets have dimension n. A simplicial complex is chromatic if it is equipped with a coloring function -a non-collapsing simplicial map χ from its vertices to s, in one-to-one correspondence with n colors. In our setting, colors correspond to processes identifiers.

The closure of a set of simplices S, Cl (S), is the complex formed by all faces of simplices in S, i.e., σ∈S faces(σ). Given a complex K, the star of S ⊆ K in K, St(S, K), is the set of all simplices in K having a simplex from S as a face, i.e., {σ ∈ K|faces(σ) ∩ S = ∅}. Given a pure complex K, we also define a new construct that we call the pure complement of S ⊆ K in K, Pc(S, K). It is the maximal pure sub-complex of K of the same dimension as K which does not intersect with S, i.e., Cl ({σ ∈ facets(K)|faces(σ) ∩ S = ∅}).

Standard chromatic subdivision and IIS

The standard chromatic subdivision [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF] of a complex K, Chr K (Chr s is depicted in Figure 1a), is a complex where vertices of Chr K are couples (c, σ), where c is a color and σ is a face of K containing a vertex of color c. Simplices of Chr K are the sets of vertices (c 1 , σ 1 ), . . ., (c m , σ m ) associated with distinct colors (i.e., ∀i, j, c i = c j ) such that the σ i satisfies the containment and immediacy properties of IS. It has been shown that Chr is a subdivision [START_REF] Kozlov | Chromatic subdivision of a simplicial complex[END_REF]. In particular, the geometric realization of Chr s, | Chr s|, is homeomorphic to |s|, the geometric realization of s (i.e., the convex hull of its vertices). If we iterate this subdivision m times, each time applying Chr to all simplices, we obtain the m th chromatic subdivision, Chr m . Chr m s captures the m-round IIS model, IS m [START_REF] Borowsky | A simple algorithmically reasoned characterization of wait-free computation (extended abstract)[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF].

Given a complex K and a subdivision of it Sub(K), the carrier of a simplex σ ∈ Sub(K) in K, carrier (σ, K), is the smallest simplex ρ ∈ K such that the geometric realization of σ, |σ|, is contained in |ρ|: |σ| ⊆ |ρ|. The carrier of a vertex (p, σ) ∈ Chr s is σ. In the matching IS task, the carrier corresponds to the snapshot returned by p, i.e., the set of processes seen by p. The carrier of a simplex ρ ∈ Chr K is simply the union (or, due to inclusion, the maximum) of the carriers of vertices in ρ. Given a simplex σ ∈ Chr 2 s, carrier (σ, s) is equal to carrier (carrier (σ, Chr s), s). carrier (σ, Chr s) corresponds to the set of all snapshots seen by processes in χ(σ). Hence, carrier (σ, s) corresponds to the union of all these snapshots. Intuitively, it results in the set of all processes seen by processes in χ(σ) through the two successive immediate snapshots instances.

Additionnal details can be found in Appendix A.

Simplex agreement and affine tasks. In the simplex agreement task, processes start on vertices of some complex K, forming a simplex σ ∈ K, and must output vertices of some subdivision of K, Sub(K), so that outputs form a simplex ρ of Sub(K) respecting carrier inclusion, i.e., carrier (ρ, K) ⊆ σ. In the simplex agreement tasks considered in the characterization of wait-free task computability [START_REF] Borowsky | A simple algorithmically reasoned characterization of wait-free computation (extended abstract)[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF], K is the standard simplex s and the subdivision is usually iterations of Chr. An affine task is a generalization of the simplex agreement task, where s is fixed as the input complex and where the output complex is a pure non-empty sub-complex of some iteration of the standard chromatic subdivision, Chr s. Formally, let L be a pure non-empty sub-complex of Chr s for some ∈ N. The affine task associated with L is then defined as (s, L, ∆), where, for every face σ ⊆ s, ∆(σ) = L ∩ Chr (σ). Note that L ∩ Chr (t) can be empty, in which case the set of participating processes must increase before processes may produce outputs. Note that, since an affine task is characterized by its output complex, with a slight abuse of notation, we use L for both the affine task (s, L, ∆) and its ouput complex.

By running m iterations of this task, we obtain L m , a sub-complex of Chr m s, corresponding to a subset of IS m runs (each of the m iterations includes IS rounds). The affine model associated with L, denoted L * , corresponds to the set of infinite runs of the IIS model where every prefix restricted to a multiple of IS rounds belongs to the subset of IS m runs associated with L m . Note that the definition of the affine model L * is done by satisfying a property on all its prefixes. Hence, affine models are, by construction, compact.

Adversaries and agreement functions

In this section, we introduce many results from [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] wich will be instrumental for our topological characterization.

Adversaries. It is convenient to model patterns in which process failures can occur using the formalism of adversaries [START_REF] Delporte-Gallet | The disagreement power of an adversary[END_REF]. An adversary A is defined as a set of possible correct process subsets, called live sets. An infinite run is A-compliant if the set of processes that are correct in that run belongs to A. An (adversarial) A-model A-model is thus defined as the set of A-compliant runs.

An adversary is superset-closed [START_REF] Kuznetsov | Understanding non-uniform failure models[END_REF] if each superset of a live set of A is also an element of A, i.e., if ∀S ∈ A, ∀S ⊆ Π, S ⊆ S =⇒ S ∈ A. Superset-closed adversaries provide a non-uniform generalization of the classical t-resilient adversaries. An adversary A is symmetric if it only depends on the sizes of live sets, and not on process identifiers: ∀S ∈ A, ∀S ⊆ Π, |S | = |S| =⇒ S ∈ A. Introduced as symmetric progress conditions in [START_REF] Taubenfeld | The computational structure of progress conditions[END_REF], symmetric adversaries provide a generalization of t-resilience and k-obstruction-freedom.

The agreement power of a model, i.e., the smallest k such that k-set consensus is solvable, was determined for adversaries in [START_REF] Gafni | Turning adversaries into friends: Simplified, made constructive, and extended[END_REF] in order to characterize the power of adversaries in solving colorless tasks [START_REF] Borowsky | Immediate atomic snapshots and fast renaming[END_REF]. It is formalized as follows:

Definition 1. [Agreement power] setcon(A) = 0 if A = ∅ max S∈A (min a∈S (setcon(A| S\{a} ) + 1)) otherwise
With A| P the adversary composed of the live sets of A included in P . As previously shown in [START_REF] Gafni | Relating L-Resilience and Wait-Freedom via Hitting Sets[END_REF], for a superset-closed adversary A, the agreement power of A is equal to csize(A), where csize(A) is the size of the minimal hitting set of A, i.e., a set intersecting with each L ∈ A. For a symmetric adversary A, the agreement power formula reduces to setcon(A) = |{k ∈ {1, . . . , n} : ∃S ∈ A, |S| = k}|.

Agreement functions. Consider an AS model M and a function α mapping subsets of Π to integers in {0, . . . , n}. We say that α is the agreement function of M , if for each P ∈ 2 Π , α(P ) is the agreement powe of the model M | P consisting of runs of M in which no process in Π \ P participates [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF]. Intuitively, α(P ) is the best level of set consensus that can be solved adaptively in M . By convention, if M | P does not contain any run, then α(P ) is equal to 0.

Let P ⊆ P ⊆ Π. We can observe that, by construction, the agreement function of a model is monotonic, i.e., α(P ) ≤ α(P ) and of bounded growth, i.e., α(P ) ≤ α(P ) + |P \ P |. It was shown in [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] that the agreement function of A can be defined using the setcon function: α(P ) = setcon(A| P ).

Fair adversaries. Informally, an adversary is fair [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] if a subset Q of participating processes P cannot achieve a better set consensus than P . For an adversary A, and Q ⊆ P ⊆ Π, we define

A| P,Q = {S ∈ A : (S ⊆ P ) ∧ (S ∩ Q = ∅)}.
When solving a task, only correct processes must output. Thus, for a task restricted to processes in Q, no process has to output in a run corresponding to a live set L ∈ A with L ∩ Q = ∅.

Definition 2. [Fairness] An adversary A is fair if and only if:

∀P ⊆ Π, ∀Q ⊆ P, setcon(A| P,Q ) = min(|Q|, setcon(A| P )).
Superset-closed and symmetric adversaries are fair [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF], as some others. Unfortunately, not all adversaries are fair.

The α-model. Generalizing the k-active-resilient model, the α-model was introduced to capture agreement functions ability to characterize the task computability of (some) models.

Definition 3. [α-model]

The α-model is the AS model in which: if P is the participating set, then α(P ) ≥ 1 and at most α(P ) -1 processes in P are faulty.

Intuitively, the α-model is the weakest model with α as its agreement function. This allows us to use agreement functions to characterize models which are as weak as the corresponding α-model. It turns out that the task computability of a fair adversary is captured precisely by the corresponding α-model, i.e., they solve the same set of tasks. Theorem 1. [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] For any fair adversary A, a task is solvable in the A-model if and only if it is solvable in the α-model. α-adaptive set consensus. The abstraction of α-adaptive set consensus [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] can be accessed with a single propose(v) operation. It ensures that (termination) every operation invoked by a correct process eventually returns, (validity) every returned value is the argument of a preceding propose invocation, and (α-agreement) at any point of the execution, the number of distinct returned values does not exceed α(P ), with P the current participating set. This abstraction allows us to define yet another family of models, equivalent with α-model, and hence, with adversarial A-models.

Definition 4.

[α-set consensus model] The α-set consensus model is the AS model in which, if P is the participating set then α(P ) ≥ 1, and processes have access to α-adaptive set-consensus objects.

Theorem 2. [24]

A task is solvable in the α-model if and only if it is solvable in the α-set-consensus model.

Hence, for a fair adversary A and its agreement function α the A-model, the α-set-consensus model and the α-model can all be used interchangeably for task solvability issues.

Defining the affine task for a fair adversary

Given a fair adversary A and its agreement function α, we define the affine task R A , a sub-complex of Chr 2 s, which will be shown to capture the task computability of the A-model.

Agreement and contention simplices. For a vertex v ∈ Chr 2 s, let View 1 (v) and View 2 (v) be the sets of processes seen by the process χ(v) in, respectively, the first and the second IS (we call these View 1 and View 2 ). Formally,

View 2 (v) = carrier (v, Chr s) and View 1 (v) = carrier (v , s) with v ∈ carrier (v, Chr s) such that χ(v) = χ(v ).
The idea behind the definition of these prohibited simplices is simple. In an execution, processes can only decide on the proposal they observed. Therefore, in an execution, if a process p sees only itself, other processes should return p's proposal to hope reaching an agreement with p. In Chr 2 s, if p is executed alone, then it has the smallest View 1 and View 2 . Thus all processes would observe p's View 1 . Therefore, a natural way to try to reach an agreement among processes is to adopt the proposal from the process observed with the smallest View 1 . Moreover, as processes may share the same view, it is even better to deterministically select a value from the smallest View 1 itself.

We formalize the intuitive description of contention simplices as follows: In a simplex δ ∈ Chr 2 s, we say that vertices v and v are contending if their View 1 and View 2 are ordered in the opposite way: View 1 (v) is a proper subset of View 1 (v ) and View 2 (v ) is a proper subset of View 2 (v), or vice versa. If every two vertices of δ are contending, then we say that δ is a 2-contention simplex. Let Cont 2 be the set of 2-contention simplices, formally:

Definition 5. [Cont 2 ] σ ∈ Chr 2 s : ∀v, v ∈ σ, v = v : ((View 1 (v) View 1 (v )) ∧ (View 2 (v ) View 2 (v)))∨ ((View 1 (v ) View 1 (v)) ∧ (View 2 (v) View 2 (v ))).
Cont 2 is inclusion-closed: any face of a 2-contention simplex is also in Cont 2 . Thus, Cont 2 is a complex: the 2-contention complex (depicted for a 3-processes system in Figure 4c). Particular executions of two IS rounds are also represented in Figures 4a and4b. In these executions, one can see that a couple of processes is contending if the execution "order" is strictly reversed in the two IS runs.

We first show how to restrict Chr 2 s to obtain an affine task R k-OF , solvable in the k-obstruction-free model, and which allows, in R * k-OF , any set of processes to solve k-set consensus among themselves. As in [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF], the idea consists in specifying prohibited simplices and take their pure complement as the affine task.

Intuitively, a contention simplex of size k is one in which, in the corresponding run, all of the k processes have distinct View 1 and each one believes it had the smallest one among them. Thus, an execution for which all processes would return distinct proposals. Hence, R k-OF is defined by prohibiting too large contending simplices:

(a) Two reversed IS ordered runs: {p2}, {p1}, {p3} and {p3}, {p1}, {p2}. Any set of processes is contending due to inverted execution orders.

(b) Two ordered runs mixed orders: {p1, p2, p3} and {p2}, {p3, p1}. The only couple of contending processes is {p1, p2}.

(c) The 2-contention complex shown in red.

Figure 4: Representation, in a 3-processes system, of all 2-contention simplices in Chr 2 s and some detailed IS runs.

Definition 6. [Affine task R k-OF ] R k-OF = Pc({σ ∈ Cont 2 |dim(σ) ≥ k}, Chr 2 s).
See Figure 7a for R 1-OF in a 3-process system. To see that R k-OF indeed captures the k-obstruction-free adversary, one can check, which is not obvious, that the latter definition of R A reduces to R k-OF when A is the k-obstruction-free adversary, or, alternatively, rely on the proofs from [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF].

Agreement vs. participation. Solving a desired level of agreement is no longer sufficient. The agreement function of an adversary may define different levels of agreement for different participating sets. In iterated affine tasks, participation is captured by views of the processes: carrier (v, s) is the participating set witnessed by process χ(v).

The naive approach would consists in varying the restriction on the size of contention simplices according to the carrier size. Such a restriction would indeed provide an affine task which is strong enough to solve the desired level of agreement, but it would be impossible to solve. Indeed, contention assumes that processes with the smallest View 1 go first. But when the agreement power is equal to 0, processes must be ensured to obtain larger views and hence to let processes with larger View 1 go first. But letting processes with large View 1 go first inherently creates contention.

The idea of the solution consists in switching between resilience and concurrency requirements. Indeed, as long as the agreement power is steady over the participation, we rely on restrictions made by limiting contention. But when the agreement power increases due to an increase of participation, we identify a "witness" of this new agreement power and require it to go first and be seen by other processes. This corresponds to changing the selection of the smallest View 1 by looking first on View 1 "witnessing" a new agreement level and otherwise, by default, selecting the smallest View 1 . These "witnesses" of participation is what we call critical simplices.

Critical simplices. The goal here is to identify for each increase of participation a new View 1 witnessing it. An easy requirement is that this View 1 should correspond to a participation level associated with the new level of agreement power. But two issues must be solved: (1) the provided View 1 may be irregular and there could be none for a given agreement power; and (2) distinct View 1 may share the same level of agreement power and the smallest one may be different depending on the executions.

The idea is to select View 1 which are minimal in the given execution for some level of agreement power. To do so, the value of View 1 is not sufficient on its own. But if we know that multiple processes all share the same View 1 , we can deduce that all other processes with a strictly smaller view must have a View 1 corresponding to a lower level of agreement power. This solves the second issue, but indirectly also the first one. Indeed, if no View 1 exists for an agreement level, it implies that the smallest view for the next level is provided to sufficiently many processes to be able to deduce that no process with a smaller View 1 may obtain a View 1 corresponding to the "missing" level, hence this View 1 is a witness of both agreement levels.

A critical set or critical simplex is set of processes sharing the same View 1 which is sufficiently large to ensure that their View 1 is the smallest one for some level of agreement power. Formally, a simplex σ ∈ Chr s is a critical simplex if: (1) all its vertices share the same carrier; and (2) the set consensus power associated to carrier (σ, s) is strictly greater than the set consensus power of χ(carrier (σ, s)) \ χ(σ).

Definition 7. ∀σ ∈ Chr s, Critical α (σ) ≡ (∀v ∈ σ : carrier (v, s) = carrier (σ, s)) ∧ (α(χ(carrier (σ, s)) \ χ(σ)) < α(χ(carrier (σ, s)))) .
Examples of critical simplices for two 3-processes fair models are depicted in Figure 5. The critical simplices are displayed in orange. As it can be observed, the set of critical simplices is not inclusion-closed, hence it does not define a simplicial complex.

Given a simplex σ ∈ Chr s, we denote as CS α (σ) the set of critical simplices in σ, that is CS α (σ) = {σ ⊆ σ : Critical α (σ )}. Moreover, identifying the set of processes which compose some critical simplex will be useful. Thus, let CSM α (σ) (critical simplices members) be the set of vertices of some σ ∈ Chr s which belongs to some critical simplex in σ, formally CSM α (σ) = {σ ∈ Cl (CS α (σ)) : dim(σ ) = 0}. Note that critical simplices members can be seen also as a sub-complex of Chr s. Intuitively, processes with the smallest View 2 should belong to this set. Similarly we also define the notion of the critical simplex view, CSV α (σ), which corresponds to the set of processes observed by a critical simplex in its View 1 . It can be simply obtained by taking the carrier in s of a critical simplex, that is CSV α (σ) = carrier (CSM α (σ), s). Concurrency level. Critical simplices provide a mechanism to select particular View 1 . This can be used to solve agreement protocols with the desired k-set consensus for an observed participation. But unfortunately this works only when the set of processes trying to solve a set-consensus operation was observed by the critical simplices, i.e., when processes belong to CSV α (σ). When this is not the case, processes should be able to solve set-consensus operations by themselves. This is where the limition on the size of contention simplices will come in. But this limitation should still be made according to the observed participation. This is done according to the agreement power associated with the observed critical simplices. We define this restriction using the following notion of concurrency level :

Definition 8. [Concurrency map] ∀σ ∈ Chr s : Conc α (σ) = max(0 ∪ {α(χ(carrier (τ, s))), τ ∈ CS α (σ)}).
Note that we add 0 to the set of agreement powers in case this set is empty. The concurrency map is displayed in Figure 6 for examples of 3-processes models. Each simplex of Chr s is associated with a concurrency level. One can observe that the set of simplices with a concurrency level equal to k corresponds to the simplices in the star of the critical simplices associated with an agreement power equal to k and which are not in the star of a critical simplex associated with a greater agreement power.

Affine task R A . The affine task for a fair adversary R A ⊆ Chr 2 s is defined as follows:

Definition 9. [R A ] R A = Cl ({σ ∈
facets(Chr 2 s) : ∀θ ⊆ (σ), P (θ, σ)} with P such that (with τ = carrier (θ, Chr s) and ρ = carrier (σ, Chr s)):

P (θ, σ) ≡ θ ∈ Cont 2 ∧ (χ(θ) ∩ χ(CSM α (ρ)) ∩ χ(CSV α (τ ))) = ∅ =⇒ dim(θ) < Conc α (τ ).
Intuitively, a simplex σ ∈ Chr 2 s is in R A if and only if any of its "non-critical" subsets that cannot "rely" on the critical simplices in achieving α-adaptive set consensus has a sufficiently low contention level to solve α-adaptive set consensus on its own.

Examples of affine tasks for 3-processes α-models are depicted in Figure 7.

From the α-model to R A

To show that any task T solvable in R * A is solvable in a fair A-model, we present an algorithm solving R A in the α-model. By iterating this task, we obtain R * A and can solve T .

Algorithm Description

In our solution of R A , presented in Algorithm 1, every process accesses two immediate snapshot objects: FirstIS to which it proposes its initial state, and SecondIS to which it proposes the outcome of FirstIS .

Recall that outcomes of SecondIS form a simplex in Chr 2 s [START_REF] Kozlov | Chromatic subdivision of a simplicial complex[END_REF]. To ensure that simplices are in R A , after finishing FirstIS , processes wait for their turns to proceed to SecondIS .

In this waiting phase (Lines 5-9), processes check a specific condition on the IS outcomes that they share with each others in registers IS1 [1, . . . , n] and IS2 [1, . . . , n]. Each process p i periodically checks whether either (1) it belongs to a critical simplex by using the formula at Line 7, or (2) if the number, computed at Line 8, of non-terminated processes (IS2 [j] = ∅) which may have a smaller FirstIS output (j ∈ IS1 [i] and IS1 [j] = IS1 [i]) is smaller that some "level of concurrency". This level of concurrency is computed at Line 9 as the maximum between (1) the agreement power associated with the View 1 of the process itself (α(IS1 [i])) or [START_REF] Alpern | Defining liveness[END_REF] with the concurrency levels shared using the Conc registers by "terminated" critical simplices, i.e., a critical simplex with all its processes provided with secondIS outputs (Line 12).

Algorithm 1: Resolution of R A in the α-model for process p i .

1 Immediate Snapshot Objects: FirstIS , SecondIS ; 2 Shared Registers:

Conc[1], . . . , Conc[n] ∈ {0, . . . , n}, initially 0; 3 IS1 [1], . . . , IS1 [n] ∈ 2 Π , initially ∅ and IS2 [1], . . . , IS2 [n] ∈ 2 2 Π , initially ∅; 4 R A (input i ): 5 IS1 [i] ← FirstIS (input i ); 6 wait until crit ∨ (rank < conc) with 7 crit = (α(IS1 [i]) > α(IS1 [i] \ {p j ∈ Π : IS1 [j] = IS1 [i]})) 8 and rank = |{p j ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] = IS1 [i]}| 9 and conc = max α(IS1 [i]), max j∈{1,...,n} (Conc[j]) ; 10 IS2 [i] ← SecondIS (IS1 [i]); 11 if (α(IS1 [i]) > α(IS1 [i] \ {p j ∈ Π : (IS1 [j] = IS1 [i]) ∧ (IS2 [j] = ∅)})) then 12 Conc[i] ← α(IS1 [i]); 13 return(IS2 [i]); 14 End R A ;
Intuitively, the waiting phase is used to ensure that critical processes, i.e., members of critical simplices, are prioritized to proceed with SecondIS over non-critical ones. A process may proceed to its SecondIS as soon as it knows that it belongs to some critical simplex (crit = true). A non-critical process is allowed to exit its waiting phase only when the number of potentially contending processes is smaller than the computed concurrency level (rank < conc). The proof relies mostly on showing that there are enough critical simplices to prevent non-critical processes from being blocked in the waiting phase.

Proof Sketch

In order to show that Algorithm 1 solves R A in the α-model corresponding to the fair adversary A, we need to show that (1) every correct process eventually outputs and that (2) the set of ouputs belongs to a simplex in R A . Note that as processes execute two consecutive immediate snapshot protocols, all outputs belong to some simplex in Chr 2 s. Let us consider a run of the α model in which the participation is P , hence with α(P ) > 0.

To show that outputs belong not only to Chr 2 s but to R A and that all correct processes terminate, we mostly rely on the distribution of critical simplices. We are interested in showing that the number of processes failures, required to prevent critical simplices from either appearing in IS1 or completing their IS2 computation, scales with the agreement power of the participation. Moreover, we want to show that the less processes fail in such a way, the higher the maximal agreement power associated with a terminated critical simplices.

A process failure may prevent multiple critical simplices to terminate. Indeed, a process may be included in multiple critical simplices, and thus, its failure would prevent multiple critical simplices from terminating. This is why we are interested not in the distribution of critical processes or critical simplices, but instead, in the minimal hitting set size for the set of critical simplices. Let us recall that an hitting set of a set of sets Q, is a set intersecting with all sets from Q, and that csize denotes the minimal hitting set size. More precisely, we want to know the minimal hitting set size of (1) any subset of the participation and (2) of the set of critical simplices associated with an agreement power greater than or equal to some level l, i.e., {θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ l}.

Distribution of Critical Simplices

Let us first look at the case in which no participating process fails before updating its IS1 output to the memory. In this case, the set of IS1 views forms a simplex σ ∈ Chr s such that χ(σ) = χ(carrier (σ, s)):

The observed processes include all participating processes (inclusion property) but no others. In this setting we can show that the minimal hitting set size of the set of critical simplices associated with an agreement power greater than or equal to some level l, is greater than or equal to the agreement power of the participation minus l -1, i.e., α(χ(σ))l + 1: Lemma 3. [Distribution of critical simplices]: ∀σ ∈ Chr s, ∀l ∈ N :

χ(σ) = χ(carrier (σ, s)) =⇒ α(χ(σ)) -l + 1 ≤ csize({θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ l}).
Proof. Let us fix some integer l > 0. To show Lemma 3, we proceed by an induction on σ using the lexicographical order on (α(χ(σ)), |χ(σ)|). For any simplex σ, such that α(χ(σ)) < l, the result is trivial as for any (possibly empty) set Q, we have csize(Q) ≥ 0. Now consider a simplex σ ∈ Chr s such that χ(σ) = χ(carrier (σ)) and α(χ(σ)) = k ≥ l. Let us assume by induction that for all σ ∈ Chr s, if (α(χ(σ )), |χ(σ )|) < lex (α(χ(σ )), |χ(σ)|), then we have:

χ(σ) = χ(carrier (σ , s)) =⇒ α(χ(σ )) -l + 1 ≤ csize({θ ∈ CS α (σ ), α(χ(carrier (θ, s))) ≥ l}).
Now consider the face τ of σ consisting of all vertices of σ with the same carrier as σ, i.e., τ = {v ∈ σ, carrier (v, s) = carrier (σ, s)}. Let β be the complement of τ , i.e., β = σ \ τ . Note that τ = ∅, due to the containment property, and that, χ(carrier (β, s)) = χ(carrier (σ, s)) \ χ(τ ), due to the immediacy property. Therefore, we obtain that χ(carrier (β, s)) = χ(σ) \ χ(τ ), and so that χ(carrier (β, s)) = χ(β). As (α(χ(β)), |χ(β)|) < lex (α(χ(σ)), |χ(σ)|), we obtain that:

α(χ(β)) -l + 1 ≤ csize({θ ∈ CS α (β), α(χ(carrier (θ, s))) ≥ l}). (1) 
Two cases may arise:

1. If α(χ(β)) = α(χ(σ)), then, as β ⊆ σ we get that CS α (β) ⊆ CS α (σ), hence, we can derive from Equation 1 that: Let us recall that ∀v ∈ τ : carrier (v, s) = carrier (τ, s), and therefore Critical α (τ ) if and only if α(χ(σ) \ χ(τ )) < α(χ(σ)).

α(χ(σ)) -l + 1 ≤ csize({θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ l}).
Given a fair adversary, for any Q ⊆ P , we have α(P ) ≥ α(P \ Q) ≥ α(P ) -|Q|. Note that this property was shown to be true for any fair model in [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] (see Section 3). Note that this implies that |χ(τ )| ≥ m. By applying the formula for P = χ(σ) \ χ(τ ) and for Q = χ(τ ) \ χ(τ ) we get that:

α(χ(σ) \ χ(τ )) ≥ α(χ(σ) \ χ(τ )) ≥ α(χ(σ) \ χ(τ )) -|χ(τ ) \ χ(τ )|.
But by construction χ(σ) \ χ(τ ) = χ(β) and |χ(τ ) \ χ(τ )| < m, thus we obtain that:

α(χ(σ) \ χ(τ )) ≥ α(χ(σ) \ χ(τ )) -|χ(τ ) \ χ(τ )| =⇒ α(χ(σ) \ χ(τ )) < α(χ(β)) + m.
As m = α(χ(σ))α(χ(β)), we obtain that α(χ(σ) \ χ(τ )) < α(χ(σ)), and hence, that Critical α (τ ).

Since by construction β = σ \ τ , we have the following inequality: csize(CS α (σ)) ≥ csize(CS α (τ )) + csize(CS α (β)). Moreover, as α(χ(σ)) ≥ l, we obtain:

csize({θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ l}) ≥ csize({θ ∈ CS α (β), α(χ(carrier (θ, s))) ≥ l}) + csize(CS α (τ )) (2)
But as any subset τ of τ , such that |τ | > |τ |m, is critical, we have: 

csize(CS α (τ )) ≥ csize({τ ⊆ τ, |χ(τ )| > |χ(τ )| -m}).
α(χ(σ)) -l + 1 = (α(χ(β)) -l + 1) + m ≤ csize({θ ∈ CS α (β), α(χ(carrier (θ, s))) ≥ l}) + csize(CS α (τ )) ≤ csize({θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ l})
The result of Lemma 3 can be used to generalize it for cases in which not all participating processes shared their IS1 outputs to the memory. If so, the minimal hitting set size decreases proportionally with the number of missing outputs: Corollary 4. For any σ ∈ Chr s, we have:

α(χ(carrier (σ, s))) -l -|χ(carrier (σ, s)) \ χ(σ)| + 1 ≤ csize({θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ l}).
Proof. Consider some σ ∈ Chr s. By construction, σ is a sub-simplex of some simplex σ such that χ(carrier (σ, s)) = χ(carrier (σ , s)) = χ(σ ). Hence, we can apply Lemma 3 on σ and obtain that:

α(χ(carrier (σ, s))) -l + 1 ≤ csize({θ ∈ CS α (σ ), α(χ(carrier (θ, s))) ≥ l}). (3) 
But CS α (σ) ⊆ CS α (σ ) and thus given H a minimal hitting set of 

CS α (σ ), H ∪ (χ(σ) \ χ(σ )) is an hitting set of CS α (σ ). Therefore csize({θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ l}) is greater than or equal to csize({θ ∈ CS α (σ ), α(χ(carrier (θ, s))) ≥ l}) + |χ(σ) \ χ(σ )|,

Algorithm Liveness

Corollary 4 is a generalization of Lemma 3 to account for a partial set of first immediate snapshot outputs. This can be used to show the liveness of the algorithm:

Lemma 5. Algorithm 1 provides outputs to all correct processes in any α-model.

Proof. Let P be the participating set and let us assume that there is a correct process which never terminates. Let p be the correct processes which does not terminate with the smallest IS1 view, let v ∈ Chr s be the vertex corresponding to its IS1 view, and let σ ∈ Chr s be the simplex corresponding to the set of IS 1 outputs when IS1 has been updated for the last time.

Due to the immediacy property, processes in χ(carrier (v, s)) must be associated with a vertex v such that carrier (v , s) ⊆ carrier (v, s), and therefore, with α(χ(carrier (v , s))) ≤ α(χ(carrier (v, s))). Hence, in any completion of σ to a simplex σ ∈ Chr s to include the processes which are in χ(carrier (v, s)) but not in χ(σ), the set of critical simplices associated with an agreement power strictly greater than α(χ(carrier (v, s))) does not change. Thus applying Corollary 4 to any such completion σ of σ, we obtain that, for any l > α(χ(carrier (v, s))):

α(χ(carrier (σ, s))) -l -|χ(carrier (σ, s)) \ (χ(σ) ∪ χ(carrier (v, s)))| + 1 ≤ csize({θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ l}).
Moreover, any process in P \ χ(carrier (σ, s)) must have failed. Thus, in χ(carrier (σ, s)) at most α(P ) -1 -(|P \ χ(carrier (σ, s))|) processes may fail. Let us recall from the proof of Lemma 3, that for the agreement function of any fair adversary, and for any Q ⊆ P , we have α(P ) ≥ α(P \ Q) ≥ α(P ) -|Q|. Thus we can derive, by using Q = P \ χ(carrier (σ, s)), that at most α(χ(carrier (σ, s))) -1 processes in χ(carrier (σ, s)) may fail.

Let m 1 = |χ(carrier (σ, s)) \ (χ(σ) ∪ χ(carrier (v, s)))|, be the number of processes from χ(carrier (σ, s)) which (1) fail before updating their IS1 to the memory and (2) are not included in the IS1 view of p. Let m 2 be the number of critical processes, associated with an agreement power strictly greater than α(χ(carrier (v, s))), which fail after updating their IS1 but before updating their IS2 .

Let us now assume that α(χ(carrier (σ, s)))α(χ(carrier (v, s))) > m 1 + m 2 , then by selecting l = α(χ(carrier (σ, s)))m 2m 1 , we have l > α(χ(carrier (v, s)))), and hence, we obtain that:

csize({θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ α(χ(carrier (σ, s))) -m 2 -m 1 }) ≥ m 2 + 1.
If no critical simplex in {θ ∈ CS α (σ), α(χ(carrier (θ, s))) ≥ α(χ(carrier (σ, s)))m 2m 1 } terminates, one process from each of these critical simplices failed after updating its IS1 but before updating its IS2 , thus an hitting set failed. As only m 2 such processes may fail and as an hitting set must be greater than m 2 + 1, a critical simplex associated with an agreement power greater than or equal to α(χ(carrier (σ, s)))m 2m 1 terminates its IS2 . Therefore eventually some process updates its Conc register (on line 12) to at least α(χ(carrier (σ, s)))m 2m 1 . Now let us look back at p. It fails to terminate and thus never succeeds to pass the test on line 6. Therefore we have that the number of processes seen by p which do not terminate and do not have the same IS1 view as p are strictly more than the value of max(α(IS1 [i]), max j∈{1,...,n} (Conc[j])), with IS1 [i] equal to χ(carrier (v, s)). As p is the correct process with the smallest IS1 view which does not terminate, it implies that there are strictly more than max(α(χ(carrier (v, s))), max j∈{1,...,n} (Conc[j])) failed processes with an IS1 view strictly smaller than p. These failed processes are neither accounted in m 1 nor in m 2 . Therefore, as at most α(χ(carrier (σ, s))) -1 processes in χ(carrier (σ, s)) may fail, there are at most α(χ(carrier (σ, s))) -1m 1m 2 such processes which may fail. Thus α(χ(carrier

(σ, s))) -m 1 -m 2 -1 ≥ max(α(χ(carrier (v, s))), max j∈{1,...,n} (Conc[j])).
Two cases may arise:

• If α(χ(carrier (σ, s))) -α(χ(carrier (v, s))) > m 1 + m 2
, then some process sets its Conc register to a value greater than or equal to α(χ(carrier

(σ, s))) -m 2 -m 1 -A contradiction. • Otherwise, α(χ(carrier (σ, s))) -m 1 -m 2 -1 ≥ α(χ(carrier (v, s))
) and so, we obtain a contradiction with the fact that α(χ(carrier

(σ, s))) -α(χ(carrier (v, s))) ≤ m 1 + m 2 .

Algorithm Safety

Showing the safety of Algorithm 1 bears some similarities with the liveness proof. In particular, it relies on the same Lemma 3 on the distribution of critical simplices. Lemma 6. The set of outputs provided by Algorithm 1 forms a valid simplex in R A .

Proof. Consider any execution of Algorithm 1. Except for the wait-phase, processes execute two rounds of an immediate snapshot protocol. Therefore the set of outputs forms a simplex in σ ∈ Chr 2 s. Without loss of generality, we can assume that no process fails and thus that dim(σ) = n -1. Indeed, if σ ∈ R A , then if failed processes were just slow and resumed their execution and terminate, it would produce σ ∈ R A . Let us assume by contradiction that σ ∈ R A , this implies that there exists θ ⊆ σ such that (for τ = carrier (θ, Chr s) and ρ = carrier (σ, Chr s)):

(θ ∈ Cont 2 ) ∧ ((χ(θ) ∩ (χ(CSM α (ρ)) ∪ χ(CSV α (τ ))) = ∅) ∧ (dim(θ) ≥ Conc α (τ )).
As θ ∈ Cont 2 , we can order the processes associated with vertices from θ according to their IS 2 view (or carrier (v, Chr s)). Let q 1 , . . . , q k be this ordered set of processes. As q 1 has the smallest IS 2 view, and as θ ∈ Cont 2 , q 1 also has the largest IS 1 view. Consider the state of the execution at the time where q 1 successfully passes the test on Line 6. To pass this test, q 1 witnessed IS1 , Conc and IS2 states such that (with q 1 = p i ):

(α(IS1 [i]) > α(IS1 [i] \ {p j ∈ Π : IS1 [j] = IS1 [i]}))∨ |{p j ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] = IS1 [i]}| < max α(IS1 [i]), max j∈{1,...,n} (Conc[j]) If (α(IS1 [i]) > α(IS1 [i] \ {p j ∈ Π : IS1 [j] = IS1 [i]}
)), then it implies that q 1 belongs to a critical simplex. Indeed, it would belong to a set of processes sharing the same IS 1 view and such that, removing this set of processes from their IS 1 view would result in a set with a strictly smaller agreement power. But this would contradict χ(θ) ∩ χ(CSM α (carrier (σ, Chr s))) = ∅ as it would include q 1 . Therefore we have:

|{p j ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] = IS1 [i]}| < max α(IS1 [i]), max j∈{1,...,n} (Conc[j])
Two cases may arise: 

• max α(IS1 [i]), max j∈{1,...,n} (Conc[j]) = α(IS1 [i]):
}) ⊆ {p j ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] = IS1 [i]}
, and hence, that dim(θ) < Conc α (τ ) -a contradiction with σ ∈ R A .

• max α(IS1 [i]), max j∈{1,...,n} (Conc[j]) = α(IS1 [i]): Let c be the highest agreement power associated with a terminated critical simplex (with c = 0 if there is no terminated critical simplex is terminated). Therefore we have Conc α (τ ) ≥ c. Let λ ∈ Chr s be the simplex corresponding to the set of IS 1 views of processes in IS1 [i] which shared their IS 1 view at the time q 1 passed the test on Line 6. Consider the simplex λ ∈ Chr s corresponding to the completion of λ with the vertices corresponding to IS 1 view of the processes in χ(θ) which may be missing from λ. Note that, since q 1 has the largest IS 1 view among processes from χ(θ), χ(carrier

(λ , s)) = χ(carrier (λ, s)) = IS1 [i]. Moreover, since χ(λ) = {p j ∈ IS1 [i] : IS1 [j] = ⊥}, we obtain that χ(λ ) = {p j ∈ IS1 [i] : IS1 [j] = ⊥} ∪ χ(θ).
According to Corollary 4 applied to λ with l = c + 1, we obtain that:

α(IS1 [i]) -c -|(χ(carrier (λ , c)) \ χ(λ ))| ≤ csize({φ ∈ CS α (λ ) : α(χ(φ)) ≥ c + 1}).
Note that, since there is no terminated critical simplex with an agreement power greater than or equal to c + 1, it implies that one process of each critical simplex identified in λ did not terminate its IS 2 , hence a minimal hitting set. Let S c be this minimal hitting of size equal to csize({φ ∈ CS α (λ ) : α(χ(φ)) ≥ c + 1}. Note that S c does not include any process in χ(θ). Indeed, given a critical simplex with the same IS 1 view as q i , adding q i to the critical simplex would produce a critical simplex, but by assumption processes in χ(θ) do not belong to any critical simplex. We also have that S c does not intersect

S ∅ = {p j ∈ IS1 [i] : IS1 [j] = ⊥}. Hence, |S c | + |S ∅ \ χ(θ)| + |χ(θ)| = |S c ∪ S ∅ ∪ χ(θ)|. Therefore, as |(χ(carrier (λ , c)) \ χ(λ ))| = |S ∅ \ χ(θ)| we obtain that α(IS1 [i]) -c ≤ |S c ∪ S ∅ ∪ χ(θ)| -|χ(θ)|. Let us now check that S c ∪ S ∅ ∪ χ(θ) ⊆ {q 1 } ∪ S T , with S T = {p j ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] = IS1 [i]}. All are clearly included in IS1 [i] by construction.
For processes in S ∅ , since they have their register in IS1 equal to ⊥, it is also the case for their register in IS2 . For processes in χ(θ), they have a strictly smaller IS 1 view by assumption. For the IS 2 view, they will have a strictly larger view than q 1 . But since q 1 did not start its second immediate snapshot protocol, processes in χ(θ) could not have terminated it. For processes in S c , they do not share the same IS 1 view as any process in χ(θ) since they are members of critical simplices, in particular, they thus have a distinct IS 1 view from q 1 . By assumption, they did not terminate their second immediate snapshot protocol, and hence also have their IS2 register still equal to ⊥.

Therefore, we have S c ∪ S ∅ ∪ χ(θ) ⊆ {q 1 } ∪ S T , and hence,

|S c ∪ S ∅ ∪ χ(θ)| ≤ 1 + |S T |. But since we also have |S T | < α(IS1 [i]) and α(IS1 [i]) -c ≤ |S c ∪ S ∅ ∪ χ(θ)| -|χ(θ)|
, we obtain that:

|S T | < |S c ∪ S ∅ ∪ χ(θ)| -|χ(θ)| + c ≤ |S T | + 1 -|χ(θ)| + c. Thus |χ(θ)| ≤ c. But recall that Conc α (τ ) ≥ c, and so, |χ(θ)| ≤ Conc α (τ ) -a contradiction with σ ∈ R A .
Using Lemmata 5 and 6, we can directly derive the correctness of Algorithm 1:

Theorem 7. Algorithm 1 solves task R A in the α-model corresponding to the fair adversary A.

As for other solutions of affine task, we can iterate this solution in order to simulate a run of R * A . Using this simulation we can therefore solve any task which is solvable in R * A : Theorem 8. Any task solvable in R * A is solvable in the A-model.

6 From R * A to the fair adversarial A-model

In this section, we show that any task solvable in the fair adversarial A-model can be solved in R * A . This reduction is much more intricated than in the other direction. Indeed, to show that a model is as strong as an affine task based model, it only suffices to show that any number of iterations of the affine task can be solved. In the general case, it is necessary to show that any task solvable in the target model can be solved and thus that we can emulate an algorithm solving any given task.

To simplify the simulation complexity, we are going to show that we can simulate an execution of a shared memory model in which the participation P is such that α(P ) > 0 and in which α-adaptive set consensus can be solved. Using the results from [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] (Theorem 1), we are able to deduce from it that any task solvable in a fair adversarial model can be solved in R * A .

6.1 Simulation Description.

The main difficulty of the simulation comes from the combination of the failure-freedom and the iterative structure of R * A . A process obtaining small outputs in all iterations, often denominated as a "fast" process, may never observe the values shared by other processes with larger views, comparatively denominated as a "slow" processes. But as there are no processes failures, eventually, all processes must obtain a task output. It requires that fast processes make progress with the simulation without waiting for slower processes. Slow processes must thus wait for faster processes to terminate their simulation before being able to make progress with modifying operations.

This first difficulty is resolved by making processes which obtained a task output in the simulation to use the special value ⊥ as input for all further iterations of R A . Slower processes are then aware that processes using ⊥ do not interfere anymore and that they no longer need to witness their modifications of the simulated system state.

Another difficulty relies in the fact that processes may shift between making shared memory operations and accessing α-adaptive set consensus abstractions. Moreover, processes may be accessing distinct α-adaptive set consensus abstractions and may access them in different orders. Fortunately, set consensus abstractions are independant of each others and multiple instances can be simulated in parallel. But memory operations interact with each others and a write operation can be safely terminated only once the write value is known to be observed by all other processes. Thus a fast process must ensure that slower processes are not able to complete write operations as long as they did not terminate, even when they do not currently have a write operation to perform.

Atomic-snapshot simulation. To simulate the atomic-snapshot memory, we rely upon the algorithm proposed in [START_REF] Gafni | Distributed programming with tasks[END_REF] that simulates a lock-free atomic-snapshot algorithm in the iterated atomic-snapshot model. We run the simulation using the global views that the processes obtain at the end of R * A iterations, i.e., carrier (v, s) for their vertices v ∈ R A . Recall that these global views satisfy the properties of atomic snapshots, but not necessarily the properties of immediate snapshots.

In the simulation, every new update performed by a process is assigned a monotonically growing sequence number. A terminated process simply stops incrementing its sequence number, which allows active (non-terminated) processes to make progress. Without loss of generality, we assume that in the simulated algorithm, every active process always has a pending memory operation to perform (intuitively, if there is nothing to write, the process rewrites its last written value).

Simulating α-adaptive set consensus in R *

A . The α-adaptive set consensus simulation in R * A submits in all iterations input, a decision estimate for all known set consensus simulations. For all pending and newly discovered set consensus simulations for which processes are involved (i.e., for which they are allowed to participate), processes update their decision estimate after each iteration of R A . Processes adopt a deterministically chosen estimate from, if available, an IS1 view associated to a critical simplex, and otherwise, from the smallest IS1 view they see. Note that only IS1 views including a process which may participate to the agreement are considered. Most of the complexity of the α-adaptive set consensus simulation lies in this selection of which IS1 view to adopt from. This is described extensively in the next section.

A desicion value is committed only when all processes which are involved in the α-adaptive set consensus abstraction and which are observed in a given iteration of R * A posses a decision estimate. Once, the value is committed, the decision estimate will no longer change and will eventually be returned as output for the α-adaptive set consensus, but processes need to check that the participation in the simulated run is high enough before returning the value.

In order to ensure a high enough participation, processes make sure that all processes that they witnessed in preceding iterations of R * A have completed their first simulated write operation. If not, processes simulate this write operation themselves. The content of this first write operation simply consists of the process initial state. Therefore, any process p may simulate this write operation (by using the shared memory simulation) for any other process q as soon as p knows the initial state of q. Once all processes for which the initial state is know are participating in the simulated run, processes can safely terminate their α-adaptive set consensus with the committed value.

α-adaptive leader election in R

A : the µ Q map
Let us consider some α-adaptive set consensus and let Q be the set of processes which (1) may participate in the agreement protocol, and, (2) did not terminate yet the main simulation. Using the structure of R A , we construct a map µ Q which returns to each vertex v ∈ R A , corresponding to a process from Q (i.e., with χ(v) ∈ Q), a leader selected among Q for the given iteration of R A . The map µ Q is constructed in two stages. The first stage consists in selecting an IS1 view which includes a process from Q. Two cases may happen depending on whether the process observes in R A a critical simplex associated with an IS1 view including a process from Q or not:

If the process observes such a critical simplex (i.e., χ(CSV α (carrier (v, Chr s))) ∩ Q = ∅), it then simply returns the smallest IS1 view of a critical simplex which includes a process from Q, using the map δ Q :

δ Q = χ(min({carrier (σ , s) : (σ ∈ CS α (carrier (v, Chr s)) : χ(carrier (σ , s)) ∩ Q = ∅)}).
Otherwise (if χ(CSV α (carrier (v, Chr s))) ∩ Q = ∅), the process returns the smallest observed IS1 view which includes a process from Q, using the map γ Q :

γ Q = χ(min({carrier (v , s) : (v ∈ carrier (v, Chr s)) ∧ (dim(v ) = 0) ∧ (carrier (v , s) ∩ Q = ∅)}).
The second stage then simply consists in selecting, from the selected IS1 view, the process from Q associated with the smallest identifier, let min Q (V ) = min{p ∈ V ∩ Q} be this map. The map µ Q is therefore defined as follows:

µ Q (v) = if (χ(CSV α (carrier (v, Chr s))) ∩ Q = ∅) then min Q • δ Q else min Q • γ Q .
Let us first show that, for any vertex v ∈ R A corresponding to a process in Q, the map µ Q returns a process from Q observed in R A (i.e., a process in χ(carrier (v, s))) :

Property 9. [Validity of µ Q ] ∀v ∈ R A , dim(v) = 0, χ(v) ∈ Q : µ Q (v) ∈ χ(carrier (v, s)) ∧ µ Q (v) ∈ Q. Proof. Let us fix some vertex v ∈ R A such that χ(v) ∈ Q.
Let us assume that χ(CSV α (carrier (v, Chr s))) ∩ Q = ∅, and hence, µ

Q (v) = min Q • δ Q (v).
Let us recall that, given σ ∈ Chr s, CSV α (σ) is equal to carrier (∪ σ ∈CSα(σ) σ , s). But due to carriers inclusion, the carrier of a simplex is equal to the carrier of one of its vertices, and so, of any sub-simplex which includes this vertex. Thus, as χ(CSV α (carrier (v, Chr s))) ∩ Q = ∅, we have:

∃σ ∈ CS α (carrier (v, Chr s)) : χ(carrier (σ , s)) ∩ Q = ∅.
This implies that δ Q has a valid choice for v and can return the minimal one, and so that:

∃σ ∈ CS α (carrier (v, Chr s)) : (δ Q (v) = χ(carrier (σ , s))) ∧ (χ(carrier (σ , s)) ∩ Q = ∅).
Since CS α (carrier (v, Chr s)) ⊆ {σ ∈ Chr s; σ ⊆ carrier (v, Chr s)}, and as

µ Q (v) = min Q • δ Q (v), we obtain that: ∃σ ⊆ carrier (v, Chr s) : (µ Q (v) = min Q • χ(carrier (σ , s))) ∧ (µ Q (v) ∈ Q).
As for any simplex σ ∈ Chr 2 s, we have carrier (carrier (v, Chr s), s) = carrier (v, s), thus Property 9 is verified if χ(CSV α (carrier (v, Chr s))) ∩ Q = ∅. Now let us assume that χ(CSV α (carrier (v, Chr s))) ∩ Q = ∅. Due to the self-inclusion property, ∃v ∈ carrier (v, Chr s)) such that χ(v ) = χ(v). The self-inclusion property again implies that ∃v ∈ carrier (v , s) such that χ(v ) = χ(v ) = χ(v). Hence, as χ(v) ∈ Q, ∃v ∈ carrier (v, Chr s) such that χ(carrier (v , s)) ∩ Q = ∅. Thus γ Q has a valid choice for v and can return the minimal one. As before, by the transitivity of carriers inclusion, the set returned by γ Q , and so the process returned by µ Q , is a subset of χ(carrier (v, s)) which intersects with Q. Now that we have checked that µ Q is well defined, let us show that µ Q returns a number of distinct leaders (processes) limited by the agreement power associated with processes views in R A :

Property 10. [Agreement of µ Q ] ∀Q ⊆ Π, (∀σ ∈ R A : dim(σ) = n -1), (∀θ ⊆ σ : χ(θ) ⊆ Q) : |{µ Q (v) : v ∈ θ}| ≤ α(χ(carrier (θ, s))).
Let us first check the following observation stating that for any simplex σ ∈ Chr s, if two critical simplices in σ are associated with the same agreement power, then they share the same IS1 view:

Lemma 11. ∀σ ∈ Chr s, ∀θ 1 , θ 2 ∈ CS α (σ): α(χ(carrier (θ 1 , s))) = α(χ(carrier (θ 2 , s))) =⇒ carrier (θ 1 , s) = carrier (θ 2 , s).
Proof. Let us consider some simplex σ ∈ Chr s and some critical simplices θ 1 , θ 2 ∈ CS α (σ) such that α(χ(carrier (θ 1 , s))) = α(χ(carrier (θ 2 , s))). The inclusion property implies, w.l.o.g., carrier (θ 1 , s) ⊆ carrier (θ 2 , s). The immediacy property implies either that carrier (θ 1 , s) = carrier (θ 2 , s) (and thus Lemma 11 is verified) or else that χ(θ 2 ) ∩ χ(carrier (θ 1 , s)) = ∅.

Let us now assume that χ(θ 2 ) ∩ χ(carrier (θ 1 , s)) = ∅. Together with carrier (θ 1 , s) ⊆ carrier (θ 2 , s), it implies that carrier (θ 1 , s) ⊆ carrier (θ 2 , s) \ θ 2 . Since agreement functions are regular (i.e., the agreement power can only grow with a participation increase), we obtain that α(χ(carrier (θ 1 , s)) ≤ α(χ(carrier (θ 2 , s) \ θ 2 ). But as θ 2 is a critical simplex α(χ(carrier (θ 2 , s) \ θ 2 )) < α(χ(carrier (θ 2 , s))), and we obtain a contradiction:

α(χ(carrier (θ 1 , s)) ≤ α(χ(carrier (θ 2 , s) \ θ 2 ) < α(χ(carrier (θ 2 , s))) = α(χ(carrier (θ 1 , s))).
Let us now prove Property 10:

Proof. Let σ be a maximal simplex of R A , i.e., dim(σ) = n -1, and let θ ⊆ σ such that χ(θ) ⊆ Q.

Note that for both γ Q and δ Q , processes returns the IS1 view of a vertex of carrier (θ, Chr s). Assume that γ Q and δ Q return, for vertices in θ, k ≥ 0 distinct IS1 views which are not the IS1 views of some critical simplex in carrier (σ, Chr s). As δ Q only returns IS1 views associated with a critical simplex, they have been returned by γ Q . Let β be the subset of θ including all vertices for which γ Q returns such IS1 views. As they are returned by γ Q , we have CSV α (carrier (β, Chr s)) ∩ Q = ∅.

Consider any two processes p 1 and p 2 which obtained two distinct such IS1 views, V 1 and V 2 respectively (w.l.o.g., let V 1 V 2 ). As γ Q returns the minimal IS1 view intersecting with Q, a vertex from β sees V 2 but not V 1 , and thus, p 2 has a smaller IS2 view than p 1 . Therefore p 1 and p 2 satisfy the condition to be part of a contention simplex, and so, any k processes carrying these k distinct returned IS1 views form a contention simplex. Let τ be this contention simplex in σ.

As a vertex in β saw all these k distinct IS1 views, we have carrier (τ, Chr s) ⊆ carrier (β, Chr s). But since CSV α (carrier (β, Chr s)) ∩ Q = ∅ is satisfied, we obtain that CSV α (carrier (τ, Chr s)) ∩ Q = ∅. By assumption, these k processes are not critical simplices members (χ(τ ) ∩ CSM α (σ) = ∅). Therefore, the definition of R A implies that we have Conc α (carrier (τ, Chr s)) ≥ k, and hence, we obtain that Conc α (carrier (β, Chr s)) ≥ k.

Having Conc α (carrier (β, Chr s)) ≥ k, it implies that we have ∃σ c ∈ CS α (carrier (β, Chr s)) such that α(χ(carrier (σ c , s))) ≥ k. But, since χ(carrier (σ c , s)) ⊆ CSV α (carrier (β, Chr s)), we obtain that χ(carrier (σ c , s)) ∩ Q = ∅. As the inclusion property implies that any IS1 view must be strictly larger to intersect with Q, and as there are at most one IS1 view associated with a critical simplex by agreement level (Lemma 11), all IS1 views corresponding to some critical simplex in carrier (σ, Chr s) are associated with an agreement power strictly greater than k.

Let l ≥ 0 be the number of distinct IS1 views corresponding to some critical simplex in carrier (σ, Chr s) which are returned by δ Q or γ Q for vertices in θ. Lemma 11 implies that they must be associated with l distinct agreement powers. As they must also be associated with agreement powers strictly greater than k, one of the returned IS1 views is associated with an agreement power greater than or equal to k + l. Therefore, we have α(χ(carrier (θ, s))) ≥ k + l. As the number of distinct IS1 views returned by δ Q or γ Q is equal to k + l, and as the deterministic selection made by min Q could only reduce the number of distinct returned values, we finally obtain that |{µ Q (v) : v ∈ θ}| ≤ α(χ(carrier (θ, s))).

Last, let us also observe that knowing which processes terminated the main simulation is not required to compute µ Q , i.e., that the knowledge of which processes belong to Q among the processes observed in the current iteration of R A is sufficient:

Property 12. [Robustness of µ Q ] ∀v ∈ R A , dim(v) = 0, ∀Q ⊆ Π : µ Q (v) = µ carrier (v,s)∩Q (v).
Proof. This is a direct corollary of the definition of δ Q and γ Q , that for a given vertex v ∈ R A , to compute µ Q (v), the knowledge of Q ∩ (carrier (v, s)) is sufficient. Indeed, Q is only used to compute intersections with either CSV α (χ(carrier (v, Chr s))), a subset of carrier (v, s), or with carrier (v , s) for a vertex v ∈ carrier (v, Chr s), also a subset of carrier (v, s).

Correctness of the simulation

Let us first show that all simulated operations are safe. Since the composable shared memory simulation is safe, we only need to show that simulated α-adaptive set consensus operations satisfy the validity property (decision values are proposal values) and the α-agreement property (if k distinct values have been returned, then the current participation P is such that α(P ) ≥ k).

Lemma 13. The shared memory and α-adaptive set consensus simulation in R * A is safe.

Proof. For α-adaptive set consensus operations, Property 12 ensures that µ carrier (v,s)∩Q (v) can be used as if it was µ Q (v) and thus that processes can indeed use µ Q to elect a leader in any iteration of R A . Moreover, Property 9 ensures that a decision estimate is either the process proposal value or is adopted from another process with a proposal value and thus that the validity property of α-adaptive set consensus is verified. At the earliest iteration R of R * A at which a process commits a decision estimate for an α-adaptive set consensus, since a committing process only observed processes from Q with decision estimates, all processes in Q adopt a decision estimate. Moreover, Property 10 states that among any k processes adopting k distinct decision estimates at this iteration R, one must have observed a set of processes associated with an agreement level greater or equal to k.

Before completing an α-adaptive set consensus operation, processes make sure that all processes they observed are participating in the simulated run (by simulating for them a write operation of their initial states). Therefore, at the time a k th distinct value is returned for some α-adaptive set consensus, the participation in the simulated run is associated with an agreement power greater than or equal to k, hence, the α-agreement property is verified.

As we have shown that the simulation is safe, let us also show that it is live, i.e., that it provides outputs to all processes. For this, we only need to show that a process obtaining the smallest IS view among non-terminated processes eventually completes its α-adaptive set consensus operation. Lemma 14. In the shared memory and α-adaptive set consensus simulation in R * A , all processes eventually terminate.

Proof. as soon as they observe a process with a decision estimate, processes adopt a decision estimate for any α-adaptive set consensus operation they may participate to. Hence, if a process has a pending α-adaptive set consensus operation and has the smallest IS view among non-terminated processes, all competitors will have a decision in the next iteration of the affine task. But since a process commits a decision estimate when all non-terminated processes which participate in an operation share a decision estimate during some iteration, a process obtaining the smallest IS view among non-terminated processes eventually commits its operation in the following affine task iteration and hence resume its shared-memory simulation.

By Lemmata 13 and 14, the simulation that we provide can be used to solve in R * A any task solvable in a shared memory model with access to α-adaptive set consensus. But it was shown in Section 3 that the α-adaptive set consensus model, the α-model and a corresponging fair adversarial model are all equivalent in term of task solvability. Hence, since we have shown in Theorem 8 that all task solvable in R * A are solvable in the A-model, we obtain the following equivalence result: 
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Inspired by the model of dependent failures proposed by Junqueira and Marzullo [START_REF] Junqueira | A framework for the design of dependent-failure algorithms[END_REF], Delporte et al. [START_REF] Delporte-Gallet | The disagreement power of an adversary[END_REF] suggested the notion of adversaries and showed that adversaries having the same set consensus power agree on the set of colorless tasks they solve.

Herlihy and Shavit [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF] proposed a characterization of wait-free task computability through the existence of a simplicial map from a subdivision of the input complex of a task I to its output complex O. (The reader is referred to [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF] for a thorough discussion of the use of combinatorial topology in distributed computability.) Herlihy and Rajsbaum [START_REF] Herlihy | Simulations and reductions for colorless tasks[END_REF] studied colorless task computability in the special case of superset-c7-TRlosed adversaries. They show that the protocol complex of a superset-closed adversary with minimal core size c is (c -2)-connected. This result, obtained via an iterative application of the Nerve lemma, gives a combinatorial characterization of superset-closed adversaries. The characterization only applies to colorless tasks, and it does not allow us to express the adversary in an affine way.
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Saraph et al. [START_REF] Saraph | Asynchronous computability theorems for t-resilient systems[END_REF] gave a compact combinatorial characterization of t-resilient task computability. Note that A t-res is a superset-closed (and thus fair) adversary. Our solution of the affine task R A in the α-model is inspired by the t-resilient solution of R t-res in [START_REF] Saraph | Asynchronous computability theorems for t-resilient systems[END_REF]. Gafni et al. [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF] presented affine tasks for the model of k-set consensus and, thus, k-concurrency and k-obstruction-freedom, which can be expressed as a symmetric and thus fair adversary.

The notions of agreement functions and a fair adversaries were introduced by the first two authors in [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF]. One can determine the agreement function of any given adversary using the formula suggested earlier for the set consensus power [START_REF] Gafni | Turning adversaries into friends: Simplified, made constructive, and extended[END_REF]. It has been shown in [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] that agreement functions encode enough information to characterize the task computability of any fair adversary.

A short version of this paper appeared as a conference brief announcement [START_REF] Kuznetsov | Brief announcement: Compact topology of shared-memory adversaries[END_REF], and as an extended version without formal proofs and shorten explanation [START_REF] Kuznetsov | An asynchronous computability theorem for fair adversaries[END_REF].

Concluding remarks

This paper generalizes all existing topological characterizations of distributed computing models [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF][START_REF] Gafni | A generalized asynchronous computability theorem[END_REF][START_REF] Herlihy | Simulations and reductions for colorless tasks[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF][START_REF] Saraph | Asynchronous computability theorems for t-resilient systems[END_REF]. It applies to all tasks (not necessarily colorless) and all fair adversarial models (not necessarily t-resilience or k-obstruction-freedom). Just as the wait-free characterization [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF] implies that the IS task captures the wait-free model, our characterization equates any fair adversary with a (compact) affine task embedded in the second degree of the standard chromatic subdivision.

Interestingly, unlike [START_REF] Saraph | Asynchronous computability theorems for t-resilient systems[END_REF], we cannot rely on the shellability [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF] (and, thus, link-connectivity) of the affine task. Link-connectivity of a simplicial complex C allows us to work in the point set of its geometrical embedding |C| and use continuous maps (as opposed to simplicial maps that maintain the simplicial structure). For example, the existence of a continuous map from |R At-res | to any |R k At-res | implies that R At-res indeed captures the general task computability of A t-res [START_REF] Saraph | Asynchronous computability theorems for t-resilient systems[END_REF]. In general, however, the existence of a continuous map onto C only allows us to converge on a single vertex [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF]. If C is not link-connected, converging on one vertex allows us to compute an output only for a single process, and not more. Unfortunately, only very special adversaries, such as A t-res , have link-connected counterparts (see, e.g., the affine task corresponding to 1-obstruction-freedom in Figure 7a). Instead of relying on link-connectivity, this paper takes an explicit algorithmic way of showing that iterations of R A simulate A. An interesting question is to which extent point-set topology and continuous maps can be applied in affine characterizations.

Given that some models out of this class cannot be grasped by agreement functions (see [START_REF] Kuznetsov | Agreement functions for distributed computing models[END_REF] for examples), going beyond fair adversarial models is an important challenge. In particular, we should be able to account for models in which coalitions of participants can achieve better levels of set consensus than the whole set. Nailed down, this may allow us to compactly capture all "natural" models [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF], such as, e.g., generic adversarial models or the set consensus collections models [START_REF] Delporte-Gallet | Set-consensus collections are decidable[END_REF] for which only special cases of k-set consensus [START_REF] Gafni | Read-write memory and k-set consensus as an affine task[END_REF] and k-test-and-set [START_REF] Kuznetsov | Affine Tasks for k-Test-and-Set[END_REF] have been, in this sense, understood so far.

(b) If j ∈ t i , then t j ⊆ t i .

The geometric realization of s can be taken to be the set {x = (x 0 , . . . , x n ) ∈ [0, 1] n+1 | x i = 1}, where the vertex i corresponding to the point x i with i coordinate 1 and all others coordinate 0. Then, we can identify a vertex (i, t) of Chr s with the point

1 2k -1 xi + 2 2k -1 {j∈t|j =i} xj ∈ |s| ⊂ R n+1 ,
where k is the cardinality of t. Thus, Chr s becomes a subdivision of s and the geometric realizations are identical: |s| = | Chr s|. The standard chromatic subdivision, Chr s, is illustrated for a 3-process system in Figure 1a(a).

Next, given a chromatic complex C, we let Chr C be the subdivision of C obtained by replacing each simplex in C with its chromatic subdivision. Thus, the vertices of Chr C are pairs (p, σ), where p is a vertex of C and σ is a simplex of C containing p. If we iterate this process m times we obtain the m th chromatic subdivision, Chr m C.

Let A and B be chromatic complexes. A simplicial map f : A → B is called a chromatic map if for all vertices v ∈ A, we have χ(v) = χ(f (v)). Note that a chromatic map is automatically non-collapsing. A simplicial map φ is carried by the carrier map ∆ if φ(σ) ⊂ ∆(σ) for every simplex σ in their domain.
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 1 Figure 1: Standard chromatic subdivision and affine task example.
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 a Ordered run: {p2}, {p1}, {p3}.(b) Synchronous run: {p1, p2, p3}.
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 3 Figure 3: Examples of valid sets of IS outputs.

  (a) Critical simplices for the α-model with α(P ) = min(|P |, 1) (1-obstruction-freedom) (b) Critical simplices for the adversary defined as {p2}, {p1, p3} plus all supersets.

Figure 5 :

 5 Figure 5: Critical simplices are displayed in orange (with p 2 the top vertex, p 1 the bottom left vertex and p 3 the bottom right vertex).

  (a) For the α-model with α(P ) = min(|P |, 1) (1-obstruction-freedom) (b) For the adversary defined as {p2}, {p1, p3} plus all supersets.

Figure 6 :

 6 Figure 6: Simplices in black, orange and green are mapped to concurrency levels of 0, 1 and 2 respectively (with p 2 the top vertex, p 1 the bottom left vertex and p 3 the bottom right vertex).

  (a) Affine task for the α-model with α(P ) = min(|P |, 1). (1-obstruction-freedom) (b) Affine task for the adversary defined as {p2}, {p1, p3} plus all supersets.

Figure 7 :

 7 Figure 7: Some examples of affine tasks R A in blue (with p 2 the top vertex, p 1 the bottom left vertex and p 3 the bottom right vertex).

2 .

 2 If α(χ(β)) < α(χ(σ)), then let m = α(χ(σ))α(χ(β)) > 0 and let us consider any subset τ of τ such that |τ | > |τ |m. By construction we have carrier (τ , s) = carrier (σ, s) and by assumption we have χ(carrier (σ, s)) = χ(σ), and thus, we obtain that χ(carrier (τ , s)) = χ(σ).

  Moreover, since |χ(τ )| ≥ m, we have csize({τ ⊆ τ, |χ(τ )| > |χ(τ )| -m}) = m, and hence, that csize(CS α (τ )) ≥ m. With m = α(χ(σ))α(χ(β)) and Equations 1 and 2, we obtain:

Theorem 15 .

 15 A task is solvable in the adversarial A-model if and only if it is solvable in R * A .We thus obtain the following generalization of the ACT[START_REF] Herlihy | The topological structure of asynchronous computability[END_REF]: Theorem 16. [Fair Asynchronous Computability Theorem [FACT]] A task T = (I, O, ∆) is solvable in the fair adversarial A-model if and only if there exists a natural number and a simplicial map φ : R A (I) → O carried by ∆.

  A chromatic map has chromatic subdivisions Chr m f : Chr m A → Chr m B. Under the identifications of topological spaces |A| ∼ = | Chr m A|, |B| ∼ = | Chr m B|, the continuous maps |f | and | Chr m f | are identical.

  Synchronous run: {p 1 , p 2 , p 3 } Ordered run: {p 2 }, {p 1 }, {p 3 } p 1 sees {p 1 , p 2 } p 3 sees {p 2 , p 3 } p 2 sees {p 1 , p 2 } p 2 sees {p 2 , p 3 } p 2 sees {p 1 , p 2 , p 3 } p 1 sees {p 1 } p 3 sees {p 3 } p 2 sees {p 2 }

  In this case, a register in Conc was set on Line 12 to a value greater than α(IS1 [i]). It implies that a critical simplex associated with an agreement level strictly greater than |{p j ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] = IS1 [i]}| terminated its computation and thus is included in carrier (θ, Chr s). But we can observe that (χ(θ) \ {q 1
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A Simplicial complexes

We recall now several notions from combinatorial topology. For more detailed coverage of the topic please refer to [START_REF] Herlihy | Distributed Computing Through Combinatorial Topology[END_REF][START_REF] Spanier | Algebraic topology[END_REF].

A simplicial complex is a set V , together with a collection C of finite non-empty subsets of V such that:

1. For any v ∈ V , the one-element set {v} is in C;

The elements of V are called vertices, and the elements of C are called a simplices. We usually drop V from the notation, and refer to the simplicial complex as C.

A subset of a simplex is called a face of that simplex.

A sub-complex of C is a subset of C that is also a simplicial complex.

The dimension of a simplex σ ∈ C is its cardinality minus one. The k-skeleton of a complex C, denoted Skel k C, is the sub-complex formed of all simplices of C of dimension k or less.

A simplicial complex C is called pure of dimension n if C has no simplices of dimension > n, and every k-dimensional simplex of C (for k < n) is a face of an n-dimensional simplex of C.

Let A and B be simplicial complexes. A map f : A → B is called simplicial if it is induced by a map on vertices; that is, f maps vertices to vertices, and for any σ ∈ A, we have

Any simplicial complex C has an associated geometric realization |C|, defined as follows. Let V be the set of vertices in C. As a set, we let C be the subset of

A non-empty complex C is called k-connected if, for each m ≤ k, any continuous map of the m-sphere into |C| can be extended to a continuous map over the (m + 1)-disk.

A subdivision of a simplicial complex C is a simplicial complex C such that:

1. The vertices of C are points of |C|.

2. For any σ ∈ C , there exists σ ∈ C such that σ ⊂ |σ|.

3. The piecewise linear map |C | → |C| mapping each vertex of C to the corresponding point of C is a homeomorphism.

Chromatic complexes. We now turn to the chromatic complexes used in distributed computing, and recall some notions from [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF].

Fix n ≥ 0. The standard n-simplex s has n + 1 vertices, in one-to-one correspondence with n + 1 colors 0, 1, . . . , n. A face t of s is specified by a collection of vertices from {0, . . . , n}. We view s as a complex, with its simplices being all possible faces t.

A chromatic complex is a simplicial complex C together with a non-collapsing simplicial map χ : C → s. Note that C can have dimension at most n. We usually drop χ from the notation. We write χ(C) for the union of χ(v) over all vertices v ∈ C. Note that if C ⊆ C is a sub-complex of a chromatic complex, it inherits a chromatic structure by restriction.

In particular, the standard n-simplex s is a chromatic complex, with χ being the identity. Every chromatic complex C has a standard chromatic subdivision Chr C. Let us first define Chr s for the standard simplex s. The vertices of Chr s are pairs (i, t), where i ∈ {0, 1, . . . , n} and t is a face of s containing i. We let χ(i, t) = i. Further, Chr s is characterized by its n-simplices; these are the (n + 1)-tuples ((0, t 0 ), . . . , (n, t n )) such that:

(a) For all t i and t j , one is a face of the other;