
HAL Id: hal-01572257
https://hal.science/hal-01572257v4

Preprint submitted on 18 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Asynchronous Computability Theorem for Fair
Adversaries

Petr Kuznetsov, Thibault Rieutord, Yuan He

To cite this version:
Petr Kuznetsov, Thibault Rieutord, Yuan He. An Asynchronous Computability Theorem for Fair
Adversaries. 2017. �hal-01572257v4�

https://hal.science/hal-01572257v4
https://hal.archives-ouvertes.fr

An Asynchronous Computability Theorem for Fair Adversaries∗

Petr Kuznetsov1, Thibault Rieutord1, and Yuan He2

1LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France,
{petr.kuznetsov,thibault.rieutord}@telecom-paristech.fr

2UCLA, Los Angeles, USA, yuan.he@cs.ucla.edu

Abstract

This paper proposes a simple topological characterization of a large class of fair adversarial
models via affine tasks: sub-complexes of the second iteration of the standard chromatic subdivision.
We show that the task computability of a model in the class is precisely captured by iterations
of the corresponding affine task. Fair adversaries include, but are not restricted to, the models
of wait-freedom, t-resilience, and k-concurrency. Our results generalize and improve all previously
derived topological characterizations of the ability of a model to solve distributed tasks.

1 Introduction

Distributed computing deals with a jungle of models, parameterized by types of failures, synchrony
assumptions and communication primitives. Determining relative computability power of these models
(“is model A more powerful than model B?”) is an intriguing and important problem.

This paper deals with shared-memory models in which a set of crash-prone asynchronous processes
communicate via invoking operations on a collection of shared objects, which, by default, include atomic
read-write registers.

Topology of wait-freedom. The wait-free model [17] makes no assumptions on when and where
failures might occur. Herlihy and Shavit proposed an elegant characterization of wait-free (read-write)
task computability via the existence of a specific simplicial map from geometrical structures describing
inputs and outputs [20].

A task T has a wait-free solution using read-write registers if and only if there exists a simplicial,
chromatic map from some subdivision of the input simplicial complex, describing the inputs of T , to the
output simplicial complex, describing the outputs of T , respecting the task specification ∆. In particular,
we can choose this subdivision to be a number of iterations of the standard chromatic subdivision
(denoted Chr, Figure 1a).

Therefore, the celebrated Asynchronous Computability Theorem (ACT) [20] can be formulated as:

A task T = (I,O,∆), where I is the input complex, O is an output complex, and ∆ is a carrier map
from I to sub-complexes of O, is wait-free solvable if and only if there exists a natural number ` and
a simplicial map φ : Chr`(I)→ O carried by ∆ (informally, respecting the task specification ∆).

The output complex of the immediate snapshot (IS) task is precisely captured by Chr [5]. By solving
the IS task iteratively, where the current iteration output is used as the input value for the next one, we
obtain the iterated immediate snapshot (IIS) model, captured by iterations of Chr. The ACT theorem can
thus be interpreted as: the set of wait-free (read-write) solvable task is precisely the set of tasks solvable
in the IIS model. The ability of (iteratively) solving the IS task thus allows us to solve any task in the
wait-free model. Hence, from the task computability perspective, the IS task is a finite representation of
the wait-free model.

∗This work has been supported by the Franco-German DFG-ANR Project DISCMAT (14-CE35-0010-02) devoted to
connections between mathematics and distributed computing.

1

Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

(a) Chr(s), the standard chromatic subdivision of a
2-simplex, the output complex of the 3-process IS task.

(b) In blue, R1−res , the affine task of 1-resilience for a
3-process system.

Figure 1: Standard chromatic subdivision and affine task example.

Adversaries. Given that many fundamental tasks are not solvable in the wait-free way [3,20,29], more
general models were considered. Delporte et al. [9] introduced the notion of an adversary, a collection A
of process subsets, called live sets. A run is in the corresponding adversarial A-model if the set of
processes taking infinitely many steps in it is a live set of A. For example, the t-resilient n-process model
is defined via an adversary At−res that consists of all process subsets of size n − t or more. At−res is
superset-closed [23], as it contains all supersets of its elements.

Saraph et al. [30] recently proposed a direct characterization of t-resilient task computability via a
specific task Rt−res . The task is defined as a restriction of the double immediate snapshot task: the output
complex of the task is a sub-complex consisting of all simplices of the second degree of the standard
chromatic subdivision of the task’s input complex, except the simplices adjacent to the (n− t−1)-skeleton
of the input complex. Intuitively the output complex of Rt−res contains all of 2-round IS runs in which
every process “sees” at least n− t−1 other processes. We call such tasks affine [12,15], as the geometrical
representation of their output complexes are unions of affine spaces. An affine task consists in solving a
(generalized) simplex agreement [5, 20] on the corresponding sub-complex of Chr2 s.

Figure 1b depicts the output complex of R1−res , the affine task for the 3-process 1-resilient model.
Solving a task T in the t-resilient model is then equivalent to finding a map from iterations of Rt−res

(applied to the input complex of T) to the output complex of T .
Similarly, the affine task of the k-obstruction-free adversary, consisting of all process subsets of size

at most k, was recently determined by Gafni et al. [12]. Note that such an adversary is symmetric [32],
as it only depends on the sizes of live sets, and not on process identifiers. Unlike At−res (which is also
symmetric), the k-obstruction-free one is not superset-closed.

Topology of fair adversaries. In this paper, we present a compact topological characterization of the
large class of fair adversarial models [24]. Informally, an adversary is fair if a subset of the participating
processes P cannot achieve better set consensus than P . Fair adversaries subsume, but are not restricted
to, symmetric and superset-closed ones.

We define an affine task RA capturing the task computability of any fair (adversarial) A-model. Our
characterization can be put as the following generalization of the ACT [20]:

A task T = (I,O,∆) is solvable in a fair adversarial A-model if and only if there exists a natural
number ` and a simplicial map φ : R`A(I)→ O carried by ∆.

This result generalizes all existing topological characterizations of distributed computing models [12,
15, 20, 30], as it applies to all fair adversaries (and not only t-resilient and k-obstruction-free) and all
tasks (and not only colorless).

Figure 2 shows adversary classes and summarizes the results of this paper along with earlier affine
characterizations.

We believe that the results can be extended to all “practical” restrictions of the wait-free model,
beyond fair adversaries, which may result in a complete computability theory for distributed computing
shared-memory models.

2

Super-set closed Symmetrict-resilient

Adversaries

(k-OF)(WF)

[SHG16]
[HS99]

[GHKR16]

Super-set closed Symmetrict-resilient

Adversaries

(k-OF)(WF)

Fair Adversaries

[SHG16]
[HS99]

[GHKR16]

Figure 2: Earlier topological characterizations of the wait-free [20], t-resilient [30] and k-obstruction-
free [12] models, and our contribution: affine tasks for all fair adversaries.

Compact models. Our affine-task formalism enables a compact representation of a distributed com-
puting model. Intuitively, assuming the conventional “longest-prefix” metric [2], a model M , as a set
of infinite runs, is compact if it contains its limit points: if every prefix of an infinite run complies
with M (i.e., can be extended to a run in M), then the run is in M . M can then be viewed as a safety
property [28, Chap. 8]: to check if a run is in M , it is sufficient to check whether each of its finite prefixes
complies with M .

Most adversarial models are non-compact. For example, the 1-obstruction-free 2-process model is
compliant with all finite runs, but among the infinite ones—only those in which exactly one process runs
solo from some point on are in the model. Similarly, consider an infinite solo run in which exactly one
process takes steps. All finite prefixes of this run complies with the 1-resilient 3-process model, but the
run itself is not in the model.

In contrast, the affine model L∗, defined as the subset of infinite IIS runs resulting by iterating an
affine task L is, by construction, compact. By a simple application of König’s lemma, we can easily show
that every task solvable in an affine model is solvable in a bounded number of IIS rounds, i.e., in finitely
many finite runs. In a non-compact model, such as the model of 1-resilience, many tasks can only be
solved in arbitrarily long runs, hence, to check if a solution is correct, we might have to consider infinitely
many infinite runs. Thus, working in an equivalent affine model may be attractive from the verification
viewpoint.

Roadmap. Section 2 describes our model. Section 3 recalls the definitions of adversarial models and
presents agreement functions. Section 4 defines the affine task RA for a fair adversary A. In Section 5, we
show that R∗A can be simulated in the adversarial A-model. In Section 6, we show that any task solvable
in the A-model can be solved in R∗A. Section 7 reviews related work and Section 8 concludes the paper.

3

(a) Ordered run: {p2}, {p1}, {p3}. (b) Synchronous run: {p1, p2, p3}.

Figure 3: Examples of valid sets of IS outputs.

2 Preliminaries

We assume a system of n asynchronous processes, Π = {p1, . . . , pn}. Two models of communication are
considered: (1) atomic snapshots [1] and (2) iterated immediate snapshots [5, 20].

Atomic snapshot models. The atomic-snapshot (AS) memory is represented as a vector of n shared
variables, where each process pi is associated with the position i. The memory can be accessed with two
operations: update and snapshot. An update operation performed by pi modifies the value at position i
and a snapshot returns the vector current state.

A protocol is a deterministic distributed automaton that, for each process and each its local state,
stipulates which operation and state transition the process may perform. A run of a protocol is a possibly
infinite sequence of alternating states and operations. An AS model is a set of infinite runs.

In an infinite run of the AS model, a process that takes only finitely many steps is called faulty,
otherwise it is called correct. We assume that in its first step, a process shares its initial state using
the update operation. If a process completed this first step in a given run, it is said to be participating,
and the set of participating processes is called the participating set. Note that every correct process is
participating.

Iterated Immediate Snapshot model. In the iterated immediate snapshot (IIS) model, processes
proceed through an infinite sequence of independent memories M1,M2, Each memory Mr is accessed
by a process with a single WriteSnapshot operation [4]: the operation performed by pi takes a value vir
and returns a set Vir of submitted values (w.l.o.g, values of different processes are distinct), satisfying the
following properties (See Figure 3 for IS examples):

• self-inclusion: vir ∈ Vir;

• containment: (Vir ⊆ Vjr) ∨ (Vjr ⊆ Vir);

• immediacy: vir ∈ Vjr ⇒ Vir ⊆ Vjr.

In the IIS communication model, we assume that processes run the full-information protocol, in which,
the first value each process writes is its initial state. For each r > 1, the outcome of the WriteSnapshot
operation on memory Mr−1 is submitted as the input value for the WriteSnapshot operation on Mr.
There are no failures in the IIS model, all processes go through infinitely many IS instances.

Note that the wait-free AS model and the IIS model are equivalent as regards task solvability [4, 18].

Tasks. In this paper, we focus on distributed tasks [20]. A process invokes a task with an input value
and the task returns an output value, so that the inputs and the outputs across the processes respect the
task specification. Formally, a task is defined through a set I of input vectors (one input value for each
process), a set O of output vectors (one output value for each process), and a total relation ∆ : I 7→ 2O

that associates each input vector with a set of possible output vectors. We require that ∆ is a carrier
map: ∀ρ, σ ∈ I, ρ ⊆ σ: ∆(ρ) ⊆ ∆(σ). An input ⊥ denotes a non-participating process and an output
value ⊥ denotes an undecided process. Check [18] for more details on the definition.

In the k-set consensus task [7], input values are in a set of values V (|V | ≥ k + 1), output values are
in V , and for each input vector I and output vector O, (I,O) ∈ ∆ if the set of non-⊥ values in O is a
subset of values in I of size at most k. The case of 1-set consensus is called consensus [10].

A protocol solves a task T = (I,O,∆) in a model M , if it ensures that in every run of M in which
processes start with an input vector I ∈ I, there is a finite prefix R of the run in which: (1) decided
values form a vector O ∈ O such that (I,O) ∈ ∆, and (2) all correct processes decide. Hence, in the IIS
model, all processes must decide.

4

Simplicial complexes. We use the standard language of simplicial complexes [18, 31] to give a
combinatorial representation of the IIS model. A simplicial complex is defined as a set of vertices and an
inclusion-closed set of vertex subsets, called simplices. The dimension of a simplex σ is |σ| − 1, and any
subset of σ is one of its faces. We denote by s the standard (n− 1)-simplex: a fixed set of n vertices and
all its subsets.

Given a complex K and a simplex σ ∈ K, σ is a facet of K, denoted facet(σ,K), if σ is not a face of
any stricly larger simplex in K. Let facets(K) = {σ ∈ K, facet(σ,K)}. A simplicial complex is pure (of
dimension n) if all its facets have dimension n. A simplicial complex is chromatic if it is equipped with a
coloring function — a non-collapsing simplicial map χ from its vertices to s, in one-to-one correspondence
with n colors. In our setting, colors correspond to processes identifiers.

The closure of a set of simplices S, Cl(S), is the complex formed by all faces of simplices in S,
i.e.,

⋃
σ∈S faces(σ). Given a complex K, the star of S ⊆ K in K, St(S,K), is the set of all simplices

in K having a simplex from S as a face, i.e., {σ ∈ K|faces(σ) ∩ S 6= ∅}. Given a pure complex K,
we also define a new construct that we call the pure complement of S ⊆ K in K, Pc(S,K). It is the
maximal pure sub-complex of K of the same dimension as K which does not intersect with S, i.e.,
Cl({σ ∈ facets(K)|faces(σ) ∩ S = ∅}).

Standard chromatic subdivision and IIS The standard chromatic subdivision [20] of a complex K,
ChrK (Chr s is depicted in Figure 1a), is a complex where vertices of ChrK are couples (c, σ), where
c is a color and σ is a face of K containing a vertex of color c. Simplices of ChrK are the sets of
vertices (c1, σ1), . . ., (cm, σm) associated with distinct colors (i.e., ∀i, j, ci 6= cj) such that the σi satisfies
the containment and immediacy properties of IS. It has been shown that Chr is a subdivision [22]. In
particular, the geometric realization of Chr s, |Chr s|, is homeomorphic to |s|, the geometric realization
of s (i.e., the convex hull of its vertices). If we iterate this subdivision m times, each time applying Chr to
all simplices, we obtain the mth chromatic subdivision, Chrm. Chrm s captures the m-round IIS model,
ISm [5, 20].

Given a complex K and a subdivision of it Sub(K), the carrier of a simplex σ ∈ Sub(K) in K,
carrier(σ,K), is the smallest simplex ρ ∈ K such that the geometric realization of σ, |σ|, is contained in
|ρ|: |σ| ⊆ |ρ|. The carrier of a vertex (p, σ) ∈ Chr s is σ. In the matching IS task, the carrier corresponds
to the snapshot returned by p, i.e., the set of processes seen by p. The carrier of a simplex ρ ∈ ChrK is
simply the union (or, due to inclusion, the maximum) of the carriers of vertices in ρ. Given a simplex
σ ∈ Chr2 s, carrier(σ, s) is equal to carrier(carrier(σ,Chr s), s). carrier(σ,Chr s) corresponds to the set
of all snapshots seen by processes in χ(σ). Hence, carrier(σ, s) corresponds to the union of all these
snapshots. Intuitively, it results in the set of all processes seen by processes in χ(σ) through the two
successive immediate snapshots instances.

Additionnal details can be found in Appendix A.

Simplex agreement and affine tasks. In the simplex agreement task, processes start on vertices of
some complex K, forming a simplex σ ∈ K, and must output vertices of some subdivision of K, Sub(K),
so that outputs form a simplex ρ of Sub(K) respecting carrier inclusion, i.e., carrier(ρ,K) ⊆ σ. In the
simplex agreement tasks considered in the characterization of wait-free task computability [5,20], K is
the standard simplex s and the subdivision is usually iterations of Chr.

An affine task is a generalization of the simplex agreement task, where s is fixed as the input
complex and where the output complex is a pure non-empty sub-complex of some iteration of the
standard chromatic subdivision, Chr` s. Formally, let L be a pure non-empty sub-complex of Chr` s for
some ` ∈ N. The affine task associated with L is then defined as (s, L,∆), where, for every face σ ⊆ s,
∆(σ) = L∩Chr`(σ). Note that L∩Chr`(t) can be empty, in which case the set of participating processes
must increase before processes may produce outputs. Note that, since an affine task is characterized by
its output complex, with a slight abuse of notation, we use L for both the affine task (s, L,∆) and its
ouput complex.

By running m iterations of this task, we obtain Lm, a sub-complex of Chr`m s, corresponding to a
subset of IS `m runs (each of the m iterations includes ` IS rounds). The affine model associated with L,
denoted L∗, corresponds to the set of infinite runs of the IIS model where every prefix restricted to a
multiple of ` IS rounds belongs to the subset of IS `m runs associated with Lm. Note that the definition
of the affine model L∗ is done by satisfying a property on all its prefixes. Hence, affine models are, by
construction, compact.

5

3 Adversaries and agreement functions

In this section, we introduce many results from [24] wich will be instrumental for our topological
characterization.

Adversaries. It is convenient to model patterns in which process failures can occur using the formalism
of adversaries [9]. An adversary A is defined as a set of possible correct process subsets, called live sets.
An infinite run is A-compliant if the set of processes that are correct in that run belongs to A. An
(adversarial) A-model A-model is thus defined as the set of A-compliant runs.

An adversary is superset-closed [23] if each superset of a live set of A is also an element of A, i.e., if
∀S ∈ A, ∀S′ ⊆ Π, S ⊆ S′ =⇒ S′ ∈ A. Superset-closed adversaries provide a non-uniform generalization
of the classical t-resilient adversaries. An adversary A is symmetric if it only depends on the sizes of
live sets, and not on process identifiers: ∀S ∈ A, ∀S′ ⊆ Π, |S′| = |S| =⇒ S′ ∈ A. Introduced as
symmetric progress conditions in [32], symmetric adversaries provide a generalization of t-resilience and
k-obstruction-freedom.

The agreement power of a model, i.e., the smallest k such that k-set consensus is solvable, was
determined for adversaries in [13] in order to characterize the power of adversaries in solving colorless
tasks [4]. It is formalized as follows:

Definition 1. [Agreement power]

setcon(A) =

{
0 if A = ∅
max
S∈A

(min
a∈S

(setcon(A|S\{a}) + 1)) otherwise

With A|P the adversary composed of the live sets of A included in P . As previously shown in [14], for a
superset-closed adversary A, the agreement power of A is equal to csize(A), where csize(A) is the size of
the minimal hitting set of A, i.e., a set intersecting with each L ∈ A. For a symmetric adversary A, the
agreement power formula reduces to setcon(A) = |{k ∈ {1, . . . , n} : ∃S ∈ A, |S| = k}|.

Agreement functions. Consider an AS model M and a function α mapping subsets of Π to integers
in {0, . . . , n}. We say that α is the agreement function of M , if for each P ∈ 2Π, α(P) is the agreement powe
of the model M |P consisting of runs of M in which no process in Π \P participates [24]. Intuitively, α(P)
is the best level of set consensus that can be solved adaptively in M . By convention, if M |P does not
contain any run, then α(P) is equal to 0.

Let P ⊆ P ′ ⊆ Π. We can observe that, by construction, the agreement function of a model is
monotonic, i.e., α(P) ≤ α(P ′) and of bounded growth, i.e., α(P ′) ≤ α(P) + |P ′ \ P |. It was shown in [24]
that the agreement function of A can be defined using the setcon function: α(P) = setcon(A|P).

Fair adversaries. Informally, an adversary is fair [24] if a subset Q of participating processes P
cannot achieve a better set consensus than P . For an adversary A, and Q ⊆ P ⊆ Π, we define
A|P,Q = {S ∈ A : (S ⊆ P) ∧ (S ∩ Q 6= ∅)}. When solving a task, only correct processes must output.
Thus, for a task restricted to processes in Q, no process has to output in a run corresponding to a live
set L ∈ A with L ∩Q = ∅.
Definition 2. [Fairness] An adversary A is fair if and only if:

∀P ⊆ Π,∀Q ⊆ P, setcon(A|P,Q) = min(|Q|, setcon(A|P)).

Superset-closed and symmetric adversaries are fair [24], as some others. Unfortunately, not all adversaries
are fair.

The α-model. Generalizing the k-active-resilient model, the α-model was introduced to capture
agreement functions ability to characterize the task computability of (some) models.

Definition 3. [α-model] The α-model is the AS model in which: if P is the participating set, then
α(P) ≥ 1 and at most α(P)− 1 processes in P are faulty.

Intuitively, the α-model is the weakest model with α as its agreement function. This allows us to use
agreement functions to characterize models which are as weak as the corresponding α-model. It turns out
that the task computability of a fair adversary is captured precisely by the corresponding α-model, i.e.,
they solve the same set of tasks.

6

Theorem 1. [24] For any fair adversary A, a task is solvable in the A-model if and only if it is solvable
in the α-model.

α-adaptive set consensus. The abstraction of α-adaptive set consensus [24] can be accessed with a
single propose(v) operation. It ensures that (termination) every operation invoked by a correct process
eventually returns, (validity) every returned value is the argument of a preceding propose invocation, and
(α-agreement) at any point of the execution, the number of distinct returned values does not exceed α(P),
with P the current participating set. This abstraction allows us to define yet another family of models,
equivalent with α-model, and hence, with adversarial A-models.

Definition 4. [α-set consensus model] The α-set consensus model is the AS model in which, if P is the
participating set then α(P) ≥ 1, and processes have access to α-adaptive set-consensus objects.

Theorem 2. [24] A task is solvable in the α-model if and only if it is solvable in the α-set-consensus
model.

Hence, for a fair adversary A and its agreement function α the A-model, the α-set-consensus model and
the α-model can all be used interchangeably for task solvability issues.

4 Defining the affine task for a fair adversary

Given a fair adversary A and its agreement function α, we define the affine task RA, a sub-complex
of Chr2 s, which will be shown to capture the task computability of the A-model.

Agreement and contention simplices. For a vertex v ∈ Chr2 s, let View1(v) and View2(v) be
the sets of processes seen by the process χ(v) in, respectively, the first and the second IS (we call
these View1 and View2). Formally, View2(v) = carrier(v,Chr s) and View1(v) = carrier(v′, s) with v′ ∈
carrier(v,Chr s) such that χ(v) = χ(v′).

The idea behind the definition of these prohibited simplices is simple. In an execution, processes can
only decide on the proposal they observed. Therefore, in an execution, if a process p sees only itself, other
processes should return p’s proposal to hope reaching an agreement with p. In Chr2 s, if p is executed
alone, then it has the smallest View1 and View2. Thus all processes would observe p’s View1. Therefore,
a natural way to try to reach an agreement among processes is to adopt the proposal from the process
observed with the smallest View1. Moreover, as processes may share the same view, it is even better to
deterministically select a value from the smallest View1 itself.

We formalize the intuitive description of contention simplices as follows: In a simplex δ ∈ Chr2 s,
we say that vertices v and v′ are contending if their View1 and View2 are ordered in the opposite way:
View1(v) is a proper subset of View1(v′) and View2(v′) is a proper subset of View2(v), or vice versa. If
every two vertices of δ are contending, then we say that δ is a 2-contention simplex. Let Cont2 be the set
of 2-contention simplices, formally:

Definition 5. [Cont2] σ ∈ Chr2 s : ∀v, v′ ∈ σ, v 6= v′ :

((View1(v) (View1(v′)) ∧ (View2(v′) (View2(v)))∨

((View1(v′) (View1(v)) ∧ (View2(v) (View2(v′))).

Cont2 is inclusion-closed: any face of a 2-contention simplex is also in Cont2. Thus, Cont2 is a complex:
the 2-contention complex (depicted for a 3-processes system in Figure 4c). Particular executions of two IS
rounds are also represented in Figures 4a and 4b. In these executions, one can see that a couple of
processes is contending if the execution “order” is strictly reversed in the two IS runs.

We first show how to restrict Chr2 s to obtain an affine task Rk−OF , solvable in the k-obstruction-free
model, and which allows, in R∗k−OF , any set of processes to solve k-set consensus among themselves. As
in [12], the idea consists in specifying prohibited simplices and take their pure complement as the affine
task.

Intuitively, a contention simplex of size k is one in which, in the corresponding run, all of the k
processes have distinct View1 and each one believes it had the smallest one among them. Thus, an
execution for which all processes would return distinct proposals. Hence, Rk−OF is defined by prohibiting
too large contending simplices:

7

(a) Two reversed IS ordered runs: {p2}, {p1}, {p3} and
{p3}, {p1}, {p2}. Any set of processes is contending due
to inverted execution orders.

(b) Two ordered runs mixed orders: {p1, p2, p3} and
{p2}, {p3, p1}. The only couple of contending processes
is {p1, p2}. (c) The 2-contention complex shown in red.

Figure 4: Representation, in a 3-processes system, of all 2-contention simplices in Chr2 s and some detailed
IS runs.

Definition 6. [Affine task Rk−OF]

Rk−OF = Pc({σ ∈ Cont2|dim(σ) ≥ k},Chr2 s).

See Figure 7a for R1−OF in a 3-process system. To see that Rk−OF indeed captures the k-obstruction-free
adversary, one can check, which is not obvious, that the latter definition of RA reduces to Rk−OF when A
is the k-obstruction-free adversary, or, alternatively, rely on the proofs from [12].

Agreement vs. participation. Solving a desired level of agreement is no longer sufficient. The
agreement function of an adversary may define different levels of agreement for different participating
sets. In iterated affine tasks, participation is captured by views of the processes: carrier(v, s) is the
participating set witnessed by process χ(v).

The naive approach would consists in varying the restriction on the size of contention simplices
according to the carrier size. Such a restriction would indeed provide an affine task which is strong enough
to solve the desired level of agreement, but it would be impossible to solve. Indeed, contention assumes
that processes with the smallest View1 go first. But when the agreement power is equal to 0, processes
must be ensured to obtain larger views and hence to let processes with larger View1 go first. But letting
processes with large View1 go first inherently creates contention.

The idea of the solution consists in switching between resilience and concurrency requirements. Indeed,
as long as the agreement power is steady over the participation, we rely on restrictions made by limiting
contention. But when the agreement power increases due to an increase of participation, we identify a
“witness” of this new agreement power and require it to go first and be seen by other processes. This
corresponds to changing the selection of the smallest View1 by looking first on View1 “witnessing” a new
agreement level and otherwise, by default, selecting the smallest View1. These “witnesses” of participation
is what we call critical simplices.

Critical simplices. The goal here is to identify for each increase of participation a new View1 wit-
nessing it. An easy requirement is that this View1 should correspond to a participation level associated
with the new level of agreement power. But two issues must be solved: (1) the provided View1 may be
irregular and there could be none for a given agreement power; and (2) distinct View1 may share the
same level of agreement power and the smallest one may be different depending on the executions.

The idea is to select View1 which are minimal in the given execution for some level of agreement
power. To do so, the value of View1 is not sufficient on its own. But if we know that multiple processes
all share the same View1, we can deduce that all other processes with a strictly smaller view must have a
View1 corresponding to a lower level of agreement power. This solves the second issue, but indirectly also
the first one. Indeed, if no View1 exists for an agreement level, it implies that the smallest view for the
next level is provided to sufficiently many processes to be able to deduce that no process with a smaller
View1 may obtain a View1 corresponding to the “missing” level, hence this View1 is a witness of both
agreement levels.

A critical set or critical simplex is set of processes sharing the same View1 which is sufficiently large
to ensure that their View1 is the smallest one for some level of agreement power. Formally, a simplex

8

(a) Critical simplices for the α-model with
α(P) = min(|P |, 1) (1-obstruction-freedom)

(b) Critical simplices for the adversary defined as {p2},
{p1, p3} plus all supersets.

Figure 5: Critical simplices are displayed in orange (with p2 the top vertex, p1 the bottom left vertex and
p3 the bottom right vertex).

(a) For the α-model with α(P) = min(|P |, 1)
(1-obstruction-freedom)

(b) For the adversary defined as {p2}, {p1, p3} plus all
supersets.

Figure 6: Simplices in black, orange and green are mapped to concurrency levels of 0, 1 and 2 respectively
(with p2 the top vertex, p1 the bottom left vertex and p3 the bottom right vertex).

σ ∈ Chr s is a critical simplex if: (1) all its vertices share the same carrier; and (2) the set consensus
power associated to carrier(σ, s) is strictly greater than the set consensus power of χ(carrier(σ, s)) \χ(σ).

Definition 7. ∀σ ∈ Chr s,Criticalα(σ) ≡

(∀v ∈ σ : carrier(v, s) = carrier(σ, s)) ∧ (α(χ(carrier(σ, s)) \ χ(σ)) < α(χ(carrier(σ, s)))) .

Examples of critical simplices for two 3-processes fair models are depicted in Figure 5. The critical
simplices are displayed in orange. As it can be observed, the set of critical simplices is not inclusion-closed,
hence it does not define a simplicial complex.

Given a simplex σ ∈ Chr s, we denote as CSα(σ) the set of critical simplices in σ, that is CSα(σ) =
{σ′ ⊆ σ : Criticalα(σ′)}. Moreover, identifying the set of processes which compose some critical simplex
will be useful. Thus, let CSMα(σ) (critical simplices members) be the set of vertices of some σ ∈ Chr s
which belongs to some critical simplex in σ, formally CSMα(σ) = {σ′ ∈ Cl(CSα(σ)) : dim(σ′) = 0}. Note
that critical simplices members can be seen also as a sub-complex of Chr s. Intuitively, processes with the
smallest View2 should belong to this set. Similarly we also define the notion of the critical simplex view,
CSVα(σ), which corresponds to the set of processes observed by a critical simplex in its View1. It can be
simply obtained by taking the carrier in s of a critical simplex, that is CSVα(σ) = carrier(CSMα(σ), s).

Concurrency level. Critical simplices provide a mechanism to select particular View1. This can be
used to solve agreement protocols with the desired k-set consensus for an observed participation. But

9

(a) Affine task for the α-model with
α(P) = min(|P |, 1). (1-obstruction-freedom)

(b) Affine task for the adversary defined as {p2},
{p1, p3} plus all supersets.

Figure 7: Some examples of affine tasks RA in blue (with p2 the top vertex, p1 the bottom left vertex
and p3 the bottom right vertex).

unfortunately this works only when the set of processes trying to solve a set-consensus operation was
observed by the critical simplices, i.e., when processes belong to CSVα(σ). When this is not the case,
processes should be able to solve set-consensus operations by themselves. This is where the limition on
the size of contention simplices will come in. But this limitation should still be made according to the
observed participation. This is done according to the agreement power associated with the observed
critical simplices. We define this restriction using the following notion of concurrency level :

Definition 8. [Concurrency map] ∀σ ∈ Chr s :

Concα(σ) = max(0 ∪ {α(χ(carrier(τ, s))), τ ∈ CSα(σ)}).

Note that we add 0 to the set of agreement powers in case this set is empty. The concurrency map
is displayed in Figure 6 for examples of 3-processes models. Each simplex of Chr s is associated with
a concurrency level. One can observe that the set of simplices with a concurrency level equal to k
corresponds to the simplices in the star of the critical simplices associated with an agreement power equal
to k and which are not in the star of a critical simplex associated with a greater agreement power.

Affine task RA. The affine task for a fair adversary RA ⊆ Chr2 s is defined as follows:

Definition 9. [RA] RA = Cl({σ ∈ facets(Chr2 s) : ∀θ ⊆ (σ), P (θ, σ)} with P such that (with τ =
carrier(θ,Chr s) and ρ = carrier(σ,Chr s)):

P (θ, σ) ≡ θ ∈ Cont2 ∧ (χ(θ) ∩ χ(CSMα(ρ)) ∩ χ(CSVα(τ))) = ∅ =⇒ dim(θ) < Concα(τ).

Intuitively, a simplex σ ∈ Chr2 s is in RA if and only if any of its “non-critical” subsets that cannot
“rely” on the critical simplices in achieving α-adaptive set consensus has a sufficiently low contention level
to solve α-adaptive set consensus on its own.

Examples of affine tasks for 3-processes α-models are depicted in Figure 7.

5 From the α-model to RA
To show that any task T solvable in R∗A is solvable in a fair A-model, we present an algorithm solving RA
in the α-model. By iterating this task, we obtain R∗A and can solve T .

5.1 Algorithm Description

In our solution of RA, presented in Algorithm 1, every process accesses two immediate snapshot objects:
FirstIS to which it proposes its initial state, and SecondIS to which it proposes the outcome of FirstIS .
Recall that outcomes of SecondIS form a simplex in Chr2 s [22]. To ensure that simplices are in RA,
after finishing FirstIS , processes wait for their turns to proceed to SecondIS .

10

In this waiting phase (Lines 5–9), processes check a specific condition on the IS outcomes that they
share with each others in registers IS1 [1, . . . , n] and IS2 [1, . . . , n]. Each process pi periodically checks
whether either (1) it belongs to a critical simplex by using the formula at Line 7, or (2) if the number,
computed at Line 8, of non-terminated processes (IS2 [j] = ∅) which may have a smaller FirstIS output
(j ∈ IS1 [i] and IS1 [j] 6= IS1 [i]) is smaller that some “level of concurrency”. This level of concurrency
is computed at Line 9 as the maximum between (1) the agreement power associated with the View1

of the process itself (α(IS1 [i])) or (2) with the concurrency levels shared using the Conc registers by
“terminated” critical simplices, i.e., a critical simplex with all its processes provided with secondIS outputs
(Line 12).

Algorithm 1: Resolution of RA in the α-model for process pi.

1 Immediate Snapshot Objects: FirstIS , SecondIS ;
2 Shared Registers: Conc[1], . . . ,Conc[n] ∈ {0, . . . , n}, initially 0;

3 IS1 [1], . . . , IS1 [n] ∈ 2Π, initially ∅ and IS2 [1], . . . , IS2 [n] ∈ 22Π

, initially ∅;

4 RA(inputi):
5 IS1 [i]← FirstIS (inputi);
6 wait until crit ∨ (rank < conc) with
7 crit = (α(IS1 [i]) > α(IS1 [i] \ {pj ∈ Π : IS1 [j] = IS1 [i]}))
8 and rank = |{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}|
9 and conc = max

(
α(IS1 [i]),maxj∈{1,...,n}(Conc[j])

)
;

10 IS2 [i]← SecondIS (IS1 [i]);
11 if (α(IS1 [i]) > α(IS1 [i] \ {pj ∈ Π : (IS1 [j] = IS1 [i]) ∧ (IS2 [j] 6= ∅)})) then
12 Conc[i]← α(IS1 [i]);
13 return(IS2 [i]);

14 End RA;

Intuitively, the waiting phase is used to ensure that critical processes, i.e., members of critical simplices,
are prioritized to proceed with SecondIS over non-critical ones. A process may proceed to its SecondIS as
soon as it knows that it belongs to some critical simplex (crit = true). A non-critical process is allowed
to exit its waiting phase only when the number of potentially contending processes is smaller than the
computed concurrency level (rank < conc). The proof relies mostly on showing that there are enough
critical simplices to prevent non-critical processes from being blocked in the waiting phase.

5.2 Proof Sketch

In order to show that Algorithm 1 solves RA in the α-model corresponding to the fair adversary A, we
need to show that (1) every correct process eventually outputs and that (2) the set of ouputs belongs to a
simplex in RA. Note that as processes execute two consecutive immediate snapshot protocols, all outputs
belong to some simplex in Chr2 s. Let us consider a run of the α model in which the participation is P ,
hence with α(P) > 0.

To show that outputs belong not only to Chr2 s but to RA and that all correct processes terminate,
we mostly rely on the distribution of critical simplices. We are interested in showing that the number
of processes failures, required to prevent critical simplices from either appearing in IS1 or completing
their IS2 computation, scales with the agreement power of the participation. Moreover, we want to show
that the less processes fail in such a way, the higher the maximal agreement power associated with a
terminated critical simplices.

A process failure may prevent multiple critical simplices to terminate. Indeed, a process may be
included in multiple critical simplices, and thus, its failure would prevent multiple critical simplices from
terminating. This is why we are interested not in the distribution of critical processes or critical simplices,
but instead, in the minimal hitting set size for the set of critical simplices. Let us recall that an hitting set
of a set of sets Q, is a set intersecting with all sets from Q, and that csize denotes the minimal hitting set
size. More precisely, we want to know the minimal hitting set size of (1) any subset of the participation
and (2) of the set of critical simplices associated with an agreement power greater than or equal to some
level l, i.e., {θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}.

11

5.3 Distribution of Critical Simplices

Let us first look at the case in which no participating process fails before updating its IS1 output to the
memory. In this case, the set of IS1 views forms a simplex σ ∈ Chr s such that χ(σ) = χ(carrier(σ, s)):
The observed processes include all participating processes (inclusion property) but no others. In this
setting we can show that the minimal hitting set size of the set of critical simplices associated with an
agreement power greater than or equal to some level l, is greater than or equal to the agreement power of
the participation minus l − 1, i.e., α(χ(σ))− l + 1:

Lemma 3. [Distribution of critical simplices]: ∀σ ∈ Chr s,∀l ∈ N :

χ(σ) = χ(carrier(σ, s)) =⇒ α(χ(σ))− l + 1 ≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

Proof. Let us fix some integer l > 0. To show Lemma 3, we proceed by an induction on σ using the
lexicographical order on (α(χ(σ)), |χ(σ)|). For any simplex σ, such that α(χ(σ)) < l, the result is trivial
as for any (possibly empty) set Q, we have csize(Q) ≥ 0. Now consider a simplex σ ∈ Chr s such
that χ(σ) = χ(carrier(σ)) and α(χ(σ)) = k ≥ l. Let us assume by induction that for all σ′ ∈ Chr s,
if (α(χ(σ′)), |χ(σ′)|) <lex (α(χ(σ′)), |χ(σ)|), then we have:

χ(σ) = χ(carrier(σ′, s)) =⇒ α(χ(σ′))− l + 1 ≤ csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}).

Now consider the face τ of σ consisting of all vertices of σ with the same carrier as σ, i.e., τ = {v ∈
σ, carrier(v, s) = carrier(σ, s)}. Let β be the complement of τ , i.e., β = σ \ τ . Note that τ 6= ∅, due
to the containment property, and that, χ(carrier(β, s)) = χ(carrier(σ, s)) \ χ(τ), due to the immediacy
property. Therefore, we obtain that χ(carrier(β, s)) = χ(σ) \ χ(τ), and so that χ(carrier(β, s)) = χ(β).
As (α(χ(β)), |χ(β)|) <lex (α(χ(σ)), |χ(σ)|), we obtain that:

α(χ(β))− l + 1 ≤ csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}). (1)

Two cases may arise:

1. If α(χ(β)) = α(χ(σ)), then, as β ⊆ σ we get that CSα(β) ⊆ CSα(σ), hence, we can derive from
Equation 1 that:

α(χ(σ))− l + 1 ≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

2. If α(χ(β)) < α(χ(σ)), then let m = α(χ(σ)) − α(χ(β)) > 0 and let us consider any subset τ ′

of τ such that |τ ′| > |τ | − m. By construction we have carrier(τ ′, s) = carrier(σ, s) and by
assumption we have χ(carrier(σ, s)) = χ(σ), and thus, we obtain that χ(carrier(τ ′, s)) = χ(σ).
Let us recall that ∀v ∈ τ : carrier(v, s) = carrier(τ, s), and therefore Criticalα(τ ′) if and only
if α(χ(σ) \ χ(τ ′)) < α(χ(σ)).

Given a fair adversary, for any Q ⊆ P , we have α(P) ≥ α(P \ Q) ≥ α(P) − |Q|. Note that this
property was shown to be true for any fair model in [24] (see Section 3). Note that this implies that
|χ(τ)| ≥ m. By applying the formula for P = χ(σ) \ χ(τ ′) and for Q = χ(τ) \ χ(τ ′) we get that:

α(χ(σ) \ χ(τ ′)) ≥ α(χ(σ) \ χ(τ)) ≥ α(χ(σ) \ χ(τ ′))− |χ(τ) \ χ(τ ′)|.

But by construction χ(σ) \ χ(τ) = χ(β) and |χ(τ) \ χ(τ ′)| < m, thus we obtain that:

α(χ(σ) \ χ(τ)) ≥ α(χ(σ) \ χ(τ ′))− |χ(τ) \ χ(τ ′)| =⇒ α(χ(σ) \ χ(τ ′)) < α(χ(β)) +m.

As m = α(χ(σ))−α(χ(β)), we obtain that α(χ(σ)\χ(τ ′)) < α(χ(σ)), and hence, that Criticalα(τ ′).
Since by construction β = σ \ τ , we have the following inequality: csize(CSα(σ)) ≥ csize(CSα(τ)) +
csize(CSα(β)). Moreover, as α(χ(σ)) ≥ l, we obtain:

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}) ≥
csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}) + csize(CSα(τ)) (2)

But as any subset τ ′ of τ , such that |τ ′| > |τ | −m, is critical, we have:

csize(CSα(τ)) ≥ csize({τ ′ ⊆ τ, |χ(τ ′)| > |χ(τ)| −m}).

12

Moreover, since |χ(τ)| ≥ m, we have csize({τ ′ ⊆ τ, |χ(τ ′)| > |χ(τ)| −m}) = m, and hence, that
csize(CSα(τ)) ≥ m. With m = α(χ(σ))− α(χ(β)) and Equations 1 and 2, we obtain:

α(χ(σ))− l + 1 = (α(χ(β))− l + 1) +m

≤ csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}) + csize(CSα(τ))

≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l})

The result of Lemma 3 can be used to generalize it for cases in which not all participating processes
shared their IS1 outputs to the memory. If so, the minimal hitting set size decreases proportionally with
the number of missing outputs:

Corollary 4. For any σ ∈ Chr s, we have:

α(χ(carrier(σ, s)))− l − |χ(carrier(σ, s)) \ χ(σ)|+ 1 ≤

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

Proof. Consider some σ ∈ Chr s. By construction, σ is a sub-simplex of some simplex σ′ such that
χ(carrier(σ, s)) = χ(carrier(σ′, s)) = χ(σ′). Hence, we can apply Lemma 3 on σ′ and obtain that:

α(χ(carrier(σ, s)))− l + 1 ≤ csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}). (3)

But CSα(σ) ⊆ CSα(σ′) and thus given H a minimal hitting set of CSα(σ′), H ∪ (χ(σ) \ χ(σ′)) is an
hitting set of CSα(σ′). Therefore csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}) is greater than or equal
to csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}) + |χ(σ) \ χ(σ′)|, and thus, is greater than or equal to
csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}) + |χ(carrier(σ, s)) \ χ(σ)|. Using this in Equation 3 gives us
the property of Corollary 4.

5.4 Algorithm Liveness

Corollary 4 is a generalization of Lemma 3 to account for a partial set of first immediate snapshot outputs.
This can be used to show the liveness of the algorithm:

Lemma 5. Algorithm 1 provides outputs to all correct processes in any α-model.

Proof. Let P be the participating set and let us assume that there is a correct process which never
terminates. Let p be the correct processes which does not terminate with the smallest IS1 view, let
v ∈ Chr s be the vertex corresponding to its IS1 view, and let σ ∈ Chr s be the simplex corresponding to
the set of IS1outputs when IS1 has been updated for the last time.

Due to the immediacy property, processes in χ(carrier(v, s)) must be associated with a vertex v′ such
that carrier(v′, s) ⊆ carrier(v, s), and therefore, with α(χ(carrier(v′, s))) ≤ α(χ(carrier(v, s))). Hence,
in any completion of σ to a simplex σ′ ∈ Chr s to include the processes which are in χ(carrier(v, s))
but not in χ(σ), the set of critical simplices associated with an agreement power strictly greater than
α(χ(carrier(v, s))) does not change. Thus applying Corollary 4 to any such completion σ′ of σ, we obtain
that, for any l > α(χ(carrier(v, s))):

α(χ(carrier(σ, s)))− l − |χ(carrier(σ, s)) \ (χ(σ) ∪ χ(carrier(v, s)))|+ 1 ≤

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).
Moreover, any process in P \ χ(carrier(σ, s)) must have failed. Thus, in χ(carrier(σ, s)) at most
α(P)− 1− (|P \ χ(carrier(σ, s))|) processes may fail. Let us recall from the proof of Lemma 3, that for
the agreement function of any fair adversary, and for any Q ⊆ P , we have α(P) ≥ α(P \Q) ≥ α(P)− |Q|.
Thus we can derive, by using Q = P \ χ(carrier(σ, s)), that at most α(χ(carrier(σ, s)))− 1 processes in
χ(carrier(σ, s)) may fail.

Let m1 = |χ(carrier(σ, s))\ (χ(σ)∪χ(carrier(v, s)))|, be the number of processes from χ(carrier(σ, s))
which (1) fail before updating their IS1 to the memory and (2) are not included in the IS1 view of p.
Let m2 be the number of critical processes, associated with an agreement power strictly greater than
α(χ(carrier(v, s))), which fail after updating their IS1 but before updating their IS2 .

13

Let us now assume that α(χ(carrier(σ, s))) − α(χ(carrier(v, s))) > m1 + m2, then by selecting
l = α(χ(carrier(σ, s)))−m2 −m1, we have l > α(χ(carrier(v, s)))), and hence, we obtain that:

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ α(χ(carrier(σ, s)))−m2 −m1}) ≥ m2 + 1.

If no critical simplex in {θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ α(χ(carrier(σ, s))) −m2 −m1} terminates,
one process from each of these critical simplices failed after updating its IS1 but before updating its
IS2 , thus an hitting set failed. As only m2 such processes may fail and as an hitting set must be
greater than m2 + 1, a critical simplex associated with an agreement power greater than or equal to
α(χ(carrier(σ, s)))−m2 −m1 terminates its IS2 . Therefore eventually some process updates its Conc
register (on line 12) to at least α(χ(carrier(σ, s)))−m2 −m1.

Now let us look back at p. It fails to terminate and thus never succeeds to pass the test on line 6.
Therefore we have that the number of processes seen by p which do not terminate and do not have the same
IS1 view as p are strictly more than the value of max(α(IS1 [i]),maxj∈{1,...,n}(Conc[j])), with IS1 [i] equal
to χ(carrier(v, s)). As p is the correct process with the smallest IS1 view which does not terminate, it
implies that there are strictly more than max(α(χ(carrier(v, s))),maxj∈{1,...,n}(Conc[j])) failed processes
with an IS1 view strictly smaller than p. These failed processes are neither accounted in m1 nor in m2.
Therefore, as at most α(χ(carrier(σ, s))) − 1 processes in χ(carrier(σ, s)) may fail, there are at most
α(χ(carrier(σ, s)))−1−m1−m2 such processes which may fail. Thus α(χ(carrier(σ, s)))−m1−m2−1 ≥
max(α(χ(carrier(v, s))),maxj∈{1,...,n}(Conc[j])).

Two cases may arise:

• If α(χ(carrier(σ, s)))− α(χ(carrier(v, s))) > m1 +m2, then some process sets its Conc register to
a value greater than or equal to α(χ(carrier(σ, s)))−m2 −m1 — A contradiction.

• Otherwise, α(χ(carrier(σ, s)))−m1−m2−1 ≥ α(χ(carrier(v, s))) and so, we obtain a contradiction
with the fact that α(χ(carrier(σ, s)))− α(χ(carrier(v, s))) ≤ m1 +m2.

5.5 Algorithm Safety

Showing the safety of Algorithm 1 bears some similarities with the liveness proof. In particular, it relies
on the same Lemma 3 on the distribution of critical simplices.

Lemma 6. The set of outputs provided by Algorithm 1 forms a valid simplex in RA.

Proof. Consider any execution of Algorithm 1. Except for the wait-phase, processes execute two rounds
of an immediate snapshot protocol. Therefore the set of outputs forms a simplex in σ ∈ Chr2 s. Without
loss of generality, we can assume that no process fails and thus that dim(σ) = n − 1. Indeed, if
σ 6∈ RA, then if failed processes were just slow and resumed their execution and terminate, it would
produce σ′ 6∈ RA. Let us assume by contradiction that σ 6∈ RA, this implies that there exists θ ⊆ σ such
that (for τ = carrier(θ,Chr s) and ρ = carrier(σ,Chr s)):

(θ ∈ Cont2) ∧ ((χ(θ) ∩ (χ(CSMα(ρ)) ∪ χ(CSVα(τ))) = ∅) ∧ (dim(θ) ≥ Concα(τ)).

As θ ∈ Cont2, we can order the processes associated with vertices from θ according to their IS2 view (or
carrier(v,Chr s)). Let q1, . . . , qk be this ordered set of processes. As q1 has the smallest IS2 view, and as
θ ∈ Cont2, q1 also has the largest IS1 view.

Consider the state of the execution at the time where q1 successfully passes the test on Line 6. To
pass this test, q1 witnessed IS1 , Conc and IS2 states such that (with q1 = pi):

(α(IS1 [i]) > α(IS1 [i] \ {pj ∈ Π : IS1 [j] = IS1 [i]}))∨(
|{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| < max

(
α(IS1 [i]),max j∈{1,...,n}(Conc[j])

))
If (α(IS1 [i]) > α(IS1 [i] \ {pj ∈ Π : IS1 [j] = IS1 [i]})), then it implies that q1 belongs to a critical simplex.
Indeed, it would belong to a set of processes sharing the same IS1 view and such that, removing this set
of processes from their IS1 view would result in a set with a strictly smaller agreement power. But this
would contradict χ(θ) ∩ χ(CSMα(carrier(σ,Chr s))) 6= ∅ as it would include q1. Therefore we have:

|{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| < max
(
α(IS1 [i]),max j∈{1,...,n}(Conc[j])

)
Two cases may arise:

14

• max
(
α(IS1 [i]),max j∈{1,...,n}(Conc[j])

)
6= α(IS1 [i]): In this case, a register in Conc was set on

Line 12 to a value greater than α(IS1 [i]). It implies that a critical simplex associated with an
agreement level strictly greater than |{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| terminated its
computation and thus is included in carrier(θ,Chr s). But we can observe that (χ(θ) \ {q1}) ⊆
{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}, and hence, that dim(θ) < Concα(τ) — a contradiction
with σ 6∈ RA.

• max
(
α(IS1 [i]),max j∈{1,...,n}(Conc[j])

)
= α(IS1 [i]): Let c be the highest agreement power associ-

ated with a terminated critical simplex (with c = 0 if there is no terminated critical simplex is
terminated). Therefore we have Concα(τ) ≥ c. Let λ ∈ Chr s be the simplex corresponding to the set
of IS1 views of processes in IS1 [i] which shared their IS1 view at the time q1 passed the test on Line 6.
Consider the simplex λ′ ∈ Chr s corresponding to the completion of λ with the vertices corresponding
to IS1 view of the processes in χ(θ) which may be missing from λ. Note that, since q1 has the
largest IS1 view among processes from χ(θ), χ(carrier(λ′, s)) = χ(carrier(λ, s)) = IS1 [i]. Moreover,
since χ(λ) = {pj ∈ IS1 [i] : IS1 [j] 6= ⊥}, we obtain that χ(λ′) = {pj ∈ IS1 [i] : IS1 [j] 6= ⊥} ∪ χ(θ).
According to Corollary 4 applied to λ′ with l = c+ 1, we obtain that:

α(IS1 [i])− c− |(χ(carrier(λ′, c)) \ χ(λ′))| ≤ csize({φ ∈ CSα(λ′) : α(χ(φ)) ≥ c+ 1}).

Note that, since there is no terminated critical simplex with an agreement power greater than
or equal to c + 1, it implies that one process of each critical simplex identified in λ′ did not
terminate its IS2, hence a minimal hitting set. Let Sc be this minimal hitting of size equal to
csize({φ ∈ CSα(λ′) : α(χ(φ)) ≥ c+ 1}. Note that Sc does not include any process in χ(θ). Indeed,
given a critical simplex with the same IS1 view as qi, adding qi to the critical simplex would
produce a critical simplex, but by assumption processes in χ(θ) do not belong to any critical
simplex. We also have that Sc does not intersect S∅ = {pj ∈ IS1 [i] : IS1 [j] = ⊥}. Hence,
|Sc|+ |S∅ \ χ(θ)|+ |χ(θ)| = |Sc ∪ S∅ ∪ χ(θ)|. Therefore, as |(χ(carrier(λ′, c)) \ χ(λ′))| = |S∅ \ χ(θ)|
we obtain that α(IS1 [i])− c ≤ |Sc ∪ S∅ ∪ χ(θ)| − |χ(θ)|.
Let us now check that Sc ∪ S∅ ∪ χ(θ) ⊆ {q1} ∪ ST , with ST = {pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6=
IS1 [i]}. All are clearly included in IS1 [i] by construction. For processes in S∅, since they have their
register in IS1 equal to ⊥, it is also the case for their register in IS2 . For processes in χ(θ), they
have a strictly smaller IS1 view by assumption. For the IS2 view, they will have a strictly larger
view than q1. But since q1 did not start its second immediate snapshot protocol, processes in χ(θ)
could not have terminated it. For processes in Sc, they do not share the same IS1 view as any
process in χ(θ) since they are members of critical simplices, in particular, they thus have a distinct
IS1 view from q1. By assumption, they did not terminate their second immediate snapshot protocol,
and hence also have their IS2 register still equal to ⊥.

Therefore, we have Sc ∪ S∅ ∪ χ(θ) ⊆ {q1} ∪ ST , and hence, |Sc ∪ S∅ ∪ χ(θ)| ≤ 1 + |ST |. But since
we also have |ST | < α(IS1 [i]) and α(IS1 [i])− c ≤ |Sc ∪ S∅ ∪ χ(θ)| − |χ(θ)|, we obtain that:

|ST | < |Sc ∪ S∅ ∪ χ(θ)| − |χ(θ)|+ c ≤ |ST |+ 1− |χ(θ)|+ c.

Thus |χ(θ)| ≤ c. But recall that Concα(τ) ≥ c, and so, |χ(θ)| ≤ Concα(τ) — a contradiction with
σ 6∈ RA.

Using Lemmata 5 and 6, we can directly derive the correctness of Algorithm 1:

Theorem 7. Algorithm 1 solves task RA in the α-model corresponding to the fair adversary A.

As for other solutions of affine task, we can iterate this solution in order to simulate a run of R∗A.
Using this simulation we can therefore solve any task which is solvable in R∗A:

Theorem 8. Any task solvable in R∗A is solvable in the A-model.

6 From R∗A to the fair adversarial A-model

In this section, we show that any task solvable in the fair adversarial A-model can be solved in R∗A. This
reduction is much more intricated than in the other direction. Indeed, to show that a model is as strong

15

as an affine task based model, it only suffices to show that any number of iterations of the affine task can
be solved. In the general case, it is necessary to show that any task solvable in the target model can be
solved and thus that we can emulate an algorithm solving any given task.

To simplify the simulation complexity, we are going to show that we can simulate an execution of a
shared memory model in which the participation P is such that α(P) > 0 and in which α-adaptive set
consensus can be solved. Using the results from [24] (Theorem 1), we are able to deduce from it that any
task solvable in a fair adversarial model can be solved in R∗A.

6.1 Simulation Description.

The main difficulty of the simulation comes from the combination of the failure-freedom and the iterative
structure of R∗A. A process obtaining small outputs in all iterations, often denominated as a “fast” process,
may never observe the values shared by other processes with larger views, comparatively denominated as
a “slow” processes. But as there are no processes failures, eventually, all processes must obtain a task
output. It requires that fast processes make progress with the simulation without waiting for slower
processes. Slow processes must thus wait for faster processes to terminate their simulation before being
able to make progress with modifying operations.

This first difficulty is resolved by making processes which obtained a task output in the simulation to
use the special value ⊥ as input for all further iterations of RA. Slower processes are then aware that
processes using ⊥ do not interfere anymore and that they no longer need to witness their modifications of
the simulated system state.

Another difficulty relies in the fact that processes may shift between making shared memory operations
and accessing α-adaptive set consensus abstractions. Moreover, processes may be accessing distinct
α-adaptive set consensus abstractions and may access them in different orders. Fortunately, set consensus
abstractions are independant of each others and multiple instances can be simulated in parallel. But
memory operations interact with each others and a write operation can be safely terminated only once
the write value is known to be observed by all other processes. Thus a fast process must ensure that
slower processes are not able to complete write operations as long as they did not terminate, even when
they do not currently have a write operation to perform.

Atomic-snapshot simulation. To simulate the atomic-snapshot memory, we rely upon the algorithm
proposed in [16] that simulates a lock-free atomic-snapshot algorithm in the iterated atomic-snapshot
model. We run the simulation using the global views that the processes obtain at the end of R∗A iterations,
i.e., carrier(v, s) for their vertices v ∈ RA. Recall that these global views satisfy the properties of atomic
snapshots, but not necessarily the properties of immediate snapshots.

In the simulation, every new update performed by a process is assigned a monotonically growing
sequence number. A terminated process simply stops incrementing its sequence number, which allows
active (non-terminated) processes to make progress. Without loss of generality, we assume that in the
simulated algorithm, every active process always has a pending memory operation to perform (intuitively,
if there is nothing to write, the process rewrites its last written value).

Simulating α-adaptive set consensus in R∗A. The α-adaptive set consensus simulation in R∗A submits
in all iterations input, a decision estimate for all known set consensus simulations. For all pending and
newly discovered set consensus simulations for which processes are involved (i.e., for which they are
allowed to participate), processes update their decision estimate after each iteration of RA. Processes
adopt a deterministically chosen estimate from, if available, an IS1 view associated to a critical simplex,
and otherwise, from the smallest IS1 view they see. Note that only IS1 views including a process which
may participate to the agreement are considered. Most of the complexity of the α-adaptive set consensus
simulation lies in this selection of which IS1 view to adopt from. This is described extensively in the
next section.

A desicion value is committed only when all processes which are involved in the α-adaptive set
consensus abstraction and which are observed in a given iteration of R∗A posses a decision estimate.
Once, the value is committed, the decision estimate will no longer change and will eventually be returned
as output for the α-adaptive set consensus, but processes need to check that the participation in the
simulated run is high enough before returning the value.

In order to ensure a high enough participation, processes make sure that all processes that they
witnessed in preceding iterations of R∗A have completed their first simulated write operation. If not,
processes simulate this write operation themselves. The content of this first write operation simply
consists of the process initial state. Therefore, any process p may simulate this write operation (by using

16

the shared memory simulation) for any other process q as soon as p knows the initial state of q. Once all
processes for which the initial state is know are participating in the simulated run, processes can safely
terminate their α-adaptive set consensus with the committed value.

6.2 α-adaptive leader election in RA: the µQ map

Let us consider some α-adaptive set consensus and let Q be the set of processes which (1) may participate
in the agreement protocol, and, (2) did not terminate yet the main simulation. Using the structure of RA,
we construct a map µQ which returns to each vertex v ∈ RA, corresponding to a process from Q (i.e.,
with χ(v) ∈ Q), a leader selected among Q for the given iteration of RA. The map µQ is constructed in
two stages. The first stage consists in selecting an IS1 view which includes a process from Q. Two cases
may happen depending on whether the process observes in RA a critical simplex associated with an IS1
view including a process from Q or not:

If the process observes such a critical simplex (i.e., χ(CSVα(carrier(v,Chr s)))∩Q 6= ∅), it then simply
returns the smallest IS1 view of a critical simplex which includes a process from Q, using the map δQ:

δQ = χ(min({carrier(σ′, s) : (σ′ ∈ CSα(carrier(v,Chr s)) : χ(carrier(σ′, s)) ∩Q 6= ∅)}).

Otherwise (if χ(CSVα(carrier(v,Chr s))) ∩Q = ∅), the process returns the smallest observed IS1 view
which includes a process from Q, using the map γQ:

γQ = χ(min({carrier(v′, s) : (v′ ∈ carrier(v,Chr s)) ∧ (dim(v′) = 0) ∧ (carrier(v′, s) ∩Q 6= ∅)}).

The second stage then simply consists in selecting, from the selected IS1 view, the process from Q
associated with the smallest identifier, let minQ(V) = min{p ∈ V ∩ Q} be this map. The map µQ is
therefore defined as follows:

µQ(v) = if (χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅) then minQ ◦ δQ else minQ ◦ γQ.

Let us first show that, for any vertex v ∈ RA corresponding to a process in Q, the map µQ returns a
process from Q observed in RA (i.e., a process in χ(carrier(v, s))) :

Property 9. [Validity of µQ] ∀v ∈ RA, dim(v) = 0, χ(v) ∈ Q :

µQ(v) ∈ χ(carrier(v, s)) ∧ µQ(v) ∈ Q.

Proof. Let us fix some vertex v ∈ RA such that χ(v) ∈ Q.
Let us assume that χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅, and hence, µQ(v) = minQ ◦ δQ(v). Let us

recall that, given σ ∈ Chr s, CSVα(σ) is equal to carrier(∪σ′∈CSα(σ)σ
′, s). But due to carriers inclusion,

the carrier of a simplex is equal to the carrier of one of its vertices, and so, of any sub-simplex which
includes this vertex. Thus, as χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅, we have:

∃σ′ ∈ CSα(carrier(v,Chr s)) : χ(carrier(σ′, s)) ∩Q 6= ∅.

This implies that δQ has a valid choice for v and can return the minimal one, and so that:

∃σ′ ∈ CSα(carrier(v,Chr s)) : (δQ(v) = χ(carrier(σ′, s))) ∧ (χ(carrier(σ′, s)) ∩Q 6= ∅).

Since CSα(carrier(v,Chr s)) ⊆ {σ ∈ Chr s;σ ⊆ carrier(v,Chr s)}, and as µQ(v) = minQ ◦ δQ(v), we
obtain that:

∃σ′ ⊆ carrier(v,Chr s) : (µQ(v) = minQ ◦ χ(carrier(σ′, s))) ∧ (µQ(v) ∈ Q).

As for any simplex σ ∈ Chr2 s, we have carrier(carrier(v,Chr s), s) = carrier(v, s), thus Property 9 is
verified if χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅.

Now let us assume that χ(CSVα(carrier(v,Chr s))) ∩ Q = ∅. Due to the self-inclusion property,
∃v′ ∈ carrier(v,Chr s)) such that χ(v′) = χ(v). The self-inclusion property again implies that ∃v′′ ∈
carrier(v′, s) such that χ(v′′) = χ(v′) = χ(v). Hence, as χ(v) ∈ Q, ∃v′ ∈ carrier(v,Chr s) such that
χ(carrier(v′, s)) ∩Q 6= ∅. Thus γQ has a valid choice for v and can return the minimal one. As before,
by the transitivity of carriers inclusion, the set returned by γQ, and so the process returned by µQ, is a
subset of χ(carrier(v, s)) which intersects with Q.

17

Now that we have checked that µQ is well defined, let us show that µQ returns a number of distinct
leaders (processes) limited by the agreement power associated with processes views in RA:

Property 10. [Agreement of µQ] ∀Q ⊆ Π, (∀σ ∈ RA : dim(σ) = n− 1), (∀θ ⊆ σ : χ(θ) ⊆ Q) :

|{µQ(v) : v ∈ θ}| ≤ α(χ(carrier(θ, s))).

Let us first check the following observation stating that for any simplex σ ∈ Chr s, if two critical
simplices in σ are associated with the same agreement power, then they share the same IS1 view:

Lemma 11. ∀σ ∈ Chr s, ∀θ1, θ2 ∈ CSα(σ):

α(χ(carrier(θ1, s))) = α(χ(carrier(θ2, s))) =⇒ carrier(θ1, s) = carrier(θ2, s).

Proof. Let us consider some simplex σ ∈ Chr s and some critical simplices θ1, θ2 ∈ CSα(σ) such that
α(χ(carrier(θ1, s))) = α(χ(carrier(θ2, s))). The inclusion property implies, w.l.o.g., carrier(θ1, s) ⊆
carrier(θ2, s). The immediacy property implies either that carrier(θ1, s) = carrier(θ2, s) (and thus
Lemma 11 is verified) or else that χ(θ2) ∩ χ(carrier(θ1, s)) = ∅.

Let us now assume that χ(θ2) ∩ χ(carrier(θ1, s)) = ∅. Together with carrier(θ1, s) ⊆ carrier(θ2, s),
it implies that carrier(θ1, s) ⊆ carrier(θ2, s) \ θ2. Since agreement functions are regular (i.e., the
agreement power can only grow with a participation increase), we obtain that α(χ(carrier(θ1, s)) ≤
α(χ(carrier(θ2, s) \ θ2). But as θ2 is a critical simplex α(χ(carrier(θ2, s) \ θ2)) < α(χ(carrier(θ2, s))),
and we obtain a contradiction:

α(χ(carrier(θ1, s)) ≤ α(χ(carrier(θ2, s) \ θ2) < α(χ(carrier(θ2, s))) = α(χ(carrier(θ1, s))).

Let us now prove Property 10:

Proof. Let σ be a maximal simplex of RA, i.e., dim(σ) = n− 1, and let θ ⊆ σ such that χ(θ) ⊆ Q.
Note that for both γQ and δQ, processes returns the IS1 view of a vertex of carrier(θ,Chr s). Assume

that γQ and δQ return, for vertices in θ, k ≥ 0 distinct IS1 views which are not the IS1 views of some
critical simplex in carrier(σ,Chr s). As δQ only returns IS1 views associated with a critical simplex, they
have been returned by γQ. Let β be the subset of θ including all vertices for which γQ returns such IS1
views. As they are returned by γQ, we have CSVα(carrier(β,Chr s)) ∩Q = ∅.

Consider any two processes p1 and p2 which obtained two distinct such IS1 views, V1 and V2 respectively
(w.l.o.g., let V1 (V2). As γQ returns the minimal IS1 view intersecting with Q, a vertex from β sees V2

but not V1, and thus, p2 has a smaller IS2 view than p1. Therefore p1 and p2 satisfy the condition to be
part of a contention simplex, and so, any k processes carrying these k distinct returned IS1 views form a
contention simplex. Let τ be this contention simplex in σ.

As a vertex in β saw all these k distinct IS1 views, we have carrier(τ,Chr s) ⊆ carrier(β,Chr s).
But since CSVα(carrier(β,Chr s)) ∩Q = ∅ is satisfied, we obtain that CSVα(carrier(τ,Chr s)) ∩Q = ∅.
By assumption, these k processes are not critical simplices members (χ(τ) ∩ CSMα(σ) = ∅). There-
fore, the definition of RA implies that we have Concα(carrier(τ,Chr s)) ≥ k, and hence, we obtain
that Concα(carrier(β,Chr s)) ≥ k.

Having Concα(carrier(β,Chr s)) ≥ k, it implies that we have ∃σc ∈ CSα(carrier(β,Chr s)) such
that α(χ(carrier(σc, s))) ≥ k. But, since χ(carrier(σc, s)) ⊆ CSVα(carrier(β,Chr s)), we obtain
that χ(carrier(σc, s)) ∩ Q = ∅. As the inclusion property implies that any IS1 view must be strictly
larger to intersect with Q, and as there are at most one IS1 view associated with a critical simplex by
agreement level (Lemma 11), all IS1 views corresponding to some critical simplex in carrier(σ,Chr s) are
associated with an agreement power strictly greater than k.

Let l ≥ 0 be the number of distinct IS1 views corresponding to some critical simplex in carrier(σ,Chr s)
which are returned by δQ or γQ for vertices in θ. Lemma 11 implies that they must be associated with l
distinct agreement powers. As they must also be associated with agreement powers strictly greater than k,
one of the returned IS1 views is associated with an agreement power greater than or equal to k + l.
Therefore, we have α(χ(carrier(θ, s))) ≥ k + l. As the number of distinct IS1 views returned by δQ
or γQ is equal to k + l, and as the deterministic selection made by minQ could only reduce the number of
distinct returned values, we finally obtain that |{µQ(v) : v ∈ θ}| ≤ α(χ(carrier(θ, s))).

Last, let us also observe that knowing which processes terminated the main simulation is not required
to compute µQ, i.e., that the knowledge of which processes belong to Q among the processes observed in
the current iteration of RA is sufficient:

18

Property 12. [Robustness of µQ] ∀v ∈ RA, dim(v) = 0,∀Q ⊆ Π : µQ(v) = µcarrier(v,s)∩Q(v).

Proof. This is a direct corollary of the definition of δQ and γQ, that for a given vertex v ∈ RA, to
compute µQ(v), the knowledge of Q ∩ (carrier(v, s)) is sufficient. Indeed, Q is only used to compute
intersections with either CSVα(χ(carrier(v,Chr s))), a subset of carrier(v, s), or with carrier(v′, s) for a
vertex v′ ∈ carrier(v,Chr s), also a subset of carrier(v, s).

6.3 Correctness of the simulation

Let us first show that all simulated operations are safe. Since the composable shared memory simulation
is safe, we only need to show that simulated α-adaptive set consensus operations satisfy the validity
property (decision values are proposal values) and the α-agreement property (if k distinct values have
been returned, then the current participation P is such that α(P) ≥ k).

Lemma 13. The shared memory and α-adaptive set consensus simulation in R∗A is safe.

Proof. For α-adaptive set consensus operations, Property 12 ensures that µcarrier(v,s)∩Q(v) can be used
as if it was µQ(v) and thus that processes can indeed use µQ to elect a leader in any iteration of RA.
Moreover, Property 9 ensures that a decision estimate is either the process proposal value or is adopted
from another process with a proposal value and thus that the validity property of α-adaptive set consensus
is verified.

At the earliest iteration R of R∗A at which a process commits a decision estimate for an α-adaptive
set consensus, since a committing process only observed processes from Q with decision estimates, all
processes in Q adopt a decision estimate. Moreover, Property 10 states that among any k processes
adopting k distinct decision estimates at this iteration R, one must have observed a set of processes
associated with an agreement level greater or equal to k.

Before completing an α-adaptive set consensus operation, processes make sure that all processes they
observed are participating in the simulated run (by simulating for them a write operation of their initial
states). Therefore, at the time a kth distinct value is returned for some α-adaptive set consensus, the
participation in the simulated run is associated with an agreement power greater than or equal to k,
hence, the α-agreement property is verified.

As we have shown that the simulation is safe, let us also show that it is live, i.e., that it provides
outputs to all processes. For this, we only need to show that a process obtaining the smallest IS view
among non-terminated processes eventually completes its α-adaptive set consensus operation.

Lemma 14. In the shared memory and α-adaptive set consensus simulation in R∗A, all processes
eventually terminate.

Proof. as soon as they observe a process with a decision estimate, processes adopt a decision estimate
for any α-adaptive set consensus operation they may participate to. Hence, if a process has a pending
α-adaptive set consensus operation and has the smallest IS view among non-terminated processes, all
competitors will have a decision in the next iteration of the affine task. But since a process commits a
decision estimate when all non-terminated processes which participate in an operation share a decision
estimate during some iteration, a process obtaining the smallest IS view among non-terminated processes
eventually commits its operation in the following affine task iteration and hence resume its shared-memory
simulation.

By Lemmata 13 and 14, the simulation that we provide can be used to solve in R∗A any task solvable
in a shared memory model with access to α-adaptive set consensus. But it was shown in Section 3 that
the α-adaptive set consensus model, the α-model and a corresponging fair adversarial model are all
equivalent in term of task solvability. Hence, since we have shown in Theorem 8 that all task solvable
in R∗A are solvable in the A-model, we obtain the following equivalence result:

Theorem 15. A task is solvable in the adversarial A-model if and only if it is solvable in R∗A.

We thus obtain the following generalization of the ACT [20]:

Theorem 16. [Fair Asynchronous Computability Theorem [FACT]] A task T = (I,O,∆) is solvable in the
fair adversarial A-model if and only if there exists a natural number ` and a simplicial map φ : R`A(I)→ O
carried by ∆.

19

7 Related work

Inspired by the model of dependent failures proposed by Junqueira and Marzullo [21], Delporte et al. [9]
suggested the notion of adversaries and showed that adversaries having the same set consensus power
agree on the set of colorless tasks they solve.

Herlihy and Shavit [20] proposed a characterization of wait-free task computability through the
existence of a simplicial map from a subdivision of the input complex of a task I to its output complex O.
(The reader is referred to [18] for a thorough discussion of the use of combinatorial topology in distributed
computability.) Herlihy and Rajsbaum [19] studied colorless task computability in the special case of
superset-c7-TRlosed adversaries. They show that the protocol complex of a superset-closed adversary
with minimal core size c is (c− 2)-connected. This result, obtained via an iterative application of the
Nerve lemma, gives a combinatorial characterization of superset-closed adversaries. The characterization
only applies to colorless tasks, and it does not allow us to express the adversary in an affine way.

Gafni et al. [15] introduced the notion of an affine task and characterized task computability in iterated
adversarial models via infinite subdivisions of input complexes, assuming a limited notion of solvability
that only guarantees outputs to “fast” processes [6,11] (i.e., “seen” by every other process infinitely often).
The liveness property defined in this paper for iterated models guarantees outputs for every process,
which allowed us to establish a task-computability equivalence with conventional non-iterated models.

Saraph et al. [30] gave a compact combinatorial characterization of t-resilient task computability.
Note that At−res is a superset-closed (and thus fair) adversary. Our solution of the affine task RA in the
α-model is inspired by the t-resilient solution of Rt−res in [30]. Gafni et al. [12] presented affine tasks for
the model of k-set consensus and, thus, k-concurrency and k-obstruction-freedom, which can be expressed
as a symmetric and thus fair adversary.

The notions of agreement functions and a fair adversaries were introduced by the first two authors
in [24]. One can determine the agreement function of any given adversary using the formula suggested
earlier for the set consensus power [13]. It has been shown in [24] that agreement functions encode enough
information to characterize the task computability of any fair adversary.

A short version of this paper appeared as a conference brief announcement [26], and as an extended
version without formal proofs and shorten explanation [27].

8 Concluding remarks

This paper generalizes all existing topological characterizations of distributed computing models [12, 15,
19,20,30]. It applies to all tasks (not necessarily colorless) and all fair adversarial models (not necessarily
t-resilience or k-obstruction-freedom). Just as the wait-free characterization [20] implies that the IS task
captures the wait-free model, our characterization equates any fair adversary with a (compact) affine task
embedded in the second degree of the standard chromatic subdivision.

Interestingly, unlike [30], we cannot rely on the shellability [18] (and, thus, link-connectivity) of
the affine task. Link-connectivity of a simplicial complex C allows us to work in the point set of its
geometrical embedding |C| and use continuous maps (as opposed to simplicial maps that maintain the
simplicial structure). For example, the existence of a continuous map from |RAt−res

| to any |RkAt−res
|

implies that RAt−res
indeed captures the general task computability of At−res [30]. In general, however,

the existence of a continuous map onto C only allows us to converge on a single vertex [18]. If C is not
link-connected, converging on one vertex allows us to compute an output only for a single process, and
not more. Unfortunately, only very special adversaries, such as At−res , have link-connected counterparts
(see, e.g., the affine task corresponding to 1-obstruction-freedom in Figure 7a). Instead of relying on
link-connectivity, this paper takes an explicit algorithmic way of showing that iterations of RA simulate A.
An interesting question is to which extent point-set topology and continuous maps can be applied in
affine characterizations.

Given that some models out of this class cannot be grasped by agreement functions (see [24] for
examples), going beyond fair adversarial models is an important challenge. In particular, we should be
able to account for models in which coalitions of participants can achieve better levels of set consensus
than the whole set. Nailed down, this may allow us to compactly capture all “natural” models [12], such
as, e.g., generic adversarial models or the set consensus collections models [8] for which only special cases
of k-set consensus [12] and k-test-and-set [25] have been, in this sense, understood so far.

20

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared
memory. J. ACM, 40(4):873–890, 1993.

[2] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, Oct. 1985.

[3] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous
computations. In STOC, pages 91–100. ACM Press, May 1993.

[4] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming. In PODC, pages 41–51,
New York, NY, USA, 1993. ACM Press.

[5] E. Borowsky and E. Gafni. A simple algorithmically reasoned characterization of wait-free computa-
tion (extended abstract). In PODC ’97: Proceedings of the sixteenth annual ACM symposium on
Principles of distributed computing, pages 189–198, New York, NY, USA, 1997. ACM Press.

[6] Z. Bouzid, E. Gafni, and P. Kuznetsov. Strong equivalence relations for iterated models. In OPODIS,
pages 139–154, 2014.

[7] S. Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally asynchronous
systems. In Proceedings of the 9th ACM Symposium on Principles of Distributed Computing, pages
311–324, Québec City, Québec, Canada, Aug. 1990.

[8] C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov:. Set-consensus collections are
decidable. In OPODIS, 2016.

[9] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The disagreement power of an
adversary. Distributed Computing, 24(3-4):137–147, 2011.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2):374–382, Apr. 1985.

[11] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and asynchrony.
In Proceedings of the 17th Symposium on Principles of Distributed Computing, 1998.

[12] E. Gafni, Y. He, P. Kuznetsov, and T. Rieutord. Read-write memory and k-set consensus as an
affine task. In OPODIS, 2016. Technical report: https://arxiv.org/abs/1610.01423.

[13] E. Gafni and P. Kuznetsov. Turning adversaries into friends: Simplified, made constructive, and
extended. In OPODIS, pages 380–394, 2010.

[14] E. Gafni and P. Kuznetsov. Relating L-Resilience and Wait-Freedom via Hitting Sets. In ICDCN,
pages 191–202, 2011.

[15] E. Gafni, P. Kuznetsov, and C. Manolescu. A generalized asynchronous computability theorem. In
ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18,
2014, pages 222–231, 2014.

[16] E. Gafni and S. Rajsbaum. Distributed programming with tasks. In Principles of Distributed Systems
- 14th International Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Proceedings,
pages 205–218, 2010.

[17] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, Jan. 1991.

[18] M. Herlihy, D. N. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinatorial Topology.
Morgan Kaufmann, 2014.

[19] M. Herlihy and S. Rajsbaum. Simulations and reductions for colorless tasks. In PODC, pages
253–260, 2012.

[20] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J. ACM,
46(2):858–923, 1999.

[21] F. Junqueira and K. Marzullo. A framework for the design of dependent-failure algorithms. Concur-
rency and Computation: Practice and Experience, 19(17):2255–2269, 2007.

21

[22] D. N. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and Applications,
14(1):1–13, 2012.

[23] P. Kuznetsov. Understanding non-uniform failure models. Bulletin of the EATCS, 106:53–77, 2012.

[24] P. Kuznetsov and T. Rieutord. Agreement functions for distributed computing models. In NETYS,
2017. To apper, technical report: https://arxiv.org/abs/1702.00361.

[25] P. Kuznetsov and T. Rieutord. Affine Tasks for k-Test-and-Set. working paper or preprint, June
2018.

[26] P. Kuznetsov, T. Rieutord, and Y. He. Brief announcement: Compact topology of shared-memory
adversaries. In 31th International Symposium on Distributed Computing, DISC’16, pages 56:1–4,
2017.

[27] P. Kuznetsov, T. Rieutord, and Y. He. An asynchronous computability theorem for fair adversaries.
In C. Newport and I. Keidar, editors, Proceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages 387–396.
ACM, 2018.

[28] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[29] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM J. on Computing, 29:1449–1483, 2000.

[30] V. Saraph, M. Herlihy, and E. Gafni. Asynchronous computability theorems for t-resilient systems.
In DISC, pages 428–441, 2016.

[31] E. H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.

[32] G. Taubenfeld. The computational structure of progress conditions. In DISC, 2010.

22

A Simplicial complexes

We recall now several notions from combinatorial topology. For more detailed coverage of the topic please
refer to [18,31].

A simplicial complex is a set V , together with a collection C of finite non-empty subsets of V such
that:

1. For any v ∈ V , the one-element set {v} is in C;

2. If σ ∈ C and σ′ ⊆ σ, then σ′ ∈ C.

The elements of V are called vertices, and the elements of C are called a simplices. We usually drop
V from the notation, and refer to the simplicial complex as C.

A subset of a simplex is called a face of that simplex.
A sub-complex of C is a subset of C that is also a simplicial complex.
The dimension of a simplex σ ∈ C is its cardinality minus one. The k-skeleton of a complex C,

denoted Skelk C, is the sub-complex formed of all simplices of C of dimension k or less.
A simplicial complex C is called pure of dimension n if C has no simplices of dimension > n, and

every k-dimensional simplex of C (for k < n) is a face of an n-dimensional simplex of C.
Let A and B be simplicial complexes. A map f : A→ B is called simplicial if it is induced by a map

on vertices; that is, f maps vertices to vertices, and for any σ ∈ A, we have

f(σ) =
⋃
v∈σ

f({v}).

A simplicial map f is called non-collapsing (or dimension-preserving) if dim f(σ) = dimσ for all σ ∈ A.
A map Φ : A→ 2B (mapping simplices of A to sub-complexes of B) is called carrier if for all τ, σ ∈ A,

we have Φ(τ ∩ σ) ⊆ Φ(τ) ∩ Φ(σ). A simplicial map φ : A → B is said to be carried by a carrier map
Φ : A→ 2B if for all σ ∈ A, φ(σ) ⊂ Φ(σ).

Any simplicial complex C has an associated geometric realization |C|, defined as follows. Let V
be the set of vertices in C. As a set, we let C be the subset of [0, 1]V = {α : V → [0, 1]} consisting
of all functions α such that {v ∈ V | α(v) > 0} ∈ C and

∑
v∈V α(v) = 1. For each σ ∈ C, we set

|σ| = {α ∈ |C| | α(v) 6= 0⇒ v ∈ σ}. Each |σ| is in one-to-one correspondence to a subset of Rn of the
form {(x1, . . . , xn) ∈ [0, 1]n |∑xi = 1}. We put a metric on |C| by d(α, β) =

∑
v∈V |α(v)− β(v)|.

A non-empty complex C is called k-connected if, for each m ≤ k, any continuous map of the m-sphere
into |C| can be extended to a continuous map over the (m+ 1)-disk.

A subdivision of a simplicial complex C is a simplicial complex C ′ such that:

1. The vertices of C ′ are points of |C|.

2. For any σ′ ∈ C ′, there exists σ ∈ C such that σ′ ⊂ |σ|.

3. The piecewise linear map |C ′| → |C| mapping each vertex of C ′ to the corresponding point of C is
a homeomorphism.

Chromatic complexes. We now turn to the chromatic complexes used in distributed computing, and
recall some notions from [20].

Fix n ≥ 0. The standard n-simplex s has n + 1 vertices, in one-to-one correspondence with n + 1
colors 0, 1, . . . , n. A face t of s is specified by a collection of vertices from {0, . . . , n}. We view s as a
complex, with its simplices being all possible faces t.

A chromatic complex is a simplicial complex C together with a non-collapsing simplicial map χ : C → s.
Note that C can have dimension at most n. We usually drop χ from the notation. We write χ(C) for the
union of χ(v) over all vertices v ∈ C. Note that if C ′ ⊆ C is a sub-complex of a chromatic complex, it
inherits a chromatic structure by restriction.

In particular, the standard n-simplex s is a chromatic complex, with χ being the identity.
Every chromatic complex C has a standard chromatic subdivision ChrC. Let us first define Chr s

for the standard simplex s. The vertices of Chr s are pairs (i, t), where i ∈ {0, 1, . . . , n} and t is a face
of s containing i. We let χ(i, t) = i. Further, Chr s is characterized by its n-simplices; these are the
(n+ 1)-tuples ((0, t0), . . . , (n, tn)) such that:

(a) For all ti and tj , one is a face of the other;

23

(b) If j ∈ ti, then tj ⊆ ti.

The geometric realization of s can be taken to be the set {x = (x0, . . . , xn) ∈ [0, 1]n+1 |∑xi = 1}, where
the vertex i corresponding to the point xi with i coordinate 1 and all others coordinate 0. Then, we can
identify a vertex (i, t) of Chr s with the point

1

2k − 1
xi +

2

2k − 1

(∑
{j∈t|j 6=i}

xj

)
∈ |s| ⊂ Rn+1,

where k is the cardinality of t. Thus, Chr s becomes a subdivision of s and the geometric realizations
are identical: |s| = |Chr s|. The standard chromatic subdivision, Chr s, is illustrated for a 3-process
system in Figure 1a(a).

Next, given a chromatic complex C, we let ChrC be the subdivision of C obtained by replacing each
simplex in C with its chromatic subdivision. Thus, the vertices of ChrC are pairs (p, σ), where p is a
vertex of C and σ is a simplex of C containing p. If we iterate this process m times we obtain the mth

chromatic subdivision, Chrm C.
Let A and B be chromatic complexes. A simplicial map f : A→ B is called a chromatic map if for

all vertices v ∈ A, we have χ(v) = χ(f(v)). Note that a chromatic map is automatically non-collapsing.
A chromatic map has chromatic subdivisions Chrm f : ChrmA→ ChrmB. Under the identifications of
topological spaces |A| ∼= |ChrmA|, |B| ∼= |ChrmB|, the continuous maps |f | and |Chrm f | are identical.

A simplicial map φ is carried by the carrier map ∆ if φ(σ) ⊂ ∆(σ) for every simplex σ in their domain.

24

