
HAL Id: hal-01572257
https://hal.science/hal-01572257v2

Preprint submitted on 29 Nov 2017 (v2), last revised 18 Apr 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compact Topology of Shared-Memory Adversaries
Petr Kuznetsov, Thibault Rieutord, Yuan He

To cite this version:
Petr Kuznetsov, Thibault Rieutord, Yuan He. Compact Topology of Shared-Memory Adversaries.
2017. �hal-01572257v2�

https://hal.science/hal-01572257v2
https://hal.archives-ouvertes.fr

Compact Topology of Shared-Memory Adversaries∗

Petr Kuznetsov1, Thibault Rieutord1, and Yuan He2

1LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France,
{petr.kuznetsov,thibault.rieutord}@telecom-paristech.fr

2UCLA, Los Angeles, USA, yuan.he@cs.ucla.edu

Abstract

The paper proposes a simple topological characterization of a large class of fair adversarial
distributed-computing models via affine tasks: sub-complexes of the second iteration of the
standard chromatic subdivision. We show that the task computability of a model in the class
is precisely captured by iterations of the corresponding affine task. Our results generalize and
improve all previously derived topological characterizations of distributed-computing models.

1 Introduction

Distributed computing deals with a jungle of models, parameterized by types of failures, synchrony
assumptions and communication primitives. Determining relative computability power of these
models (“is model A more powerful than model B”) is an intriguing and important problem. This
paper deals with a large class of shared-memory models in which a set of crash-prone asynchronous
processes communicate via invoking operations on a collection of shared objects. By default, we
assume that the shared objects include atomic read-write registers.

Topology of wait-freedom. The wait-free model of computation [17] makes no assumptions on
when and where failures might occur. Herlihy and Shavit proposed an elegant characterization
of wait-free (read-write) task computability via the existence of a specific simplicial map from
geometrical structures describing inputs and outputs [20]. A task T has a wait-free solution using
read-write registers if and only if there exists a simplicial, chromatic map from a subdivision of the
input simplicial complex, describing the inputs of T to the output simplicial complex, describing the
outputs of T . In particular, we can choose this subdivision to be the iterated standard chromatic
subdivision (Chr, Figure 1(a)). This subdivision precisely captures the output complex of the
immediate snapshot (IS) task [5]. By solving the IS task iteratively, where the current iteration
output is used as the input value for the next one, we obtain the iterated immediate snapshot
(IIS) model. Therefore, we can give the following formulation of the celebrated Asynchronous
Computability Theorem (ACT) [20]:

A task T = (I,O,∆), where I is the input complex, O is an output complex, and ∆
is a carrier map from I to sub-complexes of O, is wait-free solvable if and only if
there exists a natural number ` and a simplicial map φ : Chr`(I) → O carried by ∆
(informally, respecting the task specification ∆).

The theorem can be interpreted as: the set of wait-free (read-write) solvable task is precisely
the set of tasks solvable in the IIS model. The ability of (iteratively) solving the IS task allows us

∗This is the full version of a submitted article entitled “An Asynchronous Computability Theorem for Fair
Adversaries”. This work has been supported by the Franco-German DFG-ANR Project DISCMAT (14-CE35-0010-02)
devoted to connections between mathematics and distributed computing.

1

Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

(a) Chr1(s), the output complex of IS (b) R1, the affine task of 1-resilience

Figure 1: Subsets of the iterated standard chromatic subdivision

to solve any task in the wait-free model. Hence, from the task computability perspective, the IS
task is a finite (or, as we explain below, compact) representation of the wait-free model.

Adversaries. Given that many fundamental tasks are not solvable in the wait-free way [3, 20, 27],
more general models were considered. Delporte et al. [9] introduced the notion of an adversary, a a
collection A of process subsets, called live sets. A run is in the corresponding adversarial A-model
if the set of processes taking infinitely many steps in it is in A.

For example, the t-resilient n-process model is defined via an adversary At that consists of all
live sets of size n− t or more. At is superset-closed [23], as it contains all supersets of its elements.

Notice that, assuming the conventional “longest-prefix” metric [2], the t-resilient model is non-
compact : in particular, it does not contain its limit points. Consider, for example, the 1-resilient
3-process system and an infinite “solo” run in which exactly one process takes steps. All finite
prefixes of this run are in the model, but the run itself is not.

Saraph et al. [28] recently proposed a direct characterization of t-resilient task computability
via a specific task Rt, defined as a restriction of the double immediate snapshot task: the output
complex of the task is a subcomplex consisting of all simplices of the second degree of the standard
chromatic subdivision of the task’s input complex, except the simplices adjacent to the (n− t− 1)-
skeleton of the input complex (Figure 1(b) describes the 1-resilient 3-process case). The task
consists in solving chromatic simplex agreement [5,20] on a the corresponding subcomplex of Chr2 s.
Such tasks are called affine [13,15], as the geometrical representation of their output complexes
are unions of affine spaces.

Solving a task T in the t-resilient model is then equivalent to finding a map from iterations
of Rt (applied to the input complex of T) to the output complex of T . Therefore, Rt is a compact
representation of the model of t-resilience.

Similarly, the affine task of the k-obstruction free adversary, consisting of all process subsets
of size at most k, was recently determined by Gafni et al. [13]. Note that such an adversary is
symmetric [30], as it only depends on the sizes of live sets, and not on process identifiers.

Topology of fair adversaries. In this paper, we present a compact topological characterization
of the large class of fair adversarial models [24]. Informally, an adversary is fair if its ability to solve
set consensus does not change if only a subset of the processes are participating. Fair adversaries
subsume symmetric and superset-closed ones. We define an affine task RA that captures the
task computability of any fair adversary A. Our characterization can be put as the following
generalization of the ACT [20]:

A task T = (I,O,∆) is solvable in a fair adversarial A-model if and only if there exists
a natural number ` and a simplicial map φ : R`A(I)→ O carried by ∆.

This result generalizes all existing topological characterizations of distributed computing models
[13,15,20,28], as it applies to all fair adversaries (and not only t-resilient and k-obstruction-free)
and all tasks (and not only colorless). Furthermore, our characterization is compact: we match

2

Super-set closed Symmetrict-resilient

Adversaries

(k-OF)(WF)

[SHG16]
[HS99]

[GHKR16]

Super-set closed Symmetrict-resilient

Adversaries

(k-OF)(WF)

Fair Adversaries

[SHG16]
[HS99]

[GHKR16]

Figure 2: Earlier topological characterizations (wait-free [20], t-resilient [28], and k-obstruction-free [13])
and our contribution: e.g., affine tasks for a superset-closed adversary, a symmetric adversary, and a
general fair adversary

(potentially complicated and non-compact) fair adversarial models with simple finite affine tasks,
defined as sub-complexes of the second-degree standard chromatic subdivisions.

Given that there are only finitely many such affine tasks, we conclude that there can only
be finitely many equivalence classes of fair adversarial models. We believe that the results can
be extended to all “practical” restrictions of the wait-free model of computations, beyond fair
adversaries, which may potentially result in a complete computability theory for distributed
computing.

Roadmap. Section 2 gives preliminary definitions, Section 3 recalls the notion an adversary, and
Section 4 defines task RA for a fair adversary A. In Section 5, we show that R∗A, the iterated RA
model, can be simulated in A. In Section 6, we show that any task solvable in the adversarial
A-model can be solved in R∗A. Section 7 reviews related work and Section 8 concludes the paper.

2 Preliminaries

Let Π be a system composed of n asynchronous processes, p1, . . . , pn. We consider two models of
communication: (1) atomic snapshots [1] and (2) iterated immediate snapshots [5, 20].

Communication models. The atomic-snapshot (AS) memory is represented as a vector of shared
variables, where each process pi is associated with a distinct position i. The memory can be
accessed with two operations: update and snapshot. An update operation performed by pi modifies
the value at position i and a snapshot returns the current state of the memory.

In the iterated immediate snapshot (IIS) model, processes proceed through a sequence of
independent memories M1,M2, Each memory Mr is accessed by a process with a single
WriteSnapshot operation [4]: the operation performed by pi takes a value vi and returns a
set Vir of values submitted by the processes (w.l.o.g, we assume that the values of different

3

processes are distinct), so that the following properties are satisfied: (self-inclusion) vi ∈ Vir;
(containment) (Vir ⊆ Vjr) ∨ (Vjr ⊆ Vir); and (immediacy) vi ∈ Vjr ⇒ Vir ⊆ Vjr.
Protocols, runs and models. A protocol here is a deterministic distributed automaton that,
for each local state of a process, stipulates which operation and which state transition the process
is allowed to perform. A run of a protocol is defined as a possibly infinite sequence of alternating
states and operations. A model is a set of runs.

In the IIS communication model, we assume that processes run the full-information protocol: the
first value each process writes is its initial state. For each r > 1, the outcome of the WriteSnapshot
operation on memory Mr−1 is submitted as the input value for the WriteSnapshot operation on
memory Mr. After a certain number of iterations, a process may gather enough information to
produce an irrevocable output value.

Failures and participation. In an infinite run of the AS model, a process that takes only finitely
many steps is called faulty, otherwise it is called correct. We assume that in its first step, a process
writes its initial state in the shared memory using the update operation. If a process completed
this first step in a given run, it is said to be participating, and the set of participating processes is
called the participating set. Note that in an infinite run, every correct process is participating.

In contrast, the IIS model does not have the notion of a faulty process. Instead, a process may
appear “slow” [6,11,26], i.e., be late in accessing iterated memories from some point on so that
some “faster” processes do not see them.

Tasks. In this paper, we focus on distributed tasks [20]. A process invokes a task with an input
value and the task returns an output value, so that the inputs and the outputs across the processes,
respect the task specification. Formally, a task is defined through a set I of input vectors (one
input value for each process), a set O of output vectors (one output value for each process), and a
total relation ∆ : I 7→ 2O that associates each input vector with a set of possible output vectors.
We require that ∆ is a carrier map: ∀τ, σ ∈ I, τ ⊂ σ: ∆(τ) ⊆ ∆(σ). An input ⊥ denotes a
non-participating process and an output value ⊥ denotes an undecided process. Check [18] for
more details on the definition.

In the task of k-set consensus [7], input values are in a set of values V (|V | ≥ k + 1), output
values are in V , and for each input vector I and output vector O, (I,O) ∈ ∆ if the set of non-⊥
values in O is a subset of values in I of size at most k. The special case of 1-set consensus is called
consensus [10].

A protocol solves a task T = (I,O,∆) in a model M , if it ensures that in every infinite run
of M in which processes start with an input vector I ∈ I, there is a finite prefix R of the run in
which: (1) decided values form a vector O ∈ O such that (I,O) ∈ ∆, and (2) all correct processes
decide.

Standard chromatic subdivision and IIS. We use the standard language of simplicial com-
plexes [18, 29] to give a combinatorial representation of the IIS model. A simplicial complex is
defined as a set of vertices and an inclusion-closed set of vertex subsets, called simplices. The
dimension of a simplex is the number of its vertices minus one. Any subset of these vertices is
called a face.

A simplicial complex is pure (of dimension n) if each of its simplices is contained in a simplex
of dimension n. A simplicial complex is chromatic if it is equipped with a coloring function—a
non-collapsing simplicial map χ from its vertices to the standard (n− 1)-simplex s of n vertices, in
one-to-one correspondence with n colors 1, 2, . . . , n. With some abuse of notation, processes may
be referred to by their identifiers and χ may be used to obtain the set of processes associated with
a simplex.

The standard chromatic subdivision [20] of s, denoted Chr s and depicted in Figure 1(a), is a
complex where vertices of Chr s are couples (v, σ), where v is a vertex of s and σ is a face of s
containing v, and simplices are sets of vertices (v1, σ1), . . ., (vm, σm) satisfying the properties of
immediate snapshot. Chr s is indeed a subdivision of s: in particular, its geometric realization |Chr s|
is homeomorphic to |s|, the geometric realization of s [22]. If we iterate this subdivision m times,
each time applying Chr to each of the simplices, we obtain the mth chromatic subdivision, Chrm C.

4

Chrm s precisely captures the m-round (full-information) IIS model, denoted ISm [20].
Consider a simplex of σ ∈ Chrm s and take any 1 ≤ m′ < m. The carrier of σ with respect

to Chrm
′
s, denoted by carrier(σ,Chrm

′
s), is the smallest simplex σ′ ∈ Chrm

′
s such that the

geometric realization of σ, |σ|, is included in |σ′|. For example, given a vertex v of Chrm s,
carrier(v,Chrm s) is the set of all processes seen by the process χ(v) in the corresponding run
of ISm.

Simplex agreement and affine tasks. In a general simplex agreement task, every process is
given, as an input, a vertex of its color in the standard simplex s, and is expected to output a
vertex of C of its color, so that the outputs form a simplex of C respecting the inputs. In the
instances of simplex agreement considered in characterizations of wait-free task computability [5,20],
inputs were vertices of s and C was a chromatic subdivision of s. Affine tasks can be seen as a
generalization of simplex agreement tasks considered in [5, 20], where the output complex is no
longer a subdivision but a subset of some iteration of the standard chromatic subdivision.

Formally, let L be a pure subcomplex of Chrl s for some l ∈ N. The affine task associated
with L is then defined as (s, L,∆), where, for every face t ⊆ s, ∆(t) = L ∩ Chrl t. Notice that
L ∩ Chrl(t) can be empty, in which case no participating process is required to output.

With a slight abuse of notations, we use L to denote the affine task associated with L. By
running m iterations of this task, we obtain Lm, a subcomplex of Chrlm s, corresponding to a
subset of IS lm runs (each of the m iterations includes l IS rounds). We denote by L∗ the set of
infinite runs of the IIS model where every prefix restricted to a multiple of l IS rounds belongs to
the subset of IS lm runs associated with Lm.

3 Adversaries and agreement functions

An adversary A is a set of subsets of Π, called live sets, A ⊆ 2Π. An AS run is A-compliant if the
set of correct processes in that run belongs to A. The (adversarial) A-model is defined as the set
of A-compliant runs.

Consider an adversary A and a function α : 2Π → {0, . . . , n}. We say that α is the agreement
function of A if for each P ∈ 2Π, in the set of A-compliant runs in which no process in Π \ P
participates, α(P)-set consensus can be solved, but (α(P)−1)-set consensus cannot [24]. Intuitively,
α(P) is the best level of set consensus that can be reached in the A-model when only processes
in P are allowed to participate. By convention, if P does not contain a live set, we set α(P) = 0.
Note that for any adversary A, its agreement function α is monotonic: P ⊆ P ′ ⇒ α(P) ≤ α(P ′).

For any monotonic function α : 2Π → {0, . . . , n}, we can define a natural model (a subset of
AS runs) as follows:

Definition 1 (α-model). The α-model is the set of infinite runs satisfying the following property:
if P is the participating set, then α(P) ≥ 1 and at most α(P)− 1 processes in P are faulty.

An adversary is superset-closed [23] if each superset of a set of an element of A is also an element
of A, i.e., ∀S ∈ A, ∀S′ ⊆ Π, S ⊆ S′: S′ ∈ A. An adversary A is symmetric if it only depends on
the sizes of live sets, and not on process identifiers.: ∀S ∈ A, ∀S′ ⊆ Π, |S′| = |S| =⇒ S′ ∈ A.

For P ∈ 2Π, let A|P = {S|SA, S ⊆ P} and let csize(A|P) denote the size of the minimal
hitting set of A|P , i.e., the minimal subset of P that intersects with each element in A|P . It is
shown in [24] that the corresponding agreement function α can be defined using the set consensus
function setcon [14]: α(P) = setcon(A|P). Moreover, for any superset-closed adversary A, we have
α(P) = setcon(A|P) = csize(A|P) and if A is symmetric, we have α(P) = setcon(A|P) = |{k ∈
{1, . . . , |P |} : ∃S ∈ A, |S| = k}|.
α-adaptive set consensus. The abstraction of α-adaptive set consensus [24] can be accessed with
a propose(v) operation, where v ∈ V , and ensures that (termination) every operation invoked by a
correct process eventually returns, (validity) every returned value is the argument of a preceding
propose invocation, and (α-agreement) at any point of the execution, the number of distinct

5

Figure 3: The 2-contention complex is shown in red in dimension 2.

returned values does not exceed α(P), where P is the set of processes that took at least one step
up to that point. We also consider the following variant of the α-model:

Definition 2 (α-set-consensus model). The α-set-consensus model is the set of infinite runs in
which processes can access atomic-snapshot memory and α-adaptive set-consensus objects and the
following property is satisfied: if P is the participating set, then α(P) ≥ 1.

The following result will be instrumental in our proofs:

Theorem 1. [24] For any α, an agreement function and any task T , if T is solvable in the
α-model, then T is solvable in the α-set-consensus model.

Fair adversaries. Informally, an adversary is fair [24] if a subset Q of participating processes
P cannot achieve better set consensus than the whole set of participants. More precisely, for an
adversary A, and Q ⊆ P , we define A|P,Q = {S ∈ A : (S ⊆ P) ∧ (S ∩Q 6= ∅)}.

Definition 3. [Fair adversary] An adversary A is fair if and only if:

∀P ⊆ Π,∀Q ⊆ P, setcon(A|P,Q) = min(|Q|, setcon(A|P)).

Superset-closed and symmetric adversaries are fair [24]. It turns out that the task computability
of a fair adversary is captured precisely by the corresponding α-model, i.e., they solve the same set
of tasks (we say that the models are equivalent).

Theorem 2. [24] For any fair adversary A, a task is solvable in the adversarial A-model if and
only if it is solvable in the α-model.

4 Affine task for fair adversarial models

Given a fair adversary A and its associated agreement function α, we define the affine task RA,
a subcomplex of the second degree of the standard chromatic subdivision Chr2 s. In Sections 5
and 6, we show that R∗A, i.e., the model of IIS runs obtained by iterating RA, is equivalent to the
α-model regarding task solvability.

Agreement and contention simplices. To get an intuitive understanding of the defintion RA,
we first show how to restrict Chr2 s so that any subset of processes is able to solve k-set consensus
in the resulting IIS model. For a vertex v ∈ Chr2 s, we define View1(v) and View2(v) as the
sets of processes seen by the corresponding process χ(v) in, respectively, in the first and in the
second IS.

In a subcomplex of Chr2 s or, put differently, a subset of two rounds of the IIS model, a natural
way to solve k-set consensus is to make every process deterministically select a process in the
smallest View1 it finds after completing the second IS. The solution is correct if the subcomplex

6

(a) Critical simplices for the α-model with
α(P) = min(|P |, 1) (1-obstruction-freedom)

(b) Critical simplices of the α-model corresponding to
the adversary A = {{p1}, {p2, p3}, {p1, p2, p3}}

Figure 4: Critical simplices are displayed in orange (with p1 associated with the vertex on the top).

of Chr2 guarantees that in every simplex, there are at most k such IS1 views. For example, the
subcomplex that captures consensus (1-set consensus) can thus be defined as the set of simplices
of Chr2 adjacent to the “corners” (0-dimensional vertices of s).

However, to solve k-set consensus among any subset of processes, we need to further restrict
this affine task, so that the desired properties are respected for any processes subset. In a simplex
δ ∈ Chr2 s, vertices v and v′ are contending if their View1 and View2 are ordered in the opposite
way: View1(v) is a proper subset of View1(v′) and View2(v′) is a proper subset of View2(v), or
vice versa. If every two vertices of δ are contending, then we say that δ is a 2-contention simplex.
Formally:

Definition 4. [2-Contention simplices] ∀σ ∈ Chr2 s : σ ∈ Cont2 ⇔ ∀v, v′ ∈ σ, v 6= v′ :

((View1(v) (View1(v′))∧(View2(v′) (View2(v)))∨((View1(v′) (View1(v))∧(View2(v) (View2(v′))).

Note that the set of 2-contention simplices is inclusion-closed: any face of a 2-contention simplex
is also a 2-contention simplex. Therefore, we can define the 2-contention complex as the set of
all 2-contention simplices. Examples of 2-contention simplices in a 3-process system are given in
Figure 3.

By restricting Chr2 s to the set of maximal simplices which do not have faces of more than k
contending vertices, we get affine task Rk−OF which allows any subset if processes to solve k-set
consensus and, thus, captures the k-obstruction-free adversary (see Figure 6a for R1−OF in a
3-process system):

Definition 5. [Rk−OF] ∀σ ∈ Chr2 s, dim(σ) = n− 1 : σ ∈ RA ⇔

∀θ ⊆ σ : θ ∈ Cont2 =⇒ dim(θ)− 1 ≤ k.

Agreement vs. participation. The agreement function of an adversary may define different
levels of agreement for different participating sets. In iterated affine tasks, participation is captured
by views of the processes, i.e., carrier(v, s) for their vertices v. Intuitively, ensuring that “enough”
processes participate requires sufficiently large views, which may conflict with selecting “leader”
processes with the smallest views. Therefore, the number of potential leaders might grow with
the growing participating set P . Thus, intuitively, each time a process obtains a View1 associated
with a higher agreement level, a new leader might arise. We thus introduce the notion of a critical
set, i.e., the set of processes whose participation increases the agreement level of the system. More
precisely, a simplex σ ∈ Chr s is a critical simplex if: (1) all its vertices share the same carrier; and
(2) the set consensus power associated with carrier(σ, s) is strictly greater than the set consensus
power of χ(carrier(σ, s)) \ χ(σ).

Definition 6. ∀σ ∈ Chr s:

Criticalα(σ) = (∀v ∈ σ : carrier(v, s) = carrier(σ, s)) ∧ (α(χ(carrier(σ, s)) \ χ(σ)) < α(χ(carrier(σ, s)))) .

7

(a) Concurrency map for the α-model with
α(P) = min(|P |, 1). (1-obstruction-freedom)

(b) Concurrency map of the α-model corresponding to
the adversary A = {{p1}, {p2, p3}, {p1, p2, p3}}.

Figure 5: Examples of concurrency maps in two models of 3-process system, a color set to green
corresponding to a concurrency value equal to 2, orange to 1, and black to 0. Note that p1 is the vertex on
the top.

Examples of critical simplices for 3-process models are given in Figure 4.
Given a simplex σ ∈ Chr s, let CSα(σ) denote the set of critical simplices in σ, i.e., CSα(σ) =

{σ′ ⊆ σ : Criticalα(σ)}. Moreover, let CSMα(σ) (critical simplices members) be the set of vertices
of σ which belong to some critical simplex in σ, i.e., CSMα(σ) = ∪σ′∈CSα(σ)σ

′. Similarly, let
CSVα(σ) (critical simplices view) be the union of all processes observed by critical simplices in σ,
i.e., CSVα(σ) = carrier(CSMα(σ), s).

Affine tasks for fair adversaries. Critical simplices provide a mechanism to select leaders.
Agreement is solved by making every process to deterministically select a proposal in View1 of a
critical simplex. If, however, critical sets do not offer proposals, the contention level of remaining
processes should be sufficiently restricted to enable the required (by α) level of set consensus. We
define this restriction using the following:

Definition 7. [Concurrency map] ∀σ ∈ Chr s :

Concα(σ) = max(0 ∪ {α(χ(carrier(σ′, s))), σ′ ∈ CSα(σ)}).

Examples of concurrency maps for two models in a 3-process system are given in Figure 5.

Affine task RA. The affine task RA ⊆ Chr2 s is defined as follows:

Definition 8. [RA] ∀σ ∈ Chr2 s, dim(σ) = n− 1 : σ ∈ RA ⇔ ∀θ ⊆ σ, θ′ = carrier(θ,Chr s) :

(θ ∈ Cont2) ∧ (χ(θ) ∩ (χ(CSMα(carrier(σ,Chr s))) ∪ χ(CSVα(θ′))) = ∅ =⇒ dim(θ) + 1 ≤ Concα(θ′).

Intuitively, a simplex σ ∈ Chr2 s is in RA if any of its “non-critical” subsets that cannot ”rely”
on the critical simplices in achieving α-adaptive set consensus has a sufficiently low contention
level to solve α-adaptive set consensus on their own.

Some examples of affine tasks for some α-models in a 3-process system are depicted in Figure 6.

5 From α-model to RA
Let us fix a fair adversary A. Let α be its agreement function, and let T be any task that can be
solved in R∗A. To show that T is solvable with a fair adversary A, we present an algorithm that, in
the α-model, solves RA, i.e., solves the chromatic simplex agreement task on the complex RA. By
iterating this task, we can simulate a run of R∗A and thus get a solution to T in the α-model.

5.1 Algorithm

The solution of RA is presented in Algorithm 1. Every process accesses two immediate snapshot
objects: FirstIS , proposing its initial state, and SecondIS , proposing the outcome of FirstIS .

8

(a) Affine task for the α-model with α(P) = min(|P |, 1).
(1-obstruction-freedom)

(b) Affine task of the α-model corresponding to the
adversary A = {{p1}, {p2, p3}, {p1, p2, p3}}.

Figure 6: Some examples of affine tasks RA in blue (with p1 associated with the vertex on the top).

Recall that outcomes of SecondIS form a simplex in Chr2 s [22]. To ensure that this simplex is
in RA, after finishing FirstIS , processes wait for their turns to proceed to SecondIS .

In this waiting phase (Lines 5–10), processes check a specific condition on the IS outcomes that
they share with each other in registers IS1 [1, . . . , n] and IS2 [1, . . . , n]. Each process pi periodically
checks IS1 and IS2 to update local variables critical and concurrency . Here critical is the set of
processes which belongs to a set of processes whose FirstIS outputs form a critical simplex (Line 8).
The value of concurrency is used to limit the level of contention non-critical processes may obtain.
The value of concurrency is initially set to the agreement power associated with the process IS1
view (line 4). Afterwards, during the waiting phase, it may be increased to the agreement power
associated with the IS1 view of a ”terminated” critical simplcex, i.e., a critical simplex for which
all its processes have been provided with SecondIS outputs (Line 9).

Algorithm 1: Algorithm solving Rα in the α-model for process pi.

1 Shared: registers IS1 [1], . . . IS [n] ∈ 2Π, initially ∅; IS2 [1], . . . , IS [n] ∈ 22Π

, initially ∅; immediate
snapshot objects FirstIS , SecondIS ;

2 Local: critical [1 . . . n] ∈ {true, false}, initially false; concurrency ∈ N, initially

0, level [1 . . . n] ∈ 2Π;

3 IS1 [i]← FirstIS(InitialState);
4 Concurrency ← α(IS1 [i]);
5 while (¬critical[i]) ∧ (|{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| ≥ concurrency) do
6 forall j ∈ {1, . . . , n} do
7 level [j]← {pk ∈ Π, IS1 [k] = IS1 [j]};
8 critical [j]← (α(IS1 [j]) > α(IS1 [j] \ level [j]));
9 if (α(IS1 [j]) > α(IS1 [j] \ {pk ∈ level [j], IS2 [k] 6= ∅})) then

10 concurrency ← max(α(IS1 [j]), concurrency);

11 IS2 [i]← SecondIS(IS1 [i]);
12 return(IS2 [i]);

Intuitively, the waiting phase is used to ensure that critical processes, i.e., members of critical
simplices, have a higher priority in proceeding with SecondIS . A process may proceed to its
SecondIS as soon as it knows that it belongs to some critical simplex. Non-critical processes are
allowed to exit their waiting phase according to the level of concurrency computed. A non-critical
process wait to know that the number of processes, which have or may obtain a strictly smaller IS1
view (included in IS1 [i] and with an IS1 [j] 6= IS1 [i]) and which did not terminate yet (IS2 [j] = ∅),
is strictly smaller than the observed level of concurrency . This allows to ensure that the possible
contention level of non-critical processes scales according to terminated critical simplex associated
agreement power. This is done either explicitely, if concurrency has been updated on line 10, or
implicitely if concurrency is still set to the agreement power associated with the process first IS
view from line 4.

9

5.2 Proof of correctness.

In order to show that Algorithm 1 solves RA in the α-model corresponding to the fair adversary A,
we need to show that (1) every correct process eventually outputs and that (2) the set of ouputs
belongs to a simplex in RA. Note that as processes execute two consecutive immediate snapshot
protocols, all outputs belong to some simplex in Chr2 s. Let us consider a run of the α model in
which the particiation is P , hence with α(P) > 0.

To show that outputs belong not only to Chr2 s but to RA and that all correct processes
terminate, we mostly rely on the distribution of critical simplices. We are interested in showing
that the number of processes failures, required to prevent critical simplices from either appearing
in IS1 or completing their IS2 computation, scales with the agreement power of the participation.
Moreover, we want to show that the less processes fail in such a way, the higher the maximal
agreement power associated with a terminated critical simplices becomes.

A process failure may prevent multiple critical simplices to terminate. Indeed, a process may be
included in multiple critical simplices, and thus, its failure would prevent multiple critical simplices
from terminating. This is why we are interested not in the distribution of critical processes or
critical simplices, but instead, in the minimal hitting set size for the set of critical simplices. Let
us recall that an hitting set of a set of sets Q, is a set intersecting with all sets from Q, and that
csize denotes the minimal hitting set size. More precisely, we want to know the minimal hitting set
size of (1) any subset of the participation and (2) of the set of critical simplices associated with an
agreement power greater than or equal to some level l, i.e., {θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}.

Let us first look at the case in which no participating process fails before updating their
IS1 output to the memory. In this case, the set of IS1 views form a simplex σ ∈ Chr s such
that χ(σ) = χ(carrier(σ, s)): The observed processes include all participating processes (inclusion
property) but no others. In this setting we can show that the minimal hitting set size of the set
of critical simplices associated with an agreement power greater than or equal to some level l, is
greater than or equal to the agreement power of the participation minus l− 1, i.e., α(χ(σ))− l+ 1:

Lemma 3. [Distribution of critical simplices]: ∀σ ∈ Chr s,∀l ∈ N

χ(σ) = χ(carrier(σ, s)) =⇒ α(χ(σ))− l + 1 ≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

Proof. Let us fix some integer l > 0. To show Lemma 3, we proceed by an induction on σ using the
lexicographical order on (α(χ(σ′)), |χ(σ)|). For any simplex σ, such that α(χ(σ)) < l, the result is
trivial as for any (possibly empty) set Q, we have csize(Q) ≥ 0. Now consider a simplex σ ∈ Chr s
such that χ(σ) = χ(carrier(σ)) and α(χ(σ)) = k ≥ l. Let us assume by induction that for
all σ′ ∈ Chr s, if (α(χ(σ′)), |χ(σ′)|) <lex (α(χ(σ′)), |χ(σ)|), then we have:

χ(σ) = χ(carrier(σ′, s)) =⇒ α(χ(σ′))− l + 1 ≤ csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}).

Now consider the face τ of σ consisting of all vertices of σ with the same carrier as σ, i.e.,
τ = {v ∈ σ, carrier(v, s) = carrier(σ, s)}. Let β be the complement of τ , i.e., β = σ \ τ . Note
that τ 6= ∅, due to the containment property, and that, χ(carrier(β, s)) = χ(carrier(σ, s)) \ χ(τ),
due to the immediacy property. Therefore, we obtain that χ(carrier(β, s)) = χ(σ) \ χ(τ), and so
that χ(carrier(β, s)) = χ(β). As (α(χ(β)), |χ(β)|) <lex (α(χ(σ)), |χ(σ)|), we obtain that:

α(χ(β))− l + 1 ≤ csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}). (1)

Two cases may arise:

1. If α(χ(β)) = α(χ(σ)), then, as β ⊆ σ we get that CSα(β) ⊆ CSα(σ), hence, we can derive
from Equation 1 that:

α(χ(σ))− l + 1 ≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

2. If α(χ(β)) < α(χ(σ)), then let m = α(χ(σ))− α(χ(β)) > 0 and let us consider any subset τ ′

of τ such that |τ ′| > |τ | −m. By construction we have carrier(τ ′, s) = carrier(σ, s) and by

10

assumption we have χ(carrier(σ, s)) = χ(σ), and thus, we obtain that χ(carrier(τ ′, s)) = χ(σ).
Let us recall that ∀v ∈ τ : carrier(v, s) = carrier(τ, s), and therefore Criticalα(τ ′) if and
only if α(χ(σ) \ χ(τ ′)) < α(χ(σ)).

Given a fair adversary, for any Q ⊆ P , we have α(P) ≥ α(P \ Q) ≥ α(P) − |Q|1. Note
that this implies that |χ(τ)| ≥ m. By applying the formula for P = χ(σ) \ χ(τ ′) and
for Q = χ(τ) \ χ(τ ′) we get that:

α(χ(σ) \ χ(τ ′)) ≥ α(χ(σ) \ χ(τ)) ≥ α(χ(σ) \ χ(τ ′))− |χ(τ) \ χ(τ ′)|.

But by construction χ(σ) \ χ(τ) = χ(β) and |χ(τ) \ χ(τ ′)| < m, thus we obtain that:

α(χ(σ) \ χ(τ)) ≥ α(χ(σ) \ χ(τ ′))− |χ(τ) \ χ(τ ′)| =⇒ α(χ(σ) \ χ(τ ′)) < α(χ(β)) +m.

As m = α(χ(σ))− α(χ(β)), we get α(χ(σ) \ χ(τ ′)) < α(χ(σ)), and hence, that Criticalα(τ ′).

Since by construction β = σ \ τ , we have csize(CSα(σ)) ≥ csize(CSα(τ)) + csize(CSα(β)).
Moreover, as α(χ(σ)) ≥ l, we have:

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}) ≥
csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}) + csize(CSα(τ)) (2)

But as any subset τ ′ of τ , such that |τ ′| > |τ | −m, is critial, we have:

csize(CSα(τ)) ≥ csize({τ ′ ⊆ τ, |χ(τ ′)| > |χ(τ)| −m}).

Moreover, since |χ(τ)| ≥ m, we have csize({τ ′ ⊆ τ, |χ(τ ′)| > |χ(τ)| −m}) = m, and hence,
that csize(CSα(τ)) ≥ m. With m = α(χ(σ))− α(χ(β)) and Equations 1 and 2, we obtain:

α(χ(σ))− l + 1 = (α(χ(β))− l + 1) +m

≤ csize({θ ∈ CSα(β), α(χ(carrier(θ, s))) ≥ l}) + csize(CSα(τ))

≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l})

The result of Lemma 3 can be used to generalize it for cases in which not all participating
processes shared their IS1 outputs to the memory. If so, the minimal hitting set size decreases
proportionnaly with the number of missing outputs:

Corollary 4. For any σ ∈ Chr s, we have:

α(χ(carrier(σ, s)))− l−|χ(carrier(σ, s))\χ(σ)|+1 ≤ csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).

Proof. Consider some σ ∈ Chr s. By construction, σ is a sub-simplex of some simplex σ′ such that
χ(carrier(σ, s)) = χ(carrier(σ′, s)) = χ(σ′). Hence, we can apply Lemma 3 on σ′ and obtain that:

α(χ(carrier(σ, s)))− l + 1 ≤ csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}). (3)

But CSα(σ) ⊆ CSα(σ′) and thus given H a minimal hitting set of CSα(σ′), H ∪ (χ(σ) \ χ(σ′)) is
an hitting set of CSα(σ′). Therefore csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}) is greater than
or equal to csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}) + |χ(σ) \ χ(σ′)|, and thus, is greater than
or equal to csize({θ ∈ CSα(σ′), α(χ(carrier(θ, s))) ≥ l}) + |χ(carrier(σ, s)) \ χ(σ)|. Using this in
Equation 3 gives us the property of Corollary 4.

1Indeed, α is an agreement function derived from an adversary A and so α(P ∪ {p}) ≤ α(P) + 1 as by definition
setcon(A|P∪{p}) ≤ setcon(A|P) + 1. By a trivial induction it follows for any subset. Note that this might not be
true for generic α models.

11

Corollary 4 is a generalization of Lemma 3 to account for a partial set of first immediate
snapshot outputs. This can be used to show the liveness of the algorithm:

Lemma 5. Algorithm 1 provides outputs to all correct processes if executed in the α-model
corresponding to some fair adversary A.

Proof. Let P be the participating set and let us assume that a correct process never terminates.
Let p be one of the correct processes which do not terminates with the smallest IS1 view among
them, and let v ∈ Chr s be the vertex corresponding to its IS1 view. Let σ ∈ Chr s be the simplex
corresponding to the set of IS1 views reached after IS1 has been updated for the last time.

Due to the immediacy property, processes in carrier(v, s) must be associated to a vertex v′ such
that carrier(v′, s) ⊆ carrier(v, s), hence, with α(χ(carrier(v′, s))) ≤ α(χ(carrier(v, s))). Therefore,
in any completion of σ to a simplex σ′ ∈ Chr s to include the processes which are in χ(carrier(v, s))
but not in χ(σ), the set of critical simplices associated with an agreement power strictly greater
than α(χ(carrier(v, s))) does not change. Thus applying Corollary 4 to any such completion σ′

of σ, we obtaint that, for any l > α(χ(carrier(v, s))):

α(χ(carrier(σ, s)))− l − |χ(carrier(σ, s)) \ (χ(σ) ∪ χ(carrier(v, s)))|+ 1 ≤

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ l}).
Moreover, any process in P \ χ(carrier(σ, s)) must have failed. Thus, in χ(carrier(σ, s)) at
most α(P) − 1 − (|P \ χ(carrier(σ, s))|) processes may fail. Let us recall from the proof of
Lemma 3, that for the agreement function of any fair adversary, and for any Q ⊆ P , we have
α(P) ≥ α(P \Q) ≥ α(P) − |Q|. Thus we can derive, by using Q = P \ χ(carrier(σ, s)), that at
most α(χ(carrier(σ, s)))− 1 processes in χ(carrier(σ, s)) may fail.

Let m1 = |χ(carrier(σ, s)) \ (χ(σ) ∪ χ(carrier(v, s)))|, i.e., the number of processes from
χ(carrier(σ, s)) which (1) fail before updating their IS1 to the memory and (2) are not included
in the IS1 view of p. Let m2 be the number of critical processes, associated with an agreement
power strictly greater than α(χ(carrier(v, s))), which fail after updating their IS1 but before
updating their IS2 . If α(χ(carrier(σ, s))) − α(χ(carrier(v, s))) > m1 + m2, then by selecting
l = α(χ(carrier(σ, s)))−m2 −m1, we have l > α(χ(carrier(v, s)))), and hence, we obtain that:

csize({θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ α(χ(carrier(σ, s)))−m2 −m1}) ≥ m2 + 1.

If no critical simplex in {θ ∈ CSα(σ), α(χ(carrier(θ, s))) ≥ α(χ(carrier(σ, s)))−m2 −m1} termi-
nates, one process from each of these critical simplices failed after updating its IS1 but before
updating its IS2 , thus an hitting set failed. As only m2 such processes may fail and as an hitting
set must be greater than m2 + 1, a critical simplex associated with an agreement power greater
than or equal to α(χ(carrier(σ, s)))−m2 −m1 terminates its IS2 . Therefore eventually p updates
the value of Concurrency (on line 10) to be at least equal to α(χ(carrier(σ, s)))−m2 −m1.

Now let us look back at p. It fails to terminate and thus never succeed to pass the test on line 5.
Therefore we have that the number of processes in the IS1 view of p which do not terminate and
do not have the same IS1 view as p are strictly more than the value of Concurrency for p. As p is
the correct process with the smallest IS1 view which does not terminate, it implies that there are
strictly more than Concurrency failed processes with an IS1 view stricly smaller than p. These
failed processes are neither accounted in m1 nor in m2. Therefore, as at most α(χ(carrier(σ, s)))−1
processes in χ(carrier(σ, s)) may fail, there are at most α(χ(carrier(σ, s))) − 1 −m1 −m2 such
processes which may fail. Thus α(χ(carrier(σ, s)))−m1 −m2 − 1 ≥ Concurrency .

Two cases may arise:

• If α(χ(carrier(σ, s)))− α(χ(carrier(v, s))) > m1 +m2, then p sets Concurrency to a value
greater than or equal to α(χ(carrier(σ, s)))−m2 −m1 — A contradiction.

• Otherwise, Concurrency ≥ α(χ(carrier(v, s))) (due to its initialization to α(χ(carrier(v, s)))
on line 4), and thus as α(χ(carrier(σ, s))) − α(χ(carrier(v, s))) ≤ m1 + m2, we obtain
that Concurrency ≥ α(χ(carrier(σ, s)))−m1 −m2 — A contradiction.

12

Lemma 6. The set of outputs provided by Algorithm 1 forms a valid simplex in RA.

Proof. Consider any execution of Algorithm 1. Except for the wait-phase, processes simply execute
two rounds of immediate snapshot, therefore the set of outputs forms a simplex in σ ∈ Chr2 s.
Without loss of generality we can consider that no processes fails and thus that dim(σ) = n− 1.
Indeed, if σ 6∈ RA, then making failed processes resume their execution and terminate will
produce σ′ 6∈ RA. Let us assume that σ 6∈ RA, this implies that there exists θ ⊆ σ such that
(for θ′ = carrier(θ,Chr s)):

(θ ∈ Cont2) ∧ ((χ(θ) ∩ (χ(CSMα(carrier(σ′,Chr s))) ∪ χ(CSVα(θ′))) = ∅) ∧ (dim(θ) + 1 > Concα(θ′)).

As θ ∈ Cont2, we can order the processes associated with vertices from θ according to their IS2
view (or carrier(v,Chr s)). Let q1, . . . , qk be this ordered set of processes. As q1 has the smallest
IS2 view, and as θ ∈ Cont2, q1 has also the greatest IS1 view.

Consider the state of the execution at the time p1 successfully passed the test on line 5. To
pass the test, q1 must have witness IS1 , critical and IS2 states such that (with q1 = pi):

(¬critical[i]) ∧ (|{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| ≥ concurrency)

If critical[i], then q1 is in a critical simplex and thus χ(θ) ∩ χ(CSMα(carrier(σ,Chr s))) 6= ∅
as it would include q1. Therefore we have:

|{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ IS1 [j] 6= IS1 [i]}| ≥ concurrency

Note that as θ ∈ Cont2, all processes q2, . . . , qk are included in IS1 [i] (as they have a smaller
IS1 view), IS2 [j] = ∅ (as they have a larger IS2 view) and IS1 [j] 6= IS1 [i] (as they have a strictly
smaller IS1 view). Therefore, concurrency ≥ k.

Two cases may arise:

• concurrency 6= α(IS1 [i]): In this case, Concurrency was set on line 10 to a value greater
than α(IS1 [i]). This implies that a critical simplex associated with an agreement level equal
to concurrency terminated its computation and thus is included in carrier(q1,Chr s). Hence
we have Concα(θ′) ≥ concurrency . A contradiction with θ being a counter exemple since:

dim(θ)− 1 = k ≤ concurrency ≤ Concα(θ′)).

• concurrency = α(IS1 [i]): Let c be the highest agreement power associated with a termi-
nated critical simplex (with c = 0 if no critical simplex is terminated). Therefore we have
Concα(θ′) ≥ c. Let λ ∈ Chr s be the simplex corresponding to the set of IS1 views of
processes in IS1 [i] which are terminated. According to Corollary 4 applied to λ with l = c+1,
as concurrency = α(χ(carrier(λ, s))), we obtain that:

concurrency−c−|χ(carrier(λ, s))\χ(λ)| ≤ csize({θ ∈ CSα(λ), α(χ(carrier(θ, s))) ≥ c+1}).
Note that since no critical simplex associated with an agreement power greater than or equal
to c+1 terminated, it implies that one process of each critical simplex identified in IS1 did not
terminate its IS2 . Thus there are at least a minimal hitting set which did not terminate its
IS2, and hence, at least concurrency−c−|χ(carrier(λ, s))\χ(λ)|. But as they are in IS1 and
do not have any IS2 output, they are counted in |{pj ∈ IS1 [i] : IS2 [j] = ∅∧ IS1 [j] 6= IS1 [i]}|.
Therefore as there are nocritical simplex members in θ, we have concurrency ≥ k+csize({θ ∈
CSα(λ), α(χ(carrier(θ, s))) ≥ c+ 1}). Hence, we obtain that:

concurrency − c− |χ(carrier(λ, s)) \ χ(λ)| ≤ concurrency − k.
Thus, we get c+ |χ(carrier(λ, s)) \ χ(λ)| ≥ k. As Concα(θ′) ≥ c and as a set size is positive,
we have Concα(θ′) ≥ k — A contradiction.

Using Lemmata 5 and 6, we can directly derive the validity of Algorithm 1:

Theorem 7. Algorithm 1 solves task RA in the α-model corresponding to the fair adversary A.

13

6 From R∗A to the fair adversarial A-model

In this section, we show that any task solvable in the fair adversarial A-model can be solved in R∗A.
This reduction is much more intricated than in the other direction. Indeed, to show that a model
is as strong as an affine task based model, it only suffices to show that any number of iterations of
the affine task can be solved. In the general case, it is necessary to show that any task solvable in
the target model can be solved and thus that we can emulate an algorithm solving any given task.

To simplify the simulation complexity, we are going to show that we can simulate an execution
of a shared memory model in which the participation P is such that α(P) > 0 and in which
α-adaptive set consensus can be solved. Using the results from [24] (Theorem 2), we are able to
deduce from it that any task solvable in a fair adversarial model can be solved in R∗A.

6.1 Simulation Description.

The main difficulty of the simulation comes from the combination of the failure-freedom and the
iterative structure of R∗A. A process obtaining small outputs in all iterations, often denominated
as a “fast” process, may never observe the values shared by other processes with larger views,
comparatively denominated as a “slow” processes. But as there are no processes failures, eventually,
all processes must obtain a task output. It requires that fast processes make progress with the
simulation without waiting for slower processes. Slow processes must thus wait for faster processes
to terminate their simulation before being able to make progress with modifying operations.

This first difficulty is resolved by making processes which obtained a task output in the
simulation to use the special value ⊥ as input for all further iterations of RA. Slower processes
are then aware that processes using ⊥ do not interfere anymore and that they no longer need to
witness their modifications of the simulated system state.

Another difficulty relies in the fact that processes may shift between making shared memory
operations and accessing α-adaptive set consensus abstractions. Moreover, processes may be
accessing distinct α-adaptive set consensus abstractions and may access them in different orders.
Fortunately, set consensus abstractions are independant of each others and multiple instances can
be simulated in parallel. But memory operations interact with each others and a write operation
can be safely terminated only once the write value is known to be observed by all other processes.
Thus a fast process must ensure that slower processes are not able to complete write operations as
long as they did not terminate, even when they do not currently have a write operation to perform.

Atomic-snapshot simulation. To simulate the atomic-snapshot memory, we rely upon the
algorithm proposed in [16] that simulates a lock-free atomic-snapshot algorithm in the iterated
atomic-snapshot model. We run the simulation using the global views that the processes obtain
at the end of R∗A iterations, i.e., carrier(v, s) for their vertices v ∈ RA. Recall that these global
views satisfy the properties of atomic snapshots, but not necessarily the properties of immediate
snapshots.

In the simulation, every new update performed by a process is assigned a monotonically growing
sequence number. A terminated process simply stops incrementing its sequence number, which
allows active (non-terminated) processes to make progress. Without loss of generality, we assume
that in the simulated algorithm, every active process always has a pending memory operation to
perform (intuitively, if there is nothing to write, the process rewrites its last written value).

Simulating α-adaptive set consensus in R∗A. The α-adaptive set consensus simulation in R∗A
submits in all iterations input, a decision estimate for all known set consensus simulations. For
all pending and newly discovered set consensus simulations for which processes are involved (i.e.,
for which they are allowed to participate), processes update their decision estimate after each
iteration of RA. Processes adopt a deterministically chosen estimate from, if available, an IS1
view associated to a critical simplex, and otherwise, from the smallest IS1 view they see. Note
that only IS1 views including a process which may participate to the agreement are considered.
Most of the complexity of the α-adaptive set consensus simulation lies in this selection of which
IS1 view to adopt from. This is described extensively in the next section.

14

A desicion value is committed only when all processes which are involved in the α-adaptive
set consensus abstraction and which are observed in a given iteration of R∗A posses a decision
estimate. Once, the value is committed, the decision estimate will no longer change and will
eventually be returned as output for the α-adaptive set consensus, but processes need to check
that the participation in the simulated run is high enough before returning the value.

In order to ensure a high enough participation, processes make sure that all processes that they
witnessed in preceding iterations of R∗A have completed their first simulated write operation. If not,
processes simulate this write operation themselves. The content of this first write operation simply
consists of the process initial state. Therefore, any process p may simulate this write operation (by
using the shared memory simulation) for any other process q as soon as p knows the initial state
of q. Once all processes for which the initial state is know are participating in the simulated run,
processes can safely terminate their α-adaptive set consensus with the committed value.

6.2 α-adaptive leader election in RA: the µQ map

Let us consider some α-adaptive set consensus and let Q be the set of processes which (1) may
participate in the agreement protocol, and, (2) did not terminate yet the main simulation. Using
the structure of RA, we construct a map µQ which returns to each vertex v ∈ RA, corresponding
to a process from Q (i.e., with χ(v) ∈ Q), a leader selected among Q for the given iteration of RA.

The map µQ is constructed in two stages. The first stage consists on selecting an IS1 view which
includes a process from Q. Two cases may happen depending on whether the process observes
in RA a critical simplex associated with an IS1 view including a process from Q or not:

If the process observes such a critical simplex (i.e., χ(CSVα(carrier(v,Chr s)))∩Q 6= ∅), it then
simply returns the smallest IS1 view of a critical simplex which includes a process from Q, using
the map δQ:

δQ = χ(min({carrier(σ′, s) : (σ′ ∈ CSα(carrier(v,Chr s)) : χ(carrier(σ′, s)) ∩Q 6= ∅)}).

Otherwise (if χ(CSVα(carrier(v,Chr s))) ∩Q = ∅), the process returns the smallest observed
IS1 view which includes a process from Q, using the map γQ:

γQ = χ(min({carrier(v′, s) : (v′ ∈ carrier(v,Chr s)) ∧ (dim(v′) = 0) ∧ (carrier(v′, s) ∩Q 6= ∅)}).

The second stage then simply consists in selecting, from the selected IS1 view, the process
from Q associated with the smallest identifier, let minQ(V) = min{p ∈ V : p ∈ Q} be this map.
The map µQ is therefore defined as follow:

µQ(v) = if (χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅) then minQ ◦ δQ else minQ ◦ γQ.

Let us first show that, for any vertex v ∈ RA corresponding to a process in Q, the map µQ
returns a process from Q observed in RA (i.e., a process in χ(carrier(v, s))) :

Property 8. [Validity of µQ] ∀v ∈ RA, dim(v) = 0, χ(v) ∈ Q :

µQ(v) ∈ χ(carrier(v, s)) ∧ µQ(v) ∈ Q.

Proof. Let us fix some vertex v ∈ RA such that χ(v) ∈ Q.
Let us assume that χ(CSVα(carrier(v,Chr s)))∩Q 6= ∅, and hence, µQ(v) = minQ ◦ δQ(v). Let

us recall that given σ ∈ Chr s, CSVα(σ) is equal to carrier(∪σ′∈CSα(σ)σ
′, s). But due to carriers

inclusion, the carrier of a simplex is equal to the carrier of one of its vertices, and so, of any
sub-simplex which includes this vertex. Thus, as χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅, we have:

∃σ′ ∈ CSα(carrier(v,Chr s)) : χ(carrier(σ′, s)) ∩Q 6= ∅.

This implies that δQ has a valid choice for v and can return the minimal one, and so that:

∃σ′ ∈ CSα(carrier(v,Chr s)) : (δQ(v) = χ(carrier(σ′, s))) ∧ (χ(carrier(σ′, s)) ∩Q 6= ∅).

15

Since CSα(carrier(v,Chr s)) ⊆ {σ ∈ Chr s;σ ⊆ carrier(v,Chr s)}, and as µQ(v) = minQ ◦ δQ(v),
we obtain that:

∃σ′ ⊆ carrier(v,Chr s) : (µQ(v) = minQ ◦ χ(carrier(σ′, s))) ∧ (µQ(v) ∈ Q).

As for any simplex σ ∈ Chr2 s, carrier(carrier(v,Chr s), s) = carrier(v, s), Property 8 is verified
if χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅.

Now let us assume that χ(CSVα(carrier(v,Chr s)))∩Q = ∅. Due to the self-inclusion property,
∃v′ ∈ carrier(v,Chr s)) such that χ(v′) = χ(v). The self-inclusion property again implies that
∃v′′ ∈ carrier(v′, s) such that χ(v′′) = χ(v′) = χ(v). Hence, as χ(v) ∈ Q, ∃v′ ∈ carrier(v,Chr s)
such that χ(carrier(v′, s)) ∩Q 6= ∅. Thus γQ has a valid choice for v and can return the minimal
one. As before, by the transitivity of carriers inclusion, the set returned by γQ, and so the process
returned by µQ, is a subset of χ(carrier(v, s)) which intersects with Q.

Now that we have checked that µQ is well defined, let us show that µQ returns a number of
distinct leaders (processes) limited by the agreement power associated with processes views in RA:

Property 9. [Agreement of µQ] ∀Q ⊆ Π, (∀σ ∈ RA : dim(σ) = n− 1), (∀θ ⊆ σ : χ(θ) ⊆ Q) :

|{µQ(v) : v ∈ θ}| ≤ α(χ(carrier(θ, s))).

Let us first check the following observation stating that for any simplex σ ∈ Chr s, if two critical
simplices in σ are associated with the same agreement power then they share the same IS1 view:

Lemma 10. ∀σ ∈ Chr s, ∀θ1, θ2 ∈ CSα(σ):

α(χ(carrier(θ1, s))) = α(χ(carrier(θ2, s))) =⇒ carrier(θ1, s) = carrier(θ2, s).

Proof. Let σ ∈ Chr s and let θ1, θ2 ∈ CSα(σ) such that α(χ(carrier(θ1, s))) = α(χ(carrier(θ2, s))).
The inclusion property implies that, w.l.o.g., carrier(θ1, s) ⊆ carrier(θ2, s). The immediacy
property implies either that carrier(θ1, s) = carrier(θ2, s) (and thus Lemma 10 is verified) or else
that χ(θ2) ∩ χ(carrier(θ1, s)) = ∅.

Let us assume that χ(θ2) ∩ χ(carrier(θ1, s)) = ∅. Together with carrier(θ1, s) ⊆ carrier(θ2, s),
it implies that carrier(θ1, s) ⊆ carrier(θ2, s) \ θ2. Since agreement functions are regular (i.e., the
agreement power can only grow with a participation increase), we obtain that α(χ(carrier(θ1, s)) ≤
α(χ(carrier(θ2, s) \ θ2). But as θ2 is a critical simplex, we have α(χ(carrier(θ2, s) \ θ2)) <
α(χ(carrier(θ2, s))), and we obtain a contradiction:

α(χ(carrier(θ1, s)) ≤ α(χ(carrier(θ2, s) \ θ2) < α(χ(carrier(θ2, s))) = α(χ(carrier(θ1, s))).

Let us now prove Property 9:

Proof. Let σ be a maximal simplex of RA, i.e., dim(σ) = n− 1, and let θ ⊆ σ such that χ(θ) ⊆ Q.
Note that for both γQ and δQ, processes returns the IS1 view of a vertex of carrier(θ,Chr s).

Assume that γQ and δQ return, for vertices in θ, k ≥ 0 distinct IS1 views which are not the IS1 views
of some critical simplex in carrier(σ,Chr s). As δQ only returns IS1 views associated with a critical
simplex, they have been returned by γQ. Let β be the subset of θ including all vertices for which γQ
returns such IS1 views. As they are returned by γQ, we have CSVα(carrier(β,Chr s)) ∩Q = ∅.

Consider any two processes p1 and p2 which obtained two distinct such IS1 views, V1 and V2

respectively (w.l.o.g., let V1 (V2). As γQ returns the minimal IS1 view intersecting with Q, a
vertex from β sees V2 but not V1, and thus, p2 has a smallest IS2 view than p1. Therefore p1

and p2 satisfy the condition to be part of a contention simplex, and so, any k processes carrying
these k distinct returned IS1 views form a contention simplex. Let τ be this contention simplex
in σ.

As a vertex in β saw all these k distinct IS1 views, we have carrier(τ,Chr s) ⊆ carrier(β,Chr s).
But as CSVα(carrier(β,Chr s)) ∩ Q = ∅, we obtain that CSVα(carrier(τ,Chr s)) ∩ Q = ∅.

16

By assumption, these k processes are not critical simplices members (χ(τ) ∩ CSMα(σ) = ∅).
Therefore, the definition of RA implies that we have Concα(carrier(τ,Chr s)) ≥ k, and hence,
that Concα(carrier(β,Chr s)) ≥ k.

Having Concα(carrier(β,Chr s)) ≥ k implies that ∃σc ∈ CSα(carrier(β,Chr s)) such that
α(χ(carrier(σc, s))) ≥ k. Note that we have χ(carrier(σc, s)) ⊆ CSVα(carrier(β,Chr s)), and thus
that χ(carrier(σc, s)) ∩ Q = ∅. As the inclusion property implies that any IS1 view must be
stricly larger to intersect with Q, and as there are at most one IS1 view associated with a critical
simplex by agreement level (Lemma 10), all IS1 views corresponding to some critical simplex
in carrier(σ,Chr s) must be associated with an agreement power strictly greater than k.

Let l ≥ 0 be the number of distinct IS1 views corresponding to some critical simplex in
carrier(σ,Chr s) which are returned by δQ or γQ for vertices in θ. Lemma 10 implies that they must
be associated with l distinct agreement powers. As they must also be associated with agreement
powers strictly greater than k, one of the returned IS1 views is associated with an agreement
power greater than or equal to k + l. Therefore, we have α(χ(carrier(θ, s))) ≥ k + l. As the
number of distinct IS1 views returned by δQ or γQ is equal to k + l, and as the deterministic
selection made by minQ could only reduce the number of distinct returned values, we finally obtain
that |{µQ(v) : v ∈ θ}| ≤ α(χ(carrier(θ, s))).

Last, let us also observe that knowing which processes terminated the main simulation is
not required to compute µQ, i.e., that the knowledge of which processes belong to Q among the
processes observed in the current iteration of RA is sufficient:

Property 11. [Robustness of µQ] ∀v ∈ RA, dim(v) = 0,∀Q ⊆ Π :

µQ(v) = µcarrier(v,s)∩Q(v).

Proof. This is a direct corollary of the definition of δQ and γQ, that for a given vertex v ∈ RA, to
compute µQ(v), the knowledge of Q∩ (carrier(v, s)) is sufficient. Indeed, Q is only used to compute
intersections with either CSVα(χ(carrier(v,Chr s))), a subset of carrier(v, s), or with carrier(v′, s)
for a vertex v′ ∈ carrier(v,Chr s), also a subset of carrier(v, s).

6.3 Validity of the simulation

Let us first show that all simulated operations are safe, i.e., that simulated shared memory
operations are linearizable and that simulated α-adaptive set consensus satisfy the validity property
(decision values are proposal values) and the α-agreement property (if k distinct values have been
returned, then the current participation P is such that α(P) ≥ k):

Lemma 12. The shared memory and α-adaptive set consensus simulation in R∗A is safe.

Proof. The validity of shared memory operations is directly inherited from [16] since the simulation
is only modified by incorporating extra write operations to perform (either dummy write operation
or write operation of processes initial states through the α-adaptive set consensus simulation).

For α-adaptive set consensus operations, Property 11 ensures that µcarrier(v,s)∩Q(v) can be
used as if it was µQ(v) and thus that processes can indeed use µQ to elect a leader in any iteration
of RA. Moreover, Property 8 ensures that a decision estimate is either the process proposal value
or is adopted from another process with a proposal value and thus that the validity property of
α-adaptive set consensus is verified.

At the earliest iteration R of R∗A at which a process commits a decision estimate for an
α-adaptive set consensus, since a committing process only observed processes from Q with decision
estimates, all processes in Q adopt a decision estimate. Moreover, Property 9 states that among
any k processes adopting k distinct decision estimates at this iteration R, one must have observed
a set of processes associated with an agreement level greater or equal to k. But, given any k
processes with distinct committed decision estimates, one of them, p, must have adopted the value
from a process which had observed in R a set of processes associated with an agreement level

17

greater or equal to k. Thus by transitivity of proceses views, p has also observed a set of processes
associated with an agreement level greater or equal to k.

Before completing an α-adaptive set consensus operation, processes make sure that all processes
they observed are participating in the simulated run (by, if necessary, simulating for them a write
operation of their initial states). Therefore, at the time a kth distinct value is returned for some
α-adaptive set consensus, the participation in the simulated run is associated with an agreement
power greater than or equal to k, hence, the α-agreement property is verified.

As we have shown that the simulation is safe, let us also show that it is live, i.e., that it provides
outputs to all processes:

Lemma 13. In the shared memory and α-adaptive set consensus simulation in R∗A, all processes
eventually terminate.

Proof. Let us assume by contradiction that some process never terminates. The shared memory
simulation ensures that a non-terminated process eventually terminates its pending memory
operation. But, since eventually no processes make progress, it implies that a non-terminated
process, p, eventually completes infinitely often only dummy write operations.

Recall that a process completing a write operation has the smallest view among non-terminated
processes for the current iteration. Therefore, p has infinitely often the smallest view (among
non-terminated processes) in R∗A and eventually never commits a decision estimate for a pending
α-adaptive set consensus operation. This implies that some process from Q observed by p never
shares a decision estimate for the α-adaptive set consensus abstraction accessed by p. But since p
has infinitely often the smallest view, any other process from Q will eventually adopt a decision
estimate from p or another process and use it in forthcoming iterations — A contradiction.

By Lemmata 12 and 13, the simulation that we provide can be used to solve in R∗A any task
solvable in a shared memory model with access to α-adaptive set consensus. Using Theorem 2, we
can derive that any task solvable in the α-model and the the fair adversarial model can be solved
in R∗A. In combination with the result in Section 5, we obtain the following result:

Theorem 14. Let A be any fair adversary, and let α be its agreement function. A task is solvable
in the adversarial A-model if and only if it is solvable in R∗A.

We thus obtain the following generalization of the ACT [20]:

Theorem 15. [Fair ACT] Let A be any fair adversary, and let α be its agreement function. A task
T = (I,O,∆) is solvable in the adversarial A-model if and only if there exists a natural number `
and a simplicial map φ : R`A(I)→ O carried by ∆.

7 Related work

Inspired by the model of dependent failures proposed by Junqueira and Marzullo [21], Delporte
et al. [9] suggested the notion of adversaries and showed that adversaries having the same set
consensus power agree on the set of colorless tasks they solve.

Herlihy and Shavit [20] proposed a characterization of wait-free task computability through the
existence of a simplicial map from a subdivision of the input complex of a task I to its output
complex O. (The reader is referred to [18] for a thorough discussion of the use of combinatorial
topology in distributed computability.)

Herlihy and Rajsbaum [19] studied colorless task computability in the special case of superset-
closed adversaries. The set consensus power of a superset-closed adversary is its minimum core
size: the size of a smallest set of processes that intersects with every live set [21]. They show that
the protocol complex of a superset-closed adversary with minimal core size c is (c− 2)-connected.
This result, obtained via an iterative application of the Nerve lemma, gives a combinatorial
characterization of superset-closed adversaries, which is weaker than the characterization of wait-
freedom through the immediate snapshot task. Unlike the results of this paper, the characterization

18

only applies to colorless tasks, and it does not allow us to express the adversary in a compact affine
way.

Gafni et al. [15] introduced the notion of an affine task and characterized task computability in
iterated adversarial models via infinite subdivisions of input complexes, assuming a limited notion
of solvability that only guarantees outputs to “fast” processes [6, 12, 26] (”seen” by every other
process infinitely often). The liveness property defined in this paper for iterated models, guarantees
outputs for every process, which allowed us to establish a task-computability equivalence with
conventional non-iterated ones.

Saraph et al. [28] gave a compact combinatorial characterization of t-resilient task computability.
Note that At is a superset-closed (and thus fair) adversary. Our solution of the affine task RA in
the α-model is inspired by the t-resilient solution of Rt in [28]. Gafni et al. [13] presented affine
tasks for the model of k-set consensus and, thus, k-concurrency and k-obstruction-freedom, which
can be expressed as a symmetric and thus fair adversary.

The notions of an agreement function and a fair adversary were introduced by the first two
authors in [24]. One can determine the agreement function of any given adversary using the
formula suggested earlier for the set consensus power [14]. It has been shown in [24] that agreement
functions encode enough information to characterize the task computability of any fair adversary.
Figure 2 relates the results of this paper to earlier affine characterizations of adversarial models. A
short version of this paper appeared as a conference brief announcement [25].

8 Concluding remarks

This paper generalizes all topological characterizations of distributed computing models known so
far [13,15,19,20,28]. It applies to all tasks (not necessarily colorless) and all fair adversarial models
(not necessarily t-resilient or k-obstruction-free). Just as the wait-free characterization [20] implies
that the IS task captures the wait-free model, our characterization equates any fair adversary with
a (compact) affine task embedded in the 2-degree of standard chromatic subdivision.

Interestingly, unlike [28], we cannot rely on the assumption that the affine task RAt correspond-
ing to the t-resilient adversary At is shellable [18] and, thus, link connected. Link-connectivity
of a simplicial complex C allows us to work in the point set of its geometrical embedding |C| and
use continuous maps (as opposed to simplicial maps that maintain more structure). For example,
the existence of a continuous map from |RAt | to any |RkAt | implies that RAt indeed captures the
general task computability of At. However, the existence of a continuous map onto C only allows
us to converge on only one vertex [18]. If C is not link-connected, converging on one vertex allow
us to compute only one output in a task solution and not more, which is not sufficient to solve a
general (colored) task.

Unfortunately, only very special adversaries, such as At, have link-connected counterparts (see,
e.g., the affine task corresponding to 1-obstruction freedom in Figure 6a). Instead of relying on
link-connectivity, this paper takes an explicit algorithmic way of showing that iterations of RA
simulate A. This raises an interesting question to which extent point-set topology and continuous
maps can be applied in affine characterizations.

Furthermore, going beyond fair models is an important challenge. Given that some models out
of this class cannot be grasped by agreement functions (some examples of these models can be
found in [24]), we should find a more refined way of to capture the power of solving set consensus
for subsets of participating processes. In particular, we should be able to account for models in
which coalitions of participants can achieve better levels of set consensus than the whole set. Nailed
down, this may allow us to compactly capture all “natural” models [13], such as, e.g., the model of
set consensus collections [8] for which only special cases of k-set consensus [13] and k-test-and-set
have been, in this sense, understood so far.

19

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared
memory. J. ACM, 40(4):873–890, 1993.

[2] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, Oct. 1985.

[3] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous
computations. In STOC, pages 91–100. ACM Press, May 1993.

[4] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming. In PODC, pages
41–51, New York, NY, USA, 1993. ACM Press.

[5] E. Borowsky and E. Gafni. A simple algorithmically reasoned characterization of wait-free
computation (extended abstract). In PODC ’97: Proceedings of the sixteenth annual ACM
symposium on Principles of distributed computing, pages 189–198, New York, NY, USA, 1997.
ACM Press.

[6] Z. Bouzid, E. Gafni, and P. Kuznetsov. Strong equivalence relations for iterated models. In
OPODIS, pages 139–154, 2014.

[7] S. Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally
asynchronous systems. In Proceedings of the 9th ACM Symposium on Principles of Distributed
Computing, pages 311–324, Québec City, Québec, Canada, Aug. 1990.

[8] C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov:. Set-consensus collections are
decidable. In OPODIS, 2016.

[9] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The disagreement power
of an adversary. Distributed Computing, 24(3-4):137–147, 2011.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

[11] E. Gafni. On the wait-free power of iterated-immediate-snapshots. Unpublished manuscript,
http://www.cs.ucla.edu/~eli/eli/wfiis.ps, 1998.

[12] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony. In Proceedings of the 17th Symposium on Principles of Distributed Computing,
1998.

[13] E. Gafni, Y. He, P. Kuznetsov, and T. Rieutord. Read-write memory and k-set consensus as
an affine task. In OPODIS, 2016. Technical report: https://arxiv.org/abs/1610.01423.

[14] E. Gafni and P. Kuznetsov. Turning adversaries into friends: Simplified, made constructive,
and extended. In OPODIS, pages 380–394, 2010.

[15] E. Gafni, P. Kuznetsov, and C. Manolescu. A generalized asynchronous computability theorem.
In PODC, 2014.

[16] E. Gafni and S. Rajsbaum. Distributed programming with tasks. In Principles of Distributed
Systems - 14th International Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17,
2010. Proceedings, pages 205–218, 2010.

[17] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, Jan.
1991.

[18] M. Herlihy, D. N. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinatorial
Topology. Morgan Kaufmann, 2014.

20

[19] M. Herlihy and S. Rajsbaum. Simulations and reductions for colorless tasks. In PODC, pages
253–260, 2012.

[20] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J. ACM,
46(2):858–923, 1999.

[21] F. Junqueira and K. Marzullo. A framework for the design of dependent-failure algorithms.
Concurrency and Computation: Practice and Experience, 19(17):2255–2269, 2007.

[22] D. N. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and
Applications, 14(1):1–13, 2012.

[23] P. Kuznetsov. Understanding non-uniform failure models. Bulletin of the EATCS, 106:53–77,
2012.

[24] P. Kuznetsov and T. Rieutord. Agreement functions for distributed computing models. In
NETYS, 2017. To apper, technical report: https://arxiv.org/abs/1702.00361.

[25] P. Kuznetsov, T. Rieutord, and Y. He. Brief announcement: Compact topology of shared-
memory adversaries. In 31th International Symposium on Distributed Computing, DISC’16,
pages 56:1–4, 2017.

[26] M. Raynal and J. Stainer. Increasing the power of the iterated immediate snapshot model
with failure detectors. In SIROCCO, pages 231–242, 2012.

[27] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM J. on Computing, 29:1449–1483, 2000.

[28] V. Saraph, M. Herlihy, and E. Gafni. Asynchronous computability theorems for t-resilient
systems. In DISC, pages 428–441, 2016.

[29] E. H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.

[30] G. Taubenfeld. The computational structure of progress conditions. In DISC, 2010.

21

A Simplicial complexes

We recall now several notions from combinatorial topology. For more detailed coverage of the topic
please refer to [18,29].

A simplicial complex is a set V , together with a collection C of finite non-empty subsets of V
such that:

1. For any v ∈ V , the one-element set {v} is in C;

2. If σ ∈ C and σ′ ⊆ σ, then σ′ ∈ C.

The elements of V are called vertices, and the elements of C are called a simplices. We usually
drop V from the notation, and refer to the simplicial complex as C.

A subset of a simplex is called a face of that simplex.
A sub-complex of C is a subset of C that is also a simplicial complex.
The dimension of a simplex σ ∈ C is its cardinality minus one. The k-skeleton of a complex C,

denoted Skelk C, is the sub-complex formed of all simplices of C of dimension k or less.
A simplicial complex C is called pure of dimension n if C has no simplices of dimension > n,

and every k-dimensional simplex of C (for k < n) is a face of an n-dimensional simplex of C.
Let A and B be simplicial complexes. A map f : A→ B is called simplicial if it is induced by

a map on vertices; that is, f maps vertices to vertices, and for any σ ∈ A, we have

f(σ) =
⋃
v∈σ

f({v}).

A simplicial map f is called non-collapsing (or dimension-preserving) if dim f(σ) = dimσ for all
σ ∈ A.

A map Φ : A→ 2B (mapping simplices of A to sub-complexes of B) is called carrier if for all
τ, σ ∈ A, we have Φ(τ ∩ σ) ⊆ Φ(τ) ∩ Φ(σ). A simplicial map φ : A→ B is said to be carried by a
carrier map Φ : A→ 2B if for all σ ∈ A, φ(σ) ⊂ Φ(σ).

Any simplicial complex C has an associated geometric realization |C|, defined as follows. Let
V be the set of vertices in C. As a set, we let C be the subset of [0, 1]V = {α : V → [0, 1]}
consisting of all functions α such that {v ∈ V | α(v) > 0} ∈ C and

∑
v∈V α(v) = 1. For each

σ ∈ C, we set |σ| = {α ∈ |C| | α(v) 6= 0 ⇒ v ∈ σ}. Each |σ| is in one-to-one correspondence
to a subset of Rn of the form {(x1, . . . , xn) ∈ [0, 1]n | ∑xi = 1}. We put a metric on |C| by
d(α, β) =

∑
v∈V |α(v)− β(v)|.

A non-empty complex C is called k-connected if, for each m ≤ k, any continuous map of the
m-sphere into |C| can be extended to a continuous map over the (m+ 1)-disk.

A subdivision of a simplicial complex C is a simplicial complex C ′ such that:

1. The vertices of C ′ are points of |C|.

2. For any σ′ ∈ C ′, there exists σ ∈ C such that σ′ ⊂ |σ|.

3. The piecewise linear map |C ′| → |C| mapping each vertex of C ′ to the corresponding point
of C is a homeomorphism.

Chromatic complexes. We now turn to the chromatic complexes used in distributed computing,
and recall some notions from [20].

Fix n ≥ 0. The standard n-simplex s has n + 1 vertices, in one-to-one correspondence with
n+ 1 colors 0, 1, . . . , n. A face t of s is specified by a collection of vertices from {0, . . . , n}. We
view s as a complex, with its simplices being all possible faces t.

A chromatic complex is a simplicial complex C together with a non-collapsing simplicial map
χ : C → s. Note that C can have dimension at most n. We usually drop χ from the notation. We
write χ(C) for the union of χ(v) over all vertices v ∈ C. Note that if C ′ ⊆ C is a sub-complex of a
chromatic complex, it inherits a chromatic structure by restriction.

22

In particular, the standard n-simplex s is a chromatic complex, with χ being the identity.
Every chromatic complex C has a standard chromatic subdivision ChrC. Let us first define

Chr s for the standard simplex s. The vertices of Chr s are pairs (i, t), where i ∈ {0, 1, . . . , n} and
t is a face of s containing i. We let χ(i, t) = i. Further, Chr s is characterized by its n-simplices;
these are the (n+ 1)-tuples ((0, t0), . . . , (n, tn)) such that:

(a) For all ti and tj , one is a face of the other;

(b) If j ∈ ti, then tj ⊆ ti.

The geometric realization of s can be taken to be the set {x = (x0, . . . , xn) ∈ [0, 1]n+1 |∑xi = 1},
where the vertex i corresponding to the point xi with i coordinate 1 and all others coordinate 0.
Then, we can identify a vertex (i, t) of Chr s with the point

1

2k − 1
xi +

2

2k − 1

(∑
{j∈t|j 6=i}

xj

)
∈ |s| ⊂ Rn+1,

where k is the cardinality of t. Thus, Chr s becomes a subdivision of s and the geometric realizations
are identical: |s| = |Chr s|. The standard chromatic subdivision, Chr s, is illustrated for a 3-process
system in Figure 1(a).

Next, given a chromatic complex C, we let ChrC be the subdivision of C obtained by replacing
each simplex in C with its chromatic subdivision. Thus, the vertices of ChrC are pairs (p, σ),
where p is a vertex of C and σ is a simplex of C containing p. If we iterate this process m times
we obtain the mth chromatic subdivision, Chrm C.

Let A and B be chromatic complexes. A simplicial map f : A→ B is called a chromatic map
if for all vertices v ∈ A, we have χ(v) = χ(f(v)). Note that a chromatic map is automatically
non-collapsing. A chromatic map has chromatic subdivisions Chrm f : ChrmA→ ChrmB. Under
the identifications of topological spaces |A| ∼= |ChrmA|, |B| ∼= |ChrmB|, the continuous maps |f |
and |Chrm f | are identical.

A simplicial map φ is carried by the carrier map ∆ if φ(σ) ⊂ ∆(σ) for every simplex σ in their
domain.

23

