
HAL Id: hal-01572257
https://hal.science/hal-01572257v1

Preprint submitted on 6 Aug 2017 (v1), last revised 18 Apr 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compact Topology of Shared-Memory Adversaries
Petr Kuznetsov, Thibault Rieutord, Yuan He

To cite this version:
Petr Kuznetsov, Thibault Rieutord, Yuan He. Compact Topology of Shared-Memory Adversaries.
2017. �hal-01572257v1�

https://hal.science/hal-01572257v1
https://hal.archives-ouvertes.fr

Compact Topology of Shared-Memory Adversaries

Petr Kuznetsov1, Thibault Rieutord1, and Yuan He3

1LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France,
{petr.kuznetsov,thibault.rieutord}@telecom-paristech.fr

2UCLA, Los Angeles, USA, yuan.he@cs.ucla.edu

Abstract

The paper proposes a simple topological characterization of a large class of adversarial
distributed-computing models via affine tasks: sub-complexes of the second iteration of the
standard chromatic subdivision. We show that the task computability of a model in the class
is precisely captured by iterations of the corresponding affine task. While an adversary is in
general defined as a non-compact set of infinite runs, its affine task is just a finite subset of
runs of the 2-round iterated immediate snapshot model. Our results generalize and improve
all previously derived topological characterizations of distributed-computing models.

Regular and student paper: T. Rieutord and Y. He are full-time students

1 Introduction

Compact topology of wait-freedom. Distributed computing is a jungle of models, param-
eterized by types of failures, synchrony assumptions, and employed communication primitives.
Determining relative computability power of these models (“is model A more powerful than model
B”) is an intriguing and important problem.

In this paper, we deal with a large class of shared-memory models in which a set of crash-prone
asynchronous processes communicate via invoking operations on a collection of shared objects. By
default, we assume that the shared objects include atomic read-write registers.

The wait-free model of computation [15] makes no assumptions about the number of failures
that can occur, so no correct process can be prevented from making progress. Herlihy and Shavit
proposed an elegant characterization of wait-free task computability through the existence of a
specific continuous map from geometrical structures describing inputs and outputs of a given
task [19]. A task T has a wait-free solution using read-write registers if and only if there exists
a simplicial, chromatic map from a subdivision of the input simplicial complex to the output
simplicial complex, satisfying the specification of T . In particular, we can choose this subdivision
to be the iterated standard chromatic subdivision (Figure 1(a)). The subdivision precisely captures
the output complex of the immediate snapshot (IS) task [5]. By solving the IS task iteratively,
proposing the view obtained in the current iteration as the input value of the next one, we obtain
the iterated immediate snapshot (IIS) model.

Thus, the topological characterization of Herlihy and Shavit [19] can be interpreted as: the
set of wait-free solvable task is precisely the set of tasks solvable in the IIS model. The ability
of (iteratively) solving the IS task allows us to solve any task in the wait-free model. Hence,
from the task computability perspective, the IS task is a finite (or, as we explain below, compact)
representation of the wait-free model.

Adversaries. Given that many fundamental tasks are not solvable in the wait-free way [3, 19, 25],
more general models were considered. The prominent adversarial failure model [8] is defined
through a collection A of process subsets, called live sets, and requires that, in every run of the

1

Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

(a) Chr1(s), equivalent to the output complex of the IS
task. (b) T1, the task corresponding to 1-resilience.

Figure 1: Examples of subsets of iterated standard chromatic subdivisions of s in dimension 2.

corresponding adversarial A-model, the set of processes taking infinitely many steps must be a live
set.

For example, the t-resilient n-process model is defined via an adversary At that consists of all
live sets of size n−t or more. Notice that, assuming the conventional “longest-prefix” metric [2], the
model is non-compact. Indeed, all finite prefixes of an infinite run can be in the model, even though
the run (the infinite limit of the sequence of its ever-extending finite prefixes) is not. Consider, for
example, an infinite “solo” run in which exactly one process takes steps in a 1-resilient system of
three processes.

Saraph et al. [26] recently proposed a direct characterization of t-resilient task computability via
a specific task Tt, defined as a restriction of the double immediate snapshot task: the output complex
of the task is a subcomplex consisting of all simplices of the second degree of the standard chromatic
subdivision of the task’s input complex, except the simplices adjacent to the (n− t− 1)-skeleton of
the input complex (Figure 1(b)).

Solving a task T in the t-resilient model is then equivalent to finding a map from iterations of
Tt (starting from the input complex of T) to the output complex of T . Therefore, Tt is a compact
representation of a (non-compact) model of t-resilience.

Compact topology of fair adversaries. In this paper, we present a compact topological
characterization of the large class of fair adversarial models [23] that subsumes the models of
wait-freedom and t-resilience. We show that a specific task RA captures the task computability of
an adversary A. Informally, the task consists in solving chromatic simplex agreement [5, 19] on a
specific subcomplex of the second iteration of the standard chromatic subdivision. Such a tasks is
called affine [10,13], as the geometrical representation of its output complex is a union of affine
spaces (see, e.g., Figure 1(b)).

Our characterization is expressed in an abstract way via agreement functions [23]. For each
set of participating processes (i.e., processes that took at least one step in the computation), the
agreement function determines the best level of set consensus that can be achieved if only these
processes participate in the computation. The agreement function corresponding to any adversary
can be efficiently computed for any adversary [11, 23]. It turns out that agreement functions
encode enough information to characterize the task computability of any fair adversary [23].
Informally, a fair adversary does not allow a subset of processes participating in a computation
to achieve a better set consensus than the whole set of participants. The class of fair adversaries
includes superset-closed [22] and symmetric [28]. In particular, the t-resilient adversary is both
superset-closed and symmetric, and the k-obstruction free adversary, recently characterized in a
compact way [10], is symmetric.

Our characterization can then be put as a generalization of the celebrated Asynchronous
Computability Theorem (ACT) by Herlihy and Shavit [19]:

A task T = (I,O,∆), where I is the input complex, O is an output complex, and ∆ is

2

a map from I to sub-complexes of O, is solvable in a fair adversarial A-model if and
only if there exists a natural number ` and a simplicial map φ : R`A(I)→ O carried by
∆ (informally, respecting the task specification ∆).

This result generalizes all topological characterizations of distributed computing models [10, 13,
19, 26], as it applies to all tasks (not only colorless) and all fair adversaries (not only t-resilient
and k-obstruction-free). Furthermore, our characterization is compact: we match (potentially
complicated and non-compact) fair adversarial models with simple finite affine tasks, defined as
sub-complexes of the second-degree standard chromatic subdivisions.

Given that there are only finitely many such affine tasks, we conclude that there can only
be finitely many equivalence classes of fair adversarial models. We believe that the results can
be extended to all “practical” restrictions of the wait-free model of computations, beyond fair
adversaries, which may potentially result in a complete computability theory for distributed
computing.

Roadmap. Section 2 gives model preliminaries and Section 3 recalls the definitions of adversaries,
agreement functions, and the states the equivalence of task computability in a fair adversarial
model and the corresponding α-model. In Section 4, we present the definition of the affine task
Rα corresponding to an α-model. In Section 5, we show that Rα can be implemented in most
α-model. In Section 6, we show that any task solvable in the α-model can be solved by iterating
Rα. Section 7 reviews related work and Section 8 concludes the paper. Some proofs and missing
details are delegated to the optional appendix.

2 Preliminaries

Let Π be a system composed of n asynchronous processes, p1, . . . , pn. We consider two models of
communication: (1) atomic snapshots [1] and (2) iterated immediate snapshots [5, 19].

Communication models. The atomic-snapshot (AS) memory is represented as a vector of shared
variables, where processes are associated to distinct vector positions, and it exports two operations:
update and snapshot. An update operation performed by pi replaces the shared variable at position
i with a new value and a snapshot returns the current state of the vector.

In the iterated immediate snapshot (IIS) model, processes proceed through a sequence of
independent memories M1,M2, Each memory Mr is accessed by a process with a single
immediate snapshot operation [4]: the operation performed by pi takes a value vi and returns
a set Vir of values submitted by the processes (w.l.o.g, we assume that the values of different
processes are distinct), so that the following properties are satisfied: (self-inclusion) vi ∈ Vir;
(containment) (Vir ⊆ Vjr) ∨ (Vjr ⊆ Vir); and (immediacy) vi ∈ Vjr ⇒ Vir ⊆ Vjr.
Protocols and runs. A protocol here is a deterministic distributed automaton that, for each
local state of a process, stipulates which operation and which state transition the process is allowed
to perform. a run of a protocol is defined as a possibly infinite sequence of alternating states and
operations.

In the IIS communication model, we assume that processes run the full-information protocol:
the first value each process writes is its initial state. For each r > 1, the outcome of the immediate
snapshot operation on memory Mr−1 is submitted as the input value for the immediate snapshot
operation on memory Mr. After a certain number of such (asynchronous) rounds, a process may
gather enough information to produce an irrevocable output value.

Failures and participation. In an infinite run of the AS model, a process that takes only finitely
many steps is called faulty, otherwise it is called correct. We assume that in its first step, a process
writes its initial state in the shared memory using the update operation. If a process completed
this first step in a given run it is said to be participating, and the set of participating processes is
called the participating set. Note that in an infinite run, every correct process is participating.

Tasks. In this paper, we focus on distributed tasks [19]. A process invokes a task with an input

3

value and the task returns an output value, so that the inputs and the outputs across the processes,
respect the task specification. Formally, a task is defined through a set I of input vectors (one
input value for each process), a set O of output vectors (one output value for each process), and a
total relation ∆ : I 7→ 2O that associates each input vector with a set of possible output vectors.
An input ⊥ denotes a non-participating process and an output value ⊥ denotes an undecided
process. Check [16] for more details on the definition.

A protocol solves a task T = (I,O,∆) in a model M , if it ensures that in every infinite run
of M in which processes start with an input vector I ∈ I, there is a finite prefix R of the run where:
(1) decided values form a vector O ∈ O such that (I,O) ∈ ∆, and (2) all correct processes decide.

Standard chromatic subdivision and IIS. We use the standard language of simplicial com-
plexes [16,27] to give a combinatorial representation of the IIS model. See Appendix A for missing
details. A simplicial complex is defined as a set of vertices and an inclusion-closed set of vertex
subsets, called simplices. The dimension of a simplex is the number of its vertices minus one. Any
subset of these vertices is called a face.

A simplicial complex is pure (of dimension n) if each of its simplices is contained in a simplex
of dimension n. A simplicial complex is chromatic if it is equipped with a coloring function—a
non-collapsing simplicial map χ from its vertices to the standard (n− 1)-simplex s of n vertices, in
one-to-one correspondence with n colors 1, 2, . . . , n. With some abuse of notation, processes may
be referred to by their identifiers and χ used to obtain the set of processes associated to a simplex.

The standard chromatic subdivision [19] of s, denoted Chr s and depicted in Figure 1(a), is a
complex where vertices of Chr s are couples (v, σ), where v is a vertex of s and σ is a face of s
containing v, and simplices are sets of vertices (v1, σ1), . . ., (vm, σm) satisfying the properties of
immediate snapshot. Chr s is indeed a subdivision of s: in particular, it is homeomorphic to |s|, the
geometric realization of s [21]. If we iterate this subdivision m times, each time applying Chr to
each of the simplices, we obtain the mth chromatic subdivision, Chrm C. Chrm s precisely captures
the m-round (full-information) IIS model, denoted ISm [19].

The carrier of simplex σ ∈ Chrm s relatively to Chrm
′
s, with m′ < m, which we denote

as carrier(σ,Chrm
′
s) is the smallest simplex σ′ ∈ Chrm

′
s such that in the geometric realization

of σ, |σ|, is included in |σ′|. Intuitively, for a vertex v in Chrm s, carrier(v,Chrm s) is the set of
all processes seen by the process χ(v) in the corresponding run of ISm.

Simplex agreement and affine tasks. In a general simplex agreement task, every process is
given, as an input, a vertex of its color in thr standard simplex s, and is expected to output a vertex
of C of its color, so that the outputs form a simplex of C. In the instances of simplex agreement
considered in characterizations of wait-free task computability [5, 19], inputs were vertices of s and
C was a chromatic subdivision of s.

Affine tasks can be seen as a generalization of simplex agreement tasks considered in [5, 19],
where the output complex is no longer a subdivision but a subset of some iteration of the standard
chromatic subdivision. Formally, let L be a pure subcomplex of Chrl s for some l ∈ N. The affine
task associated to L is then defined as (s, L,∆), where, for every face t ⊆ s, ∆(t) = L ∩ Chrl t.
Notice that L ∩Chrl(t) can be empty, in which case no participating process is required to output.

With a slight abuse of notations, we use L to denote the affine task associated to L. By
running m iterations of this task, we obtain Lm, a subcomplex of Chrlm s, corresponding to a
subset of IS lm runs (each iteration includes l IS rounds). We denote by L∗ the set of infinite runs
of the IIS model where every prefix restricted to a multiple of l IS rounds belongs to the subset of
IS lm runs associated to Lm.

3 Adversaries and agreement functions

An adversary A is a set of subsets of Π, called live sets, A ⊆ 2Π. An AS run is A-compliant if the
set of processes that are correct in that run belongs to A. An adversarial A-model is defined as
the set of A-compliant runs.

4

The agreement function [23] of an adversarial model A is a function αA : 2Π → {0, . . . , n}, such
that for each P ∈ 2Π, in the set of runs of A in which no process in Π \ P participates, αA(P)-set
consensus can be solved, but (αA(P)− 1)-set consensus cannot. Note that by convention, if Π \ P
is not a valid participating set, as it does not include a live set, αA(P) is set to be equal to 0.
An α-adaptive set consensus is an abstraction solving a set consensus protocol such that at the
time k distinct output values are returned the participating set P is such that α(P) ≥ k: the
abstraction takes a value as an input, returns a proposed value as an output, and ensures that
at the time when k distinct output has been returned at least P processes, with α(P) ≥ k, are
currently participating.

Let AF(Π) be the set of all agreement functions corresponding to some adversarial model in Π.
For all α ∈ AF(Π), we can define a natural model derived from the agreement function as follows:

Definition 1 (α-model). The α-model is the set of runs in which, assuming that the participating
set is P , α(P) ≥ 1 and at most α(P)− 1 participating processes are faulty.

An adversary is superset-closed [22] if each superset of a set of an element of A is also an
element of A, i.e., ∀S ∈ A, ∀S′ ⊆ Π, S ⊆ S′: S′ ∈ A. Superset-closed adversaries provide an
interesting non-uniform generalization of the classical t-resilience condition [17]: e.g., the t-resilient
adversary in a system of n processes consists of all sets of n− t or more processes.

An adversary A is symmetric if it does not depend on process identifiers and thus only on the
size of live sets: ∀S ∈ A, ∀S′ ⊆ Π, |S′| = |S| =⇒ S′ ∈ A.

For P ∈ 2Π, let A|P denote the set of all elements of A that are subsets of P , and csize(A|P)
denote the size of the minimal hitting set in A|P , i.e., the minimal subset of P that intersects with
each element in A|P . It is shown in [11] that the smallest k such that A can solve k-set consensus can
be computed using a function setcon(A), and thus that αA(P) = setcon(A|P). For any superset-
closed adversary A, we have αA(P) = setcon(A|P) = csize(A|P). Moreover, for any symmetric
adversary A, we have αA(P) = setcon(A|P) = |{k ∈ {1, . . . , |P |} : ∃S ∈ A, |S| = k}| [11].

Fair adversaries. Informally, an adversary is fair [23] if a subset Q of participating processes
P cannot achieve better set consensus than the whole set of participants (unless |Q| is smaller
than αA(P)). The set consensus power of a subset Q of the participating processes P corresponds
to the set consensus power of the adversary A|P,Q = {S ∈ A : (S ⊆ P) ∧ (S ∩Q 6= ∅)}. Therefore,
an adversary A is fair if and only if:

∀P ⊆ Π,∀Q ⊆ P, setcon(A|P,Q) = min(|Q|, setcon(A|P)).

Superset-closed and symmetric adversaries are fair [23]. It turns out that the task computability
of a fair adversary is captured precisely by the αA-model, i.e., they both solve the same set of
tasks (we say that the models are equivalent).

Theorem 1. [23] For any fair adversary A, a task is solvable in the adversarial A-model if and
only if it is solvable in the αA-model.

Theorem 1 was proved using the following result, which will be instrumental for us too:

Theorem 2. [23] For any task T , if T is solvable in an α-model, then T is solvable in any
read-write shared memory model which can solve the α-adaptive set consensus task.

4 Defining the affine task for an α-model

Given an agreement function α ∈ AF(Π), we define the affine task Rα, a subcomplex of the second
degree of the standard chromatic subdivision Chr2 s. In Sections 5 and 6, we show that R∗α, i.e., the
model of IIS runs obtained by iterating Rα, is equivalent to the α-model regarding task solvability.

Two classes of affine tasks were recently defined. The class Rt−res was introduced in [26], with
R∗t−res equivalent to the t-resilient model. Similarly, the class Rk was introduced in [10], with R∗k
equivalent to the k-concurrent model. Interestingly, the models of t-resilience and k-concurrency

5

Figure 2: The 2-contention complex is shown in red in dimension 2.

correspond to two “well-behaved” sub-classes of α-models on opposite sides of the spectrum. In
a sense, an α-model can be seen as a combination of resilience and concurrency conditions. Our
definition of Rα thus combines the concurrency features, expressed through the notion of contention
simplices, and the resilience features, expressed through the notion of critical simplices.

Contention simplices. The carrier of a vertex v in Chr s determines the view process χ(v)
obtains after completing the corresponding run of immediate snapshot (IS). Thus, the order in
which the processes obtained their immediate snapshots materializes in the resulting simplex in
Chr s through the inclusion-based order of the carriers of their vertices. We can therefore define a
partial order on vertices of a simplex in Chr2 s, based on the views the processes obtain in the first
IS and the second IS. For a vertex v ∈ Chr2 s, we define View1(v) = carrier(v′, s) with v′ such that
(χ(v) = χ(v′)) ∧ (v′ ∈ carrier(v,Chr s)), i.e., the first IS view that χ(v) had in the corresponding
run. Similarly, View2(v) = carrier(v,Chr s), i.e., the second IS view.

Note that the more concurrency a run has, the less processes are ordered regularly. To capture
the fact that a set of processes was executed concurrently in a run, we compare vertices’ carriers.
We say that a simplex δ in Chr2 s is a 2-contention simplex, if any two vertices in δ have different
ordered View1 and View2. Let Cont2 denote the set of 2-contention simplices in Chr2 s defined as
follows1:

Definition 2. [2-Contention simplices] ∀σ ∈ Chr2 s : σ ∈ Cont2 ⇔ ∀v, v′ ∈ σ, v 6= v′ :

((View1(v) (View1(v′))∧(View2(v′) (View2(v)))∨((View1(v′) (View1(v))∧(View2(v) (View2(v′))).

The set of 2-contention simplices is inclusion-closed: any face of a 2-contention simplex is
also a 2-contention simplex. Therefore, we can define the 2-contention complex as the set of all
2-contention simplices. For example, the 2-contention simplices of the 3-process system is shown in
Figure 2.

Critical simplices. Capturing resilience in an affine task [26] is about ensuring that every process
is provided with sufficiently large views, i.e., that carrier(v, s) is “large enough” for its vertex v.
Providing a view P such that α(P) > 0 is sufficient to characterize t-resilience. To see why this is
the case, one can observe that if the participating set is P , then the number of distinct views V
with α(V) > 0 is exactly α(P). In a general α-model, however, it is not necessarily the case.

The definition of Rα should allows us to determine which of the processes having views V
with α(V) > 0 are prioritized, i.e., can be used as “leaders” in solving α(P)-set consensus. When
the participation is P with α(P) > 0, a leader with a view V with α(V) = α(P) should be
available. This is why the number “leaders” should scale according the set-consensus power of the
participation.

But also, the number of set consensus proposals pushed by leaders when the participation is P
should be smaller than α(P). Moreover, the leaders must be identifiable to other processes, in order
for them to know that they have been prioritized and are not the result of a high concurrency.

1In our recent paper [10] on the affine task for k-concurrency (a special case of an α-model), we introduced the
notion of contention sets, capturing the sets of processes whose vertices in Chr2 s have the same carrier in s.

6

(a) Critical simplices for the α-model with
α(P) = min(|P |, 1) (1-obstruction-freedom)

(b) Critical simplices of the α-model corresponding to
the adversary A = {{p1}, {p2, p3}, {p1, p2, p3}}

Figure 3: Critical simplices are displayed in orange (with p1 associated to the vertex on the top).

(a) Concurrency map for the α-model with
α(P) = min(|P |, 1). (1-obstruction-freedom)

(b) Concurrency map of the α-model corresponding to
the adversary A = {{p1}, {p2, p3}, {p1, p2, p3}}.

Figure 4: Examples of concurrency maps in two models of 3-process system, a color set to green
corresponding to a concurrency value equal to 2, orange to 1, and black to 0. Note that p1 is the vertex on
the top.

To capture this intuition, we introduce the following notion. A simplex σ ∈ Chr s is a critical
simplex if and only if: (1) all its vertices share the same carrier; and (2) the set consensus power
associated to carrier(σ, s) is strictly greater than the set consensus power of χ(carrier(σ, s)) \χ(σ).

Definition 3. ∀α ∈ AF(Π),∀σ ∈ Chr s:

Criticalα(σ) = (∀v ∈ σ : carrier(v, s) = carrier(σ, s)) ∧ (α(χ(carrier(σ, s)) \ χ(σ)) < α(χ(carrier(σ, s)))) .

Intuitively, the definition selects simplices which are identifiable by vertices which see them in
the second IS because the selection is defined on the first subdivision, which corresponds to the
first IS. Examples of critical simplices for some model of 3-process system are given in Figure 3.

For convenience, given a simplex σ ∈ Chr s, let CSα(σ) be the set of critical simplices in σ,
i.e., CSα(σ) = {σ′ ⊆ σ : σ′ ∈ Criticalα(σ)}. Moreover, let CSMα(σ) be the set of vertices of σ
which belong to some critical simplex in σ, i.e., CSMα(σ) = ∪σ′∈CSα(σ)σ

′. Similarly, let CSVα(σ) be
the union of all processes observed by critical simplices in σ, i.e., CSVα(σ) = carrier(CSMα(σ), s).

Concurrency map. We note that a critical simplex σ ∈ Chr s is associated to a set consensus
power, i.e., α(χ(carrier(σ, s))). A critical simplex associated to some k-set consensus power implies
the concurrency level to be smaller than or equal to k. This allow us to define the concurrency
level for every simplex in Chr s by the concurrency of its critical simplices:

Definition 4. [Concurrency map] ∀α ∈ AF(Π),∀σ ∈ Chr s:

Concα(σ) = max(0 ∪ {α(χ(carrier(σ′, s))), σ′ ∈ CSα(σ)}).

Examples of concurrency maps for two models in a 3-process system are shown in Figure 4.

7

(a) Affine task for the α-model with α(P) = min(|P |, 1).
(1-obstruction-freedom)

(b) Affine task of the α-model corresponding to the
adversary A = {{p1}, {p2, p3}, {p1, p2, p3}}.

Figure 5: Some examples of affine tasks Rα in blue (with p1 associated to the vertex on the top).

Affine task Rα. The affine task capturing α-models can be simply defined, based on (1) the set
of critical simplices members, CSMα, their view, CSVα, and the concurrency map, Concα, all
derived from the definition of critical simplices; and (2), the definition of the 2-contention simplices.

The sub-complex Rα ⊆ Chr2 s is defined as follows: a (n− 1)-dimensional simplex σ ∈ Chr2 s
belongs to Rα if and only if, every sub-simplex of σ of size k which is a 2-contention simplex and
which does not contain any critical simplices members from Chr s, nor are processes in their view,
has a view in Chr2 s associated to a concurrency greater than or equal to k:

Definition 5. [Rα] ∀α ∈ AF(Π),∀σ ∈ Chr2 s, dim(σ) = n − 1 : σ ∈ Rα ⇔ ∀θ ⊆ σ, θ′ =
carrier(θ,Chr s) :

(θ ∈ Cont2) ∧ (χ(θ) ∩ (χ(CSMα(carrier(σ,Chr s))) ∪ χ(CSVα(θ′))) = ∅ =⇒ dim(θ)− 1 ≤ Concα(θ′).

Some examples of affine tasks for some α-models in a 3 processes system are depicted in
Figure 5.

5 From α-model to Rα

Let T be any task that can be solved in R∗α, i.e., by iterating our affine task Rα. To show that T
is solvable with a fair adversary A, we present an algorithm that, in the corresponding α-model,
solves Rα, i.e., solves the chromatic simplex agreement task on the complex Rα. By iterating this
task solution, we obtain a simulation of R∗α, which implies a solution to T in the α-model.

In our solution of Rα (Algorithm 1), every process pi takes two immediate snapshots [5],
FirstIS and SecondIS , where the input of FirstIS is its identifier and the input of SecondIS is the
output of FirstIS . By construction, the outputs of this algorithm form a simplex in Chr2 s. To
ensure that this simplex is in Rα, after finishing FirstIS , each process pi writes the outcome in its
dedicated register IS1 [i], and then waits for its turn to proceed to SecondIS . The corresponding
“waiting” conditions are given in Lines 5–11. Once SecondIS is completed, pi writes its outcome in
IS2 [i].

Intuitively, the waiting phase ensures that processes appearing in the critical simplices (main-
tained in the local boolean array critical) have higher priority to proceed with SecondIS . If the
members of a critical simplex finishes SecondIS , then the processes with strictly smaller IS1 output
are given priority, unless their number gets below the currently observed “concurrency level” (stored
in the local variable concurrency). Otherwise, the process can proceed to SecondIS . Notice that
in this case all processes with the same IS1 output will also be able to proceed to SecondIS .

In its waiting phase, pi periodically goes over all processes and, based on their outputs in IS1
and IS2, updates critical and concurrency . Concurrency is set to the maximal set consensus
power of the IS1 output of processes in a critical simplex that completed their IS2 (Line 10).

Theorem 3. For all α ∈ AF(Π), Algorithm 1 solves task Rα in the α-model.

8

Algorithm 1: Algorithm solving Rα in the α-model for process pi.

1 Shared: IS1 [1 . . . n] ∈ P(Π), initially ∅; IS2 [1 . . . n] ∈ P(Π), initially ∅;
2 Local: critical [1 . . . n] ∈ {true, false}, initially false; concurrency ∈ N, initially 0;
3 level [1 . . . n] ∈ P(Π);

4 IS1 [i]← FirstIS(InitialState);
5 Do
6 forall j ∈ {1, . . . , n} do
7 level [j]← {pk ∈ Π, IS1 [k] = IS1 [j]};
8 critical [j]← (α(IS1 [j]) > α(IS1 [j] \ level [j]));
9 if (α(IS1 [j]) > α(IS1 [j] \ {pk ∈ level [j], IS2 [k] 6= ∅}) then

10 concurrency ← max(α(IS1 [j]), concurrency);

11 While
(¬critical[i]) ∧ (|{pj ∈ IS1 [i] : IS2 [j] = ∅ ∧ ∅ (IS1 [j] (IS1 [i] ∧ ¬critical [j]}| ≥ concurrency);

12 IS2 [i]← SecondIS(IS1 [i]);

To convince ourselves that Algorithm 1 indeed solves Rα in the α-model, we show that no
correct process can be blocked forever in its waiting phase (Lines 5–11). This is because at most
α(P) − 1 processes can fail and therefore, at least one critical simplex will finish the SecondIS ,
enabling the remaining processes to proceed. Moreover, the more faulty processes try to block
non-critical simplices members with small IS1 to finish their SecondIS , the less faulty processes
are left to block critical simplices from finishing their SecondIS . But the more critical simplices
finishes their SecondIS , the higher the value of concurrency is, counter-balancing which processes
are faulty.

The second point we need to ensure is that the resulting simplex of Chr2 s indeed belongs
to Rα. One can see this by matching the conditions of the waiting phase with the definition of Rα
(Definition 5). The proof of Theorem 3 is given Appendix B.

6 From R∗α to α-model

In this section, we show that any task solvable in the α-model can be solved in R∗α. More precisely,
we present an algorithm that, in R∗α, simulates a read-write shared memory system in which,
additionally, α-adaptive set consensus can be solved. Then we can use Theorem 2 to obtain the
desired result. The proofs for this section are delegated to Appendix C.

General structure of the simulation. In principle, our algorithm simulates read-write opera-
tions and accesses to instances α-adaptive set consensus (almost) independently. In each round of
R∗α, the input of each process to submit to the affine task Rα is composed of a read-write part and
an agreement part. Even though the simulated algorithm may have only one pending operation
(read-write or propose for a set consensus instance), our algorithm requires that the process
participates in all currently active agreement instances and the read-write memory simulation
(possibly with “fake” inputs used to help slower processes to complete their simulated operations).

In general, such a simulation in R∗α can only be lock-free, i.e., ensuring that at least one process
makes progress, as a slow process may never be observed by a fast process in an iterated model.
Lock-freedom is good enough for us, as we are only interested in solving tasks in the simulated
model: once a fast process outputs it “leaves” the computation and does not obstruct slower ones
from making progress. For this, special input values are used by the decided processes to inform
slower processes about the task outputs obtained by the faster ones.

Read-write simulation. To simulate a read-write shared memory, we rely upon the lock-free
algorithm proposed in [14]. This algorithm, conveniently for us, uses iterated, but not necessarily
immediate, snapshots. Thus, we can execute it in the global view resulting of iterations of R∗α, i.e.,
on carrier(v, s) for a vertex v ∈ Rα.

9

To make sure that every active (not yet terminated) participates in the read-write simulation in
every iteration of R∗α, even if the operations is not required by the simulated algorithm, we make
the process propose the value of its last write operation. Notice that these “fake” inputs do not
affect safety of the simulation, but potentially may affect liveness. We show that this, however,
cannot happen.

An important feature of our algorithm, is that, even though the algorithm is lock-free but
guarantees that if a process completing a simulated read-write operation at the end of a round r,
has the smallest view in Rα in that round and, thus, every other process in round r will see the it
proposes to a set-consensus instance (if it has one). Hence, once a process completes a write, some
progress is made: either it is a write operation of the simulated algorithm, or it is a “fake” write,
but a simulated access to set consensus will be completed.

Solving α-adaptive set consensus in R∗α. In the simulation of accesses to an α-adaptive set
consensus instance, every active process adopts a decided or a proposed value as soon as another
process is observed with one.

We describe below how the structure of Rα is used to choose a decided value if no such value
is seen. One issue to be resolved is that, to avoid potential deadlocks, a process is expected to
take part in an agreement simulation even before it completes its first simulated write and, thus,
before it is considered participating in the simulated run. Thus, we need to ensure that the number
of distinct decided values in the simulated instance of agreement is allowed by α for the current
participating set. For this, our decision function returns, along with the decided value, a set
of participating processes. Knowing their input is however not sufficient for these processes to
appear participating in the simulation. This knowledge must be shared with other processes before
returning from the simulated agreement instance. Taking advantage of the read-write simulation,
processes can simply write the inputs of these processes, which appears in the simulated run as a
“block write.”

Selecting a decision estimate. Given Q ⊆ Π, we introduce a vertex map µQ defined on all
vertices v ∈ Rα such that χ(v) ∈ Q. Intuitively, Q is the current set of active processes and µQ(v)
is a set of processes (intersecting with Q) that should appear participating before the decided value
is returned. Formally:

µQ(v) = if (χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅)

then χ(min({carrier(σ′, s) : (σ′ ∈ CSα(carrier(v,Chr s)) : χ(carrier(σ′, s)) ∩Q 6= ∅)})
else χ(min({carrier(v′, s) : (v′ ∈ carrier(v,Chr s)) ∧ (dim(v′) = 0) ∧ (carrier(v′, s) ∩Q 6= ∅)}).

We list below several important properties of µQ.
We show first that µQ indeed returns a valid set of processes with inputs (a subset of the view

v), which moreover intersects with Q:

Property 4. [Validity of µQ] ∀v ∈ Rα, dim(v) = 0, χ(v) ∈ Q :

(µQ(v) ⊆ χ(carrier(v, s))) ∧ (µQ(v) ∩Q 6= ∅).

The principal guarantee µQ needs to ensure is that the number of distinct sets returned by µQ for
a given simplex in Rα cannot exceed the set consensus power of the union of these sets:

Property 5. [Agreement of µQ] ∀Q ⊆ Π, (∀σ ∈ Rα : dim(σ) = n− 1), (∀θ ⊆ σ : χ(θ) ⊆ Q) :

|{µQ(v) : v ∈ θ}| ≤ α(∪v∈θ(µQ(v))).

Finally, let us also observe that set Q can be determined locally based on the process view, i.e.,
the output of µQ is determined solely by the observed set of terminated processes:

Property 6. [Robustness of µQ] ∀v ∈ Rα, dim(v) = 0,∀Q ⊆ Π :

µQ(v) = µcarrier(v,s)∩Q(v).

10

Map µQ can then be used to provide an estimate of the decided value in an agreement instance.
This is done by selecting any process in the set returned by µQ that belongs to Q and has a
proposal value. Let minQ be the function returning the minimal such process. Note that minQ
preserves the robustness property of µQ. It can be shown that if every process has a proposal value,
then the map minQ ◦ µQ defines a decision map for a set consensus algorithm such that:

Property 7. ∀Q ⊆ Π, (∀σ ∈ Rα : dim(σ) = n − 1), (∀θ ⊆ σ : χ(θ) ⊆ Q) : minQ ◦ µQ(σ) solves
and α(∪v∈θ(µQ(v)))-set consensus.

Combined shared memory and α-adaptive set consensus simulation. Let us first show
that if a ”sufficiently fast” process is participating in our α-adaptive set consensus algorithm, then
it must eventually terminate:

Lemma 8. If a process in A with a minimal view in some iteration of Rα shares a proposal, then
the described protocol solves α-adaptive set consensus.

Note that multiple set consensus protocols can be executed in parallel without interfering.
With such a property, we can now show that the combination of the read-write memory protocol

and the α-adaptive set consensus protocols ensures progress to some active simulated process as
long as there is one:

Lemma 9. The read-write shared memory with access to set consensus simulation is lock-free.

By Theorem 2, the resulting combination of read-write memory and α-adaptive set consensus
can be used to solve any task solvable in the α-model. Finally, Theorem 3 and Theorem 1 imply:

Theorem 10. Let A be any fair adversary, and let α be its agreement function. A task is solvable
in the adversarial A-model if and only if it solvable in R∗α.

As a side result, we get the following generalization of the Asynchronous Computability Theorem
(ACT) [19]:

Theorem 11. [Compact ACT] Let A be any fair adversary, and let α be its agreement function.
A task T = (I,O,∆) is solvable in the adversarial A-model if and only if there exists a natural
number ` and a simplicial map φ : R`α(I)→ O carried by ∆.

7 Related work

Inspired by the model of dependent failures proposed by Junqueira and Marzullo [20], Delporte
et al. [8] suggested the notion of adversaries. Adversaries having the same set consensus power
agree on the set of colorless tasks they solve [8, 12]. Intuitively, a colorless task, such as consensus
or approximate agreement, can be defined as a map between a set of inputs and possible sets of
outputs, without the notion of process identifiers.

Herlihy and Shavit [19] proposed a characterization of wait-free task computability through
the existence of a specific continuous map from a subdivision of the input complex of a task I
to its output complex O. (The reader is referred to [16] for a thorough discussion of the use
of combinatorial topology in distributed computability.) In particular, the characterization can
consider the iterated standard chromatic subdivision and, thus, derive that a task is wait-free
solvable if and only if it can be solved in the IIS model (capturing precisely by iterated standard
chromatic subdivision [21]). Thus, the IS task is the affine task matching the wait-free model. This
paper generalizes this result to any fair adversary.

Herlihy and Rajsbaum [18] studied colorless task computability in the special case of superset-
closed adversaries [22], that, intuitively, do not expect any set of processes fail and are, thus,
closed under the superset operation. The set consensus power of a superset-closed adversary
is its minimum core size: the size of a smallest set of processes that intersects with every live
set [20]. They show that the protocol complex of a superset-closed adversary with minimal core

11

size c is (c− 2)-connected. This result, obtained via an iterative application of the Nerve lemma,
gives a combinatorial characterization of superset-closed adversaries, which is weaker than the
characterization of wait-freedom through the immediate snapshot task. Unlike the results of this
paper, the characterization only applies to colorless tasks, and it does not allow us to express the
adversary in a compact way via a specific task whose iterations give an equivalent model.

Gafni et al. [13] characterized task computability in iterated adversarial models via infinite
subdivisions of input complexes, assuming a limited notion of solvability that only guarantees
outputs to “fast” processes [6, 9, 24] (”seen” by every other process infinitely often). The liveness
property defined in this paper for iterated models, guarantees outputs for every process, which
allowed us to establish a task-computability equivalence with conventional non-iterated ones.

Saraph et al. [26] gave a compact combinatorial characterization of t-resilient task computability.
Note that At is a superset-closed (and thus fair) adversary. Our solution of the affine task Rα in
the α-model is inspired by the t-resilient solution of Tt in [26]. Gafni et al. [10] presented affine
tasks for the model of k-set consensus and, thus, k-concurrency and k-obstruction-freedom, which
can be expressed as a symmetric and thus fair adversary.

The notions of an agreement function and a fair adversary were introduced by the first two
authors in [23]. One can determine the agreement function of any given adversary using the
formula suggested earlier for the set consensus power [11]. It has been shown in [23] that agreement
functions encode enough information to characterize the task computability of any fair adversary.

8 Discussion

This paper generalizes all topological characterizations of distributed computing models known
so far [10, 13, 19, 26]. It applies to all tasks (not necessarily colorless) and all fair adversarial
models (not necessarily the model of t-resilience or k-obstruction-freedom). Fair adversaries include
superset-closed [22] and symmetric [28] ones. Just as the wait-free characterization [19] implies
that the IS task captures the wait-free model, our characterization equates any fair adversary with
a (compact) affine task embedded in the 2-degree of standard chromatic subdivision.

Interestingly, unlike [26], we cannot rely on the assumption that the affine task RAt correspond-
ing to the t-resilient adversary At is shellable [16] and, thus, link connected. Link-connectivity
of a simplicial complex C allows us to work in the point set of its geometrical embedding |C| and
use continuous maps (as opposed to simplicial maps that maintain more structure). For example,
the existence of a continuous map from |RAt | to any |RkAt | implies that RAt indeed captures the
general task computability of At. However, the existence of a continuous map onto C only allows
us to converge on only one vertex [16]. If C is not link-connected, converging on one vertex allow
us to compute only one output in a task solution and not more, which is not sufficient to solve a
general (colored) task.

Unfortunately, only very special adversaries, such as At, have link-connected counterparts (see,
e.g., the affine task corresponding to 1-obstruction freedom in Figure 5a). Instead, this paper
takes an explicit algorithmic way of showing that iterations of RA simulate A. This raises an
interesting question to which extent point-set topology and continuous maps can be applied in
affine characterizations.

Furthermore, going beyond fair models is an important challenge. Given that some models out
of this class cannot be grasped by agreement functions (some examples of these models can be
found in [23]), we should find a more refined way of to capture the power of solving set consensus
for subsets of participating processes. In particular, we should be able to account for models in
which coalitions of participants can achieve better levels of set consensus than the whole set. Nailed
down, this may allow us to compactly capture all “natural” models [10], such as, e.g., the model of
set consensus collections [7] for which only special cases of k-set consensus [10] and k-test-and-set
have been, in this sense, understood so far.

12

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared
memory. J. ACM, 40(4):873–890, 1993.

[2] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, Oct. 1985.

[3] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous
computations. In STOC, pages 91–100. ACM Press, May 1993.

[4] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming. In PODC, pages
41–51, New York, NY, USA, 1993. ACM Press.

[5] E. Borowsky and E. Gafni. A simple algorithmically reasoned characterization of wait-free
computation (extended abstract). In PODC ’97: Proceedings of the sixteenth annual ACM
symposium on Principles of distributed computing, pages 189–198, New York, NY, USA, 1997.
ACM Press.

[6] Z. Bouzid, E. Gafni, and P. Kuznetsov. Strong equivalence relations for iterated models. In
OPODIS, pages 139–154, 2014.

[7] C. Delporte-Gallet, H. Fauconnier, E. Gafni, and P. Kuznetsov:. Set-consensus collections are
decidable. In OPODIS, 2016.

[8] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The disagreement power
of an adversary. Distributed Computing, 24(3-4):137–147, 2011.

[9] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony. In Proceedings of the 17th Symposium on Principles of Distributed Computing,
1998.

[10] E. Gafni, Y. He, P. Kuznetsov, and T. Rieutord. Read-write memory and k-set consensus as
an affine task. In OPODIS, 2016. Technical report: https://arxiv.org/abs/1610.01423.

[11] E. Gafni and P. Kuznetsov. Turning adversaries into friends: Simplified, made constructive,
and extended. In OPODIS, pages 380–394, 2010.

[12] E. Gafni and P. Kuznetsov. Relating L-Resilience and Wait-Freedom via Hitting Sets. In
ICDCN, pages 191–202, 2011.

[13] E. Gafni, P. Kuznetsov, and C. Manolescu. A generalized asynchronous computability theorem.
In PODC, 2014.

[14] E. Gafni and S. Rajsbaum. Distributed programming with tasks. In Principles of Distributed
Systems - 14th International Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17,
2010. Proceedings, pages 205–218, 2010.

[15] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, Jan.
1991.

[16] M. Herlihy, D. N. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinatorial
Topology. Morgan Kaufmann, 2014.

[17] M. Herlihy and S. Rajsbaum. The topology of shared-memory adversaries. In PODC, pages
105–113, 2010.

[18] M. Herlihy and S. Rajsbaum. Simulations and reductions for colorless tasks. In PODC, pages
253–260, 2012.

[19] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J. ACM,
46(2):858–923, 1999.

13

[20] F. Junqueira and K. Marzullo. A framework for the design of dependent-failure algorithms.
Concurrency and Computation: Practice and Experience, 19(17):2255–2269, 2007.

[21] D. N. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and
Applications, 14(1):1–13, 2012.

[22] P. Kuznetsov. Understanding non-uniform failure models. Bulletin of the EATCS, 106:53–77,
2012.

[23] P. Kuznetsov and T. Rieutord. Agreement functions for distributed computing models. In
NETYS, 2017. To apper, technical report: https://arxiv.org/abs/1702.00361.

[24] M. Raynal and J. Stainer. Increasing the power of the iterated immediate snapshot model
with failure detectors. In SIROCCO, pages 231–242, 2012.

[25] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM J. on Computing, 29:1449–1483, 2000.

[26] V. Saraph, M. Herlihy, and E. Gafni. Asynchronous computability theorems for t-resilient
systems. In DISC, pages 428–441, 2016.

[27] E. H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.

[28] G. Taubenfeld. The computational structure of progress conditions. In DISC, 2010.

14

A Simplicial complexes

We recall now several notions from combinatorial topology. For more detailed coverage of the topic
please refer to [16,27].

A simplicial complex is a set V , together with a collection C of finite non-empty subsets of V
such that:

1. For any v ∈ V , the one-element set {v} is in C;

2. If σ ∈ C and σ′ ⊆ σ, then σ′ ∈ C.

The elements of V are called vertices, and the elements of C are called a simplices. We usually
drop V from the notation, and refer to the simplicial complex as C.

A subset of a simplex is called a face of that simplex.
A sub-complex of C is a subset of C that is also a simplicial complex.
The dimension of a simplex σ ∈ C is its cardinality minus one. The k-skeleton of a complex C,

denoted Skelk C, is the sub-complex formed of all simplices of C of dimension k or less.
A simplicial complex C is called pure of dimension n if C has no simplices of dimension > n,

and every k-dimensional simplex of C (for k < n) is a face of an n-dimensional simplex of C.
Let A and B be simplicial complexes. A map f : A→ B is called simplicial if it is induced by

a map on vertices; that is, f maps vertices to vertices, and for any σ ∈ A, we have

f(σ) =
⋃
v∈σ

f({v}).

A simplicial map f is called non-collapsing (or dimension-preserving) if dim f(σ) = dimσ for all
σ ∈ A.

A map Φ : A→ 2B (mapping simplices of A to sub-complexes of B) is called carrier if for all
τ, σ ∈ A, we have Φ(τ ∩ σ) ⊆ Φ(τ) ∩ Φ(σ). A simplicial map φ : A→ B is said to be carried by a
carrier map Φ : A→ 2B if for all σ ∈ A, φ(σ) ⊂ Φ(σ).

Any simplicial complex C has an associated geometric realization |C|, defined as follows. Let
V be the set of vertices in C. As a set, we let C be the subset of [0, 1]V = {α : V → [0, 1]}
consisting of all functions α such that {v ∈ V | α(v) > 0} ∈ C and

∑
v∈V α(v) = 1. For each

σ ∈ C, we set |σ| = {α ∈ |C| | α(v) 6= 0 ⇒ v ∈ σ}. Each |σ| is in one-to-one correspondence
to a subset of Rn of the form {(x1, . . . , xn) ∈ [0, 1]n | ∑xi = 1}. We put a metric on |C| by
d(α, β) =

∑
v∈V |α(v)− β(v)|.

A non-empty complex C is called k-connected if, for each m ≤ k, any continuous map of the
m-sphere into |C| can be extended to a continuous map over the (m+ 1)-disk.

A subdivision of a simplicial complex C is a simplicial complex C ′ such that:

1. The vertices of C ′ are points of |C|.

2. For any σ′ ∈ C ′, there exists σ ∈ C such that σ′ ⊂ |σ|.

3. The piecewise linear map |C ′| → |C| mapping each vertex of C ′ to the corresponding point
of C is a homeomorphism.

Chromatic complexes. We now turn to the chromatic complexes used in distributed computing,
and recall some notions from [19].

Fix n ≥ 0. The standard n-simplex s has n + 1 vertices, in one-to-one correspondence with
n+ 1 colors 0, 1, . . . , n. A face t of s is specified by a collection of vertices from {0, . . . , n}. We
view s as a complex, with its simplices being all possible faces t.

A chromatic complex is a simplicial complex C together with a non-collapsing simplicial map
χ : C → s. Note that C can have dimension at most n. We usually drop χ from the notation. We
write χ(C) for the union of χ(v) over all vertices v ∈ C. Note that if C ′ ⊆ C is a sub-complex of a
chromatic complex, it inherits a chromatic structure by restriction.

15

In particular, the standard n-simplex s is a chromatic complex, with χ being the identity.
Every chromatic complex C has a standard chromatic subdivision ChrC. Let us first define

Chr s for the standard simplex s. The vertices of Chr s are pairs (i, t), where i ∈ {0, 1, . . . , n} and
t is a face of s containing i. We let χ(i, t) = i. Further, Chr s is characterized by its n-simplices;
these are the (n+ 1)-tuples ((0, t0), . . . , (n, tn)) such that:

(a) For all ti and tj , one is a face of the other;

(b) If j ∈ ti, then tj ⊆ ti.

The geometric realization of s can be taken to be the set {x = (x0, . . . , xn) ∈ [0, 1]n+1 |∑xi = 1},
where the vertex i corresponding to the point xi with i coordinate 1 and all others coordinate 0.
Then, we can identify a vertex (i, t) of Chr s with the point

1

2k − 1
xi +

2

2k − 1

(∑
{j∈t|j 6=i}

xj

)
∈ |s| ⊂ Rn+1,

where k is the cardinality of t. Thus, Chr s becomes a subdivision of s and the geometric realizations
are identical: |s| = |Chr s|. The standard chromatic subdivision, Chr s, is illustrated for a 3-process
system in Figure 1(a).

Next, given a chromatic complex C, we let ChrC be the subdivision of C obtained by replacing
each simplex in C with its chromatic subdivision. Thus, the vertices of ChrC are pairs (p, σ),
where p is a vertex of C and σ is a simplex of C containing p. If we iterate this process m times
we obtain the mth chromatic subdivision, Chrm C.

Let A and B be chromatic complexes. A simplicial map f : A→ B is called a chromatic map
if for all vertices v ∈ A, we have χ(v) = χ(f(v)). Note that a chromatic map is automatically
non-collapsing. A chromatic map has chromatic subdivisions Chrm f : ChrmA→ ChrmB. Under
the identifications of topological spaces |A| ∼= |ChrmA|, |B| ∼= |ChrmB|, the continuous maps |f |
and |Chrm f | are identical.

A simplicial map φ is carried by the carrier map ∆ if φ(σ) ⊂ ∆(σ) for every simplex σ in their
domain.

B Proof of correctness of Algorithm 1

Lemma 12. [Availability of critical simplices]: ∀α ∈ AF(Π),∀σ ∈ Chr s :

χ(σ) = χ(carrier(σ)) =⇒ α(χ(σ)) ≤ csize(CSα(σ)).

Proof. We proceed by induction on dim(σ). The base case is trivial, as csize(∅) = 0 and α(∅) = 0.
Now consider a simplex σ ∈ Chr s such that χ(σ) = χ(carrier(σ)) and α(χ(σ)) = k, k ∈ N. Let us
assume by induction that for all σ′ ∈ Chr s such that dim(σ′) < dim(σ) and χ(σ′) = χ(carrier(σ′)),
we have α(χ(σ′)) ≤ csize(CSα(σ′)).

Now consider the face θ of σ consisting of all vertices of σ with the same carrier as σ, i.e.,
θ = {v ∈ σ, carrier(v, s) = carrier(σ, s)}. Let β be the complement of θ, i.e., β = σ \ θ. Note
that θ 6= ∅ and that χ(β) = χ(carrier(β)). Therefore dim(β) < dim(σ) and by assumption we
have α(χ(β)) ≤ csize(CSα(β)). By the definition of CSα, we have (CSα(β) ∪ CSα(θ)) ⊆ CSα(σ).
Therefore if α(χ(β)) = α(χ(σ)), we have α(χ(σ)) ≤ csize(CSα(σ)).

Thus, let us assume that α(χ(σ)) = α(χ(β)) + l with l > 0. Note that given any P ⊆ Π, P 6= ∅,
and any p ∈ P we have α(P) ≥ α(P \ {p}) ≥ α(P)− 12. Therefore, by a trivial induction we can
deduce that for any set of processes Q ⊆ P , we have α(P) ≥ α(P \Q) ≥ α(P)− |Q| or equivalently

2Indeed, α is an agreement function derived from an adversary A and so α(P ∪ {p}) ≤ α(P) + 1 as by definition
setcon(A|P∪{p}) ≤ setcon(A|P) + 1 . Note that this might not be true for generic α models. Moreover, this is the
only necessary condition for our equivalence result to hold for generic α models.

16

α(P \Q) + |Q| ≥ α(P). So for any subset θ′ of θ of size dim(θ)− l + 1, χ(σ) \ χ(θ′) contains l − 1
more processes than χ(β) and so we have:

α(χ(σ) \ (χ(θ′))) ≤ α(χ(β)) + l − 1 < α(χ(σ)).

Therefore, θ′ ∈ CSα(σ). Indeed, for every v ∈ θ′ we have carrier(v, s) = carrier(σ, s) =
carrier(θ′, s). Moreover, as by assumption we have χ(σ) = χ(carrier(σ, s)), we obtain α(χ(carrier(θ′, s))) <
α(χ(carrier(θ′, s)) \ (χ(θ′))).

This is true for all subsets θ′ of θ of size dim(θ) − l + 1. It is easy to see that csize({θ′ ⊆
θ, dim(θ′) = dim(θ)− l+1}) = l, and thus csize(CSα(θ)) ≥ l. As csize(CSα(σ)) ≥ csize(CSα(θ))+
csize(CSα(β)), we have csize(CSα(σ)) ≥ α(χ(σ)).

Corollary 13. [Distribution of critical simplices]: ∀α ∈ AF(Π),∀σ ∈ Chr s,∀l ∈ {1, . . . , n}

χ(σ) = χ(carrier(σ)) =⇒ α(χ(σ))− l + 1 ≤ csize({σ′ ∈ CSα(σ), α(χ(carrier(σ′, s))) ≥ l}).

Proof. Consider the face θ of σ consisting of all vertices of σ such that their carrier is associated
with a set consensus power greater than α(χ(σ))− l + 1, i.e., θ = {v ∈ σ, α(χ(carrier(v, s))) ≥ l}.
It is easy to see that {σ′ ∈ CSα(σ), α(χ(carrier(σ′, s))) ≥ l} = CSα(θ).

Let β be the complement of θ in σ, i.e., β = σ \ θ. As χ(σ) = χ(carrier(σ)), we have
χ(β) = χ(carrier(β)). Therefore, according to Lemma 12 we have α(χ(β)) ≤ csize(CSα(β)),
hence l − 1 ≤ csize(CSα(β)). But as (CSα(β) ∪ CSα(θ)) = CSα(σ), we obtain csize(CSα(θ)) =
csize(CSα(σ))− csize(CSα(β)) ≥ α(χ(σ))− l + 1.

Theorem 3. For all α ∈ AF(Π), Algorithm 1 solves task Rα in the α-model.

Proof. We show first that the set of outputs of the processes indeed belongs to Rα. Then we
proceed to the more involved proof of termination.
The outputs belong to Rα: Except for the wait-phase, processes simply execute two rounds
of immediate snapshots, therefore the set of outputs belongs to some simplex in Chr2 s. In order
to belong to Rα, only 2-contention simplices are restricted. Let σ be the simplex resulting of the
processes outputs. Consider a face θ of σ forming a 2-contention simplex which does not contain
any critical simplex member, i.e., χ(θ) ∩ χ(CSMα(carrier(σ,Chr s))) = ∅.

Consider the vertex v in θ, with i = χ(v), which has the smallest carrier carrier(v, θ). Note that
vertices in a 2-contention simplex have distinct carriers, and so there is a smallest one. The variable
critical [i] can be set to true only if the parent of v in the first subdivision, i.e., v′ ∈ carrier(σ,Chr s)
such that χ(v′) = χ(v), is part in a critical set of carrier(σ,Chr s). Indeed, the output of pi first
immediate snapshot corresponds to χ(view1(v)), i.e., χ(Car(v′, s)), and therefore critical [i] was
set to true only if v′ belongs to a critical simplex in carrier(σ,Chr s). As pi exited the wait phase
with critical [i] = false, then the following condition was satisfied:

|{pj ∈ IS1 [i], (IS2 [j] = ∅) ∧ (∅ (IS1 [j] (IS1 [i]) ∧ (¬critical [j])}| < concurrency .

If IS2 [j] 6= ∅, then pj terminated its second immediate snapshot before pi started it. This implies
that pj is associated to a vertex vj such that carrier(vj ,Chr s) (carrier(vj ,Chr s) and so vj 6∈ θ.
Moreover, ∅ (IS1 [j] (IS1 [i] being false implies, if j 6= i, that V iew1(v) ⊆ V iew1(vj) and thus
vj 6∈ θ as v as V iew2(v) is the smallest. As critical [j] also implies that vj 6∈ θ, we obtain that
dim(θ)− 1 ≤ concurrency (as pi is not counted in the set) at the time pi exited the wait-phase.

All that is left to show is that this value of the concurrency variable is smaller than or equal to
Conc(carrier(θ,Chr s). The value of concurrency is set to k if and only if a set of processes which
terminated their second immediate snapshot forms a critical simplex in σ and has a set consensus
power equal to k. Moreover, this critical simplex is a subset of carrier(v,Chr s) as the processes
associated to it completed their second immediate snapshot. Thus, Conc(carrier(v,Chr s) ≥
concurrency . Moreover as carrier(v,Chr s) ⊆ carrier(θ,Chr s), we have Conc(carrier(θ,Chr s) ≥
concurrency .
Outputs are provided to all correct processes : Assume that the participation is equal to P .
Therefore there is at most α(P)− 1 processes which may have crashed in the α-model.

17

Now let us assume that some correct process did not terminate, and let pi be such a process
with the smallest first immediate snapshot output. This means that it fails infinitely often the test
on line 11, and in particular after IS1 and IS2 were modified for the last time. Thus the following
is always verified for pi:

|{pj ∈ IS1 [i], (IS2 [j] = ∅) ∧ (∅ (IS1 [j] (IS1 [i]) ∧ (¬critical [j])}| ≥ concurrency .

As pi is the correct process with the smallest first immediate snapshot output, this set contains
only failed processes, as ∅ (IS1 [j] (IS1 [i] is true. Let k be the number of such failed processes.

If any critical simplex with an associated set consensus power strictly greater than k was fully
simulated in the second immediate snapshot, then concurrency would be set to a value greater
than k and pi would have terminated. But according to Corollary 13, in any completion of the
first immediate snapshot outputs to include the failed processes, the minimal hitting set size of the
critical sets with associated agreement power greater than or equal to k+ 1 is greater then or equal
to α(P)− k. Thus it requires at least α(P)− k failed processes to block all these critical simplices.
This implies that the k failed processes blocking pi and the α(P)− k failed processes blocking the
critical simplices must intersect. A process in this intersection is not observed by pi as a critical
simplex member, therefore it cannot have written its first immediate snapshot output. But if it
has not written its first immediate snapshot output, then it is not one of the k failed processes
blocking pi—a contradiction.

C Proofs of Section 6

For convenience, let us recall the definition of µQ, and split it into two vertex maps γQ and δQ as
follows:

µQ(v) = if (χ(CSVα(carrier(v,Chr s))) ∩Q 6= ∅) then δQ else γQ.

With γQ and δQ defined as follows:

δQ = χ(min({carrier(σ′, s) : (σ′ ∈ CSα(carrier(v,Chr s)) : χ(carrier(σ′, s)) ∩Q 6= ∅)}).

γQ = χ(min({carrier(v′, s) : (v′ ∈ carrier(v,Chr s)) ∧ (dim(v′) = 0) ∧ (carrier(v′, s) ∩Q 6= ∅)}).

Property 4. [Validity of µQ] ∀v ∈ Rα, dim(v) = 0, χ(v) ∈ Q :

(µQ(v) ⊆ χ(carrier(v, s))) ∧ (µQ(v) ∩Q 6= ∅).

Proof. Let us fix some vertex v ∈ Rα and some Q ⊆ Π. Both γQ and δQ return the carrier of
a subset of the carrier of v. By definition of the carrier, if σ ⊆ σ′ then |σ| ⊆ |σ′| and therefore
the carrier of σ is a subset of the carrier of σ′. Thus, both γQ and δQ return a subset of
carrier(carrier(v,Chr s), s). By transitivity of inclusion and as s is a subset of Chr s, we have
carrier(carrier(v,Chr s), s) ⊆ carrier(v, s). Therefore, µQ(v) ⊆ χ(carrier(v, s)).

If χ(CSVα(carrier(v,Chr s))) ∩ Q 6= ∅ then there is a critical set in carrier(v,Chr s) which
intersects with Q. Thus δQ(v), and hence µQ(v), returns a set of processes which intersect with Q.

Otherwise, χ(CSVα(carrier(v,Chr s))) ∩ Q = ∅. According to the self-inclusion property of
immediate snapshots transferred to carriers, χ(v) ∈ carrier(v,Chr s) and thus χ(v) ∈ View1.
Therefore, there is a process v′ ∈ carrier(v,Chr s) such that χ(carrier(v′, s)) ∩Q 6= ∅. Therefore
γQ, and hence µQ, returns a set of processes intersecting with Q.

Let us show now some auxiliary lemmas that will be used for the proof of Property 5:

Lemma 14. ∀Q ⊆ Π, (∀σ ∈ Chr2 s : χ(σ) ⊆ Q) :

(max(dim(σ′) : σ′ ⊆ σ∧σ′ ∈ Cont2}) = k)∧(∀v ∈ σ, ∃v′ ∈ carrier(v,Chr s), γQ(v) = χ(Car(v′, s)))

=⇒ |{γQ(v) : v ∈ σ}| ≤ k + 1.

18

Proof. Let us fix some set of processes Q ⊆ Π and some simplex σ ∈ Chr2 s such that χ(σ) ⊆ Q.
Consider the vertex v1 of σ with one the smallest V iew2(v1) and one the smallest V iew1(v1)
among those. According to the definition of γQ and to the assumption stating that γQ returns the
V iew1(v′) of a vertex v′ of σ, we can derive that γQ(v1) returns V iew1(v1).

Then let us repeat such an iterative process by selecting the vertex vk such that vk has the
smallest V iew1(vk) among the processes with the smallest V iew2 not returning for γQ(v) the
V iew1(vj) of a previously defined vj with j < k. Like before, vk will return V iew1(vk).

This construction provides a list of vertices of the same size as the number of distinct γQ(v)
outputs in σ. Moreover, by construction we have View2(vi) (View2(vj) when i < j. But if
View1(vi) ⊆ View1(vj), then vj would not have returned for γQ(vj), View1(vj). Thus the sets of
vi forms a 2-contention simplex, proving the lemma claim.

Lemma 15. ∀σ ∈ Chr s,∀α ∈ AF(Π),∀k ∈ N :

|{carrier(σ′, s), σ′ ∈ CSα(σ) ∧ α(χ(carrier(σ′, s))) = k}| ≤ 1.

Proof. Let us fix some simplex σ ∈ Chr s, some agreement function α ∈ AF(Π) and some k ∈ N.
Assume that there exists two subsets of σ which are critical simplices associated with the same set
consensus power k. Let C1 and C2 be the set of processes composing the critical simplices, and let
V1 and V2 be the set of processes corresponding to their carriers.

By assumption we have V1 6= V2. But by the immediacy and self-inclusion derived from
immediate snapshots, we get, w.l.o.g., that V1 ⊆ (V2 \ C2). But according to the definition of
critical simplices we have α(V2 \ C2) < α(V2) = α(V1) — A contradiction.

Property 5. [Agreement of µQ] ∀Q ⊆ Π, (∀σ ∈ Rα : dim(σ) = n− 1), (∀θ ⊆ σ : χ(θ) ⊆ Q) :

|{µQ(v) : v ∈ θ}| ≤ α(∪v∈θ(µQ(v))).

Proof. Let us fix some Q ⊆ Π, some simplex σ ∈ Rα such that dim(σ) = n − 1 and some
simplex θ ⊆ σ such that χ(θ) ⊆ Q. Let {v1, . . . , vk} be the vertices of θ. W.l.o.g, assume that
carrier(v1,Chr s) ⊆ · · · ⊆ carrier(vk,Chr s). According to the test of µQ and the inclusion of the
carriers, there is a l ∈ {0, . . . , k}, such that ∀vi, i ≤ l, µQ(vi) = γQ(vi) and ∀vi, i > l, µQ(vi) =
δQ(vi).

Assume that l = k. If this is the case, then none of the vertices of θ are neither CSMα(v),
nor in CSVα(v). Let θ′ ⊆ θ be the greatest 2-contention simplex in θ. According to the definition
of Rα we have dim(θ′) − 1 ≤ Concα(θ′). Thus there exists a critical set σc, observed by some
process in θ′, such that dim(θ′)− 1 ≤ α(χ(carrier(σc, s))). As it is observed by some process in
θ′, and thus in θ, it cannot intersect with Q as otherwise this vertex would have been associated
to δQ. According to carrier inclusion, this implies that the view of every process in θ in the first
subdivision, i.e., V iew1, is greater than carrier(σc, s). Therefore, α(∪v∈θ(µQ(v))) ≥ dim(θ′)− 1.
By construction the selected processes return views provided by processes from themselves. Thus,
according to Lemma 14, we obtain that |{µQ(v) : v ∈ θ}| ≤ dim(θ′)− 1 ≤ α(∪v∈θ(µQ(v)))

Now let us assume that l < k, thus c = α(min({carrier(CSα(σ)) : χ(carrier(CSα(σ)))∩Q 6= ⊥})
is well defined.

Now let us consider the processes vi such that i ≤ l. As they do not observe a critical set, then
γQ necessarily maps to View1(v) with v equal to some vi such that i ≤ l. Let C be the set of
processes which return the view of a vi ∈ CSα(σ). Let us consider the set V of vertices composed of
the vi such that i > l and composed of C. For the former, µQ(vi) returns a set of processes which
correspond to the carrier of a critical set of σ. According to Property 4, it must be a set which
intersects with Q. This is also true for the latter according to carrier self inclusion. Therefore by
assumption they return the view of a critical set with an associated set consensus power greater
or equal to c. Let |{µQ(v), v ∈ V }}| = m. As l < k, we have m > 0. Then we have a vertex
vi, i ∈ {l + 1, . . . , k} such that α(µQ(vi)) ≥ m+ c− 1. Indeed, according to Lemma 15 there is at
most one carrier of a critical set associated to a given set-consensus value. Therefore if there are m
distinct δQ outputs provided, each associated to a set-consensus value greater or equal to c, then
one is associated to a set consensus power of at least m+ c− 1. Thus α(∪v∈θ(µQ(v))) ≥ m+ c− 1.

19

Let θ′ be the greatest 2-contention simplex composed of the vertices vi such that i ≤ l and such
that vi 6∈ CSα(σ). As they did not pass the test of µQ, it implies that they are not in CSVα(θ′).
Therefore, following the definition of Rα we have dim(θ′)− 1 ≤ Concα. The definition implies that
dim(θ′)− 1 is smaller than the set consensus power of a critical set σc observed by some process of
θ′. As it is observed by some process in θ′, and thus in θ, it cannot intersect with Q as otherwise
this vertex would have been associated with δQ. Therefore, it sees a critical set associated to a set
consensus power strictly smaller than c. The construction of the set of processes excludes V , the
processes returning through γQ a view of processes which returned δQ. Therefore, we can apply
Lemma 14 and obtain that there is at most dim(θ′)− 1 distinct decided values by the process not
in V . Thus at most c− 1.

Therefore there are at most m+ c− 1 distinct decided values, and hence: |{µQ(v) : v ∈ θ}| ≤
m+ c− 1 ≤ α(∪v∈θ(µQ(v))).

Property 6. [Robustness of µQ] ∀v ∈ Rα, dim(v) = 0,∀Q ⊆ Π :

µQ(v) = µcarrier(v,s)∩Q(v).

Proof. This is a direct corollary of the definition of µQ and γQ, that a given vertex v ∈ Rα does
not need Q to compute the result but only the processes in Q it sees.

Property 7. ∀Q ⊆ Π, (∀σ ∈ Rα : dim(σ) = n − 1), (∀θ ⊆ σ : χ(θ) ⊆ Q) : minQ ◦ µQ(σ) solves
and α(∪v∈θ(µQ(v)))-set consensus.

Proof. Let us consider a vertex v ∈ Rα, associated to a process of Q, χ(v) ∈ Q. According to
Property 4, µQ returns to v a non-empty subset of processes of Q. Thus minQ◦µQ(v) is well defined
and returns a process in Q. Therefore, the termination property of set consensus is satisfied for all
processes of Q. Moreover, Property 4 also implies that minQ ◦ µQ(v) is a subset of carrier(v, s).
In combination with the fact that minQ ◦ µQ(v) ∈ Q, this implies that the validity property of set
consensus is satisfied for all processes of Q.

Now consider any simplex σ ∈ σ ∈ Rα composed of processes of Q, χ(σ) ⊆ Q. According to
Property 5, it implies that the number of distinct set of processes returned by µQ is smaller than
or equal to ∪v∈θ(µQ(v)). Thus that the number of distinct values returned by minQ ◦ µQ(v) is
smaller than or equal to ∪v∈θ(µQ(v)). Therefore minQ ◦ µQ also satisfies the agreement property
of ∪v∈θ(µQ(v))-set consensus.

Lemma 8. If a process in A with a minimal view in some iteration of Rα shares a proposal, then
the described protocol solves α-adaptive set consensus.

Proof. According to Property 7 fA ◦ µA returns a valid set consensus proposal. Assume that the
protocol does not terminate for some processes in A. This implies that there is a process in A
which is not participating yet. This contradicts the assumption that there is a process with the
smallest view in A in some iteration which participates.

Consider the first round at which some process returns. As views are inclusion-closed and as
the process terminating must have observed all the processes of A in its view participating, then
every process saw some process in A participating. Therefore every process adopts a new proposal,
which is fA ◦ µA(v) with v the process associated vertex. According to Property 7, we have for
all subset Q of A associated to the simplex σ at most α(∪v∈σ(µQ(v))) distinct returned values.
But before returning a value, a process writes the input state of every process in its µQ output.
Therefore the participating set is greater than ∪v∈σµQ(v)) when α(∪v∈σ(µQ(v))) distinct outputs
are returned. Therefore the algorithm solves an α-adaptive set consensus.

Lemma 9. The read-write shared memory with access to set consensus simulation is lock-free.

Proof. Assume that eventually the simulation only completes dummy writes. This means that there
is a process which infinitely often completes itself dummy writes. Thus this process is infinitely
often provided with the smallest view of Rα without completing its pending set consensus operation.
According to Lemma 8, every process must have eventually returned — a contradiction.

20

