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Abstract

The hazard rate function is an important quantity characterizing several random phenomena. In this
paper, we investigate some crucial properties satisfied by the hazard rate function for a general power
series class of distributions, as monotonicity properties, sharp bounds and convexity properties. We
highlight how these properties are related to those of the baseline distribution and the corresponding
probability-generating function of discrete power series distributions.
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1. Introduction

Several aspects of an absolutely continuous distribution can be seen more clearly from the hazard rate
function (hrf) than from either the distribution or density functions. The hrf is an important quantity
characterizing life phenomena. Let X be a random variable with probability density function (pdf)
f(x) and cumulative distribution function (cdf) F(x). The hrf of X is defined by f(z)/F(z), where
F(z) = 1 — F(x) is the survival function. The hrf may be increase, decrease, constant, upside-down
bathtub (unimodal), bathtub-shaped or indicate a more complicated process. In many applications
there is a qualitative information about the hrf shape, which can help in selecting a specified model.

Several classes of distributions were proposed by compounding some useful lifetime and discrete dis-
tributions in the last few years. The compounding procedure follows the pioneering work of Marshall and
Olkin| (1997). |Chakandi and Ganjali (2009) defined the exponential power series (EPS) class of distribu-
tions, which contains as special cases involving the exponential geometric (Adamidis and Loukas| |1998|),
exponential Poisson (Kus | 2007)) and exponential logarithmic (Tamasbi and Rezaei |, |2008)) distributions.
Morais and Barreto-Souza| (2011)) defined the Weibull power series (WPS) class which includes the EPS
distribution as a sub-model. The WPS distributions can have increasing, decreasing and upside down
bathtub hrf. The generalized exponential power series distributions were proposed by Mahmoudi and
Jafari| (2012]). [Silva et al.| (2013) studied the extended Weibull power series family of distributions, which
includes as special models the EPS and WPS classes of distributions. [Bourguignon et al.| (2014]) and |Silva
and Cordeiro| (2014) proposed the Birnbaum-Saunders power series (BSPS) and Burr XII power series
(BXIIPS) classes of distributions, respectively. Recently, [Silva et al.| (2016) proposed the generalized
gamma power series (GGPS) distributions and defines 76 sub-models as special cases. The GGPS hrf
can be constant, decreasing, increasing, upside-down bathtub or bathtub-shaped.

In this paper, we consider a general power series class of distributions characterized by the distri-
butions of the random variables X = min(Xy,...,Xy), where X1, X5,... , Xy are independent and
identically distributed (i.i.d.) continuous random variables and N is a discrete random variable having
a power series distributions (including truncated Poisson distribution, geometric distribution, binomial
distribution, and many more). For example, X can represent the lifetime of a system with N components
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where the lifetime of the i-th component is represented by X;. Further details on this general power series
class can be found in [Tahir and Cordeiro| (2016)), and the reference therein. In this study, we focus our
attention on the nature of the hrf of X. We investigate some of its properties according to the properties
of the distributions of X; and N. In particular, we prove that if the hrf of X; is decreasing, the hrf
of X is decreasing too, without extra assumptions on the distribution of N; the power series family of
distributions preserve the decreasing hrf property of the baseline distribution. We determine sharp and
simple lower and upper bounds for the hrf of X depending only of the hrf of X; and the expectation of
N. An immediate consequence is the preservation of the discontinuities for these hrfs. We also provide
a differential equation where the hrf of X is the solution, with some consequences n on its monotonicity
properties. Additional properties are given for two specific distributions on N: the truncated Poisson
distribution and the geometric distribution.

The rest of the paper is organized as follows. In Section [2] we introduce the power series family of
distributions and present our main results. Section [3| provided more contributions for two specific class
of distributions.

2. The power series class of distributions

Let N be a discrete random variable having a power series distribution (truncated at zero) with
probability mass function

an 0™
c)’
where the support S of N is a subset of the non-negative integers, a,, > 0 depends only on n and there

is r > 0 such that C(0) = > a, 0™ is finite for all § € (0,7) (r can be c0). Although we will always

n=1
consider 6 as a value in (0,r). Note that C(0) has derivatives of all orders in (0, r) and those derivatives
can be obtained by differentiating the power series term to term. Also, because a,, > 0 for all n, C(6)
and all its derivatives will be positive in (0, 7).

The moments of the random variable N can be easily obtained from the probability-generating
function K (s) = E(s"). By noticing that K(s) = C(s6)/C(8), they also can be determined using C(6).
By setting G(0) = log[C(0)], G'(8) = dG(0)/df and G"(0) = d* G()/dH?, the expectation of N is given
by E(N) = 6 G’(0) and the variance is given by Var(N) = 02G”(0) + 6 G'(9).

Table (1| presents well-known power series distributions and some useful quantities (to determine
moments, quantile ... ): C(6), C'(9), C"(#) and C~1(0).

pn=P(N=n)= n=12,..., (1)

Distribution an C(6) C’'(6) c”(0) C—16) C)

Trunc. Poisson n!—1 e? —1 e? e? log(6 + 1) 0 € (0,+00)
Logarithmic n1 —log(1 —6) (1—0)~1 (1—-6)2 1—e? 0 € (0,1)
CGeometric 1 6(1—6)"1 (1—6)"2 2(1—-6)"3 60+ 1)1 0 € (0,1)
Binomial (™ O+1)m—1 m(6 + 1)m—1 % O—1Ym -1 6e(0,1)

Table 1: Useful quantities for some power series distributions.

Let us now present the considered general power series (GPS) class of distributions. Let & be a
parameter vector. Let X, Xo,... be ii.d. random variables with cdf G(z;&) (baseline distribution),
pdf g(x; &) and hrf r(x; &) = g(z;€)/(1 — G(x;&)). We set X = min(Xy,...,Xy). The conditional cdf
of X|N =nis given by P(X <2 | N =n)=1-[1-G(z;€)]". The GPS class of distributions is
characterized by the cdf:

400 —
FX($§97§)=ZP(X§35|N:n)P(N:n):l_CW7 @

_ oo

where G(x;€) =1 — G(x;€). Using the derivative of C'(#) according to 6, i.e. C'(0) = Y. a, n0" !, the
n=1

pdf is given by

C'(0G(x;£))



The hrf of GPS class of distributions is given by

hx (z;0,€) _Gg(x;i)m'

The following result shows a sufficient condition to ensure that hx(z;0,€&) decreases.
Proposition 1. If r(z;&) is a decreasing function of z, then hx(x;0,€) is a decreasing function of x.

Proof of Proposition[1. Let us introduce the function M(s) defined by

E(NsN)

M(3)=W7

s € (0,1].

It is of interest because it allows us to write hx (z;0,€) in the following form:

L g(6) C0T(:€) 6T €)
Ix(n:0.8) = e CoGwme)

= r(z;§)M(G(x;€)) (3)

and, since r(x; €) is positive and is supposed to be a decreasing function of z, and G(z; &) is a decreasing
function of z, it is enough to prove that M (s) is an increasing function of s with s € (0,1]. The standard
derivative ratio formula with [E(Ns"V)]) = E(N2sV~1) and [E(sV)] = E(NsV~1) gives

, . E(N2.sN"Y)E(sV) — E(NsY)E(NsV-1)  E(N%N"1)E(sN) — s [E(NsV )]
M= EED ) B W

Clearly, [E(s™)]? > 0. The Cauchy-Schwarz inequality gives
N-1y12 _ Ny N2 2 N-2 Ny _ 2 N-1 N
s[E(Ns"D] =s|E(Ns>'s2)| <sE(N?s"?)E(s")=E(N?*s""1E(s"),
implying that E(N2sN"1)E(sV) — s [E(N SN*I)]2 > 0. Thus M'(s) > 0, so M(s) is an increasing
function of s, implying that hx(z;6, &) is a decreasing function of z. This ends the proof. I

Thus, Proposition [1| ensures that the power series family of distributions preserve the decreasing hrf
property of the baseline distribution.

The following result presents lower and upper bounds for hx (x; 6, €) depending on r(z; &) and E(N)
(without assumptions on the monotony of r(z; £)).

Proposition 2. For any z € R, we have
r(z;€) < hx(2:0,€) < E(N)r(a; €).
Proof of Proposition[3 We use the expression (3). Owing to N > 1 and s > 0 for s € (0, 1], we have

SN SN
M) - EOVY) | B(sY)

E(sM) = E(sN)

Since r(z;§) is positive, we obtain r(z; &) < hx(x;0,£). Now using the fact that M(s) is increasing in
s, G(z;€) €10,1] and M (1) = E(N), we have

hx (2;0,8) = r(z; €)M(G(x;€)) < r(w;€)M(1) = E(N)r(z; £).
The proof of Proposition [2]is complete. NI

Owing to Proposition we have lim r(z;&) = +oo if and only if lim hx(x;0,€) = 4+o0co. The
T—T T—Ty

discontinuities of r(x; &) are preserved in hx(z; 6, &).
Proposition [3| below show a differential equation where hx (z;0, &) is the solution.



Proposition 3. The hrf hx(x;0,€) satisfies the non-linear equation:

Wy (2:0,6) _ g'(@:&) M'(G(x:8) o o
Ix(@0.6)  gwE) | M) O T

where M'(s) is given by (4).

Proof of Proposition[3 Using the expression , we have
Wy (2:6,€) = [r(2: )M (G (2:€))] = 1/ (2:€)M(G(x:€)) — r(w: )M (Gla: €))g(x: ).
Hence, using again ,

W (@:0,6) _ r'(@:&)  M(G(:8)) o
hx(2:0,€)  r(@:6)  M(@G(x;€)"

It is well-known that a hrf as r(x; €) satisfies the non-linear differential equation:

r'(z:8) _ g8 o
rwE)  g@é) ().

Therefore

M0, g6 M@we) .
hx(@0.6)  gwd) MGy S T

Proposition [3]is proved. i

An important consequence of Propositionis that, since hx (z;6,&) > 0, the sign of by (x; 6, ) is the
g (x:8) _ M'(G(x:8)) . . r'(z:€) _ M'(G(x:8))
g(@€) ~ M(G(x:€)) 9(x; &) +r(:€) (or Ty M(G(x:€))
important informations on the monotonicity properties of hx(x; 6, &) according to the complexity of the
functions considered (discontinuities, ... ).

Also, remark that we can rediscover the result of Proposition [I} in the proof of Proposition [1} it is

shown that M’(s) > 0. Since hx(z;6,€) > 0, g(x;&) > 0, M(G(x;€)) > 0 and r(z; &) > 0, if r'(z;€)
is decreasing, so r'(z;€) < 0, then :((ff)) - Alg((g((i;g))g(x;ﬁ) < 0 implying that h'y(x;6,€) < 0, thus
hx(x;0,€) is a decreasing function of x.

The next section presents more properties of hx (x;6,€&) by considering specific distributions for N,

namely the truncated Poisson distribution and the geometric distribution.

same as the sign of g(x; &)). This can provide

3. Study of two examples

3.1. Truncated Poisson distribution case

Here we supposed that N follows the truncated Poisson distribution of parameter # > 0. This case
is standard in the literature. See, for instance, the truncated-exponential skew-symmetric distributions
(Nadarajah et al. |2014), and the references therein. In this case, one can apply Propositions (with
E(N) =1+0) and 3] However, since we have the analytic expression of hx (z; 6, &), some properties can
be refined. The result below provides some equalities in this case.

Proposition 4. If N follows the truncated Poisson distribution with parameter 0 > 0, then we have
hx(2;0,8) = r(z;€) [1 +0G(x;€)],  Bx(2;0,€) =1 (x;€) + 09/ (z; €).

Proof of Proposition[f} We have E(sV) = s/~ and E(N sV) = [BE(s™)]'s = (1 +60s)se’ =1, We

now use the expression (3)). Since M(s) = Eg(ifvjj) =1+ 0s, we have

hx(2;0,€) = r(z;€)M(G(x;€)) = r(z;€) [1 + 0G(z:€)] .



Moreover
Wy (2;0,€) = 1'(2;€) [1+0G(2;€)] — Og(a; &)r(x; )
= 7'(2;:6) + 0 [ (;6)G(x; &) — g(a;€)r(w;€)] .
We end the proof by observing that

0 56) — gl = L EICEO @O ) oo

Proposition [ is proved. B

Some additional consequences of Proposition [4 are described below. Note that the extreme of
hx (z;6,&) are given by the solution z of the equation Iy (z;6,€) =0, i.e. 7' (x;€) + 04’ (x; &) = 0.

As ever shown in Proposition [I] if r(z; &) is a decreasing function of z, we have 7/(z; &) < 0, implying
that ¢'(x; &) <0, so Wy (x;0,€) =7'(x;€) +0¢'(x;€) <0, hence hx(x;0,€) is a decreasing function of x.

On the other hand, if r(z; &) and g(xz; &) are increasing functions of z, then h'y (x;6,€) = r'(z; &) +
0g'(x;€) > 0, so hx(x;6,€) is an increasing functions of .

Also note that if r(z; £) and g(z; ) are convex (resp concave), then b’y (z;6,&) = v’ (z; €)+0g" (z; &) >
0 (resp A% (x;0,€) <0), then A% (x;0, &) is convex (resp concave).

3.2. Geometric distribution case

Here we supposed that N follows the geometric distribution of parameter 6 € (0,1). For an applica-

tion, we refer the reader to|Marshall and Olkin| (1997). Naturally, we can apply Propositions (with
E(N) = 1710) and 3l However, since we have access to the expression of hy (z; 6, £), some properties can

be refined. The result below provides some equalities in this case.

Proposition 5. If N follows the geometric distribution with parameter 6 € (0,1), then we have

i (:6.€) = 1%52*89 Wy (2:0,€) = h (230, ) (x),
where
wiz) = @& (@8

r(z;€)  1— 0G(x;€)

Proof of Proposition[5, We have E(sV) = (tgis and E(N sV) = [E(sN)]'s = %. Let us now use
E(NsN) 1

the expression . Since M (s) = BGN) — o650 WO have

Moreover, observe that M’(s) = ~——4— = 0 [M(s)]?. Hence

Wy(2:0,€) = 1'(2;€)M(G(x;€)) — r(x: &) M'(G(x;€))g(x; €)

I
>
>

0
>
m

Proposition [5] is proved. 1

From the second equality, we see that the sign of h'x(x;0,€) is the same as the sign of w(z) since
hx(x;0,6) > 0. As ever shown in Proposition |1} if r(z;&) is a decreasing function of x, we have
r'(x;€) <0, so w(z) <0, hence hx(x;0,&) is a decreasing function of x.
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