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On the zeros of the spectrogram of white noise

Rémi Bardenet1∗, Julien Flamant1, Pierre Chainais1

1 Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, 59651 Villeneuve d’Ascq, France

Abstract

In a recent paper, Flandrin [2015] has proposed filtering based on the zeros of a spectrogram,
using the short-time Fourier transform and a Gaussian window. His results are based on empirical
observations on the distribution of the zeros of the spectrogram of white noise. These zeros tend
to be uniformly spread over the time-frequency plane, and not to clutter. Our contributions
are threefold: we rigorously define the zeros of the spectrogram of continuous white noise, we
explicitly characterize their statistical distribution, and we investigate the computational and
statistical underpinnings of the practical implementation of signal detection based on the statistics
of spectrogram zeros. In particular, we stress that the zeros of spectrograms of white Gaussian noise
correspond to zeros of Gaussian analytic functions, a topic of recent independent mathematical
interest [Hough et al., 2009].

1 Introduction

Spectrograms are a cornerstone of time-frequency analysis [Flandrin, 1998]. They are quadratic time-
frequency representations of a signal [Gröchenig, 2001, Chapter 4], associating to each time and fre-
quency a real number that measures the energy content of a signal at that time and frequency, unlike
global-in-time tools such as the Fourier transform. Since it is natural to expect that there is more
energy where there is more information or signal, most methodologies have focused on detecting and
processing the local maxima of the spectrogram [Cohen, 1995, Flandrin, 1998, Gröchenig, 2001]. Usual
techniques include ridge extraction, e.g., to identify chirps, or reassignment and synchrosqueezing, to
better localize the maxima of the spectrogram before further quantitative analysis.

In contrast, Flandrin [2015] has recently observed that the locations of the zeros of a spectrogram in
the time-frequency plane almost completely characterize the spectrogram, and he proposed to use the
point pattern formed by the zeros in filtering and reconstruction of signals in noise. This proposition
stems from the empirical observation that the zeros of the short-time Fourier transform of white noise
are uniformly spread over the time-frequency plane, and tend not to clutter, as if they repelled each
other. In the presence of a signal, zeros are absent in the time-frequency support of the signal, thus
creating large holes that appear to be very rare when observing pure white noise. This leads to testing
the presence of signal by looking at statistics of the point pattern of zeros, and trying to identify holes.
In this paper, we attempt a formalization of the approach of Flandrin [2015]. To this purpose, we put
together notions of signal processing, complex analysis, probability, and spatial statistics.
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Our contributions are threefold: we rigorously define the zeros of the spectrogram of continuous
white noise, we explicitely characterize their statistical distribution, and we investigate the computa-
tional and statistical underpinnings of the practical implementation of signal detection. In particular,
we stress that zeros of spectrograms of white noise correspond to zeros of Gaussian analytic functions,
a topic of recent independent mathematical interest [Hough et al., 2009].

In short, our approach starts from the usual definition of white noise as a random tempered dis-
tribution. Using a classical equivalence between the short-time Fourier transform and the Bargmann
transform, we show that the short-time Fourier transform of white noise can be identified with a ran-
dom analytic function, so that we can give a precise meaning to the zeros of the spectrogram of white
noise. It turns out that real and complex Gaussian white noises lead to recently studied random ana-
lytic functions, with completely characterized zeros. We then investigate how to leverage probabilistic
information on these zeros to design statistical detection procedures. This includes linking probability
and complex analysis results to the discrete implementation of the Fourier transform.

The rest of the paper is organized as follows. In Section 2, we introduce the relevant notions of
complex analysis, probability, and spatial statistics. In Section 3, we characterize the zeros of the short-
time Fourier transform of real white noise, while the complex and the analytical case are treated in
Section 4. In Section 5, we investigate the relation between the previous sections and the usual discrete
implementation of the Fourier transform, and we demonstrate a detection task using the spectrogram
zeros.

2 Spectrograms, complex analysis, and point processes

In this section, we survey the relevant notions from signal processing, probability, and spatial statistics.

2.1 The short-time Fourier transform

Let f, g ∈ L2(R), the evaluation at (u, v) ∈ R2 of the short-time Fourier transform (STFT) of f with
window g reads

Vgf(u, v) =

∫
f(t)g(t− u)e−2iπtvdt = 〈f,MvTug〉, (1)

with 〈·, ·〉 denoting the inner product in L2(R), Mvf = e2iπv·f(·) and Tuf = f(· − u). We copy
our notation from [Gröchenig, 2001, Chapter 3], to which we refer for a thorough introduction. The
squared modulus of the STFT (1) is called a spectrogram, and it is commonly interpreted as a measure
of the content of the signal f around time u and frequency v. In contrast, the usual Fourier transform
only provides the global frequency content of a signal, that is, not localized in time.

The right-hand side of (1) allows a natural extension of the STFT to tempered distributions, see
[Gröchenig, 2001, Section 3.1]. This is relevant to us, as white noise will be defined in Sections 3 and
4 as a random tempered distribution.

2.2 The Bargmann transform

Let a > 0 and consider the Gaussian window ga(x) ∝ exp(−πa2x2), normalized so that ‖ga‖2 = 1.

When a = 1, we drop the subscript and write g(x) = g1(x) = 21/4e−πx
2

.
We closely follow the textbook by Gröchenig [2001], only introducing arbitrary window width, and

gather the important result in the following proposition.
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Proposition 1. [Gröchenig, 2001, Section 3.4] Let f ∈ L2(R), u, v ∈ R and z = au+ i va , then

Vga(f)(u,−v) ∝ e−iπuve−
π
2 |z|2B (f(·/a)) (z), (2)

where the Bargmann transform B is defined by

Bf(z) = 21/4

∫
f(t)e2πtz−πt2−π2 z2dt.

Proof. The particular shape of the window allows us to write

Vga(f)(u, v) ∝
∫
f(t)e−πa

2(t−u)2e−2iπtvdt

=

∫
f(t)e−πa

2t2e−πa
2u2

e2a2πtue−2iπvtdt

= e−iπuve−
π
2 (a2u2+ v2

a2
)

∫
f(t)e−πa

2t2e2aπt(au−i va )e−
π
2 (au−i va )2dt.

Making the change of variables s = at and denoting

z = au+ i
v

a
, (3)

we obtain

Vga(f)(u, v) ∝ e−iπuve−
π
2 |z|2

∫
f
( s
a

)
e−πs

2

e2πsz̄e−
π
2 z̄

2

ds,

or equivalently

Vga(f)(u,−v) ∝ e−iπuve−
π
2 |z|2

∫
f
( s
a

)
e−πs

2

e2πsze−
π
2 z

2

ds

∝ e−iπuve−
π
2 |z|2B (f(·/a)) (z), (4)

where we have defined the Bargmann transform by

Bf(z) = 21/4

∫
f(t)e2πtz−πt2−π2 z2dt.

Equation (4) tells us that the zeros of the spectrogram u, v 7→ |Vga(f)(u, v)|2 are those of the
Bargmann transform of s 7→ f(s/a). Moreover, Equation (4) also readily extends to tempered distri-
butions.

2.3 Hermite functions

Some functions turn out to have a very simple closed-form Bargmann transform. Informally, if we had
an orthonormal basis of L2(R) formed by such functions, then we could decompose a white noise onto
this basis, and easily compute the STFT of white noise using closed-form Bargmann transforms. We
now introduce Hermite functions, which will play this exact role in later sections.
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Let Hn be the orthonormal polynomials with respect to the Gaussian window g, usually called the
Hermite polynomials in the literature [Gautschi, 2004]. Then, making the change of variables x′ = ax,
it comes ∫

Hk(ax)H`(ax)ga(x)dx ∝
∫
Hk(x′)H`(x

′)g(x′)dx′ = δk`.

The Hermite functions ha,k ∝ Hk(a·)
√
ga(·), normed so that ‖ha,k‖2 = 1, form an orthonormal basis

of L2(R) [Gautschi, 2004]. When a = 1, we again drop a subscript and denote hk = h1,k. To compute
the STFT of an Hermite function using (4), first note that for all s, ha,k(s/a) ∝ hk(s), so that

Vga(ha,k)(u,−v) ∝ e−iπuve−
π
2 |z|2B(hk)(z)

= e−iπuve−
π
2 |z|2 π

k/2zk√
k!

,

see [Gröchenig, 2001, Section 3.4] for the last equality.

2.4 Point processes on C
The zeros of the spectrogram of a random signal form a point process. Formally, a point process over C
is a probability distribution over configurations of points in C, i.e., unordered sets of complex numbers.
In particular, the cardinality of a realization of a point process is random. In this section, we introduce
point processes and basic descriptive statistics.

2.4.1 Generalities

The simplest point process over C is the Poisson point process with constant rate λ ∈ R+. It is defined
as the unique point process such that, for any B ∈ C with finite Lebesgue measure |B|, (i) the number
of points in B is a Poisson random variable with mean λ|B|, and (ii) conditionally on the number of
points in B, the points are drawn independently from the uniform measure on B. For existence and
further properties, see e.g. [Møller and Waagepetersen, 2003, Chapter 3].

More general point processes can be characterized by their k-point correlation functions ρ(k) for
k ≥ 1, informally defined by

ρ(k)(x1, . . . , xk)dx1 . . . dxk = P
(

There are at least k points, one in each of the
infinitesimal balls B(xi, dxi), i = 1, . . . , k

)
, (5)

for all x1, . . . , xk in C, see [Daley and Vere-Jones, 2003, Section 5.4] for a rigorous treatment. Of
particular interest to us will be the first and second-order interaction between the points in a realization
of a point process, encoded by ρ(1) and ρ(2), respectively.

The first order correlation function ρ(1) is often called the intensity of the point process, for it
yields, when integrated over a Borel set B ⊂ C, the average number of points falling in B under
the point process distribution. For the Poisson point process with constant rate λ, for instance, the
intensity is precisely λ, and thus constant over C.

The two-point correlation function ρ(2) is often renormalized to obtain the so-called pair correlation
function

g(x, y) =
ρ(2)(x, y)

ρ(1)(x)ρ(1)(y)
,
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see [Møller and Waagepetersen, 2003, Chapter 4]. For a Poisson point process with constant rate, g is
identically 1. When g(x, y) > 1, (5) indicates that pairs are more likely to occur around (x, y) than
under a Poisson process with the same intensity function. Similarly g(x, y) < 1 indicates that pairs are
less likely to occur. Finally, when the point process is both stationary (i.e., invariant to translations)
and isotropic (i.e., invariant to rotations), then g only depends on the distance r = |x − y|, and we
denote it by g0(r) = g(x, y).

2.4.2 The Ginibre ensemble

We give here another example of a point process on C, in order to demonstrate a non-constant pair
correlation function. If there exists a function κ : C × C → C such that the correlation functions (5)
with

ρ(k)(x1, . . . , xk) = det
[
κ(xi, xj)

]
1≤i,j≤k (6)

consistently define a point process, then this point process is called a determinantal point process
(DPP) with kernel κ. DPPs were first introduced by Macchi [1975], and we refer the reader to [Hough
et al., 2006, Lavancier et al., 2014] for modern introductions and conditions of existence. A classical
example of DPP over C is the infinite Ginibre ensemble. It is defined by its kernel

κGin(z, w) = e−
π
2 |z|2eπzw̄e−

π
2 |w|2 .

The Ginibre ensemble is stationary and isotropic, its intensity is constant equal to 1, and its pair
correlation is

gGin
0 (r) = 1− e−πr2 ,

see [Hough et al., 2009, Section 4.3.7] for these properties, noting that our version is rescaled to have
unit intensity. We also plot gGin

0 in Figure 2(a). Importantly for us, gGin
0 (r) < 1 for all r > 0, which

shows that Ginibre is a repulsive point process: pairs are less likely than Poisson at all scales, which
we can interpret as points in a realization repelling each other. Finally, we note that by definition (6),
if a DPP is stationary and isotropic, and if it has an Hermitian kernel, that is κ(x, y) = κ(y, x), then
g0 < 1.

2.4.3 Functional statistics

We will need to investigate how repulsive a stationary and isotropic point process on C like Ginibre is,
given one of its realizations over a compact window of observation. While estimators of g0 have been
investigated [Møller and Waagepetersen, 2003, Section 4.3], practitioners usually prefer estimating
Ripley’s K function

K(r) = 2π

∫ r

0

tg0(t)dt, r > 0,

and then the so-called variance-stabilized L functional statistic

L(r) =
√
K(r)/π,

which equals r for a unit rate Poisson process. K is proportional to the expected number of pairs
at distance smaller than r. Estimating K from data is thus relatively straightforward and involves
counting pairs distant from a collection of values of r. Furthermore, sophisticated edge corrections
have been proposed to take into account the fact that the observation window is necessarily bounded
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[Møller and Waagepetersen, 2003, Section 4.3]. Estimating L after one has obtained an estimate of K
is then straightforward. Plotting the estimated K or L as a function of r allows identification of scales
at which the point process is repulsive, in the sense that we can observe a lack of pairs within a given
distance compared to a Poisson process. For instance, we plot in Figure 2(b) the function r 7→ L(r)−r
for Ginibre: there is a clear lack of pairs at small scales, compared to the constant zero of a Poisson
process.

[Møller and Waagepetersen, 2003, Section 4.2] cover many more functional statistics for stationary
point processes. In particular, we mention for future reference the so-called empty space function F
and the nearest neighbour function G. For r > 0, F (r) is defined as the probability that a ball centered
at 0 and with radius r contains at least one point. Stationarity implies that the center of the ball can
be chosen arbitrarily, and F thus encodes the distribution of hole sizes in the point process. Similarly,
G is the cumulative distribution function of the distance from a typical random point of the point
process to its nearest neighbour in the point process.

3 The spectrogram of real white noise

In this section, we define real white noise, and examine the zeros of its spectrogram.

3.1 Definitions

To define white noise, we closely follow [Holden et al., 2010, Chapter 2.1] through a classical approach
that does not require defining Brownian motion first. We denote by S = S(R) the Schwartz space of
rapidly decaying smooth complex-valued functions of a real variable. The dual S ′ = S ′(R), equipped
with the weak-star topology, is the space of tempered distributions. The topology yields the Borel
sigma-algebra B(S ′) on S ′. Now, the Bochner-Minlos theorem [Holden et al., 2010, Theorem 2.1.1]
states that there exists a unique probability measure µ1 on (S ′,B(S ′)) such that

∀φ ∈ S, Eµ1
ei〈·,φ〉 = e−

1
2‖φ‖22 . (7)

We call this measure white noise, and (S ′, B(S ′), µ1) the white noise probability space. In particular,
(7) implies that for a random variable1 with distribution µ1 and a set of real-valued orthonormal
functions ϕ1, . . . , ϕp in S, the vector (〈ξ1, ϕ1〉, . . . , 〈ξp, ϕp〉) follows a real multivariate Gaussian, with
mean zero and identity covariance matrix, see [Holden et al., 2010, Lemma 2.1.2]. This is in accordance
with the usual heuristic of white noise having a Dirac delta covariance function.

Let ξ be a random variable with distribution µ1. If g ∈ S, then (u, v) 7→MvTug is in S, so that we
can define the STFT of ξ as the random function

u, v 7→ 〈ξ,MvTug〉.

From now on, we restrict ourselves to the Gaussian window g(x) = 21/4e−πx
2

, normalized so that
‖g‖2 = 1. We are interested in defining and studying the zeros of the spectrogram

S : u, v 7→ |〈ξ,MvTug〉|2. (8)

1We use the term random variable, but it is also customary to call ξ a generalized random process in the literature.
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3.2 Characterizing the zeros

We work in two steps: in Proposition 2, we identify each value S(u, v) in (8) as a limit in L2(µ1), and
we then show in Proposition 3 that the resulting random field defines an entire function, the zeros of
which are known.

Proposition 2. Let u, v ∈ R2, and write z = u+ iv ∈ C. Then

〈ξ,MvTug〉 =
√
πeiπuve−

π
2 |z|2

∞∑
k=0

〈ξ, hk〉
πk/2zk√

k!
(9)

where (hk) denote the orthonormal Hermite functions [Holden et al., 2010, Section 2.2.1], and con-
vergence is in L2(µ1).

Remark 1. Note that in Proposition 2, u and v are fixed, and the equality is a limit in L2(µ1). It is
still too early to identify the zeros of the left-hand side to the zeros of the right-hand side.

Remark 2. Note that our choice of the window g(x) = 21/4e−πx
2

is made to simplify expressions. The
proof of Proposition 2, along with Sections 2.3 and 2.2, immediately yield that for a non-unit Gaussian
window ga(x) ∝ exp(−πa2x2), Proposition 2 is unchanged, provided that z is defined as z = au+ iv/a
and a constant is prepended to the RHS of (9). In other words, given a particular value of a, it is
always possible to dilate/squeeze the time-frequency axes to obtain the results detailed here for a = 1.

Proof. Let u, v ∈ R2. Decomposing MvTug in the Hermite basis (hk) of L2(R), it comes

〈ξ,MvTug〉 =

∞∑
k=0

〈ξ, hk〉〈MvTug, hk〉

=

∞∑
k=0

〈ξ, hk〉Vg(hk)(u, v) (10)

where the limits are in L2(µ1). The STFT of Hermite functions is well-known, see e.g. the proof of
[Gröchenig, 2001, Proposition 3.4.4] or our Section 2.2, and it reads

Vg(hk)(u, v) = e−iπuve−
π
2 (u2+v2)π

k/2

√
k!

(u− iv)k. (11)

Plugging (11) into (10) yields the result.

Now we focus on the regularity of the right-hand side of (9).

Proposition 3. The random series
∞∑
k=0

〈ξ, hk〉
πk/2zk√

k!
(12)

µ1-almost surely defines an entire function.

Proof. By [Holden et al., 2010, Lemma 2.1.2], (〈ξ, hk〉)k≥0 are i.i.d. unit real Gaussians. We then
apply the first part of [Hough et al., 2009, Lemma 2.2.3].
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(a) Real white noise/symmetric GAF
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(b) Complex white noise/planar GAF

Figure 1: The spectrogram of (a) a realization of real white noise, and (b) a realization of complex
white noise. The right and top plots on each panel show marginal histograms, superimposed with the
theoretical marginal density, see text for details.

Since both L2 and almost sure convergence imply convergence in probability, L2 and almost sure
limits have to be the same. In particular, Propositions 2 and 3 together yield that the distribution of
the zeros of the spectrogram S in (8) is the same as the distribution of the zeros of the random entire
function (12). This answers Remark 1. In particular, we now know that the zeros of S are isolated.

The entire function in (12) is called the symmetric planar Gaussian analytic function (GAF), and
a few of its properties are known [Feldheim, 2013]. However, its zeros do not define a stationary point
process. In particular, a portion of the zeros concentrate on the real axis, see Figure 1(a). Intuitively,
one can approximate the zeros of (12) by the zeros of the random polynomial obtained from truncating
the series. The resulting polynomial has real coefficients, and it is thus expected to have real zeros as
well as pairs of conjugate complex zeros. As a side note, the number of real zeros is a topic of study
on its own, see e.g. [Schehr and Majumdar, 2008].

Coming back to our problem of detecting signals, this non-stationarity makes it uneasy to approach
via traditional spatial statistics techniques, which often assume some degree of stationarity. However,
there is a stationary point process that is a good approximation for the zeros of the symmetric planar
GAF, and that has been studied in depth. This point process is the zeros of the planar GAF, the
entire function corresponding to the STFT of complex white noise.
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4 The case of complex white noise

We now introduce the planar GAF, and explain why its zeros are a good approximation to those of
the symmetric planar GAF. In other words, we justify why the spectrogram of the real white Gaussian
noise can be approximated by that of the complex white Gaussian noise. We conclude by considering
the analytic white noise.

4.1 Definitions

Consider the two-dimensional white noise of [Holden et al., 2010, Section 2.1.2], that is, the space
S ′ ×S ′, with the Borel σ-algebra associated to the product weak star topology, and measure µ1 × µ1.
A draw ξ = (ξ1, ξ2) ∼ µ1×µ1 consists of two independent white noises. Letting φ = (φ1, φ2) in S ×S,
we define the smoothed complex white noise as in [Holden et al., 2010, Exercise 2.26] through

w(φ, ξ) = 〈ξ1, φ1〉+ i〈ξ2, φ2〉,

where ξ ∼ µ1×µ1. It is called “smoothed” because we define it using a pair of test functions φ, which
will be enough for our purpose. Note also that in signal processing, this is typically called a proper or
circular Gaussian white noise [Picinbono and Bondon, 1997].

Now, if we let both test functions be t 7→ MvTug, we recover what can reasonably be called the
STFT of complex white noise

u, v 7→ 〈ξ1,MvTug〉+ i〈ξ2,MvTug〉. (13)

4.2 Characterizing the zeros

The same arguments as in the proofs of Propositions 2 and 3 lead to

Proposition 4. With µ1×µ1 probability 1, the zeros of the STFT (13) are those of the entire function

1√
2

∞∑
k=0

(〈ξ1, hk〉+ i〈ξ2, hk〉)
πk/2zk√

k!
, (14)

where z = u+ iv.

We note that under µ1×µ1, the random variables 2−1/2(〈ξ1, hk〉+ i〈ξ2, hk〉) are i.i.d. unit complex
Gaussians, and the entire function (14) is called the planar Gaussian analytic function in the literature.
In particular, the planar GAF is one of the three fundamental GAFs in the monograph of Hough et al.
[2009], and more is known about its zeros than for the symmetric planar GAF in Proposition 3. We
group some known results in Proposition 5, selecting results that could be of statistical use in signal
processing.

Proposition 5 (Hough et al. [2009], Nishry [2010]). The planar GAF satisfies the following properties:

1. The distribution of its zeros is invariant to rotations and translations in the complex plane [Hough
et al., 2009, Proposition 2.3.7]. In particular, it is a stationary point process.
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Figure 2: Comparison of the Ginibre point process, the zeros of the planar GAF, and a realization of
the zeros of the spectrogram of complex white noise, using (a) pair correlation functions g0, and (b)
the L functional statistic, see Section 2.4 for definitions.

2. Its correlation functions are known [Hough et al., 2009, Corollary 3.4.2]. In particular, the
intensity in constant equal to 1, and with the notation of Section 2.4, for z, z′ ∈ C such that
|z − z′| = r, the pair correlation function reads

ρ(2)(z, z′) = g0(r) =

[
sinh2

(
πr2

2

)
+ π2r4

4

]
cosh

(
πr2

2

)
− πr2 sinh(πr

2

2 )

sinh3
(
πr2

2

) . (15)

3. The hole probability

pr = P(no points in the disk centered at 0 and with radius r)

scales as
r−4 log pr → −3e2/4 (16)

as r → +∞ [Nishry, 2010].

Figure 2 illustrates Proposition 5. We plot the pair correlation function (15) of the planar GAF,
along with the pair correlation functions of the Poisson and Ginibre point processes introduced in
Section 2.4. We also superimpose an estimate of g0 obtained from the spectrogram of a realization of a
complex white noise, see Section 5 for computational procedures. Finally, we also plot the L functional
statistic for the same point processes, as introduced in Section 2.4.
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Both the planar GAF and Ginibre are repulsive at small scales, but the planar GAF alone has
a small ring of attractivity around r = 1, well visible in Figure 2(a). This implies that the zeros
of the planar GAF cannot be a DPP with Hermitian kernel, as introduced in Section 2.4.2, unlike
what we and Flandrin [2017] may have intuited. DPPs were indeed a good candidate for the zeros,
as they are repulsive point processes and naturally relate to reproducing kernel Hilbert spaces, such
as those behind the STFT [Gröchenig, 2001, Theorem 3.4.2]. But the zeros of the planar GAF show
no repulsion at large scales, and more importantly the pair correlation function (15) is larger than 1
around r = 1, while the pair correlation of a DPP with Hermitian kernel cannot exceed 1 by definition
(6). Note that strictly speaking, it is still possible that the zeros of the planar GAF are a DPP with
a non-Hermitian kernel.

Even if they are not a DPP with Hermitian kernel, the zeros of the planar GAF are often compared
to the Ginibre ensemble, which is a DPP and is also invariant to isometries of the plane [Hough et al.,
2009, Section 4.3.7]. In particular, the decay of the log hole probability (16) is also in r4 for the Ginibre
process [Hough et al., 2009, Proposition 7.2.1]. This is to be compared to the slower decay in r2 of
a Poisson process with constant rate. This is an indication that locally, the zeros of the planar GAF
and the Ginibre ensemble are similarly rigid or regularly spread, and that both are more rigid than
Poisson. There are other intriguing similarities between the two point processes, see [Krishnapur and
Virág, 2014], where Ginibre is shown to be the zeros of a GAF with a randomized kernel.

4.3 The zeros of the planar GAF approximate those of the symmetric pla-
nar GAF

To sum up, the spectrogram of real white noise is described by the symmetric planar GAF, but the
zeros of the planar GAF are more amenable to further statistical processing. In this section, we survey
results by Feldheim [2013] and Prosen [1996] that support approximating the zeros of the symmetric
planar GAF by those of the planar GAF.

The zeros of the symmetric planar GAF (12) have the same distribution as the zeros of

fsym(z) = e−
π
2 z

2
∞∑
k=0

ak√
k!
πk/2zk, (17)

where ak are i.i.d. unit real Gaussians. Note that the covariance kernel of fsym is

Ksym(z, w) , Efsym(z)fsym(w)

= e−
π
2 z

2

e−
π
2 w̄

2

eπzw̄

= e−
π
2 (z−w̄)2 .

This hints some invariance of fsym to translations along the real axis. By a limiting argument, see e.g.
[Hough et al., 2009, Lemma 2.3.3], (17) is indeed a stationary symmetric GAF in the sense of Feldheim
[2013]. Namely, for any n, any z1, . . . , zn, and any t ∈ R, (fsym(z1 + t), . . . , fsym(zn + t)) has the same
distribution as (fsym(z1), . . . , fsym(zn)).

Feldheim [2013] derives the intensity of the zeros of general stationary symmetric GAFs. More
precisely, let nsym(B) be the random number of zeros of fsym in a Borel set B ⊂ C, she says that there
exists a so-called horizontal counting measure νsym s.t., almost surely, we have the weak convergence
of measures

νsym(A) = lim
T→∞

nsym([0, T ]×A)

T
,
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where A is a Borel set on the vertical axis. In other words, νsym characterizes the density of zeros
averaged across the horizontal axis. For our symmetric planar GAF (17), [Feldheim, 2013, Theorem
1] yields

νsym(A) =

∫
A

[dS(y) + δ0] , (18)

where
S(y) =

y√
1− e−4πy2

.

Equation (18) is the sum of a continuous component and a Dirac mass at 0. The Dirac mass relates
to the accumulation of zeros on the real axis discussed in Section 3. The numerator of the continuous
part S is the unnormalized cumulative density of a uniform distribution, and the denominator quickly
converges to 1 as y grows.

Now compare (18) to the horizontal counting measure of the zeros of the planar GAF, which is
simply the uniform dy, without any atom, see e.g. [Feldheim, 2013, Theorem 1] again. We observe
that the two counting measures are quickly approximately equal, as one goes away from the real axis.
More precisely, for A ⊂ [1,+∞), the ratio of S(A) by the Lebesgue measure of A is within 2 · 10−6 of
1. For Gaussian windows of arbitrary width, the change of variables (3) yields that the approximation
is tight for Im(z) ≥ a. This is no obstacle in signal processing practice, as spectrograms are never
considered close to the real axis, where ’close’ is defined by the spread of the observation window in
frequency, which is of order a, see Section 4.4. We also plot the densities of the continuous part of
both measures in Figure 1. The Dirac mass of the symmetric planar GAF corresponds to the subset
of zeros on the real axis.

A natural question is whether the approximation is also accurate for higher-order interactions in the
two point processes. This question can be addressed by comparing k-point correlation functions. The
case of the planar GAF was derived by Hannay [1998], and closed-form formulas are derived for the
symmetric planar GAF in [Prosen, 1996, Equation (12)]. The latter are not easy to interpret as they
involve nonstandard combinatorial combinations of matrix coefficients. Still, [Prosen, 1996, Equation
25] shows that when Im(z)� 0, the k-point correlation functions of the zeros of the symmetric planar
GAF are well approximated by those of the zeros of the planar GAF.

To conclude, the distribution of the zeros of the STFT of real white Gaussian noise is well approx-
imated by that of complex white Gaussian noise, as long as the observation window is sufficiently far
from the time axis.

4.4 On the analytic white noise

A real-valued function f ∈ L2 has an Hermitian Fourier transform. In signal processing, it is thus
common to cancel out the negative frequencies of a real-valued signal f ∈ L2 by defining a complex-
valued associated function called its analytic signal,

f+(x) = 2F−1(1R+Ff)(x),∀x ∈ R. (19)

where F is the usual Fourier transform. The term “analytic” is related to the alternative definition
of f+ as the boundary function of a particular holomorphic function on the lower half of the complex
plane, see e.g. [Pugh, 1982, Section 2.1] for a concise and rigorous treatment. In signal processing
practice, beyond removing redundant frequencies, the modulus and argument of f+ have meaningful
interpretations for elementary signals [Picinbono, 1997]. Since our initial goal is to understand the
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behaviour of the zeros of a real white noise, it is thus tempting to define and consider an analytic white
noise to represent this real white noise. If this approach led to a simple statistical characterization of
zeros, then we would avoid the approximation by the complex white noise of Section 4.1.

While folklore has it that the analytic white noise is the circular white noise of Section 4.1, this is
not the case for the most natural definition of the analytic signal of a distribution. Following [Pugh,
1982, Section 3.3], we define in this paper the analytic white noise by its action on L2: letting ξ ∼ µ1

be a real white noise2, we take

〈ξ+, f〉 , 2〈ξ,F−1(1R+Ff)〉, ∀f ∈ L2. (20)

For our purpose, it is enough to consider ξ+ through its action (20). In particular, if we want to follow
the lines of Sections 3 and 4 and identify the general term of a random series corresponding to the
STFT of ξ+, we need an orthonormal basis (ζk) of L2 and a window g such that

〈ζk,F−1(1R+
FMvTug)〉 (21)

is known in closed-form and simple enough. Hermite functions and the Gaussian window definitely do
not satisfy our criteria anymore, and we leave this existence as an open question. Still, we have the
following heuristic argument: when g is the unit-norm Gaussian, (21) becomes

〈ζk,F−1(1R+TvM−ug)〉, (22)

so that when v is large enough, say a few times the width of the window g, TvM−ug puts almost
all its mass on R+, and the indicator in (22) can be dropped. The Hermite basis then satisfies our
requirements, giving the planar GAF of Section 4. Intuitively, far from the real axis, the spectrogram
of the analytic white noise will look like that of proper complex white noise. This heuristic is to relate
to standard time-frequency practice, where one leaves out of the spectrogram a band that is within the
width of the window of the lower half plane. This is meant to avoid taking into account both positive
and negative frequencies of the signal simultaneously.

5 Practical spatial statistics using the zeros of the STFT

In Section 5.1, we discuss how to relate the continuous complex plane C with the practical discrete
implementation of the Fourier transform. In Section 5.2, we investigate simple hypothesis tests for
signal detection, as in [Flandrin, 2015].

5.1 Going discrete

To fully bridge the gap with numerical signal processing practice, there is an additional level of approx-
imation that needs to be discussed: Continuous integrals are replaced by discrete Fourier transforms,
so that the fast Fourier transform can be used. We first describe an experimental setting to study the
zeros of the spectrogram of Gaussian white noise. In particular, we explain how to reach an asymptotic
regime where the noise occupies an infinite range both in time and frequency and the spectrogram is
infinitely well resolved. Second, we investigate practical issues related to detecting a signal in white
noise by using its influence on the distribution of zeros of the spectrogram.

2As a side note, [Pugh, 1982, Section 3] investigates the random field that would be the formal equivalent to the
holomorphic continuation of the classical analytic signal of a function in L2. But this time, the limit on the real axis is
rather ill-behaved.
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5.1.1 Zeros of noise only

Let Fs the sampling frequency, ∆t = 1/Fs the time sampling step size and T the duration of the
observation window. The number of samples is then N + 1 with N = T/∆t.

Let K be the length of the discretized Gaussian analysis window, i.e. its duration is K∆t; therefore
∆ν = Fs/K = 1/K∆t is the frequency sampling step. In practice, the spectrogram obtained from a
discrete STFT is then an array of size (N + 1,K/2 + 1). Then we consider the time-frequency domain
[0, T ]× [0, Fs/2] only; it corresponds to the analytic signal. This is due to the Hermitian symmetry of
the Fourier transform of real signals: negative frequencies do not add any information to that carried
by positive frequencies, see also Section 4.4. This Hermitian symmetry can also be seen on the zeros of
the symmetric GAF in Figure 1(a), where signal processing practice would have us only consider the
upper half-plane (ν ≥ 0). From Feldheim [2013]’s results, see (18), we know that the expected number
of zeros of the continuous spectrogram is close to TFs/2 if we neglect the (asymptotically negligible)
region |ν| ≤ a close to the time axis, see Section 4.3. Assuming that we are able to extract every
zero, the expected number of zeros in the discrete spectrogram is then TFs/2 = N/2 in very good
approximation.

Let σt = 1/(a
√

2π) and σν = 1/(2πσt) denote the spreads of the Gaussian analysis window ga in
time and frequency, respectively. Note that the scale a serves as a fixed reference for scales in the
sequel. We would like to retain the stationary properties of the planar GAF in our discrete STFTs.
We thus require that, in the discrete setting, the resolution – in number of points – should be the same
in time and frequency, that is

σt
∆t

=
σν
∆ν
⇐⇒ σt · Fs = σν ·K∆t (23)

This leads to ( σt
∆t

)2

=
K

2π
⇔ σt =

√
K

2π
∆t. (24)

If we want to study the spectrogram of continuous white noise over an infinite time-frequency domain,
numerical simulations must obey two necessary conditions:{

infinite duration ⇔ fine frequency resolution : T/σt = 2πσν/∆ν → +∞
infinite frequency range ⇔ fine time resolution : Fs/σν = 2πσt/∆t→ +∞ (25)

In terms of samples, these two conditions imply that N,K →∞. More precisely,

σt
T

=
1

N

√
K

2π
→ 0 as N,K →∞ (26)

σν
Fs

=
1√

2πK
→ 0 as N,K →∞. (27)

These conditions are directly satisfied for K ∝ N , where ∝ means “proportional to”. Note that
in practice because of border effects one chooses N = 2K and keeps the N samples whose time index
n is such that K/2 ≤ n ≤ N − K/2. Then, σν/Fs = 1/

√
2πK ∝ 1/

√
N , σt/T ∝ 1/

√
N ; note that

∆t/σt = ∆ν/σν ∝ 1/
√
N as well. As a result, simulations can asymptotically well approximate the

continuous spectrogram of Gaussian white noise.
Figure 3 illustrates the relative scales of the duration T = N∆t, the frequency range K/2∆t (for

ν ≥ 0), the time and frequency resolutions ∆t and ∆ν, as well as the resolution of the time-frequency
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Figure 3: Illustration of the discrete time-frequency plane {(n∆t, k∆ν), 0 ≤ n ≤ N − 1, 0 ≤ k ≤
K/2}. The resolution of the spectrogram is controlled by the analysis window’s Gabor parameters
(σt, σν).

Figure 4: Illustration of the STFT: the noisy signal is convolved with a Gaussian that is translated
in time and frequency. The colour code corresponds to Figure 3 for ease of reference.
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Figure 5: Numerical simulation procedure. Black ticks indicate the number of samples, while blue
ticks show time-frequency units for a choice of ∆t = 1/

√
K (see text for details). In other words,

blue ticks are the coordinates in the complex plane that are implicit in the mathematical results of
Sections 3 and 4. The dashed region corresponds to the area used in subsequent simulations.

kernel corresponding to the window g(t) with Gabor spread (σt, σν). For the sake of completeness and
the reader new to time-frequency, we include in Figure 3 an illustration of the STFT of a noisy signal.

Now we detail how to relate the discrete coordinates of a discrete spectrogram with the continuous
complex plane. For a given value of a, one has σt = 1/(a

√
2π) and thus making the correspon-

dence between samples and time-frequency units implies setting ∆t =
√

2π/Kσt. For a = 1 one has

∆t =
√

1/K so that u = n/
√
K and v = k/

√
K are the coordinates of the time-frequency plane

corresponding to time sample n and frequency sample k, respectively. Figure 5 depicts the whole
numerical simulation procedure. It represents the simulated spectrogram and the corresponding ex-
tracted area, taking border effects in consideration. The bound ` fixes how many samples close to the
zero-frequency axis should be removed. For a = 1, we have chosen ` =

√
K, at it corresponds to y = 1

in (18). Note also that border effects alone would actually allow us to extend the shaded square in
Figure 5 on its left and right to include K samples. Instead, we chose to reduce it to K/2−` mostly for
esthetical concerns: since the point process we observe is almost stationary when only noise is present,
we favoured a square window rather than a rectangle.

When the conditions above are satisfied, several phenomena occur in the limit of infinite oversam-
pling N →∞, which is equivalent to letting both the duration T and the sampling frequency Fs grow
to infinity. In a dual manner, the resolution (∆t,∆ν) of the discrete spectrogram tends to zero. The
time-frequency extent (σt, σν) of the analysis window remains constant but is described by a number
of samples that grows as σt/∆t ∝

√
N while σt/T ∝ 1/

√
N → 0. The analysis window is thus more

and more finely resolved, and we become close to a continuous description. In parallel, the expected
number of zeros in the spectrogram of the white noise is FsT/2 and tends to ∞ as N grows. There-
fore, assuming perfect zero detection, statistics such as Ripley’s K function or the variance-stabilized
L functional statistic of Section 2.4.3 can be asymptotically perfectly well estimated.

In practice, we defined a numerical zero as a local minimum among its eight neighbouring bins,
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and found that the number of zeros was consistent with what we expected from Proposition 5, even if
we did not impose a threshold on the value of the spectrogram at the local minimum.

We leave this section on a mathematical note. In this section, we implicitly assumed that in the
limit on an infinite observation window and an infinite sampling rate, the discrete Fourier transforms
involved in the computation of the discrete spectrogram converge to their continuous counterpart. For
the sake of completeness, we mathematically justify in what sense this convergence can be expected.
With the notation of Section 3, subdivide again [0, T ] into N equal intervals and denote by χn the
indicator of the nth interval [(n − 1)∆t, n∆t]. Let PN,T : S → L2 attach to a Schwartz function f

the “sampled” simple function
∑N
n=1 f(n)χn. Then PN,T f → f in L2 as T and N go to infinity and

T/
√
N → α > 0, which is the setting described above in this section. On the other hand,

〈ξ, PN,TMvTug〉 =

N∑
n=1

〈ξ, χn〉e−2iπvn∆tg(n∆t− u) (28)

is what we call the discrete STFT at (u, v) of a realization of white noise. Note that in distribution,
(〈ξ, χn〉)n is a sequence of i.i.d. Gaussians with variance ∆t. To see how (28) is a good approximation
to our initial continuous STFT, we note that for all u, v,

Eµ1
|〈ξ,MvTug〉 − 〈ξ, PN,TMvTug〉|2 = Eµ1

|〈ξ,MvTug − PN,TMvTug〉|2
= ‖MvTug − PN,TMvTug‖2L2

→ 0.

5.1.2 Zeros of signal plus noise

When a signal is present, its specific scales destroy the scale invariance property of Gaussian white noise
and deprives us from any asymptotic regime in our numerical simulations. Let AS denote the typical
time and frequency area occupied by the considered signal. The presence of this signal creates a region
of the spectrogram of size AS where a decrease in the number of zeros is expected due to the positive
amount of energy corresponding to the signal. This decrease is clearly visible in the spectrograms
of Figure 7 for linear chirps with various AS and various signal-to-noise ratios (SNR). The approach
proposed here to build statistical detection tests is based on this intuition. To this purpose one needs
to quantify how far the presence of a signal can influence the statistics used in our tests so that we
can maximize this influence and the efficiency of the proposed test.

Given a sampling rate Fs and a duration of observation T , the unit intensity in Proposition 5
yields that the expected number of zeros in the spectrogram of a real white noise is Fs · T/2 = N/2,
neglecting what happens at small frequencies close to the time axis. Note that this is independent of
the width (σt, σν) of the Gaussian analysis window g. If one wants to increase the number of zeros in
the spectrogram to get better statistics, it is enough to increase either Fs or T . However, the expected
decrease in the number of zeros due to the presence of a signal is of the order of the area AS , the finite
time-frequency area AS corresponding to the spectrogram of the signal alone. As a consequence, an
excessive increase in either Fs and/or T would result in an asymptotically complete dilution of the
influence of the signal on the considered statistics. Thus, our purpose is to build statistics over one or
more patches P of the spectrogram of maximal area AP = ηtην such that AS/AP ' 1. On one hand,
a maximal area AP is necessary to ensure that the estimate of the chosen statistic be as accurate as
possible (in particular in the presence of noise only, to take into account as many zeros as possible and
minimize the false positive detection rate); on the other hand, this statistic will be more sensitive to
the presence of a signal if it mostly depends on the influence of the signal on the distribution of zeros
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in the spectrogram (in particular, in the presence of signal, we maximize the true positive detection
rate). In practice, note that one can hope to detect only signals such that AS � σtσν = 1/2π, which
means signals with a time-frequency support that affects more than σt/∆t · σν/∆ν = K/2π samples
of the spectrogram.

5.2 Detecting signals through hypothesis testing

5.2.1 Monte Carlo envelope tests

In Section 2.4.3, we reviewed some popular functional statistics for stationary isotropic point processes.
We focus here on L, the variance-stabilized version of Ripley’sK function, and the empty space function
F , see Section 2.4. We follow classical Monte Carlo testing methodology based on functional statistics,
which we now sketch, see e.g. [Baddeley et al., 2014] for a less concise introduction.

The methodology is independent of the test statistic used, so we introduce it for a general functional
statistic r 7→ S(r), which we later instantiate to be L or F . Let Ŝ denote an empirical estimate obtained
from the spectrogram of data, possibly using edge corrections, see [Møller and Waagepetersen, 2003].
Let S0 be the theoretical functional statistic corresponding to complex white noise. For S = L, L0

can be easily computed from (15). Note that our noise is real white noise in the applications, but we
approximate the corresponding 2-point correlation function by that of complex white noise far from
the real axis, as explained in Section 4.3. Detection of signal over white noise can be formulated as
testing the hypothesis H0 that Ŝ was built from a realization of a real white noise, versus the alternate
hypothesis H1 that it was not. To do this, we review Monte Carlo envelope-based hypothesis tests,
which are popular across applications.

In a Monte Carlo envelope test, we define a test statistic T ∈ R that summarizes the difference
r 7→ S(r)− S0(r) in a single real number, for instance a norm

T∞ = sup
r∈[rmin,rmax]

|S(r)− S0(r)| or T2 =

√∫ rmax

rmin

|S − S0|2. (29)

Let texp denote the realization of T corresponding to the experimental data to be analyzed. The test
consists in simulating m realizations of white noise, obtaining the corresponding functional statistics
estimates S1, . . . , Sm, computing the realizations t1, . . . , tm of the test statistic, and rejecting H0

whenever the observed texp is larger than the k-th largest value among t1, . . . , tm. Without loss of
generality, we assume t1, . . . , tm are in decreasing order, so that tk is the k-th largest. Symmetry
considerations show that this test has significance level α = k/(m + 1). When S0 is not available in
closed form, one can replace it by a pointwise average

S̄0(r) =
1

m+ 1
(S1(r) + · · ·+ Sm(r) + Ŝ(r)) (30)

while preserving the significance level, see [Baddeley et al., 2014].
To see why this test is called an envelope test, let k = 10 and m = 199 so that α = 0.05. We use as

a signal a synthetic chirp plus white noise as in Figure 7, with SNR= 20. In Figure 6, we take rmin = 0
and let rmax vary, showing for each rmax the corresponding tk as the upper limit of the green shaded
envelope. The black line shows texp at each rmax, for the same realizations of the tested signal and the
white noise spectrograms. To interpret this plot, imagine the user had fixed rmax to some value, then
he would have rejected H0 if and only if the corresponding intersection of the black line with r = rmax

was above the green area. Note that the significance of the test in only guaranteed if rmax is fixed
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Figure 6: Envelope plots for the detection test of Section 5.2 for the supremum and 2-norm of the
deviation of the L functional statistic from its pointwise average (30).

prior to observing data or simulations. Still, Figure 6 gives a heuristic to identify characteristic scales
of interaction after H0 is rejected. For instance, characteristic scales could be values of rmax where the
data curve in black leaves the green envelope3. The user can thus identify regions of the spectrogram
that possibly correspond to signal (defined as ”different from white noise”). To illustrate this, consider
again both plots of Figure 6. There is a hint of an interaction – an excess or deficit of pairs– between
rmax = 0.5 and rmax = 1, and this interaction cannot be explained by noise only. Although we do not
delve further here and rather focus on how the power of the test varies with parameters, this scale can
be used to filter out the noise, in the manner of the Delaunay-based filtering of Flandrin [2015].

5.2.2 Assessing the power of the test

The significance α of the test – the probability of rejecting H0 while H0 is true – is fixed by the user as
in Section 5.2.1. It remains to investigate the power β of the test, that is, the probability of rejecting
H0 when one should. Following Section 5.1.2, we expect β to increase with SNR, which should be
large enough to “push” zeros away from the time-frequency support of the signal to be detected. We
also expect the power to be larger when the observation window is not too much larger than the
time-frequency support AS of the signal.

We back these claims by the experiment in Figure 7, where we assume signals take the form of
linear chirps. Still taking m = 199 and k = 10, so that α = 0.05, we build each of the six panels as
follows: we simulate a mock signal made using a linear chirp plus noise, with SNR indicated on the
plot, growing from left to right. We then repeat 200 times: 1) simulate m white noise spectrograms, 2)

3Caveats have been issued against overinterpreting these scales of interaction, see [Baddeley et al., 2014].
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Figure 7: Assessing the power of the test on detecting a linear chirp with various SNRs across columns.
The top row corresponds to a larger support of the chirp compared to the observation window.

check wether H0 is rejected for each value of rmax. We can thus estimate the probability β of rejecting
H0 for various choices of rmax the user could have made. We plot both the power using S = L or S = F ,
choosing the 2−norm in (29) and the empirical average (30). We estimate the functional statistics
using the spatstat R package4. To identify the statistical significance of our estimated powers, we
plot Clopper-Pearson confidence intervals for 5 values of rmax, using a Bonferroni correction for the
10 multiple tests involved on each plot, see e.g. Wasserman [2013]. Finally, the top row of Figure 7
corresponds to a signal support that matches the size of the observation window, while the bottom
row is half that. On each panel, an inlaid plot depicts the spectrogram for one realization of the signal
corrupted by white noise. Spectrogram zeros are in white.

The results confirm our intuitions: power increases with SNR, and decreases as the size of the
support of the signal diminishes with respect to the observation window. In all experiments, the best
power is obtained by taking rmax to be as large as possible, which here means half of the observation
window. This makes sure that as many points/pairs as possible enter the estimation of the func-
tional statistic S. Concerning the choice of functional statistic, the empty space function F performs
significantly better for high SNR and large enough rmax. The green peaks of power at low rmax for
some combinations of SNR and support are due to the excess of small pairwise distances introduced

4Version 1.51-0, see http://spatstat.org/
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by the chirp signal. The power vanishes quickly once larger pairwise distances are considered, due to
the cumulative nature of L. It is hard to rely on these peaks as they do not appear systematically
and would require a careful hand-tuning of rmax that would likely defeat our purpose of automatizing
detection. So overall, we would recommend using F and large rmax, which appears to be a robust best
choice. We also found (not shown) first that F is superior or equal to the other functional statistics
described in Section 2.4 for chirp detection. Second, we found that the tests using the average (30)
are consistently more powerful than those using the analytic form L0 of L. We believe this is due to
the edge correction that is implicitly made in (30), while the analytic L0 corresponds to an infinite
observation window. Third, we also observed the 2−norm in (29) to be consistently more powerful
than the supremum norm.

6 Discussion

We showed how to give a mathematical meaning to the zeros of the spectrogram of white noise,
and investigated their statistical distribution for real, complex, and – to a lesser extent – analytical
white noise. We have related these zeros to the zeros of Gaussian analytic functions, a topic of
booming interest in probability. More pragmatically, we investigated the computational issues raised
by implementing tests based on spectrogram zeros.

The connection with GAFs puts signal processing algorithms based on spectrogram zeros on firm
ground, and further progress on GAFs is bound to be fruitful for signal processing. Perhaps less
obviously, we believe signal processing tools can also bring insight into probabilistic questions on
GAFs. For starters, the Bargmann transform, spectrogram zeros and the fast Fourier transform give
a novel way to approximately simulate the zeros of the planar GAF, or even the zeros of random
polynomials.

As for the detection of signals using spectrogram zeros, we have investigated the application of
standard frequentist testing tools. They showed good power for high SNR, but the performance
decreases for low SNR and small signal support compared to the observation window. There are
various leads to improve on these two points. First, we could transform our global test into several
local tests, trying to adapt the tested patch to the support of the signal. Second, models for signals
could be fed to Bayesian techniques, allowing to explore all signals compatible with a given pattern of
zeros.
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