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Abstract

We study the solutions of infinite dimensional linear inverse problems

over Banach spaces. The regularizer is defined as the total variation of a

linear mapping of the function to recover, while the data fitting term is a

near arbitrary convex function. The first contribution is about the solu-

tion’s structure: we show that under suitable assumptions, there always

exist an m-sparse solution, where m is the number of linear measurements

of the signal. Our second contribution is about the computation of the

solution. While most existing works first discretize the problem, we show

that exacts solutions of the infinite dimensional problem can be obtained

by solving two consecutive finite dimensional convex programs. These re-

sults extend recent advances in the understanding of total-variation reg-

ularized problems.

1 Introduction

Let u ∈ B be a signal in some vector space B and assume that it is probed
indirectly, with m corrupted linear measurements:

b = P (A∗u),

where A∗ : B → Rm is a measurement operator defined by (A∗u)i = 〈ai, u〉, each
ai being an element in B∗, the dual of B. The mapping P : Rm → Rm denotes
a perturbation of the measurements, such as quantization, additional Gaussian
or Poisson noise, or any other common degradation operator. Inverse problems
consist of estimating u from the measurements b. Assuming that dim(B) > m, it
is clearly impossible to recover u knowing b only. Hence, various regularization
techniques have been proposed to stabilize the recovery.

Probably the most well known and used example is Tikhonov regularization
[18], which consists in minimizing quadratic cost functions. The regularizers are
particularily appreciated for their ease of analysis and implementation. Over the
last 20 years, sparsity promoting regularizers have proved increasingly useful,
especially when the signals to recover have some underlying sparsity structure.
Sparse regularization can be divided into two categories: the analysis formula-
tion or the synthesis formulation.

The analysis formulation consists of solving optimization problems of form

inf
u∈B

J(u) := fb (A
∗u) + ‖Lu‖TV , (1)
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where fb : R
m → R ∪ {+∞} is an application dependent data fidelity term and

L : B → E is a linear operator, mapping B to some space E such as Rn, the space
of sequences in ℓ1 or the space of Radon measures M. The total variation norm
‖ · ‖TV coincides with the ℓ1-norm when E is discrete, but it is more general
since it also applies to measures. The synthesis formulation on its side consists
in minimizing

inf
µ∈E

fb (A
∗Dµ) + ‖µ‖TV , (2)

where D : E → B is the linear synthesis operator, also called dictionary. The
estimate of u in that case reads û = Dµ̂, where µ̂ is a solution of (2).

Problems (1) and (2) triggered a massive interest from both theoretical and
practical perspectives. Among the most impressive theoretical results, one can
cite the field of compressed sensing [7], which certifies that under suitable as-
sumptions, the minimizers of (1) or (2) coincide with the true signal u, or the
theory of super-resolution [6, 14].

Most of the studies in this field are confined to the case where both B and
E are finite dimensional [7, 11, 16, 17]. In the last few years, some efforts have
been provided to get a better understanding of (1) and (2) where B and E
are sequence spaces [1, 2, 25, 24]. Finally, a different route, which will be fol-
lowed in this paper, is the case where E = M, the space of Radon measures
on a continuous domain. In that case, problems (1) and (2) are infinite di-
mensional problems over measure spaces. One instance in that class is that of
total variation minimization (in the PDE sense [3], that is the total variation
of the distributional derivative), which became extremely popular in the field
of imaging since its introduction in [20]. There has been surge of interest in
understanding the fine properties of the solutions in this setting, with many
significant results [5, 6, 23, 14, 8, 26]. The aim of this paper is to continue these
efforts by bringing new insights in a general setting.

Contributions and related works The main contributions are twofold: one
is about the structure of the solutions of (1), while the other is about how to
numerically solve this problem without discretization. The results directly apply
to problem (2) since, with regards to our concerns, the synthesis problem (2) is
a special case of the analysis problem (1). It indeed suffices to take L = Id and
B = M for (2) to be an instance of (1). Notice however that in general, the two
approaches should be studied separately [16].

On the theoretical side, we provide a theorem characterizing the structure
of the solutions of problem (1) under certain assumptions on the operator L.
Roughly speaking, this theorem states that there always exist m-sparse solu-
tions. The precise meaning of this claim will be clarified in Theorem 1. This
result is strongly related and was actually motivated by [26]. In there, the
authors restrict their study to certain stationary operators L over spaces of
functions defined on Ω = Rd. Their main result states that in that case, gen-
eralized splines with m knots actually describe the whole set of solutions. Our
result is a bit weaker in the sense that we only prove that a subset of the solu-
tions have a certain structure, but on the other hand, it holds for more general
classes of operators L, spaces B and domains Ω. Furthermore, the proof tech-
nique is different from [26]: it is constructive and presumably applicable to wider
settings.
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On the numerical side, let us first emphasize that in an overwhelming num-
ber of works, problem (1) is solved by first discretizing the problem to make
it finite dimensional and then approximate solutions are found with standard
procedures from convex programming. Theories such as Γ-convergence [4] then
sometimes allow showing that as the discretization parameter goes to 0, so-
lutions of the discretized problem converge (in a weak sense) to the solutions
of the continuous problem. In this paper, we show that under some assump-
tions on the measurement vectors (ai), the infinite dimensional problem (1) can
be attacked directly without discretization, thanks to the first representation
theorem: the resolution of two consecutive finite dimensional convex programs
allows recovering exact solutions to problem (1) or (2). The structure of the
convex programs depend on the structure of measurement vectors. Once again,
this result is strongly related to recent advances. For instance, it is shown in
[6, 23] that a specific instance of (2) with L = Id can be solved exactly thanks
to semi-definite relaxation or Prony type methods when the signal domain is
the torus Ω = T. Similar results were obtained in [10] for more general semi-
algebraic domains using Lasserre hierarchies [19]. Once again, the value of our
paper lies in the fact that it holds for near arbitrary convex functions fb and for
a large class of operators L such as the derivative. To the best of our knowledge,
the only case considered until now was L = Id.

2 Main results

2.1 Notation

In all of the paper, Ω ⊆ R
d denotes an open subset either bounded or unbounded.

We let M(Ω) denote the set of Radon measures on Ω, i.e. the dual C0(Ω)
∗ of

C0(Ω), the space of continuous functions on Ω vanishing at infinity:

C0(Ω) = {f : Ω → R, f continuous,

∀ǫ > 0, ∃ω ⊂ Ω compact , ∀x /∈ ω, |f(x)| < ǫ}.

We will throughout the whole paper view (M(Ω), ‖ · ‖TV ) as a Banach space,
and not, as often is done, as a locally convex space equipped with the weak-∗-
topology. When we do this, C0(Ω) is a true subset of, and not the whole of, the
dual M∗ of M (as it would have been if we have viewed M as a locally convex
space).

Let J : B → R ∪ {+∞} denote a convex lower-semicontinuous function.
We let J∗ denote its Fenchel conjugate and ∂J(u) denote its subdifferential at
u ∈ B. Let X ⊂ E be a subset of some vector space E . The indicator function
of X is defined for all e ∈ E by:

ιX(e) =

{
0 if e ∈ X

+∞ otherwise.

We refer the reader to [15] for more insight on convex analysis in vector spaces.

Remark 1. All the results in our paper hold when Ω is a separable, locally

compact topological space. The proofs require minor technical amendments, but

we chose to keep things simpler.
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2.2 Assumptions

The main results in this paper will be proven the following assumptions.

Assumption 1 (Assumptions on L).

• The operator L is continuous on B.

• The kernel of L has finite dimension: dim(kerL) = r < +∞.

• The range of L is closed, and has a complementary subspace, i.e. a closed

subspace W such that ranL⊕W = M.

An important special case of operators satisfying the assumption 1 are Fred-

holm operators. A Fredholm operator for which the space W complementary to
ranL is finite-dimensional. Many important differential operators are Fredholm.

Under assumption (1), there exists a closed subspace V of B(Ω) complemen-
tary to kerL, i.e. a space so that V ⊕ kerL = B(Ω) (see e.g. [21, Lemma 4.21]).
The restriction L|V of L : V → ranL is bijective operator, and therefore has a
continuous inverse (L|V )

−1 by the continuous inverse theorem. With the help
of this inverse, we can define a pseudoinverse L+ : M → B through

L+ = jV (L|V )
−1ΠranL,

where jV denotes the injection V →֒ B and ΠranL the projection M → ranL.
Both of these as well as (L|V )

−1 are continuous, so that L+ is continuous.
We will also need the following assumptions on the data fidelity term.

Assumption 2 (Assumptions on fb).

• Function fb : R
m → R ∪ {+∞} is convex and lower semi-continuous.

• Function fb is lower-bounded: there exists γ ∈ R such that fb(x) ≥ γ for

all x ∈ Rm.

• Function fb is coercive: lim‖x‖2→+∞ fb(x) = +∞.

Assumption 2 is quite light and covers many common data fidelity terms as
exemplified below.

Equality constraints This case corresponds to

fb(x) = ι{0}(x) =

{
0 if x = 0

+∞ otherwise.
(3)

This data fidelity term is commonly used when the data is not corrupted.
The two super-resolution papers [6, 23] use this assumption.

Quadratic The case fb(x) = λ
2 ‖x‖

2
2, where λ > 0 is a data fit parameter, is

commonly used when the data suffers from additive Gaussian noise.

ℓ1-norm When data suffers from outliers, it is common to set fb(x) = λ‖x‖1,
with λ > 0.

4



Box constraints When the data is quantized, a natural data fidelity term is
a box constraint of the following type

fb(x) =

{
0 if ‖Cx‖∞ ≤ 1

+∞ otherwise,

where C ∈ Rm×m is a diagonal matrix with positive entries.

Finally, we will have to restrict the functionals ai used to probe the signals
slightly.

Assumption 3 (Assumptions on ai). The functionals ai ∈ B∗(Ω) have the

property that (L+)∗ai ∈ C0(Ω). That is, there exist functions ρi ∈ C0(Ω) with

∀µ ∈ M :
〈
(L+)∗ai, µ

〉
= 〈ρi, µ〉 .

This assumption may seem a bit artificial, but we will see that it is crucial,
both in the more theoretical first part of the paper, as well as in the second
one dealing with the numerical resolution of the problem. Furthermore, it is
equivalent to an assumption in the main result of [26], as will be made explicit
in the sequel.

2.3 Structure of the solutions

We are now ready to state the first important result of this paper.

Theorem 1. Under assumptions 1, 2 and 3, problem (1) has a solution of the

form

û = uK +

p∑

k=1

dkL
+δxk

,

with p ≤ m, uK ∈ kerL, d = (dk)1≤k≤p in Rp and X = (xk)1≤k≤p in Ωp.

Before going further, let us show some consequences of this theorem.

2.3.1 Example 1: L = Id and the space M

Probably the easiest case consists in choosing an arbitrary open domain Ω ⊆
Rd, to set B = M(Ω) and L = Id. In this case, all the assumptions 1 on
L are trivially met. In fact, we even have ran Id = M(Ω), ker Id = {0} and
Id+ = Id. Therefore, Theorem 1 in this specific case guarantees the existence
of a minimizer of (1) of the form

µ̂ =

p∑

k=1

dkδxk
,

with p ≤ m. The assumption 3 in this case simply means that the functionals
ai can be identified with continuous operators vanishing at infinity.

Note that the synthesis formulation (2) can be seen as a subcase of this
setting. The structure of the minimizing measure in Theorem 1 implies that the
signal estimate û has the following form

û = Dµ̂ =

p∑

k=1

dkDδxk
.
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The vectors (Dδx)x∈Ω can naturally be interpreted as the atoms of a dictio-
nary. Hence, Theorem 1 says that there will always exist at least one estimate
from the synthesis formulation which is sparsely representable in the dictionary
(Dδx)x∈Ω.

2.3.2 Example 2: Spline-adimissible operators and their native spaces

The authors of [26] consider a generic operator L defined on the space of tem-
pered distributions S ′(Rd) and mapping into M(Rd), which is

• Shift-invariant,

• for which there exists a function ρL (a generalized spline) of polynomial
growth, say

esssupx∈Rd |ρL(x)| (1 + ‖x‖)−r < +∞, (4)

obeying LρL = δ0.

• The space of functions in the kernel of L obeying the growth estimate (4)
is finite dimensional.

The authors call such operators spline-admissible. For each such operator L,
they define a space ML(R

d) as the set of functions f obeying the growth esti-
mate (4) while still having the property Lf ∈ M(Rd). A typical example is the
distributional derivative D on Ω = R.

They go on to prove that ML(R
d) is a Banach space, and has a predual

CL(R
d), and (in our notation) assume that the functionals ai ∈ M∗

L(R
d) can be

identified with elements of CL(R
d).

It turns out that using this construction, the operator L and functionals (ai)
obey the assumptions 1 and 3, respectively.

Proposition 1.

• The operator L : ML(R
d) → M(Rd) is Fredholm. In fact, ranL is even

equal to M(Rd).

• The functionals ai ∈ M∗
L(R

d) obey assumption 3. In fact, we even have

(L+)∗a ∈ C0(R
d) ⇐⇒ a ∈ CL(R

d).

Hence, the assumptions in [26] are a special case of the ones used in this
paper.

2.3.3 Example 3: L = D and the space BV (]0, 1[)

We set Ω =]0, 1[. The space BV (Ω) of bounded variation functions is defined
by (see [3]):

BV (Ω) = {u ∈ L1(Ω), Du is a Radon measure, ‖Du‖TV < +∞}, (5)

where D is the distributional derivative. Using our notations, it amounts to
taking L = D and B = BV (Ω). For this space, we have kerL = span(1), the
vector space of constant functions on Ω.
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Lemma 1. With this choice, ranL = M, and for all µ ∈ M and all s ∈ [0, 1],

(L+µ)(s) = µ([0, s])−

∫ 1

0

µ([0, t]) dt. (6)

In addition, for a functional ξ ∈ BV (]0, 1[)∗ of the form

〈ξ, u〉 =

∫ 1

0

ξ(t)u(t)dt,

with ξ ∈ L1(Ω), we have (L+)∗ξ) ∈ C0(Ω) and the formula

((L+)∗ξ)(s) =

(∫ 1

s

ξ(t)dt

)
−

(∫ 1

0

ξ(t)dt

)
· (1 − s)

holds.

As can be seen, L+ is simply a primitive operator. The elementary functions
L+δx are simply Heavyside functions translated at a distance x of the origin.
Hence, Theorem 1 states that there always exist total variation minimizers in 1D
that can be written as staircase functions with at most m jumps. Note that in
this case, the Heavyside functions coincide with the general splines introduced
in [26].

2.3.4 An uncovered case: L = ∇ and the space BV (]0, 1[2)

It is very tempting to use Theorem 1 on the space B = BV (]0, 1[2). As men-
tioned in the introduction, this space is crucial in image processing since its
introduction in [20]. Unfortunately, this case is not covered by Theorem 1, since
LB is then a space of vector valued Radon measures, and our assumptions only
cover the case of scalar measures.

2.4 Numerical resolution

In this section, we show how problem (1) can be expressed as a finite dimensional
convex problem under certain assumptions on the measurement functions (ai).

2.4.1 The dual problem and its relationship to the primal

The first step to express (1) as a final dimensional problem is to use duality.
This is a now standard approach, used for instance for super-resolution purposes
in [6].

Proposition 2 (Dual of problem (1)). Define h : M(Ω) → R ∪ {+∞} by

h(µ) = ‖µ‖TV + ιranL(µ). Then, the following duality relationship holds:

min
u∈B

J(u) = sup
q∈Rm,Aq∈ranL∗

−h∗((L+)∗Aq)− f∗
b (q). (7)

In the special case ranL = M, this yields

min
u∈B

J(u) = sup
q∈Rm,Aq∈ranL∗,‖(L+)∗Aq‖∞≤1

−f∗
b (q). (8)
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In addition, let (û, q̂) denote any primal-dual pair of problem (7). The fol-

lowing duality relationships hold:

Aq̂ ∈ L∗∂(‖ · ‖TV )(Lû) (9)

−q̂ ∈ ∂fb(A
∗û).

For a general operator L, computing h∗ may be out of reach, since the
conjugate of a sum cannot be easily deduced from the conjugates of each function
in the sum. Hence, we now focus on problem (8) corresponding to the case
ranL = M. Notice that this covers at least the two important cases L = Id and
L = D, as shown in examples 2.3.1 and 2.3.3.

Solving the dual problem (8) does not directly provide a solution for the
primal problem (1). Let us now discuss how to go from a dual solution q̂ to a
primal solution û. The following proposition will come handy for that.

Proposition 3. Assume that ranL = M and let (û, q̂) denote a primal-dual pair

of problem (8). Let I(q̂) = {x ∈ Ω, |(L+)∗(Aq̂)|(x) = 1}. Then supp(Lû) ⊆ I.
In particular, if I(q̂) = {x1, . . . , xp}, then û can be written as:

û = uK +

p∑

k=1

dkL
+δxk

. (10)

If problem (1) admits a unique solution, then p ≤ m and û is the solution in

Theorem 1.

In the case where I(q̂) is a finite set, Proposition 3 provides a constructive
way to recover a primal solution û from q̂. Letting (λi)1≤i≤r denote a basis of
kerL, we can inject the specific structure (10) into (1). Define the matrix

M =
[
(〈ai, λk〉)1≤i≤m,1≤k≤r , (〈ai, L

+δxj
〉)1≤i≤m,1≤j≤p

]
(11)

Then problem (1) becomes a finite dimensional convex program which can be
solved with off-the-shelf algorithms:

min
c∈Rr,d∈Rp

fb

(
M

[
c
d

])
+ ‖d‖1. (12)

2.4.2 Solving the dual

Problem (8) is finite dimensional but involves two infinite dimensional sets

Q1 = {q ∈ R
m, Aq ∈ ranL∗} (13)

and
Q2 = {q ∈ R

m,
∥∥(L+)∗Aq

∥∥
∞

≤ 1}. (14)

In what follows, we let Q = Q1 ∩Q2. This set is convex as an intersection of a
subspace with and the pre-image by a linear transform of a convex set.

The following lemma states that the constraint set Q1 is just a finite di-
mensional linear constraint. It can be handled with arbitrary precision with a
computer by using numerical integration procedures.
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Lemma 2. Let r = dim(ker(L)) and (λi)1≤i≤r denote a basis of kerL. The set

Q1 can be rewritten as

Q1 = {q ∈ R
m, ∀1 ≤ i ≤ r, 〈q, A∗λi〉 = 0}.

Handling the set Q2 is much more involved from a numerical point of view.
For general measurement functions (ai), it seems impossible at first sight to com-
pute the solutions of (8), since Q2 could be an arbitrarily complex convex body.
This problem actually received considerable attention lately (see for instance
[22]) and finding general conditions on (ai) making the problem attackable with
a computer is still an open issue.

In what follows, we provide three specific assumptions making (8) solvable.
The important thing is to control the structure of the functions

ρi := (L+)∗ai.

Compactly supported functions with disjoint supports Let us begin by
considering an academic example. Assume the functions (ρi)1≤i≤m are continu-
ous functions with compact and disjoint supports on an open set Ω ⊂ Rd. Also
assume that each |ρi| attains its maximal value only on a discrete set of finite
cardinality Ji. Then it is clear that ‖(L+)∗Aq‖∞ attains its maximal value in
∪m
i=1Ji. This value is less than or equal to 1 if and only if |qi|‖ρi‖∞ ≤ 1 for all

i. This means that:

Q2 = {q ∈ R
m, ∀1 ≤ i ≤ m, |qi|‖ρi‖∞ ≤ 1},

which simply is a box constraint. Hence problem (8) can be solved with standard
procedures.

By Proposition 3, the minimizers obtained by solving (8) and (10) all can
be written as:

û = uK + L+

(
m∑

i=1

∑

x∈Ji

di,xδx

)
,

hence we know a priori, where the Dirac masses can be located.

Piecewise linear functions Now, assume that each ρi is a piecewise linear
function, with finitely many polyhedral pieces. Then, whatever q ∈ Rm, the
function (L+)∗Aq is still a piecewise linear function with finitely many polyhe-
dral pieces. The maximum of the function has to be attained in at least one
of finitely many vertices (vj)j∈J of the pieces. We let fi,j = ρi(vj). Then, the
constraint set Q2 can be written as:

Q2 =

{
q ∈ R

m, ∀j ∈ J,

∣∣∣∣∣

m∑

i=1

fi,jqi

∣∣∣∣∣ ≤ 1

}
,

hence, the constraint set in (8) can be expressed as the intersection of a finite
number of half spaces and be handled numerically.

In this case however, we cannot guarantee the set I in Proposition 3 to be
finite, since the maximum could be obtained on a whole face of one of the pieces.
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Trigonometric polynomials In this section, we assume that Ω = [0, 1] 1.
For j ∈ N, let pj(t) = exp(−2ιπjt). Assume that the functions ρi are real
trigonometric polynomials:

ρi =

K∑

j=−K

γj,ipj ,

with γj,i = γ∗
−j,i.

The following lemma is a simple variation of [13, Thm 4.24]. It was used
already for super-resolution purposes [6].

Lemma 3. The set Q2 can be rewritten as follows:

Q2 =

{
α ∈ R

m, ∃Q ∈ C
(2K+1)×(2K+1),

[
Q Γα

(Γα)∗ 1

]
� 0,

2K+2−j∑

i=1

Qi,i+j =

{
1, j = 1,

0, 2 ≤ j ≤ 2K + 1.

}
.

With Lemmas 2 and 3 at hand, the dual problem (8) becomes a semidefinite
program that can be solved with a variety of approaches, such as interior point
methods [27].

The case of trigonometric polynomials makes Proposition 3 particularly help-
ful. In that case, either the trigonometric polynomial is zero and the solution
û lives in the kernel of L, or the set I is finite with cardinality at most 2K,
since |(L+)∗Aq|2 − 1 is a negative trigonometric polynomial of degree 4K + 2.
In both cases, note that it is possible to solve (12) to retrieve a primal solution
with p ≤ 2K.

2.4.3 Summary

Let us now summarize how exact solutions of (1) can be obtained by solving
two finite dimensional problems.

1. Check whether ranL = M. If it is not the case, then the conjugate h∗

should be evaluated, which might or might not be possible.

2. Check whether the structure of the functions ρi := (L+)∗ai make it pos-
sible to express Q2 in a form adapted to computers. Two useful examples
are piecewise linear functions on polyhedral pieces in dimension d ≥ 1 or
trigonometric polynomials in dimension d = 1. Note that these functions
can approximate sufficiently regular functions with an arbitrary precision.

3. Use numerical integration procedures to evaluate the r integrals 〈ai, λi〉,
where (λi)1≤i≤r is a basis of kerL. This allows expressing Q1 as r linear
equality constraints.

4. Solve problem (8) with an arbitrary convex programming method to re-
trieve a solution q̂ ∈ Rm.

1Formally, we should work on the torus. This is feasible, see remark (1).
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5. Find the set I = {x ∈ Ω, |(L+)∗Aq(x)| = 1}. The ability to do this once
again depends on the structure of the functions (ρi). In the case of piece-
wise linear functions with polyhedral pieces, it can be achieved by simply
evaluating the function on a finite number of vertices. For trigonometric
polynomials, it amounts to finding the roots of the trigonometric polyno-
mial |(L+)∗Aq|2 − 1, which can be expressed as an eigenvalue evaluation
problem [9].

6. If I is a discrete set with finite dimensionality p = |I| (it will always be
the case with trigonometric polynomials), then a solution can be written
as (10) from Proposition 3. Form the matrix M in (11). Otherwise, the
primal solution cannot be evaluated directly from q̂, but Lû = I.

7. Solve problem (12) to evaluate a solution (ĉ, d̂) of (12). A solution û of
(1) can then be written as:

û =

r∑

i=1

ĉiλi + L+

(
p∑

k=1

d̂kδxk

)
.

3 Proofs

In this section, we include all proofs left out in the main text.

3.1 Structure of solutions

The heart of the proof of Theorem 1 is a limit argument. To anchor that, we
will need the fact that in finite dimensions, there exists solutions of exactly the
same structure we are trying to derive about the solutions in infinite dimensions.
This statement is well known, see e.g. [25, Theorem 6]. We provide a proof for
completeness. It has a geometrical flavour, and is inspired by the work of [12].

Lemma 4. Let H∗ ∈ Rm,n for some n ∈ N and m ≤ n. Then a problem of the

form

min
u∈Rn

fb(H
∗u) + ‖u‖1 . (15)

has a solution û of (1) of the form

û =

p∑

k=1

ckeik ,

with (ck)
m
k=1 some real scalars and p ≤ m.

Proof. We may restrict ourselves to the case that f is the indicator function of
a closed convex set C. To see this, note that if û solves (15), it will also solve

min
u

‖u‖1 subject to H∗u ∈ {v | fb(v) ≤ fb(H
∗û)} .

(if there is a ũ with ‖ũ‖1 < ‖û‖1 and fb(H
∗ũ) ≤ fb(H

∗û), ũ surely has a smaller
value of the objective function of the problem (1)).

11



So consider a problem of the form

min
u

‖u‖1 subject to H∗u ∈ C, (16)

and a solution û of it (its existence easily follows from the coercivity of the

1-norm and the closedness of C). The image b̂ = H∗û then lies on the boundary

of the polytope P = H∗ {u | ‖u‖1 ≤ ‖û‖1} – if it did not, b̂ is of the form H∗ũ
with ‖ũ‖1 < ‖û‖1. Then ũ is a feasible point (16) with smaller objective value
than û, which is a contradiction to the optimality of û.

The boundary of P ⊆ Rm consists of faces of dimension at most m − 1.
Hence, b̂ lies on one of those faces, say F , Concretely, b̂ ∈ conv(vert(F )), where
vert(F ) denotes the set of vertices of face F . The vertices of F are the images by
H∗ of a subset of the ℓ1-ball’s vertices, so they can be written as ‖û‖1 ǫkH

∗ei,
for some i ∈ {1, . . . , n} and for ǫk ∈ {−1, 1}. Caratheodory’s theorem applied

in the (m− 1)-dimensional space affF implies that b̂ can be written as

b̂ =

m∑

k=1

θk ‖û‖1 ǫkM
∗eik

with
∑m

k=1 θk = 1 and ǫ ∈ {±1}m. The vector ‖û‖1
∑m

k=1 θkǫkeik is a solution
of (15) of the stated form.

The strategy will now be to discretize the problem on finer and finer grids,
use the previous lemma and pass to the limit. Let us define a canonical scheme
of such discretization and record a crucial property of it.

Lemma 5. Define a sequence of discretizations (Ωn)n∈N of Ω as

Ωn =

(
[−2n, 2n]d ∩

Zd

2n

)
∩ Ω. (17)

For k ∈ Ωn, define ωk
n to be the hypercube of center k and side-length 2−n

intersected with Ω. Let µ ∈ M(Ω) denote a measure and define the sequence:

νn =
∑

k∈Ωn

µ(ωk)δk. (18)

Then νn
∗
⇀ µ and ‖νn‖TV ≤ ‖µ‖TV .

Proof. First, it follows directly from the definition of the total variation that

‖νn‖TV =
∑

k∈Ωn

|µ(ωk)| ≤ ‖µ‖TV . (19)

We now need to prove that for each φ ∈ M∗, 〈νn, φ〉 → 〈µ, φ〉. So fix φ and let
ǫ > 0. Since φ ∈ M∗, there exists a compact set K with the property |φ(x)| < ǫ
for x /∈ K. Since φ is equicontinuous on K, there exists a δ > 0 so that if
‖x− x′‖∞ < δ, |φ(x) − φ(x′)| < ǫ. If we choose n so large so that 2−n < δ, we

12



will have

|〈µ− νn, φ〉| ≤

∫

Ω\K

|φ| d(|µ|+ |νn|) +

∣∣∣∣
∫

K

φdµ−

∫

K

φdνn

∣∣∣∣

≤ ǫ(‖µ‖TV + ‖νn‖TV ) +

∣∣∣∣∣
∑

k∈Ωn

∫

ωk

φdµ− φ(k)µ(ωk)

∣∣∣∣∣

≤ 2ǫ ‖µ‖TV +
∑

k∈Ωn

∫

ωk

|φ(ℓ)− φ(k)| dµ(ℓ)

≤ 2ǫ ‖µ‖TV + ǫ
∑

k∈Ωn

|µ(ωk)|

≤ 3ǫ ‖µ‖TV .

Since ǫ > 0 was arbitrary, the claim follows.

Now let us prove that the optimal value of the problem (1) can be found by
solving the discretized problem.

Lemma 6. Consider for n ∈ N the problem

Ĵn := min
c∈R|Ωn|,u∈kerL

J

(
u+ L+

(
∑

k∈Ωn

ckδk

))
. (Pn)

Then limn→∞ Ĵn = Ĵ , where Ĵ is the optimal value in (1).

Proof. First, notice that elements of the form u + L+
(∑

k∈Ωn
ckδk

)
with c ∈

R|Ωn| and u ∈ kerL are feasible points of (1). Hence Ĵn ≥ Ĵ .
Now, let û be the solution of (1) and let µ̂ = Lû. Write û = L+Lû + ûK

with ûK ∈ kerL. According to Lemma 5, there exists a sequence of measures
µn of the form

µn =
∑

k∈Ωn

ckδk

with µn
∗
⇀ µ̂ and ‖µn‖TV ≤ ‖µ̂‖TV for each n.

Now, A∗L+µn → A∗L+µ̂. To see this, we simply need to note that µn
∗
⇀ µ

and assumption 3 implies that

〈
ai, L

+µn

〉
=
〈
(L+)∗ai, µn

〉
= 〈µn, ρi〉 → 〈µ, ρi〉 =

〈
ai, L

+µ
〉
=
〈
(L+)∗ai, µ

〉
.

(20)
We conclude fb(A

∗û) = limn→∞ fb(A
∗ûK +A∗L+µn) and hence

lim inf
n→∞

Ĵn = lim inf
n→∞

fb(A
∗L+µn +A∗ûK) + ‖µn‖TV

≤ lim inf
n→∞

fb(A
∗L+µn +A∗ûK) + ‖µ̂‖TV

= fb(A
∗û) + ‖Lû‖TV = Ĵ .

We may now prove the main result of this section.

13



Proof of Theorem 1. Consider the programs Pn as defined in the proof of the
last lemma. Hence, by Lemma 4 we can construct a sequence (ûK,n, ĉn) of
solutions, with ĉn containing pn ≤ m nonzero components for n ≥ m. We may
hence write

∑

k∈Ωn

ĉn,kδk =
m∑

ℓ=1

dn,ℓδxn,ℓ
,

for some dn ∈ Rm and Xn = (xn,l)l ∈ Ωm. In case pn < m, we may repeat
positions in the vector Xn.

Since fb is convex and coercive, it is bounded from below. Without loss of
generality, we may assume that fb is nonnegative, since adding the minimum
value of fb does not change the minimizers. Under this assumption, ‖dn‖1 ≤

Ĵn ≤ Ĵ1 for each n, hence dn is bounded. This implies that there exists a
subsequence, which we do not rename, such that dn is converging to d∗ ∈ Rm.
By possibly considering a subsequence of this subsequence, we may assume that

Xn converges in Ω
×

, where Ω
×

denotes the one-point-compactification Ω. This
means that each of the component sequences (xn,ℓ)n either converges to a point
x∗
ℓ in Ω, or diverges to ∞, meaning that it escapes every compact subset of Ω.

Consequently, the subsequence µn =
∑m

ℓ=1 dn,ℓδxn,ℓ

∗
⇀
∑m

ℓ=1 d
∗
ℓ δx∗

ℓ
=: µ∗,

where we identify δ∞ with the zero measure (note that if xn,ℓ → ∞, then

δxn,ℓ

∗
⇀ 0). Also, A∗L+(µn) converges to A∗(L+µ∗) (see the proof of the previ-

ous lemma), and in particular is bounded.
Due to fb(A

∗(ûK,n+L+µn)) ≤ Ĵn and the coercivity of fb, A
∗(ûK,n+L+µn)

is bounded. The boundedness of A∗(L+µn) now implies the same property for
A∗ûK,n. Now assume that ker(A∗)∩ker(L) = {0}. This implies that there exists
α > 0 such that ‖A∗u‖2 ≥ α ‖u‖B and so ûK,n is bounded. Therefore it has
a subsequence which converges to some element u∗

K ∈ kerL since dim(kerL) <
+∞. Lower semi-continuity of fb as well as weak lower semi-continuity of the
TV -norm implies

fb

(
Au∗

K +AL+
m∑

ℓ=1

d∗ℓδx∗
ℓ

)
+

∥∥∥∥∥

m∑

ℓ=1

d∗ℓδx∗
ℓ

∥∥∥∥∥
TV

≤ lim inf
n→∞

fb

(
AûK,n +AL+

p∑

ℓ=1

dn,ℓδxn,ℓ

)
+

∥∥∥∥∥

p∑

ℓ=1

dℓδxn,ℓ

∥∥∥∥∥
TV

= lim inf
n→∞

Ĵn = Ĵ ,

where we used Lemma 5 in the final step. Hence, u∗
K + L+

∑m
ℓ=1 d

∗
ℓδx∗

ℓ
is a

solution of (1), which was exactly what was needed to be proven. (Note that
any x∗

ℓ = ∞ will only cause the linear combination of δ-peaks to be shorter).
If ker(A∗) ∩ ker(L) 6= {0}, then the argumentation above still holds by de-

composing ker(L) = (ker(A∗) ∩ ker(L)) ⊕ U , where U is the complement of
ker(A∗) ∩ ker(L) in ker(L) and choosing ûK,n ∈ U

3.2 Numerical Resolution

In this section, we prove the propositions stated in Section 2.4. We begin with
the one describing the dual problem of (1).
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Proof of Proposition 2. Define g : B → M with g(u) := ‖Lu‖TV . Then J(u) =
fb(A

∗u) + g(u). Standard duality arguments [15, p.60] yield:

min
u∈B

J(u) = sup
q∈Rm

−g∗(−Aq)− f∗
b (q). (21)

Now, we have:

g∗(z) = sup
u∈B

〈z, u〉 − g(u)

= sup
u∈B

〈z, u〉 − ‖Lu‖TV

= sup
v∈V,uK∈kerL

〈z, v + uK〉 − ‖Lv‖TV

=





sup
v∈V

〈z, v〉 − ‖Lv‖TV if z ∈ (kerL)⊥,

+∞ otherwise

=





sup
v∈V

〈z, L+Lv〉 − ‖Lv‖TV if z ∈ ranL∗,

+∞ otherwise

=





sup
w∈ranL

〈(L+)∗z, w〉 − ‖w‖TV if z ∈ ranL∗,

+∞ otherwise

=

{
h∗((L+)∗z) if z ∈ ranL∗,

+∞ otherwise

We used the closed range theorem, which in particular implies that ranL∗ =
(kerL)⊥ for an operator L with closed range.

For the special case of ranL = M, we note that

h∗(φ) = sup
µ∈M

〈φ, µ〉 − ‖µ‖TV =

{
0 if ‖φ‖∞ ≤ 1.

+∞ otherwise,

Note that the subdifferential of g at every u ∈ B reads ∂g(u) = L∗∂(‖ · ‖TV )(Lu)
(see e.g. [15, Prop.5.7]. The duality relations also follows from standard argu-
ments, see e.g. [15, p.60].

Next, we prove the proposition describing how to construct a primal solution
from a dual one in the case that ranL = M.

Proof of Proposition 3. We have for any operator L obeying assumption 1

(L+)∗L∗ = (LL+)∗ = Π∗
ranL = Id, L∗(L+)∗ = (L+L)∗ = j∗V .

By construction, Aq̂ and L∗∂(‖ · ‖TV )(Lû) are elements of ranL∗. Due to the
closed range theorem, ranL∗ is isomorphic to the annihilator (kerL)⊥. On that
space, j∗V is injective. Hence, the inclusion (9) is equivalent to

(L+)∗(Aq̂) ∈ ∂(‖ · ‖TV )(Lû). (22)

Now, it is well known (see for instance [14]), that for all µ ∈ M,

∂(‖ · ‖TV )(µ) =

{
η ∈ M∗, ‖η‖∞ ≤ 1,

∫

Ω

η(t) dµ(t) = ‖µ‖TV

}
. (23)
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Consequently, (22) tells us that the by assumption continuous function (L+)∗(Aq̂)
has modulus 1 Lû-almost everywhere on supp(Lû). This means that (Lû)(I(q̂)\supp(Lû)) =
0. In particular, if the set I only consists of isolated points, we get supp(Lû) ⊆ I.
Hence, there exists (dk)1≤k≤p with

Lû =

p∑

k=1

dkδxk
=⇒ û = uK +

p∑

k=1

dkL
+δxk

(24)

for some uK ∈ kerL.

3.3 Miscellaneous

Here, the rest of the left out proofs are given, starting with the one including
spline-admissible operators in our framework.

Proof of Lemma 1. 1. The finite-dimensionality of kerL is simply assumption 3
of Theorem 1 of [26]. Theorem 4 and 5 of [26] proves that L has a right inverse
L−1
Φ . This implies that

ranL ⊆ ranLL−1
Φ = ranId = M.

2. The space CL as defined in Theorem 6 of [26] is defined as

CL = L∗(C0(R
d)) +~(φi)

r
i=1,

where φi is a system of functionals which restricted to kerL becomes a of the
dual of kerL. Without loss of generality, we can assume that φi|V = 0 for each

i (if not, we could instead consider the operators φ̃i = φiΠkerL).
Then if a ∈ CL, we have

(L+)∗a = (L+)∗L∗ρ+

r∑

i=1

γi(L
+)∗φi

for some ρ ∈ C0(R
d) and γi. Now (L+)∗L∗) = (LL+)∗ = Π∗

ranL = Id and
(L+)∗φi = 0, so that (L+)∗a = ρ ∈ C0(R

d).
If on the other (L+)∗a ∈ C0(R

d), we have

L∗C0(R
d) ∋ L∗(L+)∗a = (L+L)∗a = Π∗

V a.

Since each functional a ∈ M∗
L can be written as Π∗

V a + Π∗
kerLa, and Π∗

kerLa ∈
~(φi)

r
i=1, a ∈ CL.

Next, we discuss the case of L being the differential operator on BV ((0, 1).

Proof of Lemma 1. Note that we have kerL = span(1), the vector space of
constant functions on Ω, hence the space V can be identified with the space of
functions with zero mean:

V =

{
u ∈ BV (Ω),

∫

Ω

u(t) dt = 0

}
.
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For µ ∈ M, consider the mapping I : µ 7→ u defined for s ∈ [0, 1] by
u(s) = µ([0, s]). We only need to prove that DI(µ) = µ in the distributional
sense. Let φ ∈ C∞

c (Ω):

〈I(µ), φ′〉 =

∫ 1

0

µ([0, t])φ′(t) dt

=

∫ 1

0

∫ 1

0

1[0,t](s)dµ(s)φ
′(t) dt

=

∫ 1

0

∫ 1

0

1[s,1](t)φ
′(t) dtdµ(s)

=

∫ 1

0

−φ(s)dµ(s) = −〈µ, φ〉.

This proves the surjectivity of L. We see that the proposed form of L+ is the

right one, since s 7→ µ([0, s])−
∫ 1

0 µ([0, s])ds is a function of zero mean.
We now calculate

〈
(L+)∗ξ, µ

〉
=
〈
ξ, L+µ

〉

=

∫ 1

0

ξ(t)

(∫ 1

0

1[0,t](s)dµ(s) −

∫ 1

0

µ([0, r])dr

)
dt

=

∫ 1

0

(∫ 1

0

1[s,1](t)ξ(t)dt

)
dµ(s) −

∫ 1

0

ξ(t)dt ·

∫ 1

0

1[0,r](s)dµ(s)dr

=

∫ 1

0

(∫ 1

s

ξ(t)dt

)
dµ(s) −

∫ 1

0

ξ(t)dt ·

∫ 1

0

(1− s)dµ(s)

In particular, the action of (L+)∗ξ is given by a continuous function, which is
vanishing on the boundary of (0, 1)

We now show how the set Q1 can be expressed as a finite set of linear equality
constraints.

Proof of Lemma 2. Since ranL∗ = (kerL)⊥ (by the closed range theorem), Aq ∈
ranL∗ if and only if ∀1 ≤ i ≤ r, 〈Aq, λi〉 = 0.

Finally, we provide the argument that the constraint of the dual problem
can be rewritten as an inequality on the space of Hermitian matrices in the case
of the functions ρi begin trigonometric polynomials.

Proof of Lemma 3. Note that |
∑m

i=1 αiρi| ≤ 1 is equivalent to

1 ≥

∣∣∣∣∣∣

m∑

i=1

αi

K∑

j=−K

γi,jpj

∣∣∣∣∣∣
=

∣∣∣∣∣∣

K∑

j=−K

m∑

i=1

αiγi,jpj

∣∣∣∣∣∣
=

∣∣∣∣∣∣

K∑

j=−K

(Γα)jpj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
p−K

K∑

j=−K

(Γα)jpj

∣∣∣∣∣∣
.

The function f = p−K

∑K
j=−K(Γα)jpj is a causal trigonometric polynomial.

We know from [13, Cor.4.27] that it obeys the constraint ‖f‖∞ ≤ 1 if and only
if there exists a positive semi-definite matrix Q ∈ C(2K+1)×(2K+1) such that

[
Q Γα

(Γα)∗ 1

]
� 0 and

2K+2−j∑

i=1

Qi,i+j =

{
1, j = 1,

0, 2 ≤ j ≤ 2K + 1.
(25)
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4 Conclusion & Outlook

In this paper we have studied the properties of total variation regularized prob-
lems, where total-variation should be understood as a term of form ‖Lu‖TV ,
with L a linear operator. We have shown that under a convexity assumption on
the data-fit term, some of the solutions û of total-variation regularized inverse
problems are m-sparse, where m denotes the number of measurements. This
precisely means that Lû is an atomic measure supported on at most m points.
This result extends recent advances [26], by relaxing some hypotheses on the
linear operator L and on the domain of the functions.

The second contribution of this paper is to show that solutions of this infinite
dimensional problem can be obtained by solving two consecutive finite dimen-
sional problems, given that the measurements belong to some function spaces
such as the trigonometric polynomials or the set of piecewise linear functions on
polyhedral domains. Once again, this result extends significantly recent results
on super-resolution [6, 23].

As an outlook, we want to stress out that the hypotheses formulated on the
linear operator L rule out a number of interesting applications, such as total
variation regularization in image processing. As an outlook, we plan to study
how the results and the proof techniques in this paper could apply to more
general cases.
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