
HAL Id: hal-01572177
https://hal.science/hal-01572177v1

Submitted on 4 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When rule-based models need to count
Pierre Boutillier, Ioana Cristescu

To cite this version:
Pierre Boutillier, Ioana Cristescu. When rule-based models need to count. [Research Report] Harvard
Medical School. 2017. �hal-01572177�

https://hal.science/hal-01572177v1
https://hal.archives-ouvertes.fr


SASB 2017

When rule-based models need to count

Pierre Boutillier1 Ioana Cristescu2

Fontana Lab
Harvard Medical School

Boston, USA

Abstract

Rule-based modelers dislike direct enumeration of cases when more efficient means of enumeration are
available. We present an extension of the Kappa language which attaches to agents a notion of level. We
detail two encodings that are more concise than the former practice.

Rule-based languages are a well-established framework for modeling protein-

protein interactions.

Kappa [2,1] is a rule-based language relying on site-graphs. The nodes of site-

graphs are called agents. Agents interact by binding/unbinding through sites. Sites

are binding resources, each site is part of at most one edge.

A model in Kappa consists of a set of graph rewrite rules with rates. A rule

describes a potential interaction given a context. Rates represent probability to fire.

In a biological context, it is often the case that a notion of internal state (such

as active, methilated, . . . ) is required in order to describe possible interactions.

In Kappa, sites are equipped with internal states, facilitating the modeling efforts

of the user. However, as shown in the following sections a more systematic encoding

of internal states is possible.

Another common practice is to attach a level to agents and make an interaction

sensitive on the level of its participating agents.

We propose here a language extension to store, test and change levels explicitly.

Moreover, we present an encoding of levels that induce a linear (in number of levels)

blow up of the number of rules. This is in contrast to previous encodings, which

induce an exponential blow up in the number of rules.

1 Email: Pierre Boutillier@hms.harvard.edu
2 Email: Ioana Cristescu@hms.harvard.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:Pierre_Boutillier@hms.harvard.edu
mailto:Ioana_Cristescu@hms.harvard.edu


Boutillier, Cristescu

1 When enumeration is necessary

The following motivating example [4] demonstrates a typical problem in which levels

are necessary:

KaiC proteins have 6 independent phosphorylation sites. (De)phosphorylation

of every site is independent. The more sites are phosphorylated, the bigger the

probability that KaiC binds KaiA is.

A typical way to deal with this example consist in explicitly encoding rules for

the internal states of the sites of interest. However, doing so induces an exponential

blow-up in the number of rules (in the number of levels).

The BNGL [3] language introduces a notion of indistinguishable sites. i.e. one

can define an agent with n sites that all have the same name. Consequently, a single

rule to specify that k sites (out of n) are phosphorylated is enough. Moreover, the

number of species is also reduced. Still, there are exponentially many ways to go

from one level to another and enumeration is necessary to faithfully respect the

dynamics of the system.

We now show that adding a syntactic layer to Kappa that offers support for

counting will avoid the explosion in the number of rules.

2 Encoding counters

In Kappa, agents are typed and their signature is given. In the extension we are

presenting, counters are part of an agent’s signature and the upper bound of the

counter has to be specified.

Extended rules can test counter values (“equals” and “bigger than”). They can

also modify their value (increase, decrease or assign a new value). Lastly, levels can

be used in the rates of the rules.

We now present two possible ways of encoding counters.

2.1 Unary numbers

We define a new agent type succ with 2 sites p

and n. A chains of k + 1 succ agents denotes a

counter with value k. Agents equipped with coun-

ters are encoded as agents with an extra site for

each counter, which is used to bind to a chain

A c succ
n

p
succ
n

p

of succ agents. For example, in the figure on the right, an agent A has a counter c

set to 1 3 .

Testing whether a counter is equal to k consists in checking whether there is a

chain of k + 1 succ agents. A greater than k test checks whether there is a chain

k + 1 succ agents, where the site n of the last succ agent does not matter.

3 Representing level 0 by a chain of length 1 means that we do not have to make a special case for it in the
rules!

2



Boutillier, Cristescu

A counter is incremented by adding succ agents between

the agent and its succ chain. The rule depicted on the

right increments c of A by one. Removing the beginning

of the succ chain decreases the level.

It is important to stress that counter modifications are

independent of its value as the encoding only manipulates

the beginning of a succ chain.

A c succ
p

succ
n

p
In our encoding, a rule whose rate depends on levels is expanded into several

rules, one for each level. This operation imposes the user-defined upper bound on

the levels.

Creation of agents with levels also creates the necessary chain of succ to repre-

sent the levels.

Deletion is more problematic: the chain of succ is disconnected from the deleted

agent, but not deleted. A possible solution is to collect free chains of succ by using

a rule that says that succ agents with their sites p free are deleted “at infinite

speed”.

2.2 Ruler

A second encoding allows tests “smaller than” in addition of “equal” and “greater

than”, but is also more verbose and increases the size of states.
As before, counters are encoded as a chain of succ

agents. In this encoding however, a succ agent has

3 sites: p and n to form chains but also a, which

is where the other agents bind. Every agent with

a counter bounded by n has attached a chain of

(always) n succ. The value of the counter is given

by which succ agent it is bound to on site a. For

example, in the figure on the right, an agent A has

a counter c set to 1.

A c

succ
n

p
a

succ
n

p
a

p

Since site p and n are distinct, a direction can be attached to the chain of succ.

The level is 0 if the agent is bound to the “bottom” of the chain, and it is n if it is

bound to the “top”.

Incrementing/decrementing the levels are implemented by sliding on the succ

chain. Testing whether a level is equal or greater than k consists of inspecting the

chain of succ “below” the connection to the agent. Whereas inspecting the length

of the chain “above” the connection to the agent enables to test if the level is smaller

than a value k.

3 Conclusions

While fairly trivial, encoding counters in the Kappa simulator has greatly simplified

some of the models written by the Kappa team. However, it comes with two draw-

backs. First, there is a computational cost (mainly in term of memory management)

to synthetize and degrade succ agents. Secondly, the simulator works with a plain

Kappa model. There is an implementation cost to go back from the plain Kappa

model to the user-written model, which is necessary when giving feedback to the

3



Boutillier, Cristescu

user (for example, dumping the current state of the system). As a result, we plan

to implement a native treatment of the counters in the Kappa simulator.

Another direction for future work is the static detection of overflow for counters.

Currently, the maximal level of the counter has to be declared by the user. Never-

theless, this means the rules have to be written such that they can never increase a

level beyond the defined boundary. The level of the counter can be checked by static

analysis using interval computation, but for the meantime we have simply added

watchdogs that dynamically raise the alarm if the site of a level becomes free, or if

a chain of succ that is too long appears.

References

[1] Pierre Boutillier, Jérôme Feret, and Jean Krivine. Kappa and KaSim development page.
http://kappalanguage.org.

[2] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine. Rule-based modelling,
symmetries, refinements. In Formal Methods in Systems Biology, First International Workshop, FMSB
2008, Cambridge, UK, June 4-5, 2008. Proceedings, pages 103–122, 2008.

[3] James R. Faeder, Michael L. Blinov, and William S. Hlavacek. Rule-Based Modeling of Biochemical
Systems with BioNetGen, pages 113–167. Humana Press, Totowa, NJ, 2009.

[4] Susan S Golden. Integrating the circadian oscillator into the life of the cyanobacterial cell. In Cold Spring
Harbor symposia on quantitative biology, volume 72, pages 331–338. Cold Spring Harbor Laboratory
Press, 2007.

4


	When enumeration is necessary
	Encoding counters
	Unary numbers
	Ruler

	Conclusions
	References

