Signed Graph Analysis for the Interpretation of Voting Behavior

Nejat Arinik

Rosa Figueiredo Vincent Labatut

Laboratoire Informatique d'Avignon, University of Avignon, France.

Graz, OCT 11 - 12, 2017

Outline

- Context
- 2 Structural Balance and Signed Graph Partitioning
- Computational Experiments
- 4 Interpretation of Specific Cases
- 5 Conclusion & Further research

iKNOW'17

1/14

Arinik et al. (UAPV)

- Partitioning European Parliament (EP) vote networks
 - Extracting signed networks
 - Partitioning signed networks

Our previous works	REVIOUS WORKS LIMITATIONS	

- Partitioning European Parliament (EP) vote networks
 - Extracting signed networks
 - Partitioning signed networks

Our previous works	LIMITATIONS	How to deal with?
Relevance of Negative Links in Graph Partition- ing [Mendonça et al., 2015]		

Arinik et al. (UAPV) iKNOW'17

- Partitioning European Parliament (EP) vote networks
 - Extracting signed networks
 - Partitioning signed networks

Our previous works	LIMITATIONS	How to deal with?
Relevance of Negative Links in Graph Partition- ing [Mendonça et al., 2015]	 uncomplete data fully-connected networks interpretation problems 	

Arinik et al. (UAPV) iKNOW'17

- Partitioning European Parliament (EP) vote networks
 - Extracting signed networks
 - Partitioning signed networks

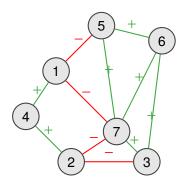
Our previous works	LIMITATIONS	How to deal with?
 Relevance of Negative Links in Graph Partition- ing [Mendonça et al., 2015] Brazilian Congress structural balance analy- sis [Levorato and Frota, 2017] 	 uncomplete data fully-connected networks interpretation problems 	

Arinik et al. (UAPV) iKNOW'17 2 / 14

- Partitioning European Parliament (EP) vote networks
 - Extracting signed networks
 - Partitioning signed networks

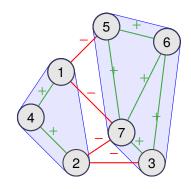
Our previous works	LIMITATIONS	How to deal with?
 Relevance of Negative Links in Graph Partitioning [Mendonça et al., 2015] Brazilian Congress structural balance analysis [Levorato and Frota, 2017] 	 uncomplete data fully-connected networks interpretation problems 	

Arinik et al. (UAPV) iKNOW'17 2 / 14


- Partitioning European Parliament (EP) vote networks
 - Extracting signed networks
 - Partitioning signed networks

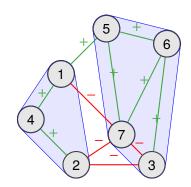
Our previous works	LIMITATIONS	How to deal with?
 Relevance of Negative Links in Graph Partition- ing [Mendonça et al., 2015] Brazilian Congress structural balance analy- sis [Levorato and Frota, 2017] 	 uncomplete data fully-connected networks interpretation problems 	 changing data source filtering step deeper analysis on selected cases

Arinik et al. (UAPV) iKNOW'17 2 / 14


Structural Balance and Signed Graph Partitioning

• Signed graphs

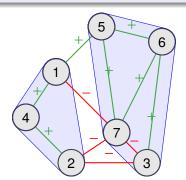
Structural Balance and Signed Graph Partitioning


- Signed graphs
- Structural Balance: Partitioning into two [Heider, 1946] or more [Davis, 1967] mutually hostile subgroups each having internal solidarity

Arinik et al. (UAPV) iKNOW'17 3 / 14

Structural Balance and Signed Graph Partitioning

- Signed graphs
- Structural Balance: Partitioning into two [Heider, 1946] or more [Davis, 1967] mutually hostile subgroups each having internal solidarity
- Most real networks are not structurally balanced → need to measure graph imbalance

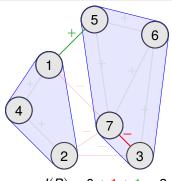


Arinik et al. (UAPV) iKNOW'17 3 / 14

Measuring imbalance - CC problem

Definition

Consider a signed graph G = (V, E, s) with a nonnegative weight associated with each $e \in E$. The Correlation Clustering (CC) problem is the problem of finding a partition P of V such that the imbalance I(P) is minimized.

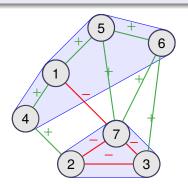


Arinik et al. (UAPV) iKNOW'17 4

Measuring imbalance - CC problem

Definition

Consider a signed graph G = (V, E, s) with a nonnegative weight associated with each $e \in E$. The Correlation Clustering (CC) problem is the problem of finding a partition P of V such that the imbalance I(P) is minimized.

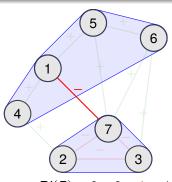

I(P) = 0 + 1 + 1 = 2

Arinik et al. (UAPV) iKNOW17 4

Measuring imbalance - RCC problem

Definition

Consider a signed graph G = (V, E, s) with a nonnegative weight associated with each $e \in E$ and an integer value satisfying $1 \le k \le n$. The Relaxed CC problem is the problem of finding a partition P of V, with at most k sets, such that the imbalance RI(P) is minimized.



Arinik et al. (UAPV) iKNOW'17 5

Measuring imbalance - RCC problem

Definition

Consider a signed graph G = (V, E, s) with a nonnegative weight associated with each $e \in E$ and an integer value satisfying $1 \le k \le n$. The Relaxed CC problem is the problem of finding a partition P of V, with at most k sets, such that the imbalance RI(P) is minimized.

Arinik et al. (UAPV) iKNOW'17

Computational Experiments

Dataset description, Construction of vote graphs and filtering step

Evaluation of filtering step on graph structure and partitioning algorithms

Arinik et al. (UAPV) iKNOW'17

- Raw data (from itsyourparliament.eu):
 - Nature: Voting activity at the European Parliament
 - Period: 7th term (June 2009–June 2014)
 - Size: 840 MEPs, 1426 documents, 21 topics

Arinik et al. (UAPV) iKNOW'17 7/14

- Raw data (from itsyourparliament.eu):
 - Nature: Voting activity at the European Parliament
 - Period: 7th term (June 2009–June 2014)
 - Size: 840 MEPs, 1426 documents, 21 topics
- Voting Agreement Index (VAI) [Mendonça et al., 2015]:

Compares two MEPs

	For	Abstain	Against
For	+1	0	-1
ABSTAIN	0	+1	0
AGAINST	-1	0	+1

Arinik et al. (UAPV) iKNOW'17

- Raw data (from itsyourparliament.eu):
 - Nature: Voting activity at the European Parliament
 - Period: 7th term (June 2009–June 2014)
 - Size: 840 MEPs, 1426 documents, 21 topics
- Voting Agreement Index (VAI) [Mendonça et al., 2015]:

Compares two MEPs

-	=		
	For	Abstain	Against
For	+1	0	-1
ABSTAIN	0	+1	0
Against	-1	0	+1

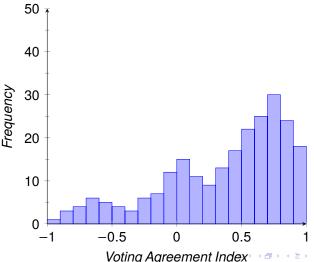
Networks:

- Nodes: Members of the European Parliament (MEPs)
- Weighted: VAI values (document-wise agreement averaged over all documents) → Ranges from -1 to +1
- Dimensions: member country \times EP political group \times time \times topics
 - For instance, documents voted by French MEPs on Agriculture in 2012-2013

Arinik et al. (UAPV)

- Raw data (from itsyourparliament.eu):
 - Nature: Voting activity at the European Parliament
 - Period: 7th term (June 2009–June 2014)
 - Size: 840 MEPs, 1426 documents, 21 topics
- Voting Agreement Index (VAI) [Mendonça et al., 2015]:

Compares two MEPs

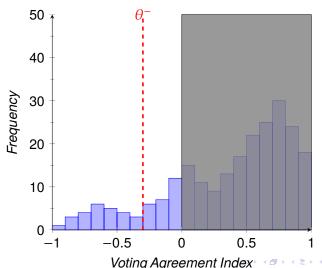

-			
	For	Abstain	Against
For	+1	0	-1
Abstain	0	+1	0
AGAINST	-1	0	+1

- Networks:
 - Nodes: Members of the European Parliament (MEPs)
 - Weighted: VAI values (document-wise agreement averaged over all documents) \rightarrow Ranges from -1 to +1
 - Dimensions: member country × EP political group × time × topics
 - For instance, documents voted by French MEPs on Agriculture in 2012-2013
- Filtering step

Arinik et al. (UAPV)

France, AGRI, 2012–2013: Filtering Step

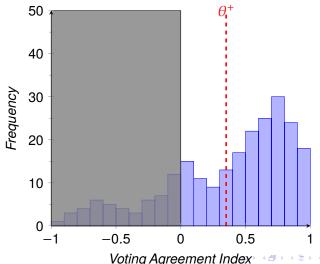
 Filtering step aims at ignoring the values too close to zero, deemed non-significant



Arinik et al. (UAPV)

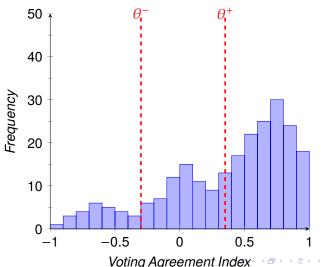
ikNOW'17 8/14

France, AGRI, 2012–2013: Filtering Step


 Filtering step aims at ignoring the values too close to zero, deemed non-significant

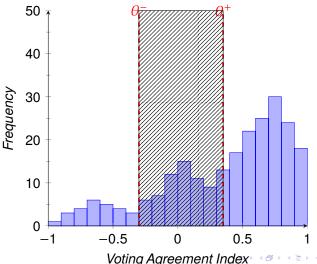
Arinik et al. (UAPV) iKNOW'17 8 / 14

France, AGRI, 2012-2013: Filtering Step


 Filtering step aims at ignoring the values too close to zero, deemed non-significant

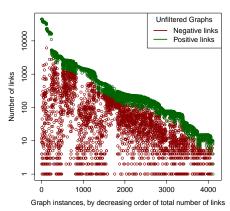
Arinik et al. (UAPV) iKNOW'17 8 / 14

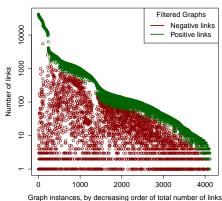
France, AGRI, 2012–2013: Filtering Step


 Filtering step aims at ignoring the values too close to zero, deemed non-significant

Arinik et al. (UAPV) iKNOW'17 8 / 14

France, AGRI, 2012–2013: Filtering Step

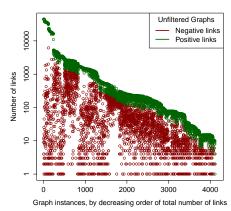

 Filtering step aims at ignoring the values too close to zero, deemed non-significant

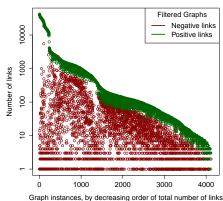


Arinik et al. (UAPV) iKNOW'17 8,

Effect of the filtering on Graph Structure

 Filtering removes in average: 43% of the links, 26% of the network weight

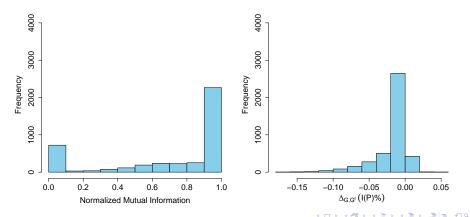




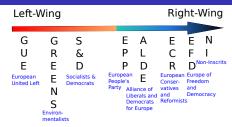
Arinik et al. (UAPV) iKNOW'17

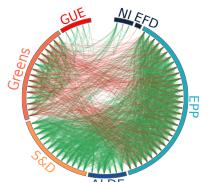
Effect of the filtering on Graph Structure

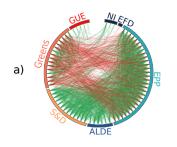
- Filtering removes in average: 43% of the links, 26% of the network weight
- Connectivity of filtered networks: 66% still connected, 23% divided into 2 components (but the giant component)

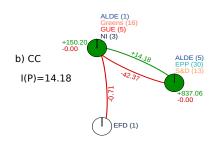


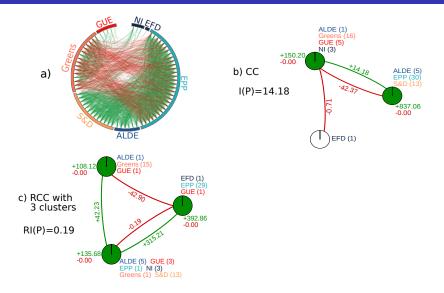
Arinik et al. (UAPV) iKNOW'17

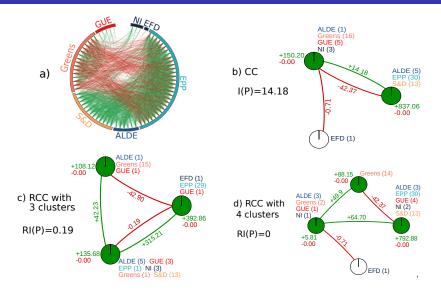

Effect of the filtering on Partitioning Algorithms


- Ex-CC before vs. after filtering
- The NMI is close to 1 for most instances (≥0.8 for 61% of them)
- The quality in terms of I(P)% does not change much with filtering


Arinik et al. (UAPV) iKNOW'17 10 / 14


Interpretation of a vote network: France, AGRI, 2012–13


Interpretation of a vote network: France, AGRI, 2012–13


Arinik et al. (UAPV) iKNOW'17 12 / 14

Interpretation of a vote network: France, AGRI, 2012-13

Arinik et al. (UAPV) iKNOW'17 12 / 14

Interpretation of a vote network: France, AGRI, 2012-13

Arinik et al. (UAPV) iKNOW'17 12 / 14

Conclusion & Further research

- Methodological:
 - Other Structural Balance problems
 - Detailed experiments based on randomly generated signed networks
- Application:

 More complete interpretations via Manifestos of EU parties and the parties' policy preferences → Comparative Manifestos Project (CMP).

Arinik et al. (UAPV) iKNOW'17 13 / 14

Thank you for your attention!

Arinik et al. (UAPV) iKNOW'17 14 / 14

References:

Davis, J. (1967).

Clustering and structural balance in graphs.

Human Relations, 20:181–187.

Heider, F. (1946).

Attitudes and cognitive organization.

Journal of Psychology, 21:107–112.

Levorato, M. and Frota, Y. (2017).

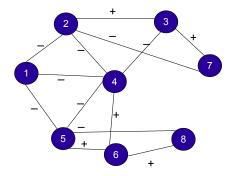
Brazilian congress structural balance analysis.

Journal of Interdisciplinary Methodologies and Issues in Science, 2.

Mendonça, I., Figueiredo, R., Labatut, V., and Michelon, P. (2015).

Relevance of negative links in graph partitioning: A case study using votes from the european parliament.

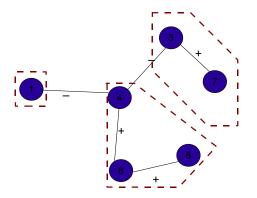
In 2015 Second European Network Intelligence Conference, ENIC 2015, Karlskrona, Sweden, September 21-22, 2015, pages 122–129.


Iterated Local Search

It is comprised of 4 modules:

- Constructive phase;
- 2 Local search;
- Perturbation;
- Acceptance criterion.

Measure ↔ Graph optimization problem


|V| in a k balanced subgraph \leftrightarrow Maximum k-balanced subgraph Problem

Arinik et al. (UAPV) iKNOW'17 2/7

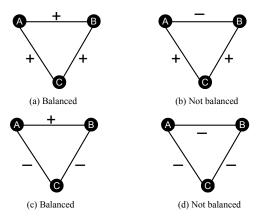
Measure ↔ Graph optimization problem

|V| in a k balanced subgraph \leftrightarrow Maximum k-balanced subgraph Problem

Arinik et al. (UAPV) iKNOW'17 2

Measure ↔ Graph optimization problem

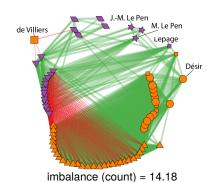
Definition


Consider a signed graph G = (V, E, s) and an integer value satisfying $1 \le k \le n$. The Maximum k-Balanced Subgraph problem is the problem of finding a subgraph H = (V', E', s) of G such that H is k-balanced and maximizes the cardinality of the vertex set V'.

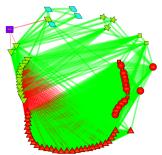
Arinik et al. (UAPV) iKNOW'17 3

Structural Balance

[Heider, 1946]:

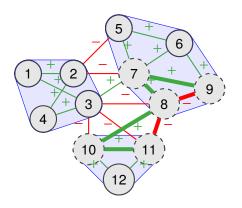

• People strive for cognitive balance in their network of likes and dislikes.

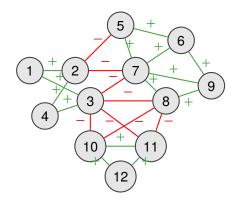
Comparison between a community detection and signed graph partitioning methods


ILS-CC:

- Method designed for signed graphs
- Negative links taking into account

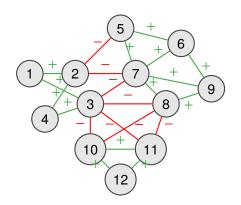
Infomap:

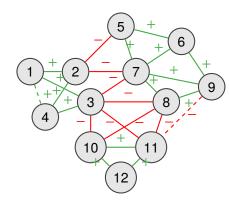

- Method designed for unsigned graphs
- Negative links not taking into account


imbalance (count) = 21.70

Arinik et al. (UAPV) iKNOW'17

Strucutural Balance (checking of local property)




An example of link prediction

Arinik et al. (UAPV)

An example of link prediction

Arinik et al. (UAPV) iKNOW 17 7